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Abstra
tThe 
urrent solution for eÆ
ient high-level parallel program-ming in the industry is to use dire
tives to the 
ompiler.However these dire
tives pose two problems: �rst, they areoften designed in an ad ho
 manner and their subtleties areless easy to understand than the rest of the language; se
-ond, the degree of stringen
y of the dire
tives is not �xed,so that evaluating the eÆ
ien
y of the dire
tives he writesis not easy for the programmer. This arti
le proposes amethodology for addressing these issues. The data map-ping dire
tives of the language High Performan
e Fortranare used as an example; in parti
ular, it is shown how theuse of formal semanti
s 
an help 
larify and stru
ture theissues.1 Introdu
tionThe primary motivation for parallel programming is eÆ-
ien
y at exe
ution (in terms of exe
ution time). But inthe 
urrent state of the art of parallel programming, \high-level" still implies \not eÆ
ient enough". In response tothis, in the 1990's the notion of a dire
tive to the 
ompileremerged, as in the language HPF (High Performan
e For-tran [19℄) and the OpenMP library (e.g., [3℄). The idea is forthe programmer to write high-level 
ode, yet help the 
om-piler into �nding an eÆ
ient parallel implementation for the
ode. The notion of a dire
tive to the 
ompiler is not new.Yet what is new is its importan
e in a programming lan-guage. Indeed, one may say that the essen
e of HPF andOpenMP is the language of dire
tives they provide.One problem with the dire
tives is that as they tou
h onlow-level issues, their meaning depends onto notions whi
hare more impli
it than expli
it in the referen
e manual ofthe language. Thus their understanding by the programmeris not easy, and the meaning of the dire
tives tends to belearned \the hard way".Another problem is that more often than not, the dire
-tives are just advi
es to the 
ompiler, so the programmer hasto make spe
ial tests and use pro�lers in order to \learn his
ompiler", so as to write useful dire
tives. This 
an lead himinto writing dire
tives that do produ
e eÆ
ient 
ode only forhis parti
ular 
ompiler. Thus non-portability of eÆ
ien
y isintrodu
ed.A solution to these two problems would be a do
umen-tation of dire
tives whi
h is both 
lear and expli
it as to the
onstraints they put onto the 
ompiler writer.

However, the 
urrent form of referen
e manuals inheritsthe traditional wisdom whi
h says that it is more importantto des
ribe what a written program does, than how it a
tu-ally does it. Thus notes as to the \how" tend to be relegatedto \advi
e to implementors". However, when performan
eis an issue, whi
h is often the 
ase even in sequential pro-gramming, it is 
lear that these 
omments are eagerly readby the programmer as well. Thus we are interested in how areferen
e manual should be stru
tured for having the \how"as �rst-
lass semanti
s, at the same level as the \what".For stru
turing the methodology, we propose to use aformal semanti
s as a support. How to use formal semanti
sfor lessening the ambiguities in a referen
e do
ument is stillan area of resear
h. When used by a language designer,formal expression tends to indu
e 
oheren
e in the semanti
sof the language, as remarked by Milner [27℄: we believe that,similarly, a formal framework for the notion of dire
tives
ould help him 
onstru
t a 
oherent language of dire
tives.Our methodology is illustrated with an exposition of themeaning of some of the key dire
tives of the language HPF.The paper is stru
tured as follows.In the next se
tion, the fun
tion of the referen
e manualis dis
ussed. Then the use of formal semanti
s is dis
ussedin the light of low-level-
ons
ious programming. Finally the
ase of the dire
tives to the 
ompiler is introdu
ed, with afo
us on dire
tives in parallel programming.The third se
tion presents a formalisation of the seman-ti
s of some of the key data mapping dire
tives of HPF. Itshows that a formalization 
an help into both 
larifying thesemanti
s of the dire
tives and stru
turing the exposition ofthe language in its entirety.2 Referen
e and A
tual Semanti
s2.1 The Referen
e ManualThe semanti
s of industrial programming languages is de-�ned by their referen
e manuals. As we 
on
entrate on howthe referen
e manual should provide the information as tothe meaning of the dire
tives, we �rst dis
uss the exa
t fun
-tion of this manual.A referen
e manual for a language L has two types ofreaders:� the programmers in L, who refer to it is 
ase of doubtas to the pre
ise meaning of a parti
ular 
onstru
t.



� the implementers of a 
ompiler for L, for whom thereferen
e manual de�nes the pre
ise meaning of ea
h
onstru
t of the language.(One may also 
onsider a third kind of readers: the 
om-mittee members for a standardization of the language. Thedo
ument they eventually produ
e, whi
h de�nes the norm,is \the ultimate referen
e". For simpli
ity, when the lan-guage is standardized, what we 
all \referen
e manual" isthe do
ument whi
h de�nes the standard.)The purpose of a referen
e manual is to ensure that forany two 
ompilers C and C0 for a language L, a programwritten in L will produ
e the same output data, for giveninput data, whether it has been 
ompiled with C of withC0. Thus, L 
ode 
an be portable. That is why \a standardis often des
ribed as `a 
ontra
t between the programmerand the implementer.' It des
ribes not only what is \legal"sour
e text, but also what a programmer 
an rely on ingeneral and what behavior is implementation-dependent"[34, p. 81℄.Be
ause a
hieving portability is so important, the fo-
us of referen
e manuals is on semanti
s matters being very
lear, not on eÆ
ien
y 
onsiderations. As says the draft forthe C99 standard: \The semanti
 des
riptions in this In-ternational Standard des
ribes the behaviour of an abstra
tma
hine in whi
h issues of optimizations are irrelevant." [21,p. 15℄.Thus, the 
ompiler writer is free to produ
e any a
tualsemanti
s he likes, as long as he respe
t the few primary re-quirements, the main among whi
h is, for C99: \At programtermination, all data written into �les shall be identi
al tothe result that exe
ution of the program a

