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Abstract

We present the first constant-factor approximation algorithm for the metric k-median prob-
lem. The k-median problem is one of the most well-studied clustering problems, i.e., those
problems in which the aim is to partition a given set of points into clusters so that the points
within a cluster are relatively close with respect to some measure. For the metric k-median
problem, we are given n points in a metric space. We select k of these to be cluster centers,
and then assign each point to its closest selected center. If point j is assigned to a center i, the
cost incurred is proportional to the distance between i and j. The goal is to select the k cen-
ters that minimize the sum of the assignment costs. We give a 6 2

3 -approximation algorithm for
this problem. This improves upon the best previously known result of O(log k log log k), which
was obtained by refining and derandomizing a randomized O(log n log log n)-approximation al-
gorithm of Bartal.

1 Introduction

For the metric k-median problem, we are given n points in a metric space. We select at most k of
these to be cluster centers, and then assign each input point j to the selected center that is closest
to it. If location j is assigned to a center i, we incur a cost proportional to the distance between
i and j. The goal is to select the k centers so as to minimize the sum of the assignment costs.
We give a 62

3 -approximation algorithm for this problem, that is, a polynomial-time algorithm that
finds a feasible solution of objective function value within a factor of 62

3 of the optimum.
Lin & Vitter [25] considered the k-median problem with arbitrary assignment costs, and gave a

polynomial-time algorithm that finds, for any ε > 0, a solution for which the objective function value
is within a factor of 1+ ε of the optimum, but is infeasible: it opens as many as (1+1/ε)(ln n+1)k
cluster centers. Lin & Vitter also provided evidence that this result is best possible via a reduction
from the set cover problem.
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Consequently, it is quite natural to consider special cases. The problem is solvable in polynomial
time on trees [21, 30]. However, for general metric spaces, the problem is NP-hard to solve exactly.
Arora, Raghavan & Rao [1] give a polynomial-time approximation scheme for the k-median problem
with 2-dimensional Euclidean inputs.

We study the metric k-median problem, that is, we assume that the input points are located in
a metric space, or in other words, assume that the assignment costs are symmetric and satisfy the
triangle inequality. Lin & Vitter [24] also gave a polynomial-time algorithm for the metric k-median
problem that, for any ε > 0, finds a solution of cost no more than 2(1+ ε) times the optimum, while
using at most (1+1/ε)k cluster centers. The first non-trivial approximation algorithm that produces
a feasible solution (i.e., one that uses at most k centers) is due to Bartal [4, 5]. By combining his
result on the approximation of any metric by tree metrics with the fact that the k-median problem
can be solved optimally in a tree metric, Bartal gave a randomized O(log n log log n)-approximation
algorithm for the k-median problem. This algorithm was subsequently derandomized and refined
to yield an O(log k log log k)-approximation algorithm by Charikar, Chekuri, Goel, & Guha [7].

Approximation algorithms have been studied for a variety of clustering problems. The k-center
problem is the min-max analogue of the k-median problem: one opens centers at k locations out
of n, so as to minimize the maximum distance that an unselected location is from its nearest
center. Hochbaum & Shmoys [18] and subsequently Dyer & Frieze [13] gave 2-approximation
algorithms for the metric case problem (which is best possible unless P = NP), and also gave
extensions for weighted variants. Gonzalez [15] considered the variant in which the objective is to
minimize maximum distance between a pair of points in the same cluster, and independently gave
a 2-approximation algorithm (which is also best possible).

The k-median problem is closely related to the uncapacitated facility location problem, which
is a central problem in the Operations Research literature (see, e.g., the survey of Cornuéjols,
Nemhauser, & Wolsey [12]). In this problem, each location has a cost fi, the cost of opening a
center (or facility) at location i. There is no restriction on the number of facilities that can be
opened, but instead the goal is to minimize the total cost: the cost of the selected facilities plus the
sum of the assignment cost of each location to its closest open facility, where we assume that the
cost of assigning location j to facility i is proportional to the distance between i and j. Shmoys,
Tardos, & Aardal [28] use the techniques of Lin & Vitter [24] to give the first constant-factor
approximation algorithm for the metric uncapacitated facility location problem. The quality of
approximation has been improved in a sequence of papers [17, 9, 10]. The best result previously
known is a (1 + 2/e)-approximation algorithm due to Chudak & Shmoys [9, 10] (though, as we
shall briefly discuss below, subsequent to the proceedings version of this paper, some improvements
have been obtained). Guha & Khuller [17] have shown two hardness of approximation results
as well: the problem is MAX SNP-hard (which was independently observed by Sviridenko [29]),
and even more surprisingly, for any ρ < 1.463, no ρ-approximation algorithm exists unless unless
NP ⊆ DTIME(nO(log log n)). Subsequently, Sviridenko [29] and Feige [14] indicated that the
hardness result may be strengthened to depend only on the assumption that P 6= NP . All of these
algorithms rely on solving a natural linear programming relaxation of the problem and rounding
the optimal fractional solution. Korupolu, Plaxton, & Rajaraman [23] analyze variants of simple
local search algorithms for several clustering problems and show, for example, that for any ε > 0,
this leads to a (5 + ε)-approximation algorithm for the uncapacitated facility location problem.

