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Abstract

Sensor networks are being increasingly deployed
for diverse monitoring applications. Event data
are collected at various sensors and sent to select-
ed storage nodes for further in-network process-
ing. Since sensor nodes have strong constraints
on their energy usage, this data transfer needs to
be energy-efficient to maximize network lifetime.
In this paper, we propose a novel methodology for
trading energy versus latency in sensor database
systems. We propose a new protocol that careful-
ly schedules message transmissions so as to avoid
collisions at the MAC layer. Since all nodes ad-
here to the schedule, their radios can be off most
of the time and they only wake up during well-
defined time intervals. We show how routing pro-
tocols can be optimized to interact symbiotically
with the scheduling decisions, resulting in signifi-
cant energy savings at the cost of higher latency.
We demonstrate the effectiveness of our approach
by means of a thorough simulation study.

1 Introduction

Sensor networks consisting of small nodes with sensing,
computation and communication capabilities are becom-
ing ubiquitous. A powerful paradigm that has emerged
recently views a sensor network as a distributed Sensor-
DBMS and allows users to extract information by inject-
ing declarative queries in a variant of SQL. In deploying a
SensorDBMS one should consider important limitations of
sensor nodes on computation, communication and power
consumption. Energy is the most valuable resource for u-
nattended battery-powered nodes. Since radio communica-
tion consumes most of the available power, SensorDBMSs
need energy-efficient data-dissemination techniques in or-
der to extend their lifetime.

An important communication pattern within sensor net-
works is the sending of sensor readings to a designated
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sensor node. Let us give two examples where this pattern
arises. First, consider a heterogeneous sensor network with
two types of sensor nodes: many small-scale source nodes
with low-power multi-hop communication capabilities, and
a few powerful gateway nodes connected to the Internet. In
this setup, data flows from the sources to the gateway n-
odes. Our second example is motivated by resource savings
through in-network processing. In-network processing al-
gorithms coordinate data collection and processing in the
network at designated nodes called view nodes [1, 2]. Data
flows from sources to relevant view nodes for further pro-
cessing. For example, in a sensor network that monitors a
remote island and records the movements of different types
of animals, each view node could be responsible for storing
the detection records (and computing tracks) for a given
type of animal.

Since power is a major resource constraint, we would
like this data flow between sources and view nodes to be
as power-efficient as possible; in particular, for non-time-
critical applications, we would like to trade message latency
versus power usage as events are routed from the sensor
nodes where they originated to the respective view nodes.

In order to achieve energy-efficient data flows between
sources and view nodes, we address several challenges in-
trinsic to ad hoc network communication: minimizing col-
lisions at the MAC layer, managing radios in a power-
efficient manner, and selecting energy-efficient routes. In
this paper we consider data dissemination strategies that
avoid collisions (and message retransmissions) at the cost
of higher message latency. We carefully coordinate trans-
missions between nodes, allowing them to turn their ra-
dios off most of the time. Current generation radios con-
sume nearly as much power when listening or receiving as
when transmitting (typical idle:receive:transmit ratios are
1:1.2:1.7 [3], 1:2:2.5 [4], and 1:1.05:1.4 [5]). Thus, the a-
bility to turn them off when not needed yields significant
energy savings.

The remainder of this paper is organized as follows. Sec-
tion 2 enumerates several variants of scheduling problem-
s and discusses their complexity. Section 3 presents our
scheduling algorithm and highlights its close interaction
with the routing layer. A thorough experimental evalua-
tion of the proposed algorithm and competing approaches
is presented in Section 4. We discuss related work in Sec-
tion 5 and draw our conclusions in Section 6.



2 Problem space

With coordinated scheduling, a data dissemination proto-
col in a sensor network has two components: a scheduling
algorithm that activates network edges so that their trans-
missions do not interfere with one another, and a routing
algorithm that selects routes for individual messages. T-
wo important performance metrics are energy consumption
and message latency. In this section, we consider each of
these metrics and sketch complexity results for the follow-
ing optimization problems: (i) finding an optimal pair of
routing and scheduling algorithms; (ii) finding an optimal
routing algorithm for a given schedule; (iii) finding an op-
timal schedule for a given collection of routes. Full proofs
of these results can be found in an extended version of the
paper [6].

The underlying framework for our optimization prob-
lems is as follows. We assume the sensor nodes form a
multi-hop wireless network embedded in the plane. For
simplicity, we assume the node radios have identical ranges
of one unit. Thus, the nodes form a unit disk graph: two
nodes are connected by an edge iff the Euclidean distance
between them is at most 1. We represent the communi-
cation workload by the rate of message generation at each
node ¢, given by r;, together with a probability distribu-
tion p;j, giving the probability that a message generated
at node ¢ is destined for node j.