ording to theabstra
t semanti
s would have produ
ed." [21, p. 15℄.Of 
ourse, \an implementation might de�ne a one-to-one
orresponden
e between abstra
t and a
tual semanti
s," [21,p. 16℄, but the point is that is it not at all mandatory.2.2 High-Level Low-Level ProgrammingIn rapid prototyping, performan
e issues are not 
onsideredbe
ause only the fun
tionality of the program (in the senseof \what is does") is important. But in other programming
ontexts, performan
e be
omes an issue. An extreme 
ase iss
ienti�
 
omputing. As said about the C++ Matrix Tem-plate Library (MTL [1℄): \ To many s
ienti�
 
omputingusers, [ . . . ℄ the advantages of an elegant programming in-terfa
e are se
ondary to issues of performan
e."As a 
onsequen
e, high-level programming languages pro-vide some means to a
hieve performan
e \in spite of thehigh level". An example is the introdu
tion of imperativefeatures in modern fun
tional languages, as in the Caml lan-guage [25℄. In fa
t, the degree of \low-level 
oding" in aprogram tends to be proportional to the \highness" of thelanguage. For example, 
ut-free Prolog programs are morea rarity than the norm (the \
ut" is a kind of dire
tive tothe interpreter [5, pp. 69-92℄, and is an essential tool for theProlog logi
 programmer).The Do
umentation on Performan
e IssuesThe referen
e manual of the language do
uments some ofthe low-level fa
ilities, but not ne
essarily in performan
eterms, sin
e the referen
e semanti
s, for abstra
tion reasons,does not provide the relevant notions. Witness the referen
e

semanti
s for the C register dire
tive: \A de
laration ofan identi�er with storage-
lass register suggest that a

essto the obje
t be as fast as possible" ([21, p. 98℄. No mentionis made of the notion of a register, so that no notion of aregister need be de�ned for the abstra
t ma
hine, whi
h isunderstandably 
onvenient. Thus the real meaning of thisdire
tive is in fa
t impli
it.Moreover, there is often a non-
ertitude as to how thelow-level feature is a
tually handled by the 
ompiler. For theregister dire
tive, for example, the norm is that \the ex-tent to whi
h su
h suggestions are e�e
tive is implementation-de�ned" (ibid.). Indeed, the 
ompiler may de
ide he hasmore eÆ
ient optimizations for this variable than putting itinto a register.The result of this state of a�airs is that the program-mer will tend to infer the e�e
t of its low-level investmentfrom intera
tion with his 
ompiler. Sometimes he will evenwrite programs \just for testing what the 
ompiler does".Thus, he 
omes to know about the a
tual semanti
s of hisprograms more from the 
ompiler than from the referen
emanual, and he is at risk of spending some time on some
ompiler-dependant performan
e tuning, whi
h is bad in-vestment when portability is 
onsidered. (Of 
ourse he 
analso introdu
e in this way some 
ompiler dependen
y whi
hdoes not even 
on
ern eÆ
ien
y.)2.3 Formal Semanti
s and A
tual Seman-ti
sFor eliminating as mu
h ambiguity as possible from the ref-eren
e des
ription, sin
e the 1970's mu
h resear
h has beenmade for formally spe
ifying the semanti
s of a program-ming language. But the de�nition of real programming lan-guages is still written in natural language only (ex
ept forthe grammar part). The only 
onvin
ing ex
eption we knowof is the de�nition of Standard ML [27℄.In the 80's, Yuri Gurevi
h introdu
ed what be
ame knownas the Abstra
t State Ma
hines [17℄, and Peter Mosses A
-tion Notation [30℄. Both put the emphasis onto des
ription
apability rather than onto adequa
y for proving program
orre
tness, and some of the more 
onvin
ing language de-s
riptions have used these methods, see, e.g., [22℄ (abstra
tstate ma
hines) and [18℄ (a
tion notation).But all these methods are designed for des
ribing onesemanti
s. But for des
ribing the semanti
s of dire
tives, weneed to des
ribe both the referen
e and the a
tual semanti
s,and the relation between them. Thus in the next se
tion wewill provide a method of our own.The resear
h whi
h 
omes 
loser to our preo
upation isin the �eld of 
ompiling resear
h. For example, work on
orre
t 
ompiling uses the notion of respe
ting the input-output behaviour of a program while 
hanging its exe
utionmode; but it fo
uses on adequa
y for proving the 
orre
t-ness of a 
hange, e.g., [23℄. Also relevant is the automati
parallelization �eld, whi
h provides an algebrai
 formula-tion of exe
ution 
hange through the notion of a spa
e-timemapping [10℄. But it is strongly tied to aÆne dependan
es,and too te
hni
al (it's integer programming) for being ad-equately used in a referen
e do
ument to be used by anyprogrammer.