Our algorithms are based on the approach of solving a natural linear programming relaxation
of the problem, and rounding the optimal fractional solution. The linear programming relaxation is
analogous to the relaxation used by the approximation algorithms for the facility location problem,
and has also been studied for the k-median problem on trees [32, 31].
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We obtain our result by combining the filtering technique of Lin & Vitter [25] with a more
sophisticated method for selecting which centers to open. The filtering technique of Lin & Vitter
[25] guarantees that the cost of the solution does not exceed the LP optimum by too much by
making sure that in the integer solution, each location pays an assignment cost not too much more
than the corresponding part of the cost of the optimal fractional solution. This kind of location-
by-location guarantee is not possible for the k-median problem: some locations will necessarily
pay a significantly greater assignment cost in the integer solution than in the fractional solution.
However, we show how to select the centers so that there is only a small constant increase in the
average assignment cost.

Our results can be extended in a number of ways. For example, if one relaxes the condition
that the costs satisfy the triangle inequality to require only that cik ≤ δ(cij + cjk) for each i, j, k,
then an analogously weaker, but still constant, performance guarantee holds instead. One direct
application of this observation is to obtain a constant performance guarantee for the variant of
the k-median problem where the objective is to minimize the sum of the squares of the distances
from the vertices to their nearest centers. More substantially, Charikar & Guha [6, 16] consider
a capacitated version of the k-median problem, in which each center can be assigned at most U
locations. Charikar & Guha give a polynomial-time algorithm that finds a solution of cost at most
16 times the true optimal cost, but allows centers to be assigned at most 4U locations.

There has also been a great deal of subsequent work to improve on our results. Jain & Vazirani
[20] give an extremely elegant primal-dual 3-approximation algorithm for the uncapacitated facility
location problem, and show how to use that procedure to obtain a 6-approximation algorithm for the
k-median problem. Charikar & Guha [8] refine this result to obtain a 4-approximation algorithm for
the k-median problem, in addition to providing a number of new techniques that, combined with the
previously known algorithms, yield a 1.728-approximation algorithm for the uncapacitated facility
location problem. For the median problem, Mettu & Plaxton [26] give the quite surprising result
that one can efficiently compute a single permutation of the locations such that, for every k > 0,
the first k locations in this order serve as a k-median solution of cost that is within a constant
factor of optimal. Most recently, Arya, Garg, Khandekar, Meyerson, Munagala, and Pandit [2]
showed that the natural local search heuristic that interchanges p locations as centers/non-centers
is guaranteed to find a solution that is within a factor of 3 + (2/p), for any positive integer p. On
the other hand, Jain, Mahdian, and Saberi [19] have shown that no performance guarantee better
than 1 + (2/e) can be obtained in polynomial time, unless NP ⊆ DTIME[nO(log log n)].

2 The k-median problem

It is more natural to state our algorithm in terms of a slight generalization of the usual k-median
problem, which we described in the introduction. We shall let the input consist of a set of locations
N and a bound k, where there is a specified assignment cost cij between each pair of points i, j ∈ N .
In addition, we shall also be given a demand dj for each location j ∈ N ; this demand can either
be viewed as a weight that indicates the importance of the location, or as specifying the number
of clients present at that location. The usual statement of the k-median problem corresponds to
the special case in which dj = 1, for each j ∈ N . Note that this generalization also allows the
possibility that there are locations with no demand (i.e., where dj = 0), but can still be selected as
centers.

We shall assume that the assignment costs are non-negative, symmetric, and satisfy the triangle
inequality: that is, cij = cji for each i, j ∈ N , and cij + cjk ≥ cik for each i, j, k ∈ N . The problem
is to select k of the locations as centers, and assign each location in N to one of the k selected
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centers so as to minimize the total weighted assignment cost incurred.
The k-median problem can be stated as the following integer program, where the 0-1 variable

yi, i ∈ N , indicates if the location i is selected as a center, and the 0-1 variable xij, i, j ∈ N ,
indicates if location j is assigned to the center at i:

minimize
∑

i,j∈N

djcijxij (1)

subject to ∑
i∈N

xij = 1, for each j ∈ N, (2)

xij ≤ yi, for each i, j ∈ N, (3)∑
i∈N

yi ≤ k, (4)

xij ∈ {0, 1}, for each i, j ∈ N, (5)
yi ∈ {0, 1}, for each i ∈ N. (6)

The constraints (2) ensure that each location j ∈ N is assigned to some center i ∈ N , the constraints
(3) ensure that whenever a location j is assigned to a center i, then a center must have been opened
at i, and (4) ensures that at most k centers are open.

2.1 Outline of the method

In this section we will give an outline of the various steps that we will use to prove the performance
guarantee. We will indicate how the different steps interact, relegating the details of the individual
steps to the subsequent sections.