Energy minimization. In the energy minimization
problem, we are given a communication workload among
the sensor nodes and view servers, and our goal is to deter-
mine a data dissemination scheme that minimizes the en-
ergy consumed in delivering all messages within a bounded
delay. In our model, we assume that the energy consumed
when a network edge is activated is (o + Bm), where «
is a fixed start-up cost for turning the radio on, 3 is the
per-message transmission and reception cost, and m is the
number of messages sent during the activation.

Theorem 2.1 For any a > 0 and B > 0, finding an opti-
mal routing-scheduling pair to minimize energy is NP-hard,
even when there is only one view server. It is also NP-hard
to determine an energy-optimal activation schedule given a
fized set of routes. The problem of finding a set of energy-
optimal routes given an activation schedule can be solved
in polynomaial time.

Latency minimization. In the latency minimization
problem, we are given a communication workload and seek
a data dissemination protocol that minimizes average mes-
sage propagation latency. It is already known that min-
imizing latency in an ad-hoc wireless network is NP-hard
even for the special case where nodes exchange messages
only with their neighbors [7]. This reduction can be ex-
tended to unit disk graphs.

Theorem 2.2 Finding a routing-scheduling pair that min-
imaizes latency is NP-hard. It is also NP-hard to determine
an optimal activation schedule given a fized set of routes. A
set of latency-optimal routes for a given activation schedule
can be obtained in polynomial time.

These results indicate that the general problem of de-
signing an optimal data dissemination protocol, given an
arbitrary sensor workload, is intractable. In this paper, we
focus on one element of the design space, namely that of

first developing an interference-free schedule for edge acti-
vation, and then designing delay- or energy- optimal routes
given this schedule.

3 Wave Scheduling and Routing

In this section, we focus on developing a schedule for edge
activations, and then designing optimal routes given this
schedule. Our scheduling mechanism is defined over a sim-
ple partitioning of the network, which we first describe in
Section 3.1. We then select a class of periodic schedules,
presented in Section 3.2, which are aimed at avoiding colli-
sions at the MAC layer. Finally, in Section 3.3, we present
energy-based and delay-based routing protocols that opti-
mize the relevant metric for a given schedule.

3.1 Partitioning

Our scheduling mechanism is layered on top of a protocol
like GAF [8], which partitions nodes into cells and period-
ically elects a single leader node for each nonempty cell.
Nodes determine the cell that they belong to by using dis-
tributed localization techniques [9, 10]; experiments have
shown that GAF is robust to somewhat inaccurate position
information [8]. The size of each cell is set so that a node
anywhere in a cell can communicate directly with nodes in
any of its four horizontal and vertical neighbor cells. This
constrains the side of a cell to have length L at most R/+/5,
where R is the transmission range of a node. Since only
leaders are engaged in inter-cell message routing, the re-
maining nodes may turn off their radios most of the time,
achieving significant energy savings. The schedules that
we will propose in this section exploit the GAF topology
control scheme in order to achieve further energy savings.
They leverage the abstraction of partitioning irregularly
positioned nodes into cells organized in a rectilinear grid
and focus on coordinating inter-cell communication. In
what follows, we will refer to cells as supernodes or simply
nodes.

For convenience of exposition, we assume here that the
rectilinear grid is a square. Let N denote the number of
supernodes along an edge of the grid. We identify the
supernodes by their coordinates (i, j); for example (0,0)
refers to the node at the southwest corner of the network.
Thus, (i +1,7), (4,5 + 1), (i —1,7), and (4,5 — 1) are the
east, north, west, and south neighbors, respectively, of n-
ode (i, ), for i,5 € [0, N).

3.2 Wave Scheduling: Algorithms

Given a set of supernodes arranged in a rectilinear grid,
we propose a class of periodic activation schedules that
conserves energy by (i) avoiding interference at the MAC
layer and (ii) allowing supernodes to turn off their radios
whenever they are not sending or receiving messages. In
these schedules, which we call wave schedules, every (di-
rected) edge of the rectilinear grid is activated periodi-
cally at well-defined communication intervals, called send-
receive intervals. For any two neighboring supernodes A
and B, the edge A — B is activated in the send-receive
intervals [t + iP,t + iP + ], for every i > 0, where ¢ is
the first time the edge is activated and P is the period
of the schedule. We now elaborate on the edge activation
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Figure 1: SimpleWave
step and then present two wave schedules: SimpleWave
and PipelinedWave.

