
On High-Level Low-Level ProgrammingPhilippe Gernergerner�ips.u-strasbg.frLSIIT-ICPS, CNRSUniversit�e Louis PasteurStrasbourg, Frane
AbstratThe urrent solution for eÆient high-level parallel program-ming in the industry is to use diretives to the ompiler.However these diretives pose two problems: �rst, they areoften designed in an ad ho manner and their subtleties areless easy to understand than the rest of the language; se-ond, the degree of stringeny of the diretives is not �xed,so that evaluating the eÆieny of the diretives he writesis not easy for the programmer. This artile proposes amethodology for addressing these issues. The data map-ping diretives of the language High Performane Fortranare used as an example; in partiular, it is shown how theuse of formal semantis an help larify and struture theissues.1 IntrodutionThe primary motivation for parallel programming is eÆ-ieny at exeution (in terms of exeution time). But inthe urrent state of the art of parallel programming, \high-level" still implies \not eÆient enough". In response tothis, in the 1990's the notion of a diretive to the ompileremerged, as in the language HPF (High Performane For-tran [19℄) and the OpenMP library (e.g., [3℄). The idea is forthe programmer to write high-level ode, yet help the om-piler into �nding an eÆient parallel implementation for theode. The notion of a diretive to the ompiler is not new.Yet what is new is its importane in a programming lan-guage. Indeed, one may say that the essene of HPF andOpenMP is the language of diretives they provide.One problem with the diretives is that as they touh onlow-level issues, their meaning depends onto notions whihare more impliit than expliit in the referene manual ofthe language. Thus their understanding by the programmeris not easy, and the meaning of the diretives tends to belearned \the hard way".Another problem is that more often than not, the dire-tives are just advies to the ompiler, so the programmer hasto make speial tests and use pro�lers in order to \learn hisompiler", so as to write useful diretives. This an lead himinto writing diretives that do produe eÆient ode only forhis partiular ompiler. Thus non-portability of eÆieny isintrodued.A solution to these two problems would be a doumen-tation of diretives whih is both lear and expliit as to theonstraints they put onto the ompiler writer.

However, the urrent form of referene manuals inheritsthe traditional wisdom whih says that it is more importantto desribe what a written program does, than how it atu-ally does it. Thus notes as to the \how" tend to be relegatedto \advie to implementors". However, when performaneis an issue, whih is often the ase even in sequential pro-gramming, it is lear that these omments are eagerly readby the programmer as well. Thus we are interested in how areferene manual should be strutured for having the \how"as �rst-lass semantis, at the same level as the \what".For struturing the methodology, we propose to use aformal semantis as a support. How to use formal semantisfor lessening the ambiguities in a referene doument is stillan area of researh. When used by a language designer,formal expression tends to indue oherene in the semantisof the language, as remarked by Milner [27℄: we believe that,similarly, a formal framework for the notion of diretivesould help him onstrut a oherent language of diretives.Our methodology is illustrated with an exposition of themeaning of some of the key diretives of the language HPF.The paper is strutured as follows.In the next setion, the funtion of the referene manualis disussed. Then the use of formal semantis is disussedin the light of low-level-onsious programming. Finally thease of the diretives to the ompiler is introdued, with afous on diretives in parallel programming.The third setion presents a formalisation of the seman-tis of some of the key data mapping diretives of HPF. Itshows that a formalization an help into both larifying thesemantis of the diretives and struturing the exposition ofthe language in its entirety.2 Referene and Atual Semantis2.1 The Referene ManualThe semantis of industrial programming languages is de-�ned by their referene manuals. As we onentrate on howthe referene manual should provide the information as tothe meaning of the diretives, we �rst disuss the exat fun-tion of this manual.A referene manual for a language L has two types ofreaders:� the programmers in L, who refer to it is ase of doubtas to the preise meaning of a partiular onstrut.

� the implementers of a ompiler for L, for whom thereferene manual de�nes the preise meaning of eahonstrut of the language.(One may also onsider a third kind of readers: the om-mittee members for a standardization of the language. Thedoument they eventually produe, whih de�nes the norm,is \the ultimate referene". For simpliity, when the lan-guage is standardized, what we all \referene manual" isthe doument whih de�nes the standard.)The purpose of a referene manual is to ensure that forany two ompilers C and C0 for a language L, a programwritten in L will produe the same output data, for giveninput data, whether it has been ompiled with C of withC0. Thus, L ode an be portable. That is why \a standardis often desribed as `a ontrat between the programmerand the implementer.' It desribes not only what is \legal"soure text, but also what a programmer an rely on ingeneral and what behavior is implementation-dependent"[34, p. 81℄.Beause ahieving portability is so important, the fo-us of referene manuals is on semantis matters being verylear, not on eÆieny onsiderations. As says the draft forthe C99 standard: \The semanti desriptions in this In-ternational Standard desribes the behaviour of an abstratmahine in whih issues of optimizations are irrelevant." [21,p. 15℄.Thus, the ompiler writer is free to produe any atualsemantis he likes, as long as he respet the few primary re-quirements, the main among whih is, for C99: \At programtermination, all data written into �les shall be idential tothe result that exeution of the program aording to theabstrat semantis would have produed." [21, p. 15℄.Of ourse, \an implementation might de�ne a one-to-oneorrespondene between abstrat and atual semantis," [21,p. 16℄, but the point is that is it not at all mandatory.2.2 High-Level Low-Level ProgrammingIn rapid prototyping, performane issues are not onsideredbeause only the funtionality of the program (in the senseof \what is does") is important. But in other programmingontexts, performane beomes an issue. An extreme ase issienti� omputing. As said about the C++ Matrix Tem-plate Library (MTL [1℄): \ To many sienti� omputingusers, [. . . ℄ the advantages of an elegant programming in-terfae are seondary to issues of performane."As a onsequene, high-level programming languages pro-vide some means to ahieve performane \in spite of thehigh level". An example is the introdution of imperativefeatures in modern funtional languages, as in the Caml lan-guage [25℄. In fat, the degree of \low-level oding" in aprogram tends to be proportional to the \highness" of thelanguage. For example, ut-free Prolog programs are morea rarity than the norm (the \ut" is a kind of diretive tothe interpreter [5, pp. 69-92℄, and is an essential tool for theProlog logi programmer).The Doumentation on Performane IssuesThe referene manual of the language douments some ofthe low-level failities, but not neessarily in performaneterms, sine the referene semantis, for abstration reasons,does not provide the relevant notions. Witness the referene