Consider the linear programming relaxation to the integer program (1)–(6), where the 0-1
constraints (5) and (6) are replaced, respectively, with

xij ≥ 0, for each i, j ∈ N, (7)
yi ≥ 0, for each i ∈ N. (8)

Let (x̄, ȳ) denote a feasible solution to the LP relaxation and let C̄LP denote its objective function
value. For each location j ∈ N , let C̄j denote the cost incurred by this fractional solution for
assigning (one client at) location j, i.e.,

C̄j =
∑
i∈N

cij x̄ij for each j ∈ N. (9)

Note that C̄LP =
∑

j∈N djC̄j . We will round the fractional solution (x̄, ȳ) to a feasible solution
to the integer program of cost at most 62

3 C̄LP . The outline of our approximation algorithm is as
follows.

Step 1: First we simplify the problem instance by consolidating nearby locations. We will not
change the linear programming solution (x̄, ȳ) but modify only the demands. Let d′ denote the new
set of demands. This modification will have the following properties:

• The modification will not increase the cost of the fractional solution (x̄, ȳ):

C̄ ′
LP =

∑
i,j∈N

d′jcij x̄ij ≤
∑

i,j∈N

djcij x̄ij = C̄LP .
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• In the resulting instance, all locations with positive demand will be far from each other:

cij > 4max(C̄i, C̄j) for each i, j ∈ N such that d′i > 0 and d′j > 0. (10)

• Each feasible integer solution for the modified instance with demands d′j , j ∈ N , can be
converted to a feasible integer solution for the original instance, at an added cost of at most
4C̄LP .

Let N ′ = {j : d′j > 0} denote the set of locations with positive demand. We will show that this
modified instance is simpler, e.g., |N ′| ≤ 2k.

Step 2: Next, we simplify the structure of the solution by consolidating nearby fractional centers.
First, we modify the solution (x̄, ȳ) to obtain a new solution (x′, y′) such that

y′j = 0, for each j ∈ N such that d′j = 0, (11)

y′i ≥
1
2
, for each i ∈ N such that d′i > 0. (12)

We will refer to such a solution as a 1
2-restricted solution. Further, the cost of the 1

2 -restricted
solution produced is at most 2C̄LP .

We further modify the 1
2 -restricted solution, without increasing its cost, to obtain an {1

2 , 1}-
integral solution (x̂, ŷ): that is, ŷi = 0 for each i 6∈ N ′ and ŷi is either 1

2 or 1 for each i ∈ N ′.

Step 3: Finally, we show how to convert a feasible {1
2 , 1}-integral solution to the linear program-

ming relaxation to a feasible integral solution of cost at most 4
3 times the cost of the {1

2 , 1}-integral
solution.
Using these steps, we obtain the following theorem.

Theorem 1 For the metric k-median problem, the outlined method yields a 62
3 -approximation al-

gorithm.

Proof: Suppose that the feasible solution (x̄, ȳ) to be rounded is an optimal solution to the linear
program (1)–(4) and (7)–(8). Clearly, C̄LP is a lower bound on the optimal value of the k-median
problem. Steps 1–3 above create a feasible integer solution to the modified input of cost at most
22

3 C̄LP . This can then be converted to an integer solution to the original instance while adding at
most 4C̄LP to the cost. This results in a feasible integer solution of cost at most 62

3C̄LP , i.e., at
most 62

3 times the minimum possible. 2

3 Step 1: Consolidating locations

Recall that C̄j =
∑

i∈N cij x̄ij is the cost that the linear program pays for assigning one unit of
demand at location j. The goal of the first step of the method is to consolidate demands at nearby
locations. More formally, we want to guarantee that for all pairs of locations i, j both with positive
demand, cij > 4max(C̄i, C̄j). The modified instance of the location problem is obtained without
changing the LP solution (x̄, ȳ). For some locations j, we will simply “move” the demand dj to a
nearby location j′ ∈ N , which is no more than 4C̄j away from location j.

Assume for notational simplicity that N = {1, . . . , n}, and the locations are indexed in increas-
ing order of C̄j , i.e., C̄1 ≤ . . . ≤ C̄n. We create the modified instance as follows. Start with d′j ← dj ,
for each location j ∈ N .
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• Consider the locations j = 1, . . . , n in this order. When considering location j, check if there
is another location i < j such that d′i > 0 and cij ≤ 4C̄j . If there is such a location, then add
the demand of location j to one such location i: select some i for which cij ≤ 4C̄j , and set

d′i ← d′i + d′j ; (13)
d′j ← 0. (14)

Let d′ denote the resulting demands, whereas d denotes the original demands. Let N ′ denote the
set of locations with d′j > 0, i.e., N ′ = {j ∈ N : d′j > 0}. Note that (x̄, ȳ), the feasible solution to
the LP relaxation with the original demands, is also a feasible solution for the modified input. The
next lemma follows directly from the algorithm.

Lemma 2 Locations i, j ∈ N ′ satisfy (10).

Lemma 3 The cost of the fractional solution (x̄, ȳ) for the input with modified demands is at most
its cost for the original input, that is,

∑
i,j∈N

d′jcij x̄ij ≤
∑

i,j∈N

djcij x̄ij. (15)

Proof: The LP objective function value (1) of the solution (x̄, ȳ), for any demands d̄, can be
written as

∑
j∈N d̄jC̄j . The lemma now follows directly, since d′ is obtained by moving demand

from a location j to a location i with C̄i ≤ C̄j . 2

Lemma 4 For any feasible integer solution (x′, y′) for the modified input with demands d′, there is
a feasible integer solution for the original input of cost at most 4C̄LP more than the cost of (x′, y′)
with demands d′.