Edge activation. An edge activation A — B consists of
a contention-based and a collision-free period. During the
contention-based period, all nodes within the cell A turn
on their radios in order to run the GAF protocol (GAF
only runs locally in cell A). They check whether the leader
has enough energy reserves to continue assuming the lead-
ership role. If the leader is energy-drained, a re-election
protocol selects the new leader. Messages in the queue of
the old leader, as well as inter-cell routing information, are
transfered to the new leader. The remaining nodes then
send their sensor readings, which were generated since the
previous GAF period, to the leader of the cell. Contention
resolution MAC protocols work very well in avoiding intra-
cell contention, since all nodes in the cell are within com-
munication range and there are no occurences of the hidden
terminal problem. This adapted version of the GAF proto-
col is more energy-efficient than the original GAF scheme,
because it avoids interference caused by concurrent leader
reelection in consecutive cells.

The collision-free period of an edge activation A — B
is used in order to route messages from the leader of A
to the leader of B. During that period both leaders of
A and B (referred to simply as A and B) turn on their
radios preparing for message transmission and reception
respectively. If A has no data messages to send, it sends a
special NothingToSend (NTS) message to node B, which
allows both nodes to turn off their radios without having to
wait until the end of the send-receive interval. As we will
show in the experimental section, the use of NTS messages
offers significant energy savings since it adjusts the node
duty cycle to its local traffic. Since in the collision-free
periods there is no interference at the wireless medium, it
is not necessary to exchange RTS and CTS messages prior
to sending a regular data message (or an NTS message).
A data (or NTS) message is simply followed by an ACK.
The first data or NTS message that A sends to B (and
its ACK) can be used in order to resynchronize the clocks
of the two nodes for the next activation of edge A — B.
If the synchronization error between two neighbor nodes
at the beginning of the collision-free period is bound by e
msecs, we set the receiver B to wake up e msecs earlier

than scheduled according to its local clock. Synchroniza-
tion issues are discussed in more detail in the end of this
section.

In the remainder of the paper, by edge activation we
mainly refer to the collision-free period of the edge ac-
tivation used for inter-cell communication. The ratio of
the collision-free period to the contention-based period de-
pends on the traffic patterns of the application. For in-
stance, for traffic workloads with messages following mul-
tiple hops before reaching the destination, the collision-
free (inter-cell communication) period should dominate the
contention-based (GAF) period.

SimpleWave. The intuition behind wave schedules is to
coordinate message propagation in north, east, south and
west phases. For instance, during the east phase, only
edges of the form (i,5) — (i + 1,7) are activated send-
ing messages along the east direction. Owing to interfer-
ence, however, we cannot schedule all of the edges along
the east direction. If A denotes the ratio of the interference
range to the transmission range, then a sufficient condition
for transmissions from two supernodes (i, j) and (i1, j1) to
avoid interference is the following:

V0i—i =1+ (G- 12 L>A-R

In particular, if we consider two supernodes (i,j) and
(71,7), then their transmissions do not interfere it i — i; —
1 > AR/L. Since i — i1 — 1 is an integer, we obtain
that the two supernodes can transmit simultaneously if
i—11 > [A-R/L] +1, which we denote by g. If we adopt
the IEEE 802.11 settings of R = 250m and A = 550/250,
and set L to its minimum value R/+v/5, we obtain that
g =6.

In the SimpleWave schedule, we schedule together edges
that are g positions apart. Figure 1 illustrates the Simple-
Wave schedule on a 10 x 10 network, with R = 250m,
A = 550/250, setting L to a round number of 100m (in-
stead of its minimum value R/+/5), yielding g = 7. The
north phase starts at time 1 and it lasts for 51 send-receive
intervals during which every north edge is activated exact-
ly once. The following east phase starts at time 52. Notice
that only two nodes of the first column ((0,0) and (0, 7))
are sending concurrently to the east, which are spaced a-
part by 7 hops. In the next interval (time 53) the pattern
shifts east by one cell. Only when the wave has propagated
to the eighth column (time 59) does it no longer interfere
with node communication in the first two columns. Note
that at time 59 it becomes possible to schedule concurrent-
ly four edges: (7,0) — (8,0), (7,7) — (8,7), (0,1) — (1,1)
and (0,8) — (1,8).

