On High-Level Low-Level Programming

Philippe Gerner

gernerQicps.u-strasbg.fr

LSIIT-ICPS, CNRS

Université Louis Pasteur

Strasbourg, France

Abstract

The current solution for efficient high-level parallel program-
ming in the industry is to use directives to the compiler.
However these directives pose two problems: first, they are
often designed in an ad hoc manner and their subtleties are
less easy to understand than the rest of the language; sec-
ond, the degree of stringency of the directives is not fixed,
so that evaluating the efficiency of the directives he writes
is not easy for the programmer. This article proposes a
methodology for addressing these issues. The data map-
ping directives of the language High Performance Fortran
are used as an example; in particular, it is shown how the
use of formal semantics can help clarify and structure the
issues.

1 Introduction

The primary motivation for parallel programming is effi-
ciency at execution (in terms of execution time). But in
the current state of the art of parallel programming, “high-
level” still implies “not efficient enough”. In response to
this, in the 1990’s the notion of a directive to the compiler
emerged, as in the language HPF (High Performance For-
tran [19]) and the OpenMP library (e.g., [3]). The idea is for
the programmer to write high-level code, yet help the com-
piler into finding an efficient parallel implementation for the
code. The notion of a directive to the compiler is not new.
Yet what is new is its importance in a programming lan-
guage. Indeed, one may say that the essence of HPF and
OpenMP is the language of directives they provide.

One problem with the directives is that as they touch on
low-level issues, their meaning depends onto notions which
are more implicit than explicit in the reference manual of
the language. Thus their understanding by the programmer
is not easy, and the meaning of the directives tends to be
learned “the hard way”.

Another problem is that more often than not, the direc-
tives are just advices to the compiler, so the programmer has
to make special tests and use profilers in order to “learn his
compiler”, so as to write useful directives. This can lead him
into writing directives that do produce efficient code only for
his particular compiler. Thus non-portability of efficiency is
introduced.

A solution to these two problems would be a documen-
tation of directives which is both clear and explicit as to the
constraints they put onto the compiler writer.

However, the current form of reference manuals inherits
the traditional wisdom which says that it is more important
to describe what a written program does, than how it actu-
ally does it. Thus notes as to the “how” tend to be relegated
to “advice to implementors”. However, when performance
is an issue, which is often the case even in sequential pro-
gramming, it is clear that these comments are eagerly read
by the programmer as well. Thus we are interested in how a
reference manual should be structured for having the “how”
as first-class semantics, at the same level as the “what”.

For structuring the methodology, we propose to use a
formal semantics as a support. How to use formal semantics
for lessening the ambiguities in a reference document is still
an area of research. When used by a language designer,
formal expression tends to induce coherence in the semantics
of the language, as remarked by Milner [27]: we believe that,
similarly, a formal framework for the notion of directives
could help him construct a coherent language of directives.

Our methodology is illustrated with an exposition of the
meaning of some of the key directives of the language HPF.

The paper is structured as follows.

In the next section, the function of the reference manual
is discussed. Then the use of formal semantics is discussed
in the light of low-level-conscious programming. Finally the
case of the directives to the compiler is introduced, with a
focus on directives in parallel programming.

The third section presents a formalisation of the seman-
tics of some of the key data mapping directives of HPF. It
shows that a formalization can help into both clarifying the
semantics of the directives and structuring the exposition of
the language in its entirety.

2 Reference and Actual Semantics

2.1 The Reference Manual

The semantics of industrial programming languages is de-
fined by their reference manuals. As we concentrate on how
the reference manual should provide the information as to
the meaning of the directives, we first discuss the exact func-
tion of this manual.

A reference manual for a language L has two types of
readers:

e the programmers in L, who refer to it is case of doubt
as to the precise meaning of a particular construct.

e the implementers of a compiler for L, for whom the
reference manual defines the precise meaning of each
construct of the language.

(One may also consider a third kind of readers: the com-
mittee members for a standardization of the language. The
document they eventually produce, which defines the norm,
is “the ultimate reference”. For simplicity, when the lan-
guage is standardized, what we call “reference manual” is
the document which defines the standard.)

The purpose of a reference manual is to ensure that for
any two compilers C' and C' for a language L, a program
written in L will produce the same output data, for given
input data, whether it has been compiled with C of with
C’'. Thus, L code can be portable. That is why “a standard
is often described as ‘a contract between the programmer
and the implementer.’ It describes not only what is “legal”
source text, but also what a programmer can rely on in
general and what behavior is implementation-dependent”
[34, p. 81].

Because achieving portability is so important, the fo-
cus of reference manuals is on semantics matters being very
clear, not on efficiency considerations. As says the draft for
the C99 standard: “The semantic descriptions in this In-
ternational Standard describes the behaviour of an abstract
machine in which issues of optimizations are irrelevant.” [21,
p. 15].

Thus, the compiler writer is free to produce any actual
semantics he likes, as long as he respect the few primary re-
quirements, the main among which is, for C99: “At program
termination, all data written into files shall be identical to
the result that execution of the program according to the
abstract semantics would have produced.” [21, p. 15].

Of course, “an implementation might define a one-to-one
correspondence between abstract and actual semantics,” [21,
p. 16], but the point is that is it not at all mandatory.