Proof: Consider a location j ∈ N that has its demand moved to j′ in the modified input. Each
location j was moved by at most 4C̄j , and so we have that cj′j ≤ 4C̄j . If j is assigned to the center
to which j′ is assigned by x′, then, by the triangle inequality, restoring j to its original position
increases its unit assignment cost by at most 4C̄j . Summing over all j, we obtain the desired bound.

2

4 Step 2: Consolidating centers

In this section, we consider the problem with demands d′j for j ∈ N ′ as defined in the previous
section, i.e., we assume that the modified demands satisfy (10). Recall, from the outline, that we
have a solution (x̄, ȳ) at this point; these variables define the quantities used in (10).

We simplify the structure of the solution by consolidating nearby fractional centers. First, we
modify the solution (x̄, ȳ) to obtain a new solution (x′, y′) of cost at most 2C̄LP such that y′i = 0
for each i 6∈ N ′ and y′i ≥ 1

2 for each i ∈ N ′.
We further modify the 1

2 -restricted solution to obtain, without increasing its cost, a {1
2 , 1}-

integral solution (x̂, ŷ): that is, ŷi = 0 for each i 6∈ N ′ and ŷi is either 1
2 or 1 for each i ∈ N ′.

The first step will be accomplished using the filtering technique of Lin & Vitter [25]. The main
observation behind this technique is the following lemma, which shows that each location j has
at least half of its demand assigned to relatively “nearby” partially open centers: for each j ∈ N ,
there is a total of at least 1/2 of an open center within a radius of 2C̄j .
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Lemma 5 For any feasible fractional solution (x̄, ȳ),
∑

i:cij≤2C̄j
ȳi ≥ 1

2 for each j ∈ N .

Proof: Recall that C̄j =
∑

i∈N cijx̄ij . In any weighted average, less than half of the total weight
can be given to values more than twice the average; that is,

∑
i:cij>2C̄j

x̄ij <
1
2
. (16)

Since
∑

i∈N x̄ij = 1 and x̄ij ≤ ȳi for each i ∈ N ,

∑
i:cij≤2C̄j

ȳi ≥
∑

i:cij≤2C̄j

x̄ij ≥ 1
2
. (17)

This proves the lemma. 2

Now we are ready to prove the following result.

Theorem 6 There is a 1
2-restricted solution (x′, y′) of cost at most 2C̄LP .

Proof: We will modify the solution (x̄, ȳ) by moving each fractional center to the location in N ′

closest it. We will prove that this produces a 1
2 -restricted solution of cost at most twice the cost of

the solution (x̄, ȳ).
We start by setting x′ ← x̄ and y′ ← ȳ. First consider only the constraints (11). For each

location i ∈ N at which there is a partially open center (i.e., y′i > 0) and yet d′i = 0, we completely
close the fractional center at location i, and move it to the closest location j ∈ N ′. The fractional
center at i is moved to j by setting

y′j ← min(1, y′i + y′j); (18)
y′i ← 0. (19)

When we move the fractional center at i to location j, then we also change the assignments accord-
ingly; that is, for each location j′ ∈ N , we set

x′jj′ ← x′jj′ + x′ij′; (20)
x′ij′ ← 0. (21)

First observe that these changes result in a feasible linear programming solution that also
satisfies the constraints (11). We will worry about the constraints (12) later.

Next we show that these changes at most double the cost of the solution. Consider some location
j′ with positive demand d′j′ . For any fractional center i that is moved, say, to location j, consider
the corresponding change in the assignment cost of j′. The fraction xij′ previously assigned to i is
now assigned to j instead. By the triangle inequality, we get that cjj′ ≤ cij + cij′ . By the fact that
the fractional center at i is moved to j, and not to j′, we know that cij ≤ cij′ . Hence, cjj′ ≤ 2cij′ .
By considering all demand points j′ and all fractional centers i that are moved, we see that this
claim implies that the cost of (x′, y′) is at most twice the cost of (x̄, ȳ).

Finally, we must show that the new solution satisfies the constraints (12). Note that by Step
1, any two locations with positive demand are far apart, i.e., the demands d′ satisfy (10). This
implies that for each location j with positive demand, all partially opened centers within a 2C̄j

radius of j must be closer to j than to any other location in N ′; hence all of these will be moved to
j. Lemma 5 implies that, the sum of the fractional center values on the locations within this radius
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of j is at least 1
2 . All of these fractional centers are moved to j, and hence we see that y′j ≥ 1/2, as

required. 2

Note that the existence of a 1
2 -restricted solution for the modified instance implies that there

are at most 2k locations with positive modified demand. If we open a center at each such location,
we would get a solution (for the modified input) of cost 0. This implies that the original input has
a solution using at most 2k centers that costs at most 4C̄LP .