There are variants of the Simple Wave algorithm de-
fined above, differing by the order in which wave direc-
tions are scheduled. We refer to these as the (IV, E, S, W),
(N,W,S,E), (N,S,E,W), and so forth. The variants are
logically equivalent, but the choice of scheduling variant
affects the choice of routes, as will be explained in detail in
section 3.3. The period of a Simple Wave depends on the
size of the network. Each phase takes (N — 1)+ (g—1)-g
send-receive intervals and the entire wave period lasts for
4% ((N—1)+ (g —1)-g) intervals. This is not a desirable
property, because it prevents the distributed deployment
of the algorithm in a dynamic network. When a new su-
pernode (cell) joins (or leaves) the network, it affects the
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Figure 2: PipelinedWave

wave period and therefore the activation times of all the
other supernodes. In addition, in order to identify the acti-
vation time of its adjacent edges a supernode should know
its location within the network, as well as the size of the
network. Another important downside of the Simple Wave
algorithm is that it underutilizes the capacity of the net-
work. For instance notice in Figure 1 that at time 1, it
activates only two north going edges, whereas one could
identify two additional edges that could be activated con-
currently without causing any interference.

PipelinedWave. This algorithm is motivated by the need
for schedules that can be deployed in a distributed and s-
calable manner, and that make a good use of the network
capacity. Conceptually, a network can be divided in a num-
ber of fixed-size (g x g) squares of g supernodes each, where
all squares have identical schedules. In such a network, the
schedule of the incident edges of a node is determined by its
relative location in the square. Since all edges within the
same square interfere with one another, we can only sched-
ule one edge at a time. In effect, we partition all the edges
of the network into a collection of mazimal independent
sets, each independent set corresponding to a set of edges
that can be simultaneously activated without interference.
The period of the resultant schedule is 49 send-receive in-
tervals. This means that for pipelined waves, new nodes
can join the network and schedule themselves without af-
fecting the schedules of existing nodes. If a supernode joins
an existing square, it waits for at most one period in or-
der to interact with its neighbors and locally determine its
location with respect to them and therefore its local coor-
dinates within the square. By overhearing the schedules of
its immediate neighbors it determines the time at which
it should schedule itself in each direction. A similar local
interaction occurs when a new supernode joins the network
initializing a new square. When a node leaves the network,
the schedules of the remaining supernodes do not change.

Note that in the Pipelined Wave algorithm two edges are
scheduled concurrently if they have the same direction and
the sender nodes (and the receiver nodes) have exactly the
same local coordinates within a g x g square. This implies
that the algorithm avoids all interference at the MAC layer.
It schedules a maximum number of non-interfering edges
at each send-receive interval thus increasing the network
capacity with respect to the Simple Wave algorithm. It is

easily deployable in a distributed manner, since local coor-
dination suffices for scheduling a new supernode. Finally,
it is scalable because the node schedules are not affected
by the size of the network.

A modified version of the Pipelined Wave algorithm does
not define identical schedules for each square, but schedules
shifted by g positions with respect to the schedules of the
four neighbor squares. More specifically, the east wave of a
square is shifted g positions (send-receive intervals) earlier
than the east wave of the west neighbor square, the north
wave is shifted g positions earlier than the north wave of
the south neighbor square etc. A snapshot of the modified
Pipelined Wave algorithm (during the east phase) is shown
in Figure 2. The east phase in a given (dotted) square
proceeds by shifting one edge to the right and moving to
the row below when the entire row of the square is tra-
versed. Notice that by the time an entire row is traversed
in a given square, the respective row of the right neighbor
square just starts being traversed. The new pipelined al-
gorithm decreases the latency of message delivery at the
square boundaries; this will become evident when we de-
scribe delay-based routing in Section 3.3. The south, west
and north phases are scheduled in a similar manner. This
improved Pipelined Wave is the schedule evaluated in our
experiments in Section 4.

Another tunable parameter in Pipelined Wave is the
number of send-receive intervals for each direction (phase)
before the wave switches to another direction. Our experi-
ments show that this parameter, referred to as step, has no
noticeable impact on the performance of the wave sched-
ule [6]. In Section 4, we evaluate the variant of Pipelined-
Wave with step=1.

Synchronization. We briefly discuss two synchronization
requirements imposed by wave schedules: i) neighbor nodes
must have the same notion of time regarding their commu-
nication slot and ii) nodes in the close neighborhood must
be well synchronized so that only edges at least g position-
s away are scheduled simultaneously. Acknowledging that
perfect time synchronization is hard to achieve, we relax
the initial requirements and propose a fault-tolerant ver-
sion of wave schedules. If the drift between two neighbor
clocks does not exceed €, nodes that are g positions away
from each other are synchronized within ge. In every edge
activation, we schedule the receiver to turn on the radio e
time units earlier than the scheduled time according to its
local clock. In order to ensure that there is going to be
no interference due to the clock errors, we can increase the
distance between two non-interfering edge activations (e.g.
from 7 to 8). Notice that although a perfectly aligned wave
schedule implies global synchronization, a reasonable im-
plementation of waves is achievable by ensuring that nodes
are well-synchronized with neighbors within interference
range.