2.2 High-Level Low-Level Programming

In rapid prototyping, performance issues are not considered
because only the functionality of the program (in the sense
of “what is does”) is important. But in other programming
contexts, performance becomes an issue. An extreme case is
scientific computing. As said about the C++ Matrix Tem-
plate Library (MTL [1]): “ To many scientific computing
users, [...] the advantages of an elegant programming in-
terface are secondary to issues of performance.”

As a consequence, high-level programming languages pro-
vide some means to achieve performance “in spite of the
high level”. An example is the introduction of imperative
features in modern functional languages, as in the Caml lan-
guage [25]. In fact, the degree of “low-level coding” in a
program tends to be proportional to the “highness” of the
language. For example, cut-free Prolog programs are more
a rarity than the norm (the “cut” is a kind of directive to
the interpreter [5, pp. 69-92], and is an essential tool for the
Prolog logic programmer).

The Documentation on Performance Issues
The reference manual of the language documents some of
the low-level facilities, but not necessarily in performance
terms, since the reference semantics, for abstraction reasons,
does not provide the relevant notions. Witness the reference

semantics for the C register directive: “A declaration of
an identifier with storage-class register suggest that access
to the object be as fast as possible” ([21, p. 98]. No mention
is made of the notion of a register, so that no notion of a
register need be defined for the abstract machine, which is
understandably convenient. Thus the real meaning of this
directive is in fact implicit.

Moreover, there is often a non-certitude as to how the
low-level feature is actually handled by the compiler. For the
register directive, for example, the norm is that “the ex-
tent to which such suggestions are effective is implementation-
defined” (ibid.). Indeed, the compiler may decide he has
more efficient optimizations for this variable than putting it
into a register.

The result of this state of affairs is that the program-
mer will tend to infer the effect of its low-level investment
from interaction with his compiler. Sometimes he will even
write programs “just for testing what the compiler does”.
Thus, he comes to know about the actual semantics of his
programs more from the compiler than from the reference
manual, and he is at risk of spending some time on some
compiler-dependant performance tuning, which is bad in-
vestment when portability is considered. (Of course he can
also introduce in this way some compiler dependency which
does not even concern efficiency.)

2.3 Formal Semantics and Actual Seman-
tics

For eliminating as much ambiguity as possible from the ref-
erence description, since the 1970’s much research has been
made for formally specifying the semantics of a program-
ming language. But the definition of real programming lan-
guages is still written in natural language only (except for
the grammar part). The only convincing exception we know
of is the definition of Standard ML [27].

In the 80’s, Yuri Gurevich introduced what became known
as the Abstract State Machines [17], and Peter Mosses Ac-
tion Notation [30]. Both put the emphasis onto description
capability rather than onto adequacy for proving program
correctness, and some of the more convincing language de-
scriptions have used these methods, see, e.g., [22] (abstract
state machines) and [18] (action notation).

But all these methods are designed for describing one
semantics. But for describing the semantics of directives, we
need to describe both the reference and the actual semantics,
and the relation between them. Thus in the next section we
will provide a method of our own.

The research which comes closer to our preocupation is
in the field of compiling research. For example, work on
correct compiling uses the notion of respecting the input-
output behaviour of a program while changing its execution
mode; but it focuses on adequacy for proving the correct-
ness of a change, e.g., [23]. Also relevant is the automatic
parallelization field, which provides an algebraic formula-
tion of execution change through the notion of a space-time
mapping [10]. But it is strongly tied to affine dependances,
and too technical (it’s integer programming) for being ad-
equately used in a reference document to be used by any
programiner.

231

What is called the “operational semantics” of a program-
ming language describes the computation mechanism which
corresponds to a program (see, e.g., [32]), whereas deno-
tational semantics [28] describes the relation between the
input and output data of the program. It is natural to con-
sider that the “essence” of a program is in how it works,
rather than into what it does. But from the point of view of
the function of the reference semantics, things are different.
Indeed, in reference manuals, as for C99 above, the refer-
ence operational semantics is only a descriptive means for
expressing which input-output behaviour the actual seman-
tics of a program must have: this input-output behaviour is
what must be preserved by the actual semantics, and there is
no necessary relationship between the reference operational
semantics and the actual semantics. Thus, from the point
of view of the compiler, the reference operational semantics
is just another way of expressing a denotational semantics.
Operational semantics is a good didactic means to express
the intented input-output behaviour of a program, as hu-
mans reason naturally in terms of temporal mechanisms. By
constrast, denotational semantics is didactic only for (the
“pure” part of) functional languages. A denotational se-
mantics of C, for example, will not help the programmer
much in understanding C.

Operational, Denotational

2.4 Directives to the Compiler

Directives to the compiler are an interesting form of high-
level low-level programming, because instead of tuning his
algorithm in its very expression, the programmer keeps in-
tact his algorithm, and just adds some instructions (the di-
rectives) for tuning its actual execution.

Directives exist in most real programming languages.
They have been in use in academic circles also. For ex-
ample, the Bulldog VLIW compiler [9] allows the program-
mer to indicate some invariants to the compiler. Also, the
compiler for the functional language Opal [8] allows the pro-
grammer to indicate some algebraic properties for some of
the functions in the program, which the compiler can use for
optimization. Even the algebraic specification system OB.J
[15] has a directive memo, for memoization.

24.1

As said in the introduction, directives to the compiler have
found a new dimension in high-level parallel programming.