2.3.1 Operational, DenotationalWhat is 
alled the \operational semanti
s" of a program-ming language des
ribes the 
omputation me
hanism whi
h
orresponds to a program (see, e.g., [32℄), whereas deno-tational semanti
s [28℄ des
ribes the relation between theinput and output data of the program. It is natural to 
on-sider that the \essen
e" of a program is in how it works,rather than into what it does. But from the point of view ofthe fun
tion of the referen
e semanti
s, things are di�erent.Indeed, in referen
e manuals, as for C99 above, the refer-en
e operational semanti
s is only a des
riptive means forexpressing whi
h input-output behaviour the a
tual seman-ti
s of a program must have: this input-output behaviour iswhat must be preserved by the a
tual semanti
s, and there isno ne
essary relationship between the referen
e operationalsemanti
s and the a
tual semanti
s. Thus, from the pointof view of the 
ompiler, the referen
e operational semanti
sis just another way of expressing a denotational semanti
s.Operational semanti
s is a good dida
ti
 means to expressthe intented input-output behaviour of a program, as hu-mans reason naturally in terms of temporal me
hanisms. By
onstrast, denotational semanti
s is dida
ti
 only for (the\pure" part of) fun
tional languages. A denotational se-manti
s of C, for example, will not help the programmermu
h in understanding C.2.4 Dire
tives to the CompilerDire
tives to the 
ompiler are an interesting form of high-level low-level programming, be
ause instead of tuning hisalgorithm in its very expression, the programmer keeps in-ta
t his algorithm, and just adds some instru
tions (the di-re
tives) for tuning its a
tual exe
ution.Dire
tives exist in most real programming languages.They have been in use in a
ademi
 
ir
les also. For ex-ample, the Bulldog VLIW 
ompiler [9℄ allows the program-mer to indi
ate some invariants to the 
ompiler. Also, the
ompiler for the fun
tional language Opal [8℄ allows the pro-grammer to indi
ate some algebrai
 properties for some ofthe fun
tions in the program, whi
h the 
ompiler 
an use foroptimization. Even the algebrai
 spe
i�
ation system OBJ[15℄ has a dire
tive memo, for memo��zation.2.4.1 Dire
tives for Parallel ProgrammingAs said in the introdu
tion, dire
tives to the 
ompiler havefound a new dimension in high-level parallel programming.However HPF or OpenMP programming is still not themost frequent pra
ti
e in parallel programming. Indeed,MPI (Message Passing Interfa
e [16℄) is still the 
hoi
e whenhigh performan
e is 
ru
ial. MPI programming is more low-level than HPF and OpenMP, as the 
ode for the 
ommuni-
ation of data between the parallel tasks has to be writtenby the programmer, as opposed to the 
ompiler for HPF andOpenMP. The reason for the persisten
e of the prima
y ofMPI is that HPF and OpenMP both are a bit ahead of theirtime in terms of 
ompiler te
hnology (see, e.g., [6℄). That is,some of their dire
tives 
an be so diÆ
ult to handle for the
ompiler, that the 
ompiler might simply ignore them, notknowing how to handle them properly. That is why HPFprogrammers use debuggers like TotalView of pro�lers likepgprof for seeing \how our parti
ular 
ompiler has used thedire
tives".

However, for the parts of the program for whi
h the pro-grammer does not provide some dire
tives, the 
ompiler hasno less hard a job. This is well expressed by the fa
t thatthe task of providing the best 
ompromise between optimals
heduling of the instru
tions and optimal data distributionfor 
ommuni
ation minimization is NP-
omplete. So dire
-tives 
an help the 
ompiler a lot.3 Semanti
s of the HPF Dire
tivesWe propose a methodology for de�ning the meaning of thedire
tives to the 
ompiler, in the 
ontext of their des
riptionby a referen
e manual.Our method uses a formal des
ription of the semanti
sof the language as a support for stru
turation and 
larity ofthe referen
e manual. We mentionned above that no formalsemanti
s method known to us has been designed spe
i�
allyfor expressing the relationship between referen
e and a
tualsemanti
s. So in this next se
tion we use a formalization ofour own, based on rewriting logi
 [26℄ (see below).We explain our method through applying it to the 
aseof the HPF data mapping dire
tives. However, the methodis not dependent upon the HPF language. What a formalsupport brings in 
larity is shown by how the HPF template
onstru
t is handled.3.1 The HPF Data Mapping Dire
tivesThe idea of the data parallel programming model whi
h isfollowed by HPF is to organize the program as a sequen
e ofparallel operations, where a parallel operation is the 
on
ur-rent appli
ation of a same operation onto a bun
h of data.For example : C = A + Bwhere A, B, and C are three arrays, is a parallel operation.Noti
e that the fa
t that it should exe
ute in paral-lel (whi
h would justify the relevan
e of this programmingmodel for performan
e) is not dis
ussed in the HPF referen
emanuals [19, 11℄. One possible reason is that it probably
onsidered \obvious" that HPF array assignments should bemade in parallel if possible. Another is that HPF itself doesnot de�ne array assignments: it imports them from Fortran90 for HPF version 1, or from Fortran 95 for HPF version2. About operations on arrays, the Fortran 90 Standardsays: \these features 
an signi�
antly fa
ilitate optimiza-tion of array operations on many 
omputer ar
hite
tures"[20, p. xiii℄. So the parti
ular interpretation of the arrayassignments in HPF, as being more on the level of a
tualsemanti
s than the referen
e one, has not been emphasized.However su
h parallel operations are not enough for ef-�
ien
y. If a distributed memory parallel ma
hine is used,then the elements of the arrays are distributed onto thesememories, and a random distribution will likely generatemore inter-pro
essor 
ommuni
ations (for requiring the datawhi
h are needed for the 
omputations) than a thoughtfulone. As 
ommuni
ation time is not negligeable, performan
eof the program depends on minimizing the number of 
om-muni
ations. Thus an important job for the 
ompiler is to�nd an eÆ
ient ditribution of the data onto the memories.This is no easy task, and that is why the HPF model pro-vides the programmer with the means to write some data