Recently proposed synchronization protocols for sensor
networks (e.g., RBS [11] and TPSN [12]) provide tight syn-
chronization bounds (e.g., 0.02ms for neighbor nodes [12])
and exhibit good multi-hop behavior. Their performance
however is bound to decay for very large networks (an open
problem that we discuss in Section 4); in this case we as-
sume that a few GPS-equipped nodes will undertake the
synchronization task for their local regions.



3.3 Routing

The proposed wave schedules are TDMA-based MAC pro-
tocols that assign periodic transmission slots to inter-
cell communication. Wave schedules are general-purpose
energy-efficient MAC protocols that can potentially be
combined with arbitrary routing protocols. In this sec-
tion we consider two important metrics for evaluating the
efficiency of a routing algorithm, namely node energy con-
sumption and message propagation latency. Note that
energy-optimal routes do not depend on the underlying
wave schedule, whereas latency-optimal routes are intrin-
sically coupled with it.

Energy-based routing. As noted in Section 2, minimum
energy routing is achieved by routing along shortest hop
paths. We adopt a simple flooding approach that evaluates
minimum-hop paths from all nodes in the network to a
given view node. Flooding initiated at a view node results
in the construction of a tree connecting all supernodes to
the root (view) node, as described in [13]. Since we consider
more than one view, the minimum-hop routes form a forest
of trees built on top of the grid overlay.

Each node maintains an in-memory routing table of size
proportional to the number of view servers. For each view
server, the routing table includes a 2-bit entry giving the
direction of the next hop towards the view. This simple
approach works even in the presence of "holes” (empty
cells), as is shown by Madden et al. [13]. Dynamic node
failures (which manifest themselves as the appearance of
new holes) can be dealt with by a local flooding phase to
repair affected routes, as in AODV, or by introduction of
a greedy face-routing mode as in GPSR [14, 15]. Alterna-
tively, a node that fails to deliver a message may store it
in memory until the next flooding phase that reconstructs
the tree.

Delay-based routing. We propose a delay-based routing
algorithm that, given a certain wave schedule, minimizes
message latency between a pair of source and view nodes.
Each node C' maintains a routing table, that contains for
each view V and each neighbor N a triple (V, N, d), where
d is the latency of the minimum-latency path from C to
V among all paths with the next-hop being N that C is
presently aware of. On updating a routing entry, node C
also sends the information (V, N,d) to its neighbors. On
the receipt of such a message, neighbor N* of C' does the
following: i) it evaluates the time dt that a message sent
over N* — C remains at C before being forwarded with
the next wave via C — N towards view V; ii) if an entry
(V,C,d')y with d < d + dt exists in the routing table of
N™, then the routing message is dropped - otherwise, the
routing entry is replaced by (V, C,d + dt).

When the above distributed algorithm converges, every
node has determined the minimum-latency paths to each
view. Routing messages can be piggy-backed on regular
or NothingToSend messages as in the case of energy-based
routes. Local repairs can be performed as in the case of
energy-based routing, but by considering latency as the
primary metric for evaluating the goodness of a route.

4 Experimental Evaluation

We implemented a prototype of wave scheduling in the NS-
2 Network Simulator [16] and compared its performance
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with other approaches. In Section 4.1, we test the be-
haviour of wave schedules under different routing metrics,
as well as varying the number of views and empty cell-
s. Section 4.2 presents the performance of two competing
tree-based scheduling approaches and Section 4.3 shows
the behavior of IEEE 802.11 with various duty cycles. A
comparison of wave schedules with the other approaches is
presented in section 4.4.

4.1 Wave Scheduling

We simulate a network of 20 by 20 grid cells of size 100m?
each. The ratio of interference to communication range
is 550/250 and the ratios between radio idle, receive and
transmit power are 1:1.2:1.6. Every edge activation be-
tween two consecutive cells lasts for 200ms. In the wave
schedules, all routing happens at the level of the grid over-
lay network. A node can send about 10 packets during an
edge activation given a link bandwidth of 20kbps. The re-
ceiver wakes up 30ms before the sender to avoid message
loss when clocks are subject to small drifts.

The size of a square in a pipelined wave is set to 8 by 8
grid cells (instead of 7 by 7) in order to avoid interference
as a result of small synchronization errors. Experiments
run for 1000 seconds and the traffic workload varies from 0
to 2500 messages. The time that a message is generated is
selected at random, uniformly over the simulation period.
The source location of a message is randomly selected to
be any of the non-empty cells, and the destination to be
any of the views. Cells containing views and empty cells
are randomly distributed in the network.