semantis for the C register diretive: \A delaration ofan identi�er with storage-lass register suggest that aessto the objet be as fast as possible" ([21, p. 98℄. No mentionis made of the notion of a register, so that no notion of aregister need be de�ned for the abstrat mahine, whih isunderstandably onvenient. Thus the real meaning of thisdiretive is in fat impliit.Moreover, there is often a non-ertitude as to how thelow-level feature is atually handled by the ompiler. For theregister diretive, for example, the norm is that \the ex-tent to whih suh suggestions are e�etive is implementation-de�ned" (ibid.). Indeed, the ompiler may deide he hasmore eÆient optimizations for this variable than putting itinto a register.The result of this state of a�airs is that the program-mer will tend to infer the e�et of its low-level investmentfrom interation with his ompiler. Sometimes he will evenwrite programs \just for testing what the ompiler does".Thus, he omes to know about the atual semantis of hisprograms more from the ompiler than from the referenemanual, and he is at risk of spending some time on someompiler-dependant performane tuning, whih is bad in-vestment when portability is onsidered. (Of ourse he analso introdue in this way some ompiler dependeny whihdoes not even onern eÆieny.)2.3 Formal Semantis and Atual Seman-tisFor eliminating as muh ambiguity as possible from the ref-erene desription, sine the 1970's muh researh has beenmade for formally speifying the semantis of a program-ming language. But the de�nition of real programming lan-guages is still written in natural language only (exept forthe grammar part). The only onvining exeption we knowof is the de�nition of Standard ML [27℄.In the 80's, Yuri Gurevih introdued what beame knownas the Abstrat State Mahines [17℄, and Peter Mosses A-tion Notation [30℄. Both put the emphasis onto desriptionapability rather than onto adequay for proving programorretness, and some of the more onvining language de-sriptions have used these methods, see, e.g., [22℄ (abstratstate mahines) and [18℄ (ation notation).But all these methods are designed for desribing onesemantis. But for desribing the semantis of diretives, weneed to desribe both the referene and the atual semantis,and the relation between them. Thus in the next setion wewill provide a method of our own.The researh whih omes loser to our preoupation isin the �eld of ompiling researh. For example, work onorret ompiling uses the notion of respeting the input-output behaviour of a program while hanging its exeutionmode; but it fouses on adequay for proving the orret-ness of a hange, e.g., [23℄. Also relevant is the automatiparallelization �eld, whih provides an algebrai formula-tion of exeution hange through the notion of a spae-timemapping [10℄. But it is strongly tied to aÆne dependanes,and too tehnial (it's integer programming) for being ad-equately used in a referene doument to be used by anyprogrammer.

2.3.1 Operational, DenotationalWhat is alled the \operational semantis" of a program-ming language desribes the omputation mehanism whihorresponds to a program (see, e.g., [32℄), whereas deno-tational semantis [28℄ desribes the relation between theinput and output data of the program. It is natural to on-sider that the \essene" of a program is in how it works,rather than into what it does. But from the point of view ofthe funtion of the referene semantis, things are di�erent.Indeed, in referene manuals, as for C99 above, the refer-ene operational semantis is only a desriptive means forexpressing whih input-output behaviour the atual seman-tis of a program must have: this input-output behaviour iswhat must be preserved by the atual semantis, and there isno neessary relationship between the referene operationalsemantis and the atual semantis. Thus, from the pointof view of the ompiler, the referene operational semantisis just another way of expressing a denotational semantis.Operational semantis is a good didati means to expressthe intented input-output behaviour of a program, as hu-mans reason naturally in terms of temporal mehanisms. Byonstrast, denotational semantis is didati only for (the\pure" part of) funtional languages. A denotational se-mantis of C, for example, will not help the programmermuh in understanding C.2.4 Diretives to the CompilerDiretives to the ompiler are an interesting form of high-level low-level programming, beause instead of tuning hisalgorithm in its very expression, the programmer keeps in-tat his algorithm, and just adds some instrutions (the di-retives) for tuning its atual exeution.Diretives exist in most real programming languages.They have been in use in aademi irles also. For ex-ample, the Bulldog VLIW ompiler [9℄ allows the program-mer to indiate some invariants to the ompiler. Also, theompiler for the funtional language Opal [8℄ allows the pro-grammer to indiate some algebrai properties for some ofthe funtions in the program, whih the ompiler an use foroptimization. Even the algebrai spei�ation system OBJ[15℄ has a diretive memo, for memo��zation.2.4.1 Diretives for Parallel ProgrammingAs said in the introdution, diretives to the ompiler havefound a new dimension in high-level parallel programming.However HPF or OpenMP programming is still not themost frequent pratie in parallel programming. Indeed,MPI (Message Passing Interfae [16℄) is still the hoie whenhigh performane is ruial. MPI programming is more low-level than HPF and OpenMP, as the ode for the ommuni-ation of data between the parallel tasks has to be writtenby the programmer, as opposed to the ompiler for HPF andOpenMP. The reason for the persistene of the primay ofMPI is that HPF and OpenMP both are a bit ahead of theirtime in terms of ompiler tehnology (see, e.g., [6℄). That is,some of their diretives an be so diÆult to handle for theompiler, that the ompiler might simply ignore them, notknowing how to handle them properly. That is why HPFprogrammers use debuggers like TotalView of pro�lers likepgprof for seeing \how our partiular ompiler has used thediretives".