However HPF or OpenMP programming is still not the
most frequent practice in parallel programming. Indeed,
MPI (Message Passing Interface [16]) is still the choice when
high performance is crucial. MPI programming is more low-
level than HPF and OpenMP, as the code for the communi-
cation of data between the parallel tasks has to be written
by the programmer, as opposed to the compiler for HPF and
OpenMP. The reason for the persistence of the primacy of
MPI is that HPF and OpenMP both are a bit ahead of their
time in terms of compiler technology (see, e.g., [6]). That is,
some of their directives can be so difficult to handle for the
compiler, that the compiler might simply ignore them, not
knowing how to handle them properly. That is why HPF
programmers use debuggers like TotalView of profilers like
pgprof for seeing “how our particular compiler has used the
directives”.

Directives for Parallel Programming

However, for the parts of the program for which the pro-
grammer does not provide some directives, the compiler has
no less hard a job. This is well expressed by the fact that
the task of providing the best compromise between optimal
scheduling of the instructions and optimal data distribution
for communication minimization is NP-complete. So direc-
tives can help the compiler a lot.

3 Semantics of the HPF Directives

We propose a methodology for defining the meaning of the
directives to the compiler, in the context of their description
by a reference manual.

Our method uses a formal description of the semantics
of the language as a support for structuration and clarity of
the reference manual. We mentionned above that no formal
semantics method known to us has been designed specifically
for expressing the relationship between reference and actual
semantics. So in this next section we use a formalization of
our own, based on rewriting logic [26] (see below).

We explain our method through applying it to the case
of the HPF data mapping directives. However, the method
is not dependent upon the HPF language. What a formal
support brings in clarity is shown by how the HPF template
construct is handled.

3.1 The HPF Data Mapping Directives

The idea of the data parallel programming model which is
followed by HPF is to organize the program as a sequence of
parallel operations, where a parallel operation is the concur-
rent application of a same operation onto a bunch of data.
For example :

C=A+8B

where A, B, and C are three arrays, is a parallel operation.
Notice that the fact that it should execute in paral-
lel (which would justify the relevance of this programming
model for performance) is not discussed in the HPF reference
manuals [19, 11]. One possible reason is that it probably
considered “obvious” that HPF array assignments should be
made in parallel if possible. Another is that HPF itself does
not define array assignments: it imports them from Fortran
90 for HPF version 1, or from Fortran 95 for HPF version
2. About operations on arrays, the Fortran 90 Standard
says: “these features can significantly facilitate optimiza-
tion of array operations on many computer architectures”
[20, p. xiii]. So the particular interpretation of the array
assignments in HPF, as being more on the level of actual
semantics than the reference one, has not been emphasized.

However such parallel operations are not enough for ef-
ficiency. If a distributed memory parallel machine is used,
then the elements of the arrays are distributed onto these
memories, and a random distribution will likely generate
more inter-processor communications (for requiring the data
which are needed for the computations) than a thoughtful
one. As communication time is not negligeable, performance
of the program depends on minimizing the number of com-
munications. Thus an important job for the compiler is to
find an efficient ditribution of the data onto the memories.
This is no easy task, and that is why the HPF model pro-
vides the programmer with the means to write some data

mapping directives. An example HPF data mapping direc-
tives is given below (this toy example will be used through-
out the section):

INTEGER I, J, K, L, M, N
INTEGER, DIMENSION(4) :: A, B, C, D

'HPF$ TEMPLATE T(4)

IHPF$ ALIGN A(:) with T(:)
'HPF$ ALIGN B(:) with T(:)
'HPF$ ALIGN C(:) with T(:)

'HPF$ PROCESSORS, DIMENSION(2) :: MY_PROCS
'HPF$ DISTRIBUTE (BLOCK) ONTO MY_PROCS :: T

Ua=x
(TR
Qe H
+ 4+ 4+ +
= w=E o

The data mapping directives are the lines beginning with
“IHPF$”. Their meaning is exposed below, together with the
formalization of this meaning. In this example, array D has
not been aligned. This is not an error, as fortunately HPF
does not constrain the programmer to give a data mapping
directive for every array in the program.

3.2 The Choice of Rewriting Logic

As a tool for formally defining the meaning of the direc-
tives, we use rewriting logic [26]. Rewriting logic (RWL)
is algebraic specifications plus transitions. As for algebraic
specifications, the semantics of RWL is given through the
notion of satisfaction, inherited from model theory [33]: the
semantics of a RWL theory is given as the set of its models.
The difference with classical algebraic specifications is that a
model is not a family of sets together with functions between
them, but a family of categories [24] with functors between
them. More on these models can be found in appendix A,
but the following of this section is self-contained.

Our choice of the RWL framework is motivated by the
following factors:

e theory morphisms help structure the semantics [14].
This is used for defining the meaning of the language
without directives, and then adding directives in a way
that just “enrich” the previous definition.

e notion of satisfaction allow coding each directive as an
equation which can be satisfied or not by an algebra.

e a category (in a model) is defined by objects and ar-
rows, so that categories have a natural graphical qual-
ity, which is interesting when we want to include a
formal semantics as a digestible part of a reference
manual.

The Readers of a Formal Description As pro-
grammers are not in general theoretical computer scientists,
they will probably not consider that a rewriting logic de-
scription provides a clarification of the semantics of the
language. In the case of HPF, which is used for scientific
computing, the programmers often are not even professional
programmers, but rather users of numerical computing like
theoretical physicists, engineers, or meteorologists.