Energy- vs. delay-based routing. We first compare the
behavior of the PipelinedWave schedule under two wave
routing metrics: minimum hop-count and minimum-delay.
Recall from Section 3.2 that due to the scheduling of the
waves, the path with minimum delay is not necessarily the
path of minimum hop count. Figure 3 shows the aver-
age path delay under light load for the two metrics, i.e.
it shows the time between generation of a message at it-
s source and delivery of the message at its destination.
This delay is computed by deriving information from the
routing tables of the nodes. It coincides with the real mes-
sage propagation delay when the traffic is low and nodes
can completely drain their buffer during an edge activa-
tion. The minimum-energy routing metric defines paths



Average Message Delay

300 : ‘ : ‘
PipelinedWaveDelay_stepl_viewsl —+—
PipelinedWaveDelay_stepl_views5 —<—

250 - pipelinedWaveDelay stepl_views10 —x—

PipelinedWaveDelay_stepl_views20 r
o 200 |
(8]
)
— 150 |
&
Q
© 100 |
3
50 H
0 1 1 1 1
0 500 1000 1500 2000 2500
Messages
Figure 4: Effect of views on delay
Average Energy Consumption
12

PipelinedWaveDelay_stepl_viewsl —+—
PipelinedWaveDelay_stepl_views5 —<—
10 ¢ PipelinedWaveDelay_stepl_views1l0 —x—
PipelinedWaveDelay_stepl_views20 —&—

energy (Joules)
(o))

0 1 1 1 1
0 500 1000 1500 2000 2500

Messages

Figure 5: Effect of views on energy

with higher delay than the minimum-delay metric and the
gap increases as we increase the number of holes from 0 to
100 (25% of all cells). For 100 holes (or empty cells), the
minimum-energy metric yields paths that are 30% slower
than the minimum-delay metric. The energy overhead of
the minimum-delay metric was observed to be negligible.
In the remainder of the section, we use minimum-delay as
the default routing metric.

Scalability with the number of views. Our second
experiment shows the scalability of our scheme with respect
to the number of view nodes. Figure 4 shows the average
observed message delay, which captures queueing delay due
to traffic. We set the number of empty cells to be 0. With
more view nodes, the load is better balanced across the
network, the average message propagation delay is smaller
and the overall capacity of the network increases. With
more than 200 messages for a single view the network is
overloaded, and the queues in the network start to grow,
and they would continue to grow without bounds if we
would not have limited the length of the experiment to 1000
seconds. Figure 5 shows that the energy usage of the wave
does not increase with the number of views, for a given
number of messages. This confirms the nice behavior
of wave routing which makes it exceptionally suitable for
sensor networks with multiple gateway (or wiew) nodes.
Effect of empty cells. We also examine the impact of
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Figure 7: Effect of holes on energy

empty cells on the performance of wave schedules. The
number of views is 10 and a randomly selected set of 0 to
80 cells are set to be holes. Figure 6 shows that the mes-
sage latency increases with the number of holes: messages
wait longer in order to make a turn to bypass a hole. The
capacity of the network is only 500 messages for 20% (80)
holes (the message delay increases considerably after that
point), whereas it rises to more than 1500 for networks
without holes. Interestingly, the average energy consump-
tion per non-empty cell (per node) increases with the num-
ber of empty cells, as shown in Figure 7. Although fewer
messages are delivered per time unit, these messages fol-
low longer paths. Thus every node ends up routing more
messages and spending more energy.

4.2 'Tree Scheduling

We compare wave scheduling with an existing tree-based
scheduling and routing scheme [13]. Trees are generated
using a flooding mechanism initiated at each view node.
Every node selects as its parent the neighbor on the short-
est path to the root (view). It is therefore expected that
the paths used in tree schedules are shorter than paths
used in waves, since the latter are built on top of the grid
overlay. Routing in a tree is trivial: each non-view node
forwards every message it receives to its parent. In a tree-
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Figure 9: Energy: consecutive trees

based schedule, we activate edges in reverse order of their
distance from the root, enabling a message to propagate
from any leaf of the tree to the view node in a single tree
activation period. Every tree edge is activated for 200ms,
as in the case of the wave.