However, for the parts of the program for whih the pro-grammer does not provide some diretives, the ompiler hasno less hard a job. This is well expressed by the fat thatthe task of providing the best ompromise between optimalsheduling of the instrutions and optimal data distributionfor ommuniation minimization is NP-omplete. So dire-tives an help the ompiler a lot.3 Semantis of the HPF DiretivesWe propose a methodology for de�ning the meaning of thediretives to the ompiler, in the ontext of their desriptionby a referene manual.Our method uses a formal desription of the semantisof the language as a support for struturation and larity ofthe referene manual. We mentionned above that no formalsemantis method known to us has been designed spei�allyfor expressing the relationship between referene and atualsemantis. So in this next setion we use a formalization ofour own, based on rewriting logi [26℄ (see below).We explain our method through applying it to the aseof the HPF data mapping diretives. However, the methodis not dependent upon the HPF language. What a formalsupport brings in larity is shown by how the HPF templateonstrut is handled.3.1 The HPF Data Mapping DiretivesThe idea of the data parallel programming model whih isfollowed by HPF is to organize the program as a sequene ofparallel operations, where a parallel operation is the onur-rent appliation of a same operation onto a bunh of data.For example : C = A + Bwhere A, B, and C are three arrays, is a parallel operation.Notie that the fat that it should exeute in paral-lel (whih would justify the relevane of this programmingmodel for performane) is not disussed in the HPF referenemanuals [19, 11℄. One possible reason is that it probablyonsidered \obvious" that HPF array assignments should bemade in parallel if possible. Another is that HPF itself doesnot de�ne array assignments: it imports them from Fortran90 for HPF version 1, or from Fortran 95 for HPF version2. About operations on arrays, the Fortran 90 Standardsays: \these features an signi�antly failitate optimiza-tion of array operations on many omputer arhitetures"[20, p. xiii℄. So the partiular interpretation of the arrayassignments in HPF, as being more on the level of atualsemantis than the referene one, has not been emphasized.However suh parallel operations are not enough for ef-�ieny. If a distributed memory parallel mahine is used,then the elements of the arrays are distributed onto thesememories, and a random distribution will likely generatemore inter-proessor ommuniations (for requiring the datawhih are needed for the omputations) than a thoughtfulone. As ommuniation time is not negligeable, performaneof the program depends on minimizing the number of om-muniations. Thus an important job for the ompiler is to�nd an eÆient ditribution of the data onto the memories.This is no easy task, and that is why the HPF model pro-vides the programmer with the means to write some data

mapping diretives. An example HPF data mapping dire-tives is given below (this toy example will be used through-out the setion):INTEGER I, J, K, L, M, NINTEGER, DIMENSION(4) :: A, B, C, D!HPF$ TEMPLATE T(4)!HPF$ ALIGN A(:) with T(:)!HPF$ ALIGN B(:) with T(:)!HPF$ ALIGN C(:) with T(:)!HPF$ PROCESSORS, DIMENSION(2) :: MY_PROCS!HPF$ DISTRIBUTE (BLOCK) ONTO MY_PROCS :: TK = I + JN = L + MC = A + BD = C + NThe data mapping diretives are the lines beginning with\!HPF$". Their meaning is exposed below, together with theformalization of this meaning. In this example, array D hasnot been aligned. This is not an error, as fortunately HPFdoes not onstrain the programmer to give a data mappingdiretive for every array in the program.3.2 The Choie of Rewriting LogiAs a tool for formally de�ning the meaning of the dire-tives, we use rewriting logi [26℄. Rewriting logi (RWL)is algebrai spei�ations plus transitions. As for algebraispei�ations, the semantis of RWL is given through thenotion of satisfation, inherited from model theory [33℄: thesemantis of a RWL theory is given as the set of its models.The di�erene with lassial algebrai spei�ations is that amodel is not a family of sets together with funtions betweenthem, but a family of ategories [24℄ with funtors betweenthem. More on these models an be found in appendix A,but the following of this setion is self-ontained.Our hoie of the RWL framework is motivated by thefollowing fators:� theory morphisms help struture the semantis [14℄.This is used for de�ning the meaning of the languagewithout diretives, and then adding diretives in a waythat just \enrih" the previous de�nition.� notion of satisfation allow oding eah diretive as anequation whih an be satis�ed or not by an algebra.� a ategory (in a model) is de�ned by objets and ar-rows, so that ategories have a natural graphial qual-ity, whih is interesting when we want to inlude aformal semantis as a digestible part of a referenemanual.The Readers of a Formal Desription As pro-grammers are not in general theoretial omputer sientists,they will probably not onsider that a rewriting logi de-sription provides a lari�ation of the semantis of thelanguage. In the ase of HPF, whih is used for sienti�omputing, the programmers often are not even professionalprogrammers, but rather users of numerial omputing liketheoretial physiists, engineers, or meteorologists.