Notice that this problem is not restricted to RWL de-
scriptions. Action Semantics, for example, has its opera-
tional semantics defined in [29] with the Structured Opera-
tional Semantics method [32], and a programmer will prob-
ably won’t buy this document in order to better understand
the programming language he’s using, as the notation is in-
tuitive enough (by its very purpose).

The point is that, like Action Semantics or Abstract
State Machines, we make a difference between an accessible
notation and the “pure” model. Our model below is at the
level of rewriting logic proper, and a complete methodology
would provide a notation based on this model.

3.3 Coding the Language Semantics

We describe a subset of HPF (which we call mini-HPF)
which is tiny but has the key data mapping directives.

The semantics of the language is given by assigning a
precise meaning to each program, rather than to each lan-
guage construct as is usually done. The semantics of a par-
ticular program is a given as a rewrite theory, which uses
some predefined theories which do not depend on a partic-
ular program. The description of the tool which does the
translation from a mini-HPF program to its assigned RWL
theory would correspond to a description of the semantics
of mini-HPF. However, for making the presentation more
digestible, we prefer below to illustrate this translation on a
particular instance of a program.

3.4 Reference Operational Semantics

The following RWL theories in this section are written using
the well-defined CafeOB.J notation [7]. This notation is used
by the CafeOBJ system [31], a successor to the well-know
OBJ specification system [15].

We first define the reference operational semantics of our
HPF program, when directives are not taken into account
yet. It is given by the following theory, which is the trans-
lation, in our methodology scheme, of the algorithm of the
HPF program.

module! ALGO1 {
using (MHPF-SEM)

ops I JKLMN : -> SName

ops ABCD : => ArrayName
eq length A = 4 . eq length B =4 .
eq length C = 4 eq length D = 4 .
op algol : -> Algo
eq algol = (K :=1 + J) ;
(N := L + M) ;
(C := A+ B) ;
(D :=C+ N
}

This theory imports (with the CafeOBJ keyword using)
another theory, MHPF-SEM (for “semantics of mini-HPF”).
MHPF-SEM defines the reference operational semantics of (a
tiny subset of) HPF, and it imports itself the theory
MHPF-SEM-CONSTRUCTS which defines the sorts and operations
to be used in the underlying rewrite theories of mini-HPF
programs, as in ALGO1. MHPF-SEM-CONSTRUCTS is defined as fol-
lows:

module MHPF-SEM-CONSTRUCTS {
[SName] [SAssignt]
op _:i=_+_ :

SName SName SName -> SAssignt

[ArrayName] [ArrayAssignt]
protecting (INT)

op length_ : ArrayName -> Int
op _:i=_+_

ArrayName ArrayName SName -> ArrayAssignt
op _:i=_+_

ArrayName ArrayName ArrayName -> ArrayAssignt

[SAssignt ArrayAssignt < Assignt < Algo]
op noAlgo -> Algo
op _;- : Algo Algo -> Algo
{ assoc id: noAlgo }

The common semantics basis for each mini-HPF program
is defined by theory MHPF-SEM:

module* MHPF-SEM {
protecting (MHPF-SEM-SYNTAX)

[MachineName]
op M : -> MachineName

[MachineState]
op (_wTrace:_wAlgo:_)
MachineName Algo Algo -> MachineState

vars tr algo : Algo var assgnt : Assignt
trans M wTrace: tr wAlgo: (assgnt ; algo)
=> M wTrace: (tr ; assgnt) wAlgo: algo .

: MachineState SName -> Int
: MachineState ArrayName Int -> Int

op (_.vall)
op (_.val__)

The dots at the end are for the semantics of assignment
(that is, defining that executing “_:=_+"" does make the in-
tended addition). This can be looked at in appendix B.

The theory defines machine states. Operation
“_wTrace:_wAlgo:_” says that a machine state is characterized
by a machine name and two algorithm texts. There is only
one machine name in our theory: M. It is there to make the
specification easier to read. The first algorithm text is a
trace of what the machine has already executed, and the
second one the algorithm which is yet to be executed by the
machine.

Execution of the first assignment from the algorithm to
be executed is coded by the unique transition of our whole
specification, from one machine state to another: trans
This transition makes the assignment instruction go “through
the barrier of the “wAlgo:” and be appended to the trace:
this represents execution of the instruction.

The transitions between machine states from the assign-
ment instructions follow the order of these intructions in the
algorithm. This is illustrated below by how in the text of
the HPF program becomes, in a model, arrows from machine

states to machine states:

20

{ar}

Z1

{a2}

22

{as}

z3

{as}

Z4

where zg = [[M wTrace: noAlgo wAlgo: algol]]7

“a1,” “as,” “ag” and “ay” are names for the following terms
of sort Assignt:

a1 =K =1+ J,

ag =N := L + M,

ag =C := A + B,

ag =D :=C + N

and “{a;}” as an arrow name indicates that the transition
is generated by this assignment instruction a; going through
barrier “wAlgo:”. Thus, machine state z5 is:

HM wTrace: a1 ; a2 ; az ; a4 wAlgo:noAlgoH

We must complete the description of the reference se-
mantics by explicitating the meaning of the above formal-
ization. Indeed, in algebraic specification, the (most often
infinite) set of models of a theory does not provide in itself
any meaning. Thus, a meaning attribution has to be made
onto them. (A treatment of an example of such meaning
attribution can be found in [12].) In our method we take
care to explicitate which meaning is to be attributed to the
models. Thus, our reference semantics says that:

e sequence in the diagram (following the direction of the
arrows) corresponds to sequence in time at the execu-
tion;

e every transition that involves a assignment of sort
ArrayAssignt, like a3 above, has to be imagined as in-
volving parallel computations on the scalar values con-
tained in the right-hand side arrays, and then par-
allel assignment to the stores of the left-hand side
array. For example, for a3 = C := A + B, there are
4 computations (because the arrays have length 4):
H'val]](zQ: HA]]u 1) + H'val]](zQ: |IB]]7 1)1 sy
[.val](z2, [A], 4)+].val](z2, [B],4). There are executed
in parallel. Similarly, the resulting values are stored in
parallel into the 4 stores of array C.

3.5 Actual Operational Semantics

For modeling in a simple way the relationship of the refer-
ence semantics to the actual one, we remark that the doc-
umentation on the directives has to say something about
notions that belong to the actual semantics, like processors.
So the documentation must provide an abstraction of the
actual semantics. A formal support is given for this with,
again, the notion of a theory.
We provide a theory of virtual and real processors:

module* PROCS-THEORY {
[Proc]
protecting (INT)

op nbProcs : -> Int
[VProc]
op map_ : VProc -> Proc

[TemplateName]
[ProcArrayName]
op <_,_> : TemplateName Int -> VProc
op <_,_> : ProcArrayName Int -> Proc

The meaning which is to be attributed to this theory is
now described.

Sort Proc declares some processors. These are the pro-
cessors of the parallel machine onto which a HPF program
will execute. nbProcs designates the number of processors
actually used by the program.

The notion of a template has been introduced with the
HPF directives model. The reference manual says about
this construct: “a template is simply an abstract space of
indexed positions; it can be considered as an ‘array of noth-
ing’ (as compared to an ‘array of integers’, say)” [11, p. 40].
This notion is not an easy one conceptually. In our model
we manage to avoid the notion of an “array of nothing” by
distinguishing between the notion of a template (a name
plus some integer indices) and array proper (a name plus a
“.val” operation).

As shown in our HPF program example, a template is
to be “distributed” onto processors. As a template contains
no values, it is as if no data is distributed. The notion of a
virtual processor helps explain the scheme: a couple formed
with a template name and an integer refers to a virtual pro-
cessor, and the “distribution” is then simply a mapping of
some virtual processors onto the real ones. Sort VProc de-
clares a sort of virtual processors. That each virtual proces-
sor will eventually be mapped onto a real one is expressed
is declared with operation map.

Real processors are refered to with a scheme similar to
that used for the virtual processors, with a name of sort
ProcArrayName and an integer. The complete virtual/real
processors-plus-mapping scheme serves in HPF to express
the respective alignment of data: this is illustrated below.

Remark Our real processors correspond to what the HPF
documentation calls abstract processors, as contrasted with
the physical processors of the machine. This is in accord
with our method, since our theory of real processors is an
abstraction from the notion of physical processors.

3.5.1

Now we can show which RWL theory the mini-HPF program
complete with directives is translated into:

Alignment and Distribution

module! ALGO1-ALIGNTS-DISTRD {
protecting (ALGO1)
using (PROCS-THEORY)

** alignments:
[ArrayName < TemplateName]
op T : -> TemplateName
var i : Int
eq < A, i>
eq < B, i>

<T, i
<T, i

eq <C, i>=<T,i>.

** distribution:
op my-procs : —-> ProcArrayName
eq nbProcs = 2 .
eqmap < T, i > =
< my-procs, ((i + 1) quo (nbProcs)) > .

That is, it uses the translation of the program without
the directives, imports the theory of virtual and real proces-
sors, and then translate the directives proper.

Care is taken, with keyword protecting, to indicate that
the models of the previous theory ALGO1 are not modified
by the new theory. That is, we garantee that the new the-
ory just adds some new information “around” the preceding
theory: we don’t modify the operational semantics of the
program as given in ALGO1. For example, the above drawing
with four arrows is still valid.

Alignment First, array names are considered as tem-
plate names (“ArrayName < TemplateName”). This means that
for any array name X and integer ¢, [<_>](X,i) is a vir-
tual processor. The intended meaning is that this virtual
processor has a (virtual) memory attached to it, which con-
tains the store reserved for the value [.val](S, X,7) (on any
machine state S). It is also intended that this value will
eventually be stored onto the memory attached to the real
processor [map]([<_->](X,%)) onto which the virtual proces-
sor is mapped. Thus, the virtual/real/map scheme serves to
express the distribution of data.

The three HPF ALIGN directives are translated as three
equations about virtual processors. By default, every vir-
tual processor [<-->](X,) is distinct from virtual processor
[<-=>](Y, j), when X # Y or i # j. This default rule holds
because the so-called initial semantics for the models of the
theory is chosen (this is a classical tool of algebraic speci-
fication): this choice is indicated by the CafeOBJ code for
it—the exclamation mark “!” attached to the declaration of
the theory: “module!”. Thus the equations serve to state the
equality of some virtual processors which would otherwise
be distinct. For example, virtual processors [< 4, 1 >] and
[< T, 1 >] are equal.