Next, we obtain a {1
2 , 1}-integral solution for the modified instance. We begin by examining the

structure of any 1
2 -restricted solution. For any 1

2 -restricted solution with fractional center values y,
it is easy to express the corresponding optimal fractional assignment x. Consider a location j ∈ N ′.
The optimal linear programming solution will have xjj = yj, i.e., each location in N ′ will use its
own partially open center to the maximum extent possible. Since yj ≥ 1/2, this leaves less than
half of j left to be assigned, and so, for any k ∈ N ′, we can set xkj = 1 − xjj(= 1 − yj), and be
sure that the resulting solution is feasible (i.e., xkj ≤ 1/2 ≤ yk). The best alternative is to let k be
the location in N ′ that is closest to j (other than j itself). For each j ∈ N ′, let s(j) be the closest
location to j in N ′ (other than j), where ties are broken by choosing the location with smallest
index. We have just proved the following lemma.

Lemma 7 The minimum cost of a 1
2-restricted solution (x′, y′) is

∑
j∈N ′ d′j(1− y′j)cs(j)j . 2

This lemma implies that we can view the cost of a 1
2 -restricted solution (x′, y′) as a function

solely of the values y′. Using this lemma, we are ready to prove the following theorem.

Theorem 8 For any 1
2-restricted solution (x′, y′), there exists a {1

2 , 1}-integral solution of no
greater cost.

Proof: By Lemma 7, the cost of the 1
2 -restricted solution (x′, y′) can be expressed as

∑
j∈N ′

d′jcs(j)j −
∑

j∈N ′
d′jcs(j)jy

′
j. (22)

We will construct a 1
2 -restricted solution whose cost is minimum possible. The first term of (22) is

a constant independent of y′. The second term is maximized if the values y′j are as large as possible
for locations j ∈ N ′ with the largest values d′jcs(j)j . The 1

2 -restricted solution of minimum cost is
obtained as follows. Let n′ = |N ′|. Sort the locations j ∈ N ′ in decreasing order of their weight
d′jcs(j)j . Set ŷj = 1 for the first 2k − n′ locations, and set ŷj = 1/2 for the remaining 2(n′ − k)
locations. The solution (x̂, ŷ) is a {1

2 , 1}-integral solution. By the above discussion, the cost of
(x̂, ŷ) is at most the cost of the 1

2 -restricted solution (x′, y′). 2

Thus, Step 2 produces a {1
2 , 1}-integral solution ŷj, j ∈ N ′, so that each location j ∈ N ′ is assigned

to itself and at most one other location s(j). Of course, if ŷj = 1, then there is no need to consider
s(j) at all; we will adopt the convention that if ŷj = 1, then s(j) = j.

5 Step 3: Rounding a {1
2, 1}-integral solution to an integral one

Finally, we show how to convert the {1
2 , 1}-integral solution obtained in the previous section to an

integral solution. We will first show a simple method that increases the cost incurred by a factor
of at most 2. Then we shall explain how to convert to an integer solution while increasing the cost
incurred by a factor of at most 4

3 .
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Consider the {1
2 , 1}-integral solution (x̂, ŷ) to the modified instance. Recall the structure of an

optimal {1
2 , 1}-integral solution. For each location i ∈ N ′, the optimal assignment is to set x̂ii = ŷi,

and if ŷi = 1
2 , to then set x̂ki = 1

2 , where k is defined to be the closest other location, s(i), in N ′.
We use these (i, s(i)) pairs as edges to obtain a collection of trees spanning the vertices in N ′. We
then use the collection of trees to obtain an integral solution.

More precisely, we build a collection of trees as follows. For each node i ∈ N ′ with ŷi = 1
2 , draw

a directed edge from i to s(i). By the definition of s(i), each component of this graph contains at
most one cycle; such a cycle must be of length 2, and corresponds to the closest pair of nodes in
the graph. For each cycle, we choose one of the two vertices as a root and delete the directed edge
from the root to the other vertex. This will result in a collection of rooted trees. We say that s(i)
is the parent of i, if we have a directed edge from i to s(i).

We first describe a simple rounding scheme that produces an integral solution of cost at most
twice the cost of the {1

2 , 1}-integral solution. Define the level of any node to be the number of edges
on the path from the node to the root.

The locations of the centers are chosen as follows. We build a center at each node i such that
ŷi = 1. We partition the nodes {i ∈ N ′|ŷi = 1

2} into two subsets corresponding to the odd and
even levels and build a center at each node in the smaller of the two subsets. This ensures that the
number of centers built is at most

∑
ŷi ≤ k.

It is easy to argue that this rounding at most doubles the cost of the solution. We build a center
at each node i for which ŷi = 1, and hence the contribution of node i to the cost of the solution is
0. For each node i with ŷi = 1

2 , either i or s(i) is chosen as a center (since one of i and s(i) is at an
odd level and the other is at an even level). Hence the contribution of i to the cost of the solution
is at most d′ics(i)i, which is exactly twice its contribution to the cost of the {1

2 , 1}-integral solution.
Thus, the cost of the integral solution produced is at most twice the cost of the {1

2 , 1}-integral
solution. If we substitute this bound into the proof of Theorem 1, we get an 8-approximation
algorithm for the k-median problem.