Notie that this problem is not restrited to RWL de-sriptions. Ation Semantis, for example, has its opera-tional semantis de�ned in [29℄ with the Strutured Opera-tional Semantis method [32℄, and a programmer will prob-ably won't buy this doument in order to better understandthe programming language he's using, as the notation is in-tuitive enough (by its very purpose).The point is that, like Ation Semantis or AbstratState Mahines, we make a di�erene between an aessiblenotation and the \pure" model. Our model below is at thelevel of rewriting logi proper, and a omplete methodologywould provide a notation based on this model.3.3 Coding the Language SemantisWe desribe a subset of HPF (whih we all mini-HPF)whih is tiny but has the key data mapping diretives.The semantis of the language is given by assigning apreise meaning to eah program, rather than to eah lan-guage onstrut as is usually done. The semantis of a par-tiular program is a given as a rewrite theory, whih usessome prede�ned theories whih do not depend on a parti-ular program. The desription of the tool whih does thetranslation from a mini-HPF program to its assigned RWLtheory would orrespond to a desription of the semantisof mini-HPF. However, for making the presentation moredigestible, we prefer below to illustrate this translation on apartiular instane of a program.3.4 Referene Operational SemantisThe following RWL theories in this setion are written usingthe well-de�ned CafeOBJ notation [7℄. This notation is usedby the CafeOBJ system [31℄, a suessor to the well-knowOBJ spei�ation system [15℄.We �rst de�ne the referene operational semantis of ourHPF program, when diretives are not taken into aountyet. It is given by the following theory, whih is the trans-lation, in our methodology sheme, of the algorithm of theHPF program.module! ALGO1 {using (MHPF-SEM)ops I J K L M N : -> SNameops A B C D : -> ArrayNameeq length A = 4 . eq length B = 4 .eq length C = 4 . eq length D = 4 .op algo1 : -> Algoeq algo1 = (K := I + J) ;(N := L + M) ;(C := A + B) ;(D := C + N) .} This theory imports (with the CafeOBJ keyword using)another theory, MHPF-SEM (for \semantis of mini-HPF").MHPF-SEM de�nes the referene operational semantis of (atiny subset of) HPF, and it imports itself the theoryMHPF-SEM-CONSTRUCTS whih de�nes the sorts and operationsto be used in the underlying rewrite theories of mini-HPFprograms, as in ALGO1. MHPF-SEM-CONSTRUCTS is de�ned as fol-lows:module MHPF-SEM-CONSTRUCTS {[SName ℄ [SAssignt ℄op _:=_+_ :

SName SName SName -> SAssignt[ArrayName ℄ [ArrayAssignt ℄proteting (INT)op length_ : ArrayName -> Intop _:=_+_ :ArrayName ArrayName SName -> ArrayAssigntop _:=_+_ :ArrayName ArrayName ArrayName -> ArrayAssignt[SAssignt ArrayAssignt < Assignt < Algo ℄op noAlgo : -> Algoop _;_ : Algo Algo -> Algo{ asso id: noAlgo }} The ommon semantis basis for eah mini-HPF programis de�ned by theory MHPF-SEM:module* MHPF-SEM {proteting (MHPF-SEM-SYNTAX)[MahineName ℄op M : -> MahineName[MahineState℄op (_wTrae:_wAlgo:_) :MahineName Algo Algo -> MahineStatevars tr algo : Algo var assgnt : Assignttrans M wTrae: tr wAlgo: (assgnt ; algo)=> M wTrae: (tr ; assgnt) wAlgo: algo .op (_.val_) : MahineState SName -> Intop (_.val__) : MahineState ArrayName Int -> Int...} The dots at the end are for the semantis of assignment(that is, de�ning that exeuting \ := + " does make the in-tended addition). This an be looked at in appendix B.The theory de�nes mahine states. Operation\ wTrae: wAlgo: " says that a mahine state is haraterizedby a mahine name and two algorithm texts. There is onlyone mahine name in our theory: M. It is there to make thespei�ation easier to read. The �rst algorithm text is atrae of what the mahine has already exeuted, and theseond one the algorithm whih is yet to be exeuted by themahine.Exeution of the �rst assignment from the algorithm tobe exeuted is oded by the unique transition of our wholespei�ation, from one mahine state to another: transThis transition makes the assignment instrution go \throughthe barrier of the \wAlgo:" and be appended to the trae:this represents exeution of the instrution.The transitions between mahine states from the assign-ment instrutions follow the order of these intrutions in thealgorithm. This is illustrated below by how in the text ofthe HPF program beomes, in a model, arrows from mahine