As it is also the case that [< ¢, 1 >] = [< T, 1 >], by
transitivity we have [< 4, 1 >] = [< ¢, 1 >]. Thus, for any
machine state S values [S .val A 1] and [S .val C 1] are as-
sociated with the same virtual processor. This means that
they will eventually be associated with the same real pro-
cessor and be stored onto its associated memory.

Thus we see how HPF template names which are not
array names (as T here) are just a facility for puting the val-
ues of different arrays onto a same memory, which is called
“aligning some data”.

The motivation for aligning is minimizing communica-
tions. The point is that we explicitely assume that our
machine follows the so-called Owner Computes Rule: if an
array element has been assigned a particular memory, then
its computation is made by the processor which is attached
to this memory. Thus, when instruction C := A + B is exe-
cuted, the value of ¢ at index 1 is computed (see appendix
B for the formal expression) using the values of A and B at
index 1. As the value for A is on the same abstract processor,
no (virtual) inter-processor communication is required.

Distribution The semantics we give to the PROCESSORS
directive of our example is that is declares a ProcArrayName
name, my-procs. The number of processors is declared equal
to the size of the HPF array MY-PROCS.

The distribution by blocks of the DISTRIBUTE directive
is translated into its meaning: an equation which puts a
constraint onto function [map].

The number of processors declared by the PROCESSORS di-
rectives does correspond to the actual number of processors
used to run the program [11, p. 38], so that from alignments
onto a template to distribution onto an array of processors
we have reached a faithful abstraction of what actually hap-
pens.

Remark 1 The DISTRIBUTE construct also allows to dis-
tribute an array, like A above, directly onto an array of pro-
cessors. The meaning we attribute to that it is A taken as
a template (through “ArrayName < TemplateName”) which is
distributed.

Remark 2 The HPF DISTRIBUTE directive allows in fact
to have a virtual processor mapped onto several processors.
We have simplified above for the sake of a short exposition.
Extension to a codomain for map whose elements are the
subsets of the set of processors is straitforward.

3.5.2 Degree of Stringency

“HPF directives appear as structured comments that sug-
gest implementation strategies or assert facts about a pro-
gram to the compiler. When properly used, they affect
only the efficiency of the computation performed, but do
not change the value computed by the program” [11, p. 4].
Thus, if the semantics of HPF is to be described, a degree
of uncertainty as use of the directives by the compiler has
to be coded.

This is the subject of future work. It will use models
that satisfy only some of the equations that correspond to
the directives. It will be based on some existing works like
[13].

3.6 Other Data Mapping Models

We have given above a model of data distribution. Other
models have been proposed in the literature. For comparing
them to our model, we find it convenient to re-use the notion
of virtual processors and templates as defined in our model.

e The language C* [35], the only “real” language in this
list, is an adaptation of the C language for the Con-
nection Machine. Its data distribution relies on the
notion of a shape, that corresponds to a template in
our model. Aligning two arrays A and B can only be
done by having them have the same shape: so they
must have the rank and size. This distribution is at
the level of virtual processors, and mapping the virtual
processors onto the real ones is left to the compiler.

e Luc Bougé’s language £ [4] is based on arrays, but
more like HPF than C*. Each index in an array in-
dentifies a value and a processor. Thus, this model
works also at the level of virtual processors. There is
no alignment of arrays.

e The model PEI [36] has a notion of data field that cor-
responds to an array distributed onto a global (non-
array) template. Thus the distribution is at the level
of virtual processors. There is a single global template,
and every array is aligned with it. The respective
alignment of the arrays with this template is induced
automatically by any operation on arrays. For exam-
ple, an assignment C = A + B automatically induces an
alignment of the three arrays. A drawback of this auto-
matic alignment is that any non-trivial program soon
involves contradictory alignments. As the elements of
the global template are not allowed to be indentified
for resolving the contradiction, the only way to resolve
it is to express the algorithm differently.

Remark Reflecting on the example of PEI, one might ask if
it would not be possible to write contradictory distributions
in HPF (as two real processors can’t be equal). In fact,
HPF resolves this in a simple way: it is forbidden to align
or distribute an array more than one time.

4 Conclusion

We have described a methodology for including a proper de-
scription of the meaning of directives to the compiler into a
reference manual. We have used rewriting logic as a formal
framework: this allowed us to describe the actual semantics
as a theory that enriches the theory which codes the classi-
cal reference semantics; to give a clear account of the notion
of a template; and to code each directive as an equation
in the enriched theory. In this model, respect of a direc-
tive corresponds to an algebra satisfying the corresponding
equation. Full formalization of the degree of stringency for
satisfaction of the directives by the compiler is the subject
of future work, and will follow this framework.

While use of parallel machines and environments de-
velop, high-level programming becomes all the more needed
for portability reasons; but efficient use of these machines
and environment then can’t be left to the compiler alone, so
the directives to the compiler are in the present state of the
art of parallel compiling the most promising solution. The
advent of the computational GRID [2] will bring a similar
situation, as parallel programming for the GRID should be
high-level and at the same time exploit efficiently the GRID
architecture. If ad hoc directive constructs and ad hoc ex-
planations of them in the documentation are to be avoided,
a proper theory of the combination of high-level and low-
level notions in a programming model has to be developped.
Directives to the compiler (or execution environment) pro-
vide a separation of concerns between the two levels while
relating them, so the concept of a directive could have a rich
future in computing.