To generalize tree scheduling to handle multiple views,
we construct a collection of spanning trees, one tree rooted
at each view server. An edge activation schedule can then
be derived in several ways. At one extreme is a conserva-
tive schedule, which is simply a concatenation of schedules
for the individual trees. The simplest conservative sched-
ule is to activate tree rooted at view ¢ + 1 immediately
after all edges of tree rooted at view 7 have been activated.
In this simple conservative schedule, latency grows linearly
with the number of views. In our experiments we study
energy-efficient variants of this simple schedule: We define
a period p of repeating the activation of every tree. If we
have m views, the first tree is activated at times {0, p, ...},
the second at {p/m,p + p/m, ...}, and so on. We assume
that the interval p/m is long enough to activate all edges
of a single tree, so that consecutive activations do not over-
lap. In Figures 8 and 9, these schedules are referred to as
Tag-Consec_Every_p, where p is the period between two
activations of the same tree.

At the other extreme, we consider aggressive schedules
that activate all trees in parallel. In the simplest aggres-
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sive schedule, which is called T'ag_Parall, consecutive ac-
tivations of the same tree follow one another immediately
after completion. In order to study power-saving variants
of the aggressive schedules, we consider periodic activa-
tions of the same tree. In our experiments, we use the
name T'ag_Parall_Every_p to refer to aggressive schedules
in which all trees are activated concurrently every p sec-
onds (Figures 10 and 11).

In both consecutive and parallel schedules, we observe
a graceful tradeoff between energy and delay. As the ac-
tivation period increases, the energy decreases at the ex-
pense of higher message latency and smaller network ca-
pacity. Applications aiming at energy preservation should
take into consideration the traffic load in order to deter-
mine an energy-efficient tree schedule. For instance, the
most energy-efficient consecutive schedule that achieves a
capacity of 1000 messages has period 60 seconds (Figure 8).
Likewise, the most energy-efficient parallel schedule that
achieves a capacity of 1000 messages is activated approx-
imately every 12 seconds (Figure 10). Beyond 1000 mes-
sages (per 1000 seconds), the delay for these two schedules
starts increasing and it would increase without bounds had
we continued to generate messages with the same rate for
longer periods.
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4.3 IEEE 802.11 with Different Duty Cycles

Besides tree scheduling, in which edges are activated in
reverse order of their distance to the root, we also study
power-conserving variants of the IEEE 802.11 protocol. We
vary the duty cycle of the protocol, by turning off the ra-
dio regularly and allowing communication only 1 to 10%
of the time. The performance of the resulting schemes,
named Duty_Cycle_x, is shown in Figures 12 and 13. Rout-
ing is performed as in tree-scheduling, i.e. messages follow
the shortest paths to the views. Notice that for a load of
1000 messages we can only select duty cycles greater than
8%, otherwise the traffic exceeds network capacity and the
queues increase without bound. The reader can see trends
in energy and delay similar to those observed in the tree-
scheduling schemes. As the duty cycle decreaases, the av-
erage message delay decreases significantly at the expense
of higher energy usage.

4.4 Comparison with Other Schemes

In order to compare different protocols we first selec-
t a traffic load and then consider only protocols that
can serve this load without exceeding capacity (the point
at which average delay begins to increase). We com-
pare the most energy-efficient versions of different pro-
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tocols (with 10 views and 10% empty cells): for 1000
messages, we select the variants Tag_-Consec_Every_60,
Tag_Parall_Every 12, Duty_Cycle.8 and the pipelined
wave with step 1. From the previous graphs, the reader
can see that these are the variants of different protocol-
s that accomodate the given traffic with the least energy
consumption.

Figure 14 shows that the wave protocol has the longest
delay, followed by the consecutive tree schedule, the par-
allel tree schedule and the 802.11 (with duty cycle 8%).
The reverse pattern is observed with respect to node en-
ergy consumption in Figure 15. The wave protocol is at
one extreme, offering the most energy savings (better by
an order of magnitude than any other scheme) at the cost
of higher delay. The 802.11 protocol with duty cycle 8%
is at the other extreme offering very small message delays
at the cost of higher energy. The energy-delay tradeoff of
the two tree scheduling algorithms is also worth observing:
activating trees consecutively (as opposed to concurrently)
saves energy because it avoids interference among different
trees, but it incurs higher message latencies.

5 Related Work

The advent of sensor network technology has recently at-
tracted a lot of attention to MAC and routing protocols



that are specifically tailored for energy-constrained ad-hoc
wireless systems.

MAC protocols: Medium access protocols are divided
into two main categories, contention-based and schedule-
based protocols, depending on whether they resolve or
completely avoid collisions at the wireless medium. IEEE
802.11 [17] is the most widely used contention-based pro-
tocol; although nodes can periodically switch to a power
saving mode, in the active periods they suffer from inter-
ference and overhearing. The PAMAS MAC-level protocol
turns radios off when nodes are not communicating [18],
but it requires a second channel for RTS-CTS messages.
PicoNet also allows nodes to turn off their radios [19]; a
node wishing to communicate must stay awake listening
for a broadcast message announcing its neighbor’s reacti-
vation. In S-MAC [20, 21], nodes are locally synchronized
to follow a periodic listen and sleep scheme. S-MAC does
not explicitly avoid contention for the medium, but reduces
the period of overhearing by sending long DATA packets
annotated with their lengths. Sift [22] is a randomized C-
SMA protocol that aims at reducing latency, rather than
energy, in case of spatially-correlated contention.