mapping dire
tives. An example HPF data mapping dire
-tives is given below (this toy example will be used through-out the se
tion):INTEGER I, J, K, L, M, NINTEGER, DIMENSION(4) :: A, B, C, D!HPF$ TEMPLATE T(4)!HPF$ ALIGN A(:) with T(:)!HPF$ ALIGN B(:) with T(:)!HPF$ ALIGN C(:) with T(:)!HPF$ PROCESSORS, DIMENSION(2) :: MY_PROCS!HPF$ DISTRIBUTE (BLOCK) ONTO MY_PROCS :: TK = I + JN = L + MC = A + BD = C + NThe data mapping dire
tives are the lines beginning with\!HPF$". Their meaning is exposed below, together with theformalization of this meaning. In this example, array D hasnot been aligned. This is not an error, as fortunately HPFdoes not 
onstrain the programmer to give a data mappingdire
tive for every array in the program.3.2 The Choi
e of Rewriting Logi
As a tool for formally de�ning the meaning of the dire
-tives, we use rewriting logi
 [26℄. Rewriting logi
 (RWL)is algebrai
 spe
i�
ations plus transitions. As for algebrai
spe
i�
ations, the semanti
s of RWL is given through thenotion of satisfa
tion, inherited from model theory [33℄: thesemanti
s of a RWL theory is given as the set of its models.The di�eren
e with 
lassi
al algebrai
 spe
i�
ations is that amodel is not a family of sets together with fun
tions betweenthem, but a family of 
ategories [24℄ with fun
tors betweenthem. More on these models 
an be found in appendix A,but the following of this se
tion is self-
ontained.Our 
hoi
e of the RWL framework is motivated by thefollowing fa
tors:� theory morphisms help stru
ture the semanti
s [14℄.This is used for de�ning the meaning of the languagewithout dire
tives, and then adding dire
tives in a waythat just \enri
h" the previous de�nition.� notion of satisfa
tion allow 
oding ea
h dire
tive as anequation whi
h 
an be satis�ed or not by an algebra.� a 
ategory (in a model) is de�ned by obje
ts and ar-rows, so that 
ategories have a natural graphi
al qual-ity, whi
h is interesting when we want to in
lude aformal semanti
s as a digestible part of a referen
emanual.The Readers of a Formal Des
ription As pro-grammers are not in general theoreti
al 
omputer s
ientists,they will probably not 
onsider that a rewriting logi
 de-s
ription provides a 
lari�
ation of the semanti
s of thelanguage. In the 
ase of HPF, whi
h is used for s
ienti�

omputing, the programmers often are not even professionalprogrammers, but rather users of numeri
al 
omputing liketheoreti
al physi
ists, engineers, or meteorologists.

Noti
e that this problem is not restri
ted to RWL de-s
riptions. A
tion Semanti
s, for example, has its opera-tional semanti
s de�ned in [29℄ with the Stru
tured Opera-tional Semanti
s method [32℄, and a programmer will prob-ably won't buy this do
ument in order to better understandthe programming language he's using, as the notation is in-tuitive enough (by its very purpose).The point is that, like A
tion Semanti
s or Abstra
tState Ma
hines, we make a di�eren
e between an a

essiblenotation and the \pure" model. Our model below is at thelevel of rewriting logi
 proper, and a 
omplete methodologywould provide a notation based on this model.3.3 Coding the Language Semanti
sWe des
ribe a subset of HPF (whi
h we 
all mini-HPF)whi
h is tiny but has the key data mapping dire
tives.The semanti
s of the language is given by assigning apre
ise meaning to ea
h program, rather than to ea
h lan-guage 
onstru
t as is usually done. The semanti
s of a par-ti
ular program is a given as a rewrite theory, whi
h usessome prede�ned theories whi
h do not depend on a parti
-ular program. The des
ription of the tool whi
h does thetranslation from a mini-HPF program to its assigned RWLtheory would 
orrespond to a des
ription of the semanti
sof mini-HPF. However, for making the presentation moredigestible, we prefer below to illustrate this translation on aparti
ular instan
e of a program.3.4 Referen
e Operational Semanti
sThe following RWL theories in this se
tion are written usingthe well-de�ned CafeOBJ notation [7℄. This notation is usedby the CafeOBJ system [31℄, a su

essor to the well-knowOBJ spe
i�
ation system [15℄.We �rst de�ne the referen
e operational semanti
s of ourHPF program, when dire
tives are not taken into a

ountyet. It is given by the following theory, whi
h is the trans-lation, in our methodology s
heme, of the algorithm of theHPF program.module! ALGO1 {using (MHPF-SEM)ops I J K L M N : -> SNameops A B C D : -> ArrayNameeq length A = 4 . eq length B = 4 .eq length C = 4 . eq length D = 4 .op algo1 : -> Algoeq algo1 = (K := I + J) ;(N := L + M) ;(C := A + B) ;(D := C + N) .} This theory imports (with the CafeOBJ keyword using)another theory, MHPF-SEM (for \semanti
s of mini-HPF").MHPF-SEM de�nes the referen
e operational semanti
s of (atiny subset of) HPF, and it imports itself the theoryMHPF-SEM-CONSTRUCTS whi
h de�nes the sorts and operationsto be used in the underlying rewrite theories of mini-HPFprograms, as in ALGO1. MHPF-SEM-CONSTRUCTS is de�ned as fol-lows:module MHPF-SEM-CONSTRUCTS {[ SName ℄ [ SAssignt ℄op _:=_+_ :