states to mahine states: z0z1fa1g?z2fa2g?z3fa3g?z4fa4g?where z0 = [[M wTrae: noAlgo wAlgo: algo1℄℄,\a1," \a2," \a3" and \a4" are names for the following termsof sort Assignt:a1 = K := I + J,a2 = N := L + M,a3 = C := A + B,a4 = D := C + N;and \faig" as an arrow name indiates that the transitionis generated by this assignment instrution ai going throughbarrier \wAlgo:". Thus, mahine state z5 is:[[M wTrae: a1 ; a2 ; a3 ; a4 wAlgo: noAlgo℄℄We must omplete the desription of the referene se-mantis by expliitating the meaning of the above formal-ization. Indeed, in algebrai spei�ation, the (most oftenin�nite) set of models of a theory does not provide in itselfany meaning. Thus, a meaning attribution has to be madeonto them. (A treatment of an example of suh meaningattribution an be found in [12℄.) In our method we takeare to expliitate whih meaning is to be attributed to themodels. Thus, our referene semantis says that:� sequene in the diagram (following the diretion of thearrows) orresponds to sequene in time at the exeu-tion;� every transition that involves a assignment of sortArrayAssignt, like a3 above, has to be imagined as in-volving parallel omputations on the salar values on-tained in the right-hand side arrays, and then par-allel assignment to the stores of the left-hand sidearray. For example, for a3 = C := A + B, there are4 omputations (beause the arrays have length 4):[[.val℄℄(z2; [[A℄℄; 1) + [[.val℄℄(z2; [[B℄℄; 1), . . . ,[[.val℄℄(z2; [[A℄℄; 4)+[[.val℄℄(z2; [[B℄℄; 4). There are exeutedin parallel. Similarly, the resulting values are stored inparallel into the 4 stores of array C.3.5 Atual Operational SemantisFor modeling in a simple way the relationship of the refer-ene semantis to the atual one, we remark that the do-umentation on the diretives has to say something aboutnotions that belong to the atual semantis, like proessors.So the doumentation must provide an abstration of theatual semantis. A formal support is given for this with,again, the notion of a theory.We provide a theory of virtual and real proessors:

module* PROCS-THEORY {[Pro ℄proteting (INT)op nbPros : -> Int[VPro ℄op map_ : VPro -> Pro[TemplateName ℄[ProArrayName ℄op <_,_> : TemplateName Int -> VProop <_,_> : ProArrayName Int -> Pro} The meaning whih is to be attributed to this theory isnow desribed.Sort Pro delares some proessors. These are the pro-essors of the parallel mahine onto whih a HPF programwill exeute. nbPros designates the number of proessorsatually used by the program.The notion of a template has been introdued with theHPF diretives model. The referene manual says aboutthis onstrut: \a template is simply an abstrat spae ofindexed positions; it an be onsidered as an `array of noth-ing' (as ompared to an `array of integers', say)" [11, p. 40℄.This notion is not an easy one oneptually. In our modelwe manage to avoid the notion of an \array of nothing" bydistinguishing between the notion of a template (a nameplus some integer indies) and array proper (a name plus a\.val" operation).As shown in our HPF program example, a template isto be \distributed" onto proessors. As a template ontainsno values, it is as if no data is distributed. The notion of avirtual proessor helps explain the sheme: a ouple formedwith a template name and an integer refers to a virtual pro-essor, and the \distribution" is then simply a mapping ofsome virtual proessors onto the real ones. Sort VPro de-lares a sort of virtual proessors. That eah virtual proes-sor will eventually be mapped onto a real one is expressedis delared with operation map.Real proessors are refered to with a sheme similar tothat used for the virtual proessors, with a name of sortProArrayName and an integer. The omplete virtual/realproessors-plus-mapping sheme serves in HPF to expressthe respetive alignment of data: this is illustrated below.Remark Our real proessors orrespond to what the HPFdoumentation alls abstrat proessors, as ontrasted withthe physial proessors of the mahine. This is in aordwith our method, sine our theory of real proessors is anabstration from the notion of physial proessors.3.5.1 Alignment and DistributionNow we an show whih RWL theory the mini-HPF programomplete with diretives is translated into:module! ALGO1-ALIGNTS-DISTRD {proteting (ALGO1)using (PROCS-THEORY)** alignments:[ArrayName < TemplateName ℄op T : -> TemplateNamevar i : Inteq < A, i > = < T, i > .eq < B, i > = < T, i > .

eq < C, i > = < T, i > .** distribution:op my-pros : -> ProArrayNameeq nbPros = 2 .eq map < T, i > =< my-pros, ((i + 1) quo (nbPros)) > .} That is, it uses the translation of the program withoutthe diretives, imports the theory of virtual and real proes-sors, and then translate the diretives proper.Care is taken, with keyword proteting, to indiate thatthe models of the previous theory ALGO1 are not modi�edby the new theory. That is, we garantee that the new the-ory just adds some new information \around" the preedingtheory: we don't modify the operational semantis of theprogram as given in ALGO1. For example, the above drawingwith four arrows is still valid.Alignment First, array names are onsidered as tem-plate names (\ArrayName < TemplateName"). This means thatfor any array name X and integer i, [[< >℄℄(X; i) is a vir-tual proessor. The intended meaning is that this virtualproessor has a (virtual) memory attahed to it, whih on-tains the store reserved for the value [[.val℄℄(S;X; i) (on anymahine state S). It is also intended that this value willeventually be stored onto the memory attahed to the realproessor [[map℄℄([[< >℄℄(X; i)) onto whih the virtual proes-sor is mapped. Thus, the virtual/real/map sheme serves toexpress the distribution of data.The three HPF ALIGN diretives are translated as threeequations about virtual proessors. By default, every vir-tual proessor [[< >℄℄(X; i) is distint from virtual proessor[[< >℄℄(Y; j), when X 6= Y or i 6= j. This default rule holdsbeause the so-alled initial semantis for the models of thetheory is hosen (this is a lassial tool of algebrai spei-�ation): this hoie is indiated by the CafeOBJ ode forit|the exlamation mark \!" attahed to the delaration ofthe theory: \module!". Thus the equations serve to state theequality of some virtual proessors whih would otherwisebe distint. For example, virtual proessors [[< A, 1 >℄℄ and[[< T, 1 >℄℄ are equal.As it is also the ase that [[< C, 1 >℄℄ = [[< T, 1 >℄℄, bytransitivity we have [[< A, 1 >℄℄ = [[< C, 1 >℄℄. Thus, for anymahine state S values [[S .val A 1℄℄ and [[S .val C 1℄℄ are as-soiated with the same virtual proessor. This means thatthey will eventually be assoiated with the same real pro-essor and be stored onto its assoiated memory.Thus we see how HPF template names whih are notarray names (as T here) are just a faility for puting the val-ues of di�erent arrays onto a same memory, whih is alled\aligning some data".The motivation for aligning is minimizing ommunia-tions. The point is that we expliitely assume that ourmahine follows the so-alled Owner Computes Rule: if anarray element has been assigned a partiular memory, thenits omputation is made by the proessor whih is attahedto this memory. Thus, when instrution C := A + B is exe-uted, the value of C at index 1 is omputed (see appendixB for the formal expression) using the values of A and B atindex 1. As the value for A is on the same abstrat proessor,no (virtual) inter-proessor ommuniation is required.