Schedule-based MAC protocols conserve energy by
avoiding message retransmissions or idle listening [23, 24,
25]. NAMA [24] and TRAMA [25] avoid all collisions at
the MAC layer by announcing the schedules of nodes in
the 2-hop neighborhood and electing nodes to transmit in
a given time slot. Our waves avoid schedule propagation
overhead, at the expense of having fixed slots for every
edge activation. Fixed assignment of communication slots
affects message latency, but not the energy consumption at
the nodes. TRAMA does not consider interference due to
ACK messages, since it assumes that nodes that are three
hops away can schedule transmissions cuncurrently.

GAF (Geographical Adaptive Fidelity) [8, 26] is a topol-
ogy control scheme that conserves energy by identifying
nodes that are equivalent from a routing perspective (be-
long to the same cell) and then turning off unnecessary
nodes. The proposed wave algorithms are tightly integrat-
ed with the GAF protocol. Unlike S-MAC (a contention-
based scheme) and TRAMA (a schedule-based scheme),
under low traffic, the propagation delay of messages from
a source to a destination over a multi-hop path is almost
constant. It depends only on the topology of the network,
i.e. which cells are empty, which does not change very
rapidly. This desirable property stems from the fact that
wave schedules coordinate radio usage across the sensor
network.

Routing algorithms: Several routing protocols for ad-
hoc networks have been proposed in the literature [27].
There has also been a plethora of work on energy-aware
routing [18, 28, 29] but without considering the interplay of
routing and scheduling. The TinyDB Project at Berkeley
investigates tree-based routing and scheduling techniques
for sensor networks [13, 30]. Tree-based routing is tightly
combined with node scheduling; all nodes in the same level
of the tree are scheduled to send messages to their parents
concurrently at a time interval that depends on their dis-
tance from the root. Tree-based routing and scheduling is
a representative example of the tight coupling between the
MAC and routing layers in sensor networks. In this paper
we have shown a different kind of interaction, namely how
given a certain schedule of edge activations, we can identify

routes that yield minimum message delays.

An energy-efficient aggregation tree using data-centric
reinforcement strategies is proposed in [31]. A two-tier ap-
proach for data dissemination to multiple mobile sinks is
discussed in [32]. Pearlman et al. [33] propose an energy
dependent participation scheme, where a node periodical-
ly re-evaluates its participation in the network based on
the residual energy in its battery. GEAR [29] uses energy-
aware neighbor selection to route a packet towards a tar-
get region and restricted flooding to disseminate the pack-
et inside the destination region; it addresses the problem
of energy conservation from a routing perspective without
considering the interplay of routing and node scheduling.

6 Conclusions and Future Work

In this paper, we have presented a class of algorithms that
allow us to trade energy versus delay for data dissemina-
tion in sensor networks. Our approach is based on carefully
scheduling the sensor nodes so that each node can stay idle
most of the time, turning on its radio only at scheduled in-
tervals during which it can receive or send a message. Our
experiments show that the proposed wave scheduling algo-
rithm results in significant energy savings at the expense
of increased message latency.

In the future, we plan to study irregular wave schedules,
in which we relax the current assumption that every direct-
ed edge in the network is scheduled regularly once per peri-
od, and thus has the same capacity. In practice, incoming
edges to view nodes are expected to be more heavily loaded
than edges at the border of the network. We believe that
better network utilization can be achieved by considering
a more general class of wave schedules in which different
edges are activated with different rates. For instance, the
network can be divided into highways (frequently-activated
edges) and driveways (low-capacity edges). It would be in-
teresting to study the tradeoff between energy and delay
in such an irregular model.

Another interesting direction is to investigate the prob-
lem of time synchronization for wave schedules. Existing
approaches, like RBS [11] and TPSN [12], provide tight
synchronization bounds and exhibit good multi-hop behav-
ior — with high probability, the error is less than linear in
the number of hops. Using a tree-based approach, they
aim at providing a global timescale exceeding the more re-
laxed requirements of wave schedules. Their performance
is therefore bound to decay for very large networks. We
intend to investigate highly distributed and scalable algo-
rithms that are specifically tailored to achieve good time
synchronization among nodes within interference range, in-
stead of achieving global synchronization.
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