SName SName SName -> SAssignt[ ArrayName ℄ [ ArrayAssignt ℄prote
ting (INT)op length_ : ArrayName -> Intop _:=_+_ :ArrayName ArrayName SName -> ArrayAssigntop _:=_+_ :ArrayName ArrayName ArrayName -> ArrayAssignt[ SAssignt ArrayAssignt < Assignt < Algo ℄op noAlgo : -> Algoop _;_ : Algo Algo -> Algo{ asso
 id: noAlgo }} The 
ommon semanti
s basis for ea
h mini-HPF programis de�ned by theory MHPF-SEM:module* MHPF-SEM {prote
ting (MHPF-SEM-SYNTAX)[ Ma
hineName ℄op M : -> Ma
hineName[ Ma
hineState℄op (_wTra
e:_wAlgo:_) :Ma
hineName Algo Algo -> Ma
hineStatevars tr algo : Algo var assgnt : Assignttrans M wTra
e: tr wAlgo: (assgnt ; algo)=> M wTra
e: (tr ; assgnt) wAlgo: algo .op (_.val_) : Ma
hineState SName -> Intop (_.val__) : Ma
hineState ArrayName Int -> Int...} The dots at the end are for the semanti
s of assignment(that is, de�ning that exe
uting \ := + " does make the in-tended addition). This 
an be looked at in appendix B.The theory de�nes ma
hine states. Operation\ wTra
e: wAlgo: " says that a ma
hine state is 
hara
terizedby a ma
hine name and two algorithm texts. There is onlyone ma
hine name in our theory: M. It is there to make thespe
i�
ation easier to read. The �rst algorithm text is atra
e of what the ma
hine has already exe
uted, and these
ond one the algorithm whi
h is yet to be exe
uted by thema
hine.Exe
ution of the �rst assignment from the algorithm tobe exe
uted is 
oded by the unique transition of our wholespe
i�
ation, from one ma
hine state to another: trans ....This transition makes the assignment instru
tion go \throughthe barrier of the \wAlgo:" and be appended to the tra
e:this represents exe
ution of the instru
tion.The transitions between ma
hine states from the assign-ment instru
tions follow the order of these intru
tions in thealgorithm. This is illustrated below by how in the text ofthe HPF program be
omes, in a model, arrows from ma
hine

states to ma
hine states: z0z1fa1g?z2fa2g?z3fa3g?z4fa4g?where z0 = [[M wTra
e: noAlgo wAlgo: algo1℄℄,\a1," \a2," \a3" and \a4" are names for the following termsof sort Assignt:a1 = K := I + J,a2 = N := L + M,a3 = C := A + B,a4 = D := C + N;and \faig" as an arrow name indi
ates that the transitionis generated by this assignment instru
tion ai going throughbarrier \wAlgo:". Thus, ma
hine state z5 is:[[M wTra
e: a1 ; a2 ; a3 ; a4 wAlgo: noAlgo℄℄We must 
omplete the des
ription of the referen
e se-manti
s by expli
itating the meaning of the above formal-ization. Indeed, in algebrai
 spe
i�
ation, the (most oftenin�nite) set of models of a theory does not provide in itselfany meaning. Thus, a meaning attribution has to be madeonto them. (A treatment of an example of su
h meaningattribution 
an be found in [12℄.) In our method we take
are to expli
itate whi
h meaning is to be attributed to themodels. Thus, our referen
e semanti
s says that:� sequen
e in the diagram (following the dire
tion of thearrows) 
orresponds to sequen
e in time at the exe
u-tion;� every transition that involves a assignment of sortArrayAssignt, like a3 above, has to be imagined as in-volving parallel 
omputations on the s
alar values 
on-tained in the right-hand side arrays, and then par-allel assignment to the stores of the left-hand sidearray. For example, for a3 = C := A + B, there are4 
omputations (be
ause the arrays have length 4):[[.val℄℄(z2; [[A℄℄; 1) + [[.val℄℄(z2; [[B℄℄; 1), . . . ,[[.val℄℄(z2; [[A℄℄; 4)+[[.val℄℄(z2; [[B℄℄; 4). There are exe
utedin parallel. Similarly, the resulting values are stored inparallel into the 4 stores of array C.3.5 A
tual Operational Semanti
sFor modeling in a simple way the relationship of the refer-en
e semanti
s to the a
tual one, we remark that the do
-umentation on the dire
tives has to say something aboutnotions that belong to the a
tual semanti
s, like pro
essors.So the do
umentation must provide an abstra
tion of thea
tual semanti
s. A formal support is given for this with,again, the notion of a theory.We provide a theory of virtual and real pro
essors:



module* PROCS-THEORY {[ Pro
 ℄prote
ting (INT)op nbPro
s : -> Int[ VPro
 ℄op map_ : VPro
 -> Pro
[ TemplateName ℄[ Pro
ArrayName ℄op <_,_> : TemplateName Int -> VPro
op <_,_> : Pro
ArrayName Int -> Pro
} The meaning whi
h is to be attributed to this theory isnow des
ribed.Sort Pro
 de
lares some pro
essors. These are the pro-
essors of the parallel ma
hine onto whi
h a HPF programwill exe
ute. nbPro
s designates the number of pro
essorsa
tually used by the program.The notion of a template has been introdu
ed with theHPF dire
tives model. The referen
e manual says aboutthis 
onstru
t: \a template is simply an abstra
t spa
e ofindexed positions; it 
an be 
onsidered as an `array of noth-ing' (as 
ompared to an `array of integers', say)" [11, p. 40℄.This notion is not an easy one 
on
eptually. In our modelwe manage to avoid the notion of an \array of nothing" bydistinguishing between the notion of a template (a nameplus some integer indi
es) and array proper (a name plus a\.val" operation).As shown in our HPF program example, a template isto be \distributed" onto pro
essors. As a template 
ontainsno values, it is as if no data is distributed. The notion of avirtual pro
essor helps explain the s
heme: a 
ouple formedwith a template name and an integer refers to a virtual pro-
essor, and the \distribution" is then simply a mapping ofsome virtual pro
essors onto the real ones. Sort VPro
 de-
lares a sort of virtual pro
essors. That ea
h virtual pro
es-sor will eventually be mapped onto a real one is expressedis de
lared with operation map.Real pro
essors are refered to with a s
heme similar tothat used for the virtual pro
essors, with a name of sortPro
ArrayName and an integer. The 
omplete virtual/realpro
essors-plus-mapping s
heme serves in HPF to expressthe respe
tive alignment of data: this is illustrated below.Remark Our real pro
essors 
orrespond to what the HPFdo
umentation 
alls abstra
t pro
essors, as 
ontrasted withthe physi
al pro
essors of the ma
hine. This is in a