Distribution The semantis we give to the PROCESSORSdiretive of our example is that is delares a ProArrayNamename, my-pros. The number of proessors is delared equalto the size of the HPF array MY-PROCS.The distribution by bloks of the DISTRIBUTE diretiveis translated into its meaning: an equation whih puts aonstraint onto funtion [[map℄℄.The number of proessors delared by the PROCESSORS di-retives does orrespond to the atual number of proessorsused to run the program [11, p. 38℄, so that from alignmentsonto a template to distribution onto an array of proessorswe have reahed a faithful abstration of what atually hap-pens.Remark 1 The DISTRIBUTE onstrut also allows to dis-tribute an array, like A above, diretly onto an array of pro-essors. The meaning we attribute to that it is A taken asa template (through \ArrayName < TemplateName") whih isdistributed.Remark 2 The HPF DISTRIBUTE diretive allows in fatto have a virtual proessor mapped onto several proessors.We have simpli�ed above for the sake of a short exposition.Extension to a odomain for map whose elements are thesubsets of the set of proessors is straitforward.3.5.2 Degree of Stringeny\HPF diretives appear as strutured omments that sug-gest implementation strategies or assert fats about a pro-gram to the ompiler. When properly used, they a�etonly the eÆieny of the omputation performed, but donot hange the value omputed by the program" [11, p. 4℄.Thus, if the semantis of HPF is to be desribed, a degreeof unertainty as use of the diretives by the ompiler hasto be oded.This is the subjet of future work. It will use modelsthat satisfy only some of the equations that orrespond tothe diretives. It will be based on some existing works like[13℄.3.6 Other Data Mapping ModelsWe have given above a model of data distribution. Othermodels have been proposed in the literature. For omparingthem to our model, we �nd it onvenient to re-use the notionof virtual proessors and templates as de�ned in our model.� The language C� [35℄, the only \real" language in thislist, is an adaptation of the C language for the Con-netion Mahine. Its data distribution relies on thenotion of a shape, that orresponds to a template inour model. Aligning two arrays A and B an only bedone by having them have the same shape: so theymust have the rank and size. This distribution is atthe level of virtual proessors, and mapping the virtualproessors onto the real ones is left to the ompiler.� Lu Boug�e's language L [4℄ is based on arrays, butmore like HPF than C�. Eah index in an array in-denti�es a value and a proessor. Thus, this modelworks also at the level of virtual proessors. There isno alignment of arrays.

� The model Pei [36℄ has a notion of data �eld that or-responds to an array distributed onto a global (non-array) template. Thus the distribution is at the levelof virtual proessors. There is a single global template,and every array is aligned with it. The respetivealignment of the arrays with this template is induedautomatially by any operation on arrays. For exam-ple, an assignment C = A + B automatially indues analignment of the three arrays. A drawbak of this auto-mati alignment is that any non-trivial program sooninvolves ontraditory alignments. As the elements ofthe global template are not allowed to be indenti�edfor resolving the ontradition, the only way to resolveit is to express the algorithm di�erently.Remark Reeting on the example of Pei, one might ask ifit would not be possible to write ontraditory distributionsin HPF (as two real proessors an't be equal). In fat,HPF resolves this in a simple way: it is forbidden to alignor distribute an array more than one time.4 ConlusionWe have desribed a methodology for inluding a proper de-sription of the meaning of diretives to the ompiler into areferene manual. We have used rewriting logi as a formalframework: this allowed us to desribe the atual semantisas a theory that enrihes the theory whih odes the lassi-al referene semantis; to give a lear aount of the notionof a template; and to ode eah diretive as an equationin the enrihed theory. In this model, respet of a dire-tive orresponds to an algebra satisfying the orrespondingequation. Full formalization of the degree of stringeny forsatisfation of the diretives by the ompiler is the subjetof future work, and will follow this framework.While use of parallel mahines and environments de-velop, high-level programming beomes all the more neededfor portability reasons; but eÆient use of these mahinesand environment then an't be left to the ompiler alone, sothe diretives to the ompiler are in the present state of theart of parallel ompiling the most promising solution. Theadvent of the omputational GRID [2℄ will bring a similarsituation, as parallel programming for the GRID should behigh-level and at the same time exploit eÆiently the GRIDarhiteture. If ad ho diretive onstruts and ad ho ex-planations of them in the doumentation are to be avoided,a proper theory of the ombination of high-level and low-level notions in a programming model has to be developped.Diretives to the ompiler (or exeution environment) pro-vide a separation of onerns between the two levels whilerelating them, so the onept of a diretive ould have a rihfuture in omputing.Aknowledgments I have bene�ted from disussions withMihel Salomon on the meaning of the HPF diretives; �EriViolard on data parallelism and the programmer-ompilerontrat; and Pasal Shrek on algebrai spei�ations.Referenes[1℄ http://http://www.osl.iu.edu/researh/mtl/.