Next we describe a procedure for rounding the {1
2 , 1}-integral solution for which one can prove

a sharper performance guarantee. Although we have been considering costs cij derived from an
arbitrary metric, the k-median problem has been studied with respect to special classes of metrics.
In particular, for a given set of locations N , if there is a tree T = (N,E), and the distance between
any pair of locations i, j ∈ N is defined as the length of the path between i and j in T , then the
resulting metric is said to be a tree metric. The k-median problem for tree metrics is known to
be solvable in polynomial time (see, for example, the work of Tamir[30]); furthermore, the ratio
between the optimal integer and fractional solutions to (1)–(6) is known to be at most 2 − 2

k+1
[32, 31]. We shall consider a slightly more general class of metrics, in which there is a forest and
the distance between a pair of points in the same component is defined to be the length in that
tree, whereas the distance between two points in different components is infinity (or any suitably
large constant). It is straightforward to see that the polynomial-time optimization algorithm for
the k-median problem with respect to tree metrics can be generalized to this forest metric setting
as well.

We gave an efficient rounding procedure to convert the {1
2 , 1}-integral solution to an integral

one of at most twice the cost. We shall argue next that even a non-constructive proof of the fact
that, for any forest metric, the ratio between the costs of the optimal integer and {1

2 , 1}-integral
solutions is at most ρ, yields a polynomial-time algorithm that applies to any metric with the same
guarantee. The new algorithm works as follows. Use the {1

2 , 1}-integral solution (x̂, ŷ) to generate
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a forest as was done in the previous rounding algorithm. Use this forest to define a forest metric
on the nodes in N ′, and then compute the optimal k-median solution with respect to this modified
metric.

We shall argue next that the modified algorithm finds an integer solution of cost at most ρ
times the cost of the {1

2 , 1}-integral solution (both with respect to the original metric). Let z be
the cost of the {1

2 , 1}-integral solution in the original metric. For each pair of nodes (i, j), the cost
with respect to the forest metric is at least the original cost, and for each edge in the forest, the
two costs are the same. Since the {1

2 , 1}-integral solution (x̂, ŷ) only has (positive) assignments
corresponding to edges, the cost of this solution with respect to the forest metric is also z. Hence
there is an integer solution of cost of at most ρz with respect to the forest metric. Furthermore,
the cost of the optimal solution found by the forest metric algorithm is at most ρz, and so the cost
with respect to the original metric of this solution is also at most ρz.

We have already shown that ρ ≤ 2. In Section 7, we will show that any {1
2 , 1}-integral solution

can be converted to an integer solution of cost at most 4/3 times as much. At this point we will
make a slight detour and review the algorithm, and then return to the proof of the upper bound
of the integrality gap of {1

2 , 1}-integral solutions.

6 The algorithm in retrospect

Reflecting on the algorithm and the analysis we presented, it turns out that the underlying al-
gorithm is much simpler than it might appear from our description. The entire algorithm can be
viewed as building a collection of trees from the LP solution and then solving the problem optimally
on this collection. Here is the complete algorithm stated slightly differently.

Step 1′: Solve the LP and perform (a modified version of) Step 1 as in Section 3. However, instead
of modifying the demands, we build a collection of stars on the set of locations N . We have one
star in the collection for every location j ∈ N ′; this star consists of edges from j to each location i
such that the demand of i was moved to j in the original Step 1.

Step 2′: Obtain a collection of trees by connecting each vertex j ∈ N ′ to its nearest neighbor
s(j) ∈ N ′ (where ties and cycles of length 2 are broken as before).

Step 3′: Solve the modified instance consisting of the original demands where the underlying
metric is the forest metric (as defined in the previous section) induced by the collection of trees
produced in Step 2.

The analysis of the algorithm presented in Steps 1-3 also proves that the performance guaran-
tee of Steps 1′-3′ is at most 62

3 (modulo the proof still promised for rounding the {1
2 , 1}-integral

solution).

7 Bounding the integrality gap of a {1
2 , 1}-integral solution

We will show that for any metric, there exists an integral solution of cost at most 4
3 times the cost

of an optimal {1
2 , 1}-integral solution. That is, we shall show that the integrality gap is bounded

by 4
3 . It is interesting to note that, in constrast to the discussion above, we shall not need to use

the fact that the metric is a forest metric. This bound is tight, as is shown by the example of a
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tree with unit-length edges, no demand at the root, but demand 1 at each of its 3 children, and
k = 2. The optimal integer solution is of cost 2, whereas the optimal {1

2 , 1}-integral solution is of
cost 3/2.

The basic idea of the upper bound on the integrality gap is to produce a probability distribution
on integral solutions of expected cost at most 4

3 times the cost of the {1
2 , 1}-integral solution. Since

there must be an integer solution of cost no greater than this expectation, this proves the claimed
bound.