ordwith our method, sin
e our theory of real pro
essors is anabstra
tion from the notion of physi
al pro
essors.3.5.1 Alignment and DistributionNow we 
an show whi
h RWL theory the mini-HPF program
omplete with dire
tives is translated into:module! ALGO1-ALIGNTS-DISTRD {prote
ting (ALGO1)using (PROCS-THEORY)** alignments:[ ArrayName < TemplateName ℄op T : -> TemplateNamevar i : Inteq < A, i > = < T, i > .eq < B, i > = < T, i > .

eq < C, i > = < T, i > .** distribution:op my-pro
s : -> Pro
ArrayNameeq nbPro
s = 2 .eq map < T, i > =< my-pro
s, ((i + 1) quo (nbPro
s)) > .} That is, it uses the translation of the program withoutthe dire
tives, imports the theory of virtual and real pro
es-sors, and then translate the dire
tives proper.Care is taken, with keyword prote
ting, to indi
ate thatthe models of the previous theory ALGO1 are not modi�edby the new theory. That is, we garantee that the new the-ory just adds some new information \around" the pre
edingtheory: we don't modify the operational semanti
s of theprogram as given in ALGO1. For example, the above drawingwith four arrows is still valid.Alignment First, array names are 
onsidered as tem-plate names (\ArrayName < TemplateName"). This means thatfor any array name X and integer i, [[< >℄℄(X; i) is a vir-tual pro
essor. The intended meaning is that this virtualpro
essor has a (virtual) memory atta
hed to it, whi
h 
on-tains the store reserved for the value [[.val℄℄(S;X; i) (on anyma
hine state S). It is also intended that this value willeventually be stored onto the memory atta
hed to the realpro
essor [[map℄℄([[< >℄℄(X; i)) onto whi
h the virtual pro
es-sor is mapped. Thus, the virtual/real/map s
heme serves toexpress the distribution of data.The three HPF ALIGN dire
tives are translated as threeequations about virtual pro
essors. By default, every vir-tual pro
essor [[< >℄℄(X; i) is distin
t from virtual pro
essor[[< >℄℄(Y; j), when X 6= Y or i 6= j. This default rule holdsbe
ause the so-
alled initial semanti
s for the models of thetheory is 
hosen (this is a 
lassi
al tool of algebrai
 spe
i-�
ation): this 
hoi
e is indi
ated by the CafeOBJ 
ode forit|the ex
lamation mark \!" atta
hed to the de
laration ofthe theory: \module!". Thus the equations serve to state theequality of some virtual pro
essors whi
h would otherwisebe distin
t. For example, virtual pro
essors [[< A, 1 >℄℄ and[[< T, 1 >℄℄ are equal.As it is also the 
ase that [[< C, 1 >℄℄ = [[< T, 1 >℄℄, bytransitivity we have [[< A, 1 >℄℄ = [[< C, 1 >℄℄. Thus, for anyma
hine state S values [[S .val A 1℄℄ and [[S .val C 1℄℄ are as-so
iated with the same virtual pro
essor. This means thatthey will eventually be asso
iated with the same real pro-
essor and be stored onto its asso
iated memory.Thus we see how HPF template names whi
h are notarray names (as T here) are just a fa
ility for puting the val-ues of di�erent arrays onto a same memory, whi
h is 
alled\aligning some data".The motivation for aligning is minimizing 
ommuni
a-tions. The point is that we expli
itely assume that ourma
hine follows the so-
alled Owner Computes Rule: if anarray element has been assigned a parti
ular memory, thenits 
omputation is made by the pro
essor whi
h is atta
hedto this memory. Thus, when instru
tion C := A + B is exe-
uted, the value of C at index 1 is 
omputed (see appendixB for the formal expression) using the values of A and B atindex 1. As the value for A is on the same abstra
t pro
essor,no (virtual) inter-pro
essor 
ommuni
ation is required.