[2℄ The GRID: Blueprint for a New Computing Infrastruture.Morgan Kaufmann Publishers, In., 1999. Edited by IanFoster and Carl Kesselman.[3℄ OpenMP Fortran Appliation Program Interfae, November2000. Version 2.0.[4℄ Lu Boug�e and Jean-Lu Levaire. Control strutures fordata-parallel SIMD languages: Semantis and implemen-tation. Future Generation Computer Systems, 8:363{378,1992.[5℄ W. F. Cloksin and C. S. Mellish. Programming in Prolog.Springer-Verlag, third edition, 1987.[6℄ Fabien Coelho, C�eile Germain, and Jean-Louis Pazat. Stateof the Art in Compiling HPF, volume LNCS 1132, pages104{133. Springer-Verlag, May 1996.[7℄ R�azvan Diaonesu and Kokihi Futatsugi. Logial foun-dations of CafeOBJ. Submitted to Theoretial ComputerSiene, 2000.[8℄ Klaus Didrih, Andreas Fett, Carola Gerke, WolfgangGrieskamp, and Peter Pepper. OPAL: Design and implemen-tation of an algebrai programming language. In Program-ming Languages and System Arhitetures, pages 228{244,1994.[9℄ J. R. Ellis. Bulldog: A Compiler for VLIW Arhitetures.PhD thesis, Yale University, 1985. YALEU/DCS/RR-364.[10℄ Paul Feautrier. Automati Parallelization in the PolytopeModel, volume LNCS 1132, pages 79{103. Springer-Verlag,May 1996.[11℄ HPF Forum. High Performane Fortran Language Spei�-ation, 2.0 edition, January 1997.[12℄ Philippe Gerner. A note on omputational meaningattribution in rewriting logi. Tehnial Report ICPSRR 02-07, Universit�e Louis Pasteur, Frane, May 2002.http://ips.u-strasbg.fr/pub-02/rr-07-02.ps.[13℄ Joseph Goguen. An introdution to algebrai semiotis,with appliation to user interfae design. In ChrystopherNehaniv, editor, Computation for Metaphor, Analogy andAgents, LNAI, Vol. 1562, pages 242{291. Springer Verlag,1999.[14℄ Joseph Goguen and Rod Burstall. Institutions: Abstratmodel theory for spei�ation and programming. Journal ofthe Assoiation for Computing Mahinery, 39:95{146, 1992.[15℄ Joseph Goguen, Timothy Winkler, Jos�e Meseguer, Prof. Ko-kihi Futatsugi, and Jean-Pierre Jouannaud. IntroduingOBJ. In Grant Malolm, editor, Software Engineering withOBJ: algebrai spei�ation in ation. Kluwer, 2000.[16℄ William Groppa, Ewing Lusk, and Anthony Skjellum. UsingMPI. Sienti� and Engineering Computation. MIT Press,2nd edition, November 1999.[17℄ Y. Gurevih. Evolving Algebras 1993: Lipari Guide, pages9{36. Oxford University Press, 1995.[18℄ Yuri Gurevih and James K. Huggins. The semantis of theC programming language. In Seleted papers from CSL'92(Computer Siene Logi), volume LNCS 702, pages 274{308. Springer Verlag, 1992.[19℄ HPF Forum. High Performane Fortran Language Spei�-ation, 1.0 edition, 1993.[20℄ ISO. Fortran 90. May 1991. ISO/IEC 1539: 1991 (E).

[21℄ ISO/IEC JTC1/SC22/WG14. Programming languages { C{ Committee draft. January 1999.[22℄ P.W. Kutter and A. Pierantonio. The Formal Spei�a-tion of Oberon. Journal of Universal Computer Siene,3(5):443{503, May 1997.[23℄ David Laey, Neil D. Jones, Eri Van Wyk, and Carl Chris-tian Frederiksen. Proving orretness of ompiler optimiza-tions by temporal logi. In Symposium on Priniples ofProgramming Languages, pages 283{294, 2002.[24℄ Saunders Ma Lane. Categories for the Working Mathe-matiian. Springer-Verlag, 2nd edition, 1998.[25℄ Xavier Leroy, Damien Doligez, Jaques Garrigue, DidierR�emy, and J�erôme Vouillon. The Objetive Caml system,release 3.04 : Doumentation and user's manual, Deember2001. http://aml.inria.fr/oaml/htmlman/index.html.[26℄ Jos�e Meseguer. Conditional rewriting logi as a uni�edmodel of onurreny. Theoretial Computer Siene, 96:73{155, 1992.[27℄ Robin Milner, Mads Tofte, and Robert Harper. The De�ni-tion of Standard ML. MIT Press, Cambridge, MA, 1990.[28℄ Peter D. Mosses. Denotational semantis. In Jan vanLeeuwen, editor, Handbook of Theoretial Computer Si-ene, pages 575{631. Elsevier Siene Publishers, 1990.[29℄ Peter D. Mosses. Ation Semantis. Cambridge UniversityPress, 1992. CTCS 26.[30℄ Peter D. Mosses. Theory and pratie of ation semantis.Tehnial Report BRICS RS-96-53, Deember 1996.[31℄ Ataru T. Nakagawa, Toshimi Sawada, and Kokihi Futat-sugi. CafeOBJ User's Manual {ver.1.4{.[32℄ G. D. Plotkin. A strutural approah to operational seman-tis. Tehnial Report DAIMI FN-19, Computer SieneDepartment, Aarhus University, 1981.[33℄ Bruno Poizat. A Course in model theory { an introdution toontemporary mathematial logi. Springer-Verlag edition,2000.[34℄ Bjarne Stroustrup. The Design and Evolution of C++.Addison-Wesley, January 1994.[35℄ Thinking Mahines Corp. C* Programming Guide, Novem-ber 1990.[36℄ Eri Violard and Guy-Ren�e Perrin. Pei : a language andits re�nement alulus for parallel programming. ParallelComputing, 18:1167{1184, 1992.A The Models of Rewriting LogiThe basis of rewriting logi are realled here. For simpliitywe treat only RWL with unonditional equations and tran-sitions. The reader an �nd a treatment of the onditionalase in [26℄.When one writes a rewrite theory, one desribes its mod-els. A model of a rewrite theory is a family of ategories[24℄, funtors, and natural transformations, whih satis�esthe desription. The relationship between a rewrite theoryand a model of it is stated in the following. Let [[:℄℄ be thedenotation funtion with respet to this hosen model. Arewrite theory onsists of:

� Sort delarations. A sort s is a name whih denotes aategory [[s℄℄ in the model.� Operation delarations. An operation � is a name, andhas an aritys1 : : : sn; s of sorts. It denotes a funtor [[�℄℄ from theprodut ategory [[s1℄℄� � � � � [[sn℄℄ to ategory [[s℄℄.� Equations. An equation has form t = t0, with t andt0 being two terms onstruted from some operationsand from some variable names x1; : : : ; xn, and hav-ing the same sort s. Any instaniation t(u1; : : : ; un) ofterm t with ground terms u1; : : : ; un (where u1; : : : ; unsubstitute for the variables x1; : : : ; xn) denotes an ob-jet [[t(u1; : : : ; un)℄℄ from ategory [[s℄℄. That is, t de-notes a funtor from a produt ategory (the domainfor the substitution of the variables x1; : : : ; xn) to [[s℄℄.Equation t = t0 states the equality of funtors [[t℄℄and [[t0℄℄, and hene the equality, for any substitution(u1; : : : ; un), between objets [[t(u1; : : : ; un)℄℄ and[[t0(u1; : : : ; un)℄℄ of [[s℄℄.� Transitions. A transition has form r : t ! t0, wherer is a label, and with t and t0 being, as above, twoterms of same sort, onstruted from some operationsand some variable names x1; : : : ; xn. The transitionstates that there is a natural transformation, whih isnamed r, from funtor [[t℄℄ to funtor [[t0℄℄. This im-plies that there is in ategory [[s℄℄, for any subtitutionu1; : : : ; un of the variables, an arrow r(u1;:::;un) fromobjet [[t(u1; : : : ; un)℄℄ to objet [[t0(u1; : : : ; un)℄℄.We have given no label to the transition in our spei�a-tion in setion 3, �rst beause the CafeOBJ notation doesnot provide a formal way for doing this, and then beausethere is only one transition anyway.B Semantis of AssignmentsThe remaining of the MHPF-SEM theory is given below. Itsays that exeution of an addition-plus-assignment instru-tion does an addition and an assignment.vars tr algo : Algovars x y z w : SNamevars X Y Z W : ArrayNamevar i : Inteq (M wTrae: (tr ; (z := x + y)) wAlgo: algo) .val w= ((M wTrae: tr wAlgo: algo) .val x)+ ((M wTrae: tr wAlgo: algo) .val y)if w == z .eq (M wTrae: (tr ; (Z := X + y)) wAlgo: algo).val W i= ((M wTrae: tr wAlgo: algo) .val X i)+ ((M wTrae: tr wAlgo: algo) .val y)if W == Zand-also 1 <= i and-also i <= (length W) .eq (M wTrae: (tr ; (Z := X + Y)) wAlgo: algo).val W i= ((M wTrae: tr wAlgo: algo) .val X i)+ ((M wTrae: tr wAlgo: algo) .val Y i)if W == Zand-also 1 <= i and-also i <= (length W) .

** negative ases:eq (M wTrae: (tr ; (z := x + y)) wAlgo: algo) .val w= (M wTrae: tr wAlgo: algo) .val wif not (w == z) .eq (M wTrae: (tr ; (Z := X + y)) wAlgo: algo).val W i= (M wTrae: tr wAlgo: algo) .val W iif not (W == Z) .eq (M wTrae: (tr ; (Z := X + Y)) wAlgo: algo).val W i= (M wTrae: tr wAlgo: algo) .val W iif not (W == Z) .var ar-assgnt : ArrayAssignteq (M wTrae: (tr ; ar-assgnt) wAlgo: algo) .val w= (M wTrae: tr wAlgo: algo) .val w .var s-assgnt : SAssignteq (M wTrae: (tr ; s-assgnt) wAlgo: algo) .val W i= (M wTrae: tr wAlgo: algo) .val W i .** values are the same in every initial state:var algo' : Algoeq (M wTrae: noAlgo wAlgo: algo) .val x= (M wTrae: noAlgo wAlgo: algo') .val x .eq (M wTrae: noAlgo wAlgo: algo) .val X i= (M wTrae: noAlgo wAlgo: algo') .val X i .In this spei�ation, the values of array elements whenthe index is out of bounds is simply left unde�ned.We all an initial state a mahine state with a null trae(\noAlgo"). The last two equations say that in any model, allinitial states must have the same values. This makes validthe preeding equations, whih de�ne the values at one statefrom the values at some other states, \poping" along the wayfrom the trae (if the trae is viewed as a stak).