7.1 The Outline of the Proof

We start by presenting the framework used to bound the integrality gap. As mentioned above, we
will construct a probability distribution over integral solutions. We will decompose the tree into
small neighborhoods (Step A) and create distributions over these smaller trees (Step B). We first
state some properties ensured by these two steps and show how the expected cost of an integral
solution can be bounded using these properties. Later, we will describe the individual steps in
detail and prove that the stated properties are satisfied.

Step A: Creating 3-level trees.

We are given a set of rooted trees Γ corresponding to a {1
2 , 1}-integral solution (x̂, ŷ). Recall

that the nearest neighbor of i is s(i); if ŷi = 1
2 , then s(i) is the parent of i in Γ, unless i is a

root of a tree in Γ (and then s(i) is its child). We will construct a set of trees Γ3 that contains
all nodes in Γ such that

(P0) Each tree has at most three levels. We say that the level of a root of a tree is 0, and
refer to its children as level-1 nodes, and their children as level-2 nodes.

(P1) A node i is a parent of j in a tree in Γ3 only if i = s(j). Thus, each tree in Γ3 is a
subgraph of the graph defined by trees in Γ.

(P2) Each node i with ŷi = 1
2 belongs to a tree of size 2 or more in Γ3.

(P3) If i is a root of a tree in Γ3 with ŷi = 1
2 , then the distance from node i to its nearest

child is at most 2cis(i), or s(i) is a level-1 node in some other tree in Γ3.

(P4) For each node i in a tree in Γ3 that is not level-0 or level-1, we have that cis(i) ≥
2cs(i)s(s(i)).

Step B: Distribution over 3-level trees.

Given a set of 3-level trees we construct a probability distribution over integral solutions. We
will choose k nodes such that the following conditions are met:

(D0) If ŷi = 1, then node i is chosen.

(D1) If a root is not chosen, then all level-1 nodes in that tree are chosen.

(D2) Each root is chosen with probability at least 2
3 .

(D3) Each level-1 node is chosen with probability at least 1
3 .

(D4) Each level-2 node is chosen with probability at least 1
2 .
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(D5) For each level-2 node i, conditioned on the fact that i is not chosen, its parent s(i) is
chosen with probability with at least 1

3 .

Notice that if the choice of i and s(i) were independent, then the last condition would follow from
(D3). Using the above properties, we can prove the following lemma.

Lemma 9 If properties (P0)-(P4) and (D0)-(D5) are true, then for each node j with ŷj = 1
2 , the

expected distance to its nearest center is at most 2
3cjs(j).

Proof: Suppose that j is a root node. By property (D2), j is chosen with probability at least 2
3 .

By property (D1), if j is not chosen, all of its children are chosen. From property (P2), it has at
least one child. If the distance from node j to its nearest child is at most 2cjs(j), then by property
(D1), node j has an open center at most 2cjs(j) away from it. Otherwise, (if its nearest child were
farther away) by property (P3), we have that s(j) is a level-1 node in some other tree. By another
application of property (D1), either s(j) or s(s(j)) is chosen. In either case, node j is at most
2cjs(j) away from a center. Therefore, the expected distance from node j to its nearest center is at
most 2

3cjs(j).
Suppose that node j is a level-1 node. By property (D3), node j is chosen with probability at

least 1
3 . If j is not chosen, by property (D1), its parent s(j) (the root) must be chosen. Thus, the

expected distance to its nearest center is at most 2
3cjs(j).

The remaining case is when j is a level-2 node. Then, by property (D4), node j is chosen with
probability at least 1

2 . By property (D5), if we condition on node j not being chosen, then s(j) is
chosen with probability at least 1

3 . If s(j) is not chosen, then s(s(j)) must be chosen (by property
(D1)). Thus, the expected distance from node j to its nearest center is at most

1
2

(
1
3
cjs(j) +

2
3
(cjs(j) + cs(j)s(s(j)))

)
≤ 1

2
cjs(j) +

1
3
cs(j)s(s(j)).

By property (P4), the right-hand side is at most 2
3cjs(j). 2

The following theorem is an immediate consequence of Lemma 9.

Theorem 10 For any metric, the ratio between the cost of a given {1
2 , 1}-integral solution and the

optimal integral solution is at most 4
3 .

Proof: We compare the cost of the given {1
2 , 1}-integral solution to the expected cost of the integral

solution found above. From (D0), each node with ŷj = 1 is chosen as a center in the integral solution.
Thus, the assignment cost for each such node j is equal to 0, both for the integral solution found,
and for the given {1

2 , 1}-integral solution. For a node j with ŷj = 1
2 , its contribution to the objective

function value of the {1
2 , 1}-integral solution is 1

2d′jcjs(j). By Lemma 9, the expected contribution
of node j to the objective function value for the integer solution is at most 2

3d′jcjs(j). Therefore, the
total expected cost of the integer solution is at most 4

3 times the cost of the {1
2 , 1}-integral solution.

2

We now present the details of Steps A and B.