Distribution The semanti
s we give to the PROCESSORSdire
tive of our example is that is de
lares a Pro
ArrayNamename, my-pro
s. The number of pro
essors is de
lared equalto the size of the HPF array MY-PROCS.The distribution by blo
ks of the DISTRIBUTE dire
tiveis translated into its meaning: an equation whi
h puts a
onstraint onto fun
tion [[map℄℄.The number of pro
essors de
lared by the PROCESSORS di-re
tives does 
orrespond to the a
tual number of pro
essorsused to run the program [11, p. 38℄, so that from alignmentsonto a template to distribution onto an array of pro
essorswe have rea
hed a faithful abstra
tion of what a
tually hap-pens.Remark 1 The DISTRIBUTE 
onstru
t also allows to dis-tribute an array, like A above, dire
tly onto an array of pro-
essors. The meaning we attribute to that it is A taken asa template (through \ArrayName < TemplateName") whi
h isdistributed.Remark 2 The HPF DISTRIBUTE dire
tive allows in fa
tto have a virtual pro
essor mapped onto several pro
essors.We have simpli�ed above for the sake of a short exposition.Extension to a 
odomain for map whose elements are thesubsets of the set of pro
essors is straitforward.3.5.2 Degree of Stringen
y\HPF dire
tives appear as stru
tured 
omments that sug-gest implementation strategies or assert fa
ts about a pro-gram to the 
ompiler. When properly used, they a�e
tonly the eÆ
ien
y of the 
omputation performed, but donot 
hange the value 
omputed by the program" [11, p. 4℄.Thus, if the semanti
s of HPF is to be des
ribed, a degreeof un
ertainty as use of the dire
tives by the 
ompiler hasto be 
oded.This is the subje
t of future work. It will use modelsthat satisfy only some of the equations that 
orrespond tothe dire
tives. It will be based on some existing works like[13℄.3.6 Other Data Mapping ModelsWe have given above a model of data distribution. Othermodels have been proposed in the literature. For 
omparingthem to our model, we �nd it 
onvenient to re-use the notionof virtual pro
essors and templates as de�ned in our model.� The language C� [35℄, the only \real" language in thislist, is an adaptation of the C language for the Con-ne
tion Ma
hine. Its data distribution relies on thenotion of a shape, that 
orresponds to a template inour model. Aligning two arrays A and B 
an only bedone by having them have the same shape: so theymust have the rank and size. This distribution is atthe level of virtual pro
essors, and mapping the virtualpro
essors onto the real ones is left to the 
ompiler.� Lu
 Boug�e's language L [4℄ is based on arrays, butmore like HPF than C�. Ea
h index in an array in-denti�es a value and a pro
essor. Thus, this modelworks also at the level of virtual pro
essors. There isno alignment of arrays.

� The model Pei [36℄ has a notion of data �eld that 
or-responds to an array distributed onto a global (non-array) template. Thus the distribution is at the levelof virtual pro
essors. There is a single global template,and every array is aligned with it. The respe
tivealignment of the arrays with this template is indu
edautomati
ally by any operation on arrays. For exam-ple, an assignment C = A + B automati
ally indu
es analignment of the three arrays. A drawba
k of this auto-mati
 alignment is that any non-trivial program sooninvolves 
ontradi
tory alignments. As the elements ofthe global template are not allowed to be indenti�edfor resolving the 
ontradi
tion, the only way to resolveit is to express the algorithm di�erently.Remark Re
e
ting on the example of Pei, one might ask ifit would not be possible to write 
ontradi
tory distributionsin HPF (as two real pro
essors 
an't be equal). In fa
t,HPF resolves this in a simple way: it is forbidden to alignor distribute an array more than one time.4 Con
lusionWe have des
ribed a methodology for in
luding a proper de-s
ription of the meaning of dire
tives to the 
ompiler into areferen
e manual. We have used rewriting logi
 as a formalframework: this allowed us to des
ribe the a
tual semanti
sas a theory that enri
hes the theory whi
h 
odes the 
lassi-
al referen
e semanti
s; to give a 
lear a