Acknowledgments I have benefited from discussions with
Michel Salomon on the meaning of the HPF directives; Eric
Violard on data parallelism and the programmer-compiler
contract; and Pascal Schreck on algebraic specifications.

References

[1] http://http://www.osl.iu.edu/research/mtl/.

(2]

(3

4

[14]

[15]

[16]

(17]

(18]

[19]

[20]

The GRID: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers, Inc., 1999. Edited by Ian
Foster and Carl Kesselman.

OpenMP Fortran Application Program Interface, November
2000. Version 2.0.

Luc Bougé and Jean-Luc Levaire. Control structures for
data-parallel SIMD languages: Semantics and implemen-
tation. Future Generation Computer Systems, 8:363 378,
1992.

W. F. Clocksin and C. S. Mellish. Programming in Prolog.
Springer-Verlag, third edition, 1987.

Fabien Coelho, Cécile Germain, and Jean-Louis Pazat. State
of the Art in Compiling HPF, volume LNCS 1132, pages
104 133. Springer-Verlag, May 1996.

Razvan Diaconescu and Kokichi Futatsugi. Logical foun-
dations of CafeOBJ. Submitted to Theoretical Computer
Science, 2000.

Klaus Didrich, Andreas Fett, Carola Gerke, Wolfgang
Grieskamp, and Peter Pepper. OPAL: Design and implemen-
tation of an algebraic programming language. In Program-
ming Languages and System Architectures, pages 228 244,
1994.

J. R. Ellis. Bulldog: A Compiler for VLIW Architectures.
PhD thesis, Yale University, 1985. YALEU/DCS/RR-364.

Paul Feautrier. Automatic Parallelization in the Polytope
Model, volume LNCS 1132, pages 79 103. Springer-Verlag,
May 1996.

HPF Forum. High Performance Fortran Language Specifi-
cation, 2.0 edition, January 1997.

Philippe Gerner. A note on computational meaning
attribution in rewriting logic. = Technical Report ICPS
RR 02-07, Université Louis Pasteur, France, May 2002.
http://icps.u-strasbg.fr/pub-02/rr-07-02.ps.

Joseph Goguen. An introduction to algebraic semiotics,
with application to user interface design. In Chrystopher
Nehaniv, editor, Computation for Metaphor, Analogy and
Agents, LNAI, Vol. 1562, pages 242-291. Springer Verlag,
1999.

Joseph Goguen and Rod Burstall. Institutions: Abstract
model theory for specification and programming. Journal of
the Association for Computing Machinery, 39:95-146, 1992.

Joseph Goguen, Timothy Winkler, José Meseguer, Prof. Ko-
kichi Futatsugi, and Jean-Pierre Jouannaud. Introducing
OBJ. In Grant Malcolm, editor, Software Engineering with
OBJ: algebraic specification in action. Kluwer, 2000.

William Groppa, Ewing Lusk, and Anthony Skjellum. Using
MPI. Scientific and Engineering Computation. MIT Press,
2nd edition, November 1999.

Y. Gurevich. Evolving Algebras 1993: Lipari Guide, pages
9-36. Oxford University Press, 1995.

Yuri Gurevich and James K. Huggins. The semantics of the
C programming language. In Selected papers from CSL’92
(Computer Science Logic), volume LNCS 702, pages 274—
308. Springer Verlag, 1992.

HPF Forum. High Performance Fortran Language Specifi-
cation, 1.0 edition, 1993.

ISO. Fortran 90. May 1991. ISO/IEC 1539: 1991 (E).

21]

(22]

[23]

A

ISO/TEC JTC1/SC22/WG14. Programming languages — C
Committee draft. January 1999.

P.W. Kutter and A. Pierantonio. The Formal Specifica-
tion of Oberon. Journal of Universal Computer Science,
3(5):443 503, May 1997.

David Lacey, Neil D. Jones, Eric Van Wyk, and Carl Chris-
tian Frederiksen. Proving correctness of compiler optimiza-
tions by temporal logic. In Symposium on Principles of
Programming Languages, pages 283-294, 2002.

Saunders Mac TLane. Categories for the Working Mathe-
matician. Springer-Verlag, 2nd edition, 1998.

Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier
Rémy, and Jérome Vouillon. The Objective Caml system,
release 3.04 : Documentation and user’s manual, December
2001. http://caml.inria.fr/ocaml/htmlman/index.html.

José Meseguer. Conditional rewriting logic as a unified
model of concurrency. Theoretical Computer Science, 96:73
155, 1992.

Robin Milner, Mads Tofte, and Robert Harper. The Defini-
tion of Standard ML. MIT Press, Cambridge, MA, 1990.

Peter D. Mosses. Denotational semantics. In Jan van
Leeuwen, editor, Handbook of Theoretical Computer Sci-
ence, pages 575 631. Elsevier Science Publishers, 1990.

Peter D. Mosses. Action Semantics. Cambridge University
Press, 1992. CTCS 26.

Peter D. Mosses. Theory and practice of action semantics.
Technical Report BRICS RS-96-53, December 1996.

Ataru T. Nakagawa, Toshimi Sawada, and Kokichi Futat-
sugi. CafeOBJ User’s Manual —ver.1.4—.