ount of the notionof a template; and to 
ode ea
h dire
tive as an equationin the enri
hed theory. In this model, respe
t of a dire
-tive 
orresponds to an algebra satisfying the 
orrespondingequation. Full formalization of the degree of stringen
y forsatisfa
tion of the dire
tives by the 
ompiler is the subje
tof future work, and will follow this framework.While use of parallel ma
hines and environments de-velop, high-level programming be
omes all the more neededfor portability reasons; but eÆ
ient use of these ma
hinesand environment then 
an't be left to the 
ompiler alone, sothe dire
tives to the 
ompiler are in the present state of theart of parallel 
ompiling the most promising solution. Theadvent of the 
omputational GRID [2℄ will bring a similarsituation, as parallel programming for the GRID should behigh-level and at the same time exploit eÆ
iently the GRIDar
hite
ture. If ad ho
 dire
tive 
onstru
ts and ad ho
 ex-planations of them in the do
umentation are to be avoided,a proper theory of the 
ombination of high-level and low-level notions in a programming model has to be developped.Dire
tives to the 
ompiler (or exe
ution environment) pro-vide a separation of 
on
erns between the two levels whilerelating them, so the 
on
ept of a dire
tive 
ould have a ri
hfuture in 
omputing.A
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tive Caml system,release 3.04 : Do
umentation and user's manual, De
ember2001. http://
aml.inria.fr/o
aml/htmlman/index.html.[26℄ Jos�e Meseguer. Conditional rewriting logi
 as a uni�edmodel of 
on
urren
y. Theoreti
al Computer S
ien
e, 96:73{155, 1992.[27℄ Robin Milner, Mads Tofte, and Robert Harper. The De�ni-tion of Standard ML. MIT Press, Cambridge, MA, 1990.[28℄ Peter D. Mosses. Denotational semanti
s. In Jan vanLeeuwen, editor, Handbook of Theoreti
al Computer S
i-en
e, pages 575{631. Elsevier S
ien
e Publishers, 1990.[29℄ Peter D. Mosses. A
tion Semanti
s. Cambridge UniversityPress, 1992. CTCS 26.[30℄ Peter D. Mosses. Theory and pra
ti
e of a
tion semanti
s.Te
hni
al Report BRICS RS-96-53, De
ember 1996.[31℄ Ataru T. Nakagawa, Toshimi Sawada, and Koki
hi Futat-sugi. CafeOBJ User's Manual {ver.1.4{.[32℄ G. D. Plotkin. A stru
tural approa
h to operational seman-ti
s. Te
hni
al Report DAIMI FN-19, Computer S
ien
eDepartment, Aarhus University, 1981.[33℄ Bruno Poizat. A Course in model theory { an introdu
tion to
ontemporary mathemati
al logi
. Springer-Verlag edition,2000.[34℄ Bjarne Stroustrup. The Design and Evolution of C++.Addison-Wesley, January 1994.[35℄ Thinking Ma
hines Corp. C* Programming Guide, Novem-ber 1990.[36℄ Eri
 Violard and Guy-Ren�e Perrin. Pei : a language andits re�nement 
al
ulus for parallel programming. ParallelComputing, 18:1167{1184, 1992.A The Models of Rewriting Logi
The basi
s of rewriting logi
 are re
alled here. For simpli
itywe treat only RWL with un
onditional equations and tran-sitions. The reader 
an �nd a treatment of the 
onditional
ase in [26℄.When one writes a rewrite theory, one des
ribes its mod-els. A model of a rewrite theory is a family of 
ategories[24℄, fun
tors, and natural transformations, whi
h satis�esthe des
ription. The relationship between a rewrite theoryand a model of it is stated in the following. Let [[:℄℄ be thedenotation fun
tion with respe
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� Sort de
larations. A sort s is a name whi
h denotes a
ategory [[s℄℄ in the model.� Operation de
larations. An operation � is a name, andhas an aritys1 : : : sn; s of sorts. It denotes a fun
tor [[�℄℄ from theprodu
t 
ategory [[s1℄℄� � � � � [[sn℄℄ to 
ategory [[s℄℄.� Equations. An equation has form t = t0, with t andt0 being two terms 
onstru
ted from some operationsand from some variable names x1; : : : ; xn, and hav-ing the same sort s. Any instan
iation t(u1; : : : ; un) ofterm t with ground terms u1; : : : ; un (where u1; : : : ; unsubstitute for the variables x1; : : : ; xn) denotes an ob-je
t [[t(u1; : : : ; un)℄℄ from 
ategory [[s℄℄. That is, t de-notes a fun
tor from a produ
t 
ategory (the domainfor the substitution of the variables x1; : : : ; xn) to [[s℄℄.Equation t = t0 states the equality of fun
tors [[t℄℄and [[t0℄℄, and hen
e the equality, for any substitution(u1; : : : ; un), between obje
ts [[t(u1; : : : ; un)℄℄ and[[t0(u1; : : : ; un)℄℄ of [[s℄℄.� Transitions. A transition has form r : t ! t0, wherer is a label, and with t and t0 being, as above, twoterms of same sort, 
onstru
ted from some operationsand some variable names x1; : : : ; xn. The transitionstates that there is a natural transformation, whi
h isnamed r, from fun
tor [[t℄℄ to fun
tor [[t0℄℄. This im-plies that there is in 
ategory [[s℄℄, for any subtitutionu1; : : : ; un of the variables, an arrow r(u1;:::;un) fromobje
t [[t(u1; : : : ; un)℄℄ to obje
t [[t0(u1; : : : ; un)℄℄.We have given no label to the transition in our spe
i�
a-tion in se
tion 3, �rst be
ause the CafeOBJ notation doesnot provide a formal way for doing this, and then be
ausethere is only one transition anyway.B Semanti
s of AssignmentsThe remaining of the MHPF-SEM theory is given below. Itsays that exe
ution of an addition-plus-assignment instru
-tion does an addition and an assignment.vars tr algo : Algovars x y z w : SNamevars X Y Z W : ArrayNamevar i : Int
eq (M wTra
e: (tr ; (z := x + y)) wAlgo: algo) .val w= ((M wTra
e: tr wAlgo: algo) .val x)+ ((M wTra
e: tr wAlgo: algo) .val y)if w == z .
eq (M wTra
e: (tr ; (Z := X + y)) wAlgo: algo).val W i= ((M wTra
e: tr wAlgo: algo) .val X i)+ ((M wTra
e: tr wAlgo: algo) .val y)if W == Zand-also 1 <= i and-also i <= (length W) .
eq (M wTra
e: (tr ; (Z := X + Y)) wAlgo: algo).val W i= ((M wTra
e: tr wAlgo: algo) .val X i)+ ((M wTra
e: tr wAlgo: algo) .val Y i)if W == Zand-also 1 <= i and-also i <= (length W) .

** negative 
ases:
eq (M wTra
e: (tr ; (z := x + y)) wAlgo: algo) .val w= (M wTra
e: tr wAlgo: algo) .val wif not (w == z) .
eq (M wTra
e: (tr ; (Z := X + y)) wAlgo: algo).val W i= (M wTra
e: tr wAlgo: algo) .val W iif not (W == Z) .
eq (M wTra
e: (tr ; (Z := X + Y)) wAlgo: algo).val W i= (M wTra
e: tr wAlgo: algo) .val W iif not (W == Z) .var ar-assgnt : ArrayAssignteq (M wTra
e: (tr ; ar-assgnt) wAlgo: algo) .val w= (M wTra
e: tr wAlgo: algo) .val w .var s-assgnt : SAssignteq (M wTra
e: (tr ; s-assgnt) wAlgo: algo) .val W i= (M wTra
e: tr wAlgo: algo) .val W i .** values are the same in every initial state:var algo' : Algoeq (M wTra
e: noAlgo wAlgo: algo) .val x= (M wTra
e: noAlgo wAlgo: algo') .val x .eq (M wTra
e: noAlgo wAlgo: algo) .val X i= (M wTra
e: noAlgo wAlgo: algo') .val X i .In this spe
i�
ation, the values of array elements whenthe index is out of bounds is simply left unde�ned.We 
all an initial state a ma
hine state with a null tra
e(\noAlgo"). The last two equations say that in any model, allinitial states must have the same values. This makes validthe pre
eding equations, whi
h de�ne the values at one statefrom the values at some other states, \poping" along the wayfrom the tra
e (if the tra
e is viewed as a sta
k).