G. D. Plotkin. A structural approach to operational seman-
tics. Technical Report DAIMI FN-19, Computer Science
Department, Aarhus University, 1981.

Bruno Poizat. A Course in model theory an introduction to
contemporary mathematical logic. Springer-Verlag edition,
2000.

Bjarne Stroustrup. The Design and FEvolution of C++.
Addison-Wesley, January 1994.

Thinking Machines Corp. C* Programming Guide, Novem-
ber 1990.

Eric Violard and Guy-René Perrin. PEI : a language and

its refinement calculus for parallel programming. Parallel
Computing, 18:1167-1184, 1992.

The Models of Rewriting Logic

The basics of rewriting logic are recalled here. For simplicity

we

sitions.

treat only RWL with unconditional equations and tran-
The reader can find a treatment of the conditional

case in [26].

els.
[24]
the

When one writes a rewrite theory, one describes its mod-

A model of a rewrite theory is a family of categories
, functors, and natural transformations, which satisfies
description. The relationship between a rewrite theory

and a model of it is stated in the following. Let [.] be the
denotation function with respect to this chosen model. A
rewrite theory consists of:

e Sort declarations. A sort s is a name which denotes a
category [s] in the model.

e Operation declarations. An operation o is a name, and
has an arity
S1...8n,s of sorts. It denotes a functor [o] from the
product category [s1] X --- x [sn] to category [s].

e FEquations. An equation has form ¢t = ¢, with ¢ and
t' being two terms constructed from some operations

and from some variable names z1,...,%,, and hav-
ing the same sort s. Any instanciation ¢(u1,...,u,) of
term ¢ with ground terms w1, ..., u, (where ui,..., u,

substitute for the variables z1,...,z,) denotes an ob-
ject [t(u1,...,un)] from category [s]. That is, ¢t de-
notes a functor from a product category (the domain
for the substitution of the variables z1,...,z5) to [s].
Equation ¢+ = ¢ states the equality of functors [t]
and [t'], and hence the equality, for any substitution
(u1,...,un), between objects [t(u1,...,u,)] and

[t (u1,...,u,)] of [s]-

e Transitions. A transition has form r : t — ', where
r is a label, and with ¢ and t' being, as above, two
terms of same sort, constructed from some operations
and some variable names zi,...,x,. The transition
states that there is a natural transformation, which is
named r, from functor [¢] to functor [¢']. This im-
plies that there is in category [s], for any subtitution
u1,...,u, of the variables, an arrow r(,, . .,) from
object [t(u1,...,u,)] to object [t (u1,...,u,)].

We have given no label to the transition in our specifica-
tion in section 3, first because the CafeOBJ notation does
not provide a formal way for doing this, and then because
there is only one transition anyway.

B Semantics of Assignments

The remaining of the MHPF-SEM theory is given below. It
says that execution of an addition-plus-assignment instruc-
tion does an addition and an assignment.

vars tr algo : Algo

vars x y z w : SName
vars X Y Z W : ArrayName
var i : Int

ceq (M wTrace: (tr ; (z := x + y)) wAlgo: algo) .val w
= ((M wTrace: tr wAlgo: algo) .val x)

+ ((M wTrace: tr wAlgo: algo) .val y)

if w ==

ceq (M wTrace: (tr ; (Z := X + y)) whAlgo: algo)

.val W i
= ((M wTrace: tr wAlgo: algo) .val X i)
+ ((M wTrace: tr wAlgo: algo) .val y)
if W ==
and-also 1 <= i and-also i <= (length W)
ceq (M wTrace: (tr ; (Z := X + Y)) whAlgo: algo)
.val W i

= (M wTrace: tr wAlgo: algo) .val X i)
+ ((M wTrace: tr wAlgo: algo) .val Y i)
if W ==
and-also 1 <= i and-also i <= (length W)

** negative cases:

ceq (M wTrace: (tr ; (z := x + y)) wAlgo: algo) .val w
= (M wTrace: tr wAlgo: algo) .val w
if not (w == z)

ceq (M wTrace: (tr ; (Z := X + y)) wAlgo: algo)
.val W i
= (M wTrace: tr wAlgo: algo) .val W i
if not (W == Z)

ceq (M wTrace: (tr ; (Z := X + Y)) wAlgo: algo)
.val W i
= (M wTrace: tr wAlgo: algo) .val W i
if not (W == Z)

var ar-assgnt : ArrayAssignt
eq (M wTrace: (tr ; ar-assgnt) wAlgo: algo) .val w
= (M wTrace: tr wAlgo: algo) .val w .

var s-assgnt : SAssignt
eq (M wTrace: (tr ; s-assgnt) wAlgo: algo)
= (M wTrace: tr wAlgo: algo) .val W i .

.val W i

** values are the same in every initial state:

var algo’ : Algo
eq (M wTrace: noAlgo wAlgo: algo) .val x
= (M wTrace: noAlgo wAlgo: algo’) .val x .

eq (M wTrace: noAlgo wAlgo: algo) .val X i
= (M wTrace: noAlgo wAlgo: algo’) .val X i

In this specification, the values of array elements when
the index is out of bounds is simply left undefined.

We call an initial state a machine state with a null trace
(“noAlgo”). The last two equations say that in any model, all
initial states must have the same values. This makes valid
the preceding equations, which define the values at one state
from the values at some other states, “poping” along the way
from the trace (if the trace is viewed as a stack).