7.2 Step A: Creating 3-level trees

Let Γ denote the set of trees corresponding to a {1
2 , 1}-integral solution (x̂, ŷ). We will create the

3-level trees in a two phase process. We will create trees that are subgraphs of trees belonging to
Γ, and property (P1) will follow immediately.
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Phase 1: In the first phase, we will convert a tree T ∈ Γ to a sub-collection of trees that satisfy
properties (P4) and (P2). They need not have 3 or fewer levels. For each tree T ∈ Γ, we will
visit its nodes by visiting all descendants of a node before visiting the node itself (i.e., post-order).
Furthermore, we require that we visit the nearest child of the root of T as the last node visited,
before visiting the root of T . This latter condition need not be maintained for visiting other nodes
in T .

Throughout this construction, we shall be modifying the tree T . Assume we are visiting a node
i that is neither the root, nor the nearest child of the root. Let Ti denote the subtree of the current
tree T that is rooted at i. We will prune the tree T by removing the subtree Ti rooted at node i;
the tree Ti is added to the collection Γ′, if both of the following conditions are satisfied:

(a) the node i has a child,

(b) the distance from i to its nearest child j is less than twice the distance to its parent s(i), i.e.,
cij < 2cis(i).

Suppose that we are visiting the nearest child i of a root node j. We check to see if either of
the following cases apply:

(i) ŷj = 1
2 and i is the only remaining child of j;

(ii) ŷj = 1
2 and ci′j ≥ 2cij , where i′ is the second nearest remaining child of j.

If neither (i) nor (ii) applies, we prune Ti if both conditions (a) and (b) are satisfied. If either (i)
or (ii) holds, we modify the tree T by making j the child of i. (Note that any remaining children
of the root j, other than i, continue to be children of j.) The modified tree T is added to Γ′.

If we do visit the root, then we add the remaining tree T to Γ′, and phase 1 ends. Before
proceeding with phase 2 to finish the construction, we prove the following lemma:

Lemma 11 At the end of phase 1, properties (P1)-(P4) hold, and for each node i′ in a tree in Γ′

that is at level 2 or more, ci′s(i′) > 2cs(i′)s(s(i′)).

Proof: It is easiest to verify that property (P2) is true. All trees added to Γ′ while processing
nodes other than the root have size at least 2. The only potential singleton tree is one consisting
of the original root itself. Suppose that the root j has ŷj = 1

2 . If the root has no remaining child
other than its nearest child, then the root would be removed when its nearest child was processed
and will not create a singleton tree.

Property (P1) is also easy to verify. We do not change the parent-child ordering in the pruning
process, except possibly when we visited i, the nearest child of a root j with ŷj = 1

2 . In this case,
node j became a child of i, and indeed s(j) = i.

Condition (b) ensures that property (P3) is true for each pruned tree Ti that is added to Γ′

while visiting a node i that is not the root node. If the root j becomes the child of i, where i was
the nearest child of j originally, then property (P3) holds, since the nearest child of the (new) root
i is j, and it is at a distance cis(i). Therefore, the only case not yet covered is when we visit the
original root j of the tree and add the remaining tree T to Γ′. If ŷj = 1, then property (P3) is
vacuously true. If ŷj = 1

2 , note that s(j) is node j’s nearest child i. Property (P3) is true if the
nearest child i is still remaining in T when j is visited. If the nearest child i was pruned away,
then it must be the case that both conditions (i) and (ii) did not hold when i was visited. Thus, j
must have a child i′ remaining in T other than its nearest child i, and ci′j < 2cij = 2cjs(j). Hence,
property (P3) holds for the tree rooted at j that is added to Γ′.
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To see that property (P4) holds, consider a node i′ which is at level ` ≥ 2 in some tree in Γ′.
Suppose, for a contradiction, that (P4) does not hold, i.e., ci′s(i′) < 2cs(i′)s(s(i′)). Let the parent of
i′ be i, and let us consider why the subtree rooted at i was not pruned and added to Γ′ when i
was visited. Notice that both conditions (a) and (b) are satisfied. It must be the case that i was
the nearest child of the original root j or the original root. If i was the nearest child of j, then
a subtree rooted at i must have been added to Γ′ contradicting that i′ is at level 2 or more. (If
either (i) or (ii) holds, such a subtree is added with the root j being made a child of i. If neither
holds, the subtree rooted at i is pruned away, since both (a) and (b) hold.) Consider the case when
the parent i of i′ is itself the original root in Γ. If i′ was the nearest child of the root i, then i′ is
always either a level-0 or a level-1 node in some tree in Γ′. Suppose i′ was not the nearest child of
the root i. If we added the tree rooted at i to Γ′, we would have i′ as a level-1 node in some tree
in Γ′. Finally, consider the case when the the root i is added to the subtree rooted at its nearest
child. In this case, when the nearest child was visited, (i) did not apply since i had another child
i′. Hence, (ii) must have applied and in this case ci′s(i′) ≥ 2cs(i′)s(s(i′)). (Note that s(s(i′)) = s(i) is
the nearest child of root i in this case.) This proves that property (P4) holds. 2

Phase 2: This phase ensures that (P0) is satisfied, and that the properties (P1)-(P4) remain
true. We perform the following steps. Initially, Γ3 is empty.

(a) For each tree T ′ ∈ Γ′, remove all the edges between the levels 2p + 1 and 2p + 2 for all p ≥ 0.
(Edges between levels 2p and 2p + 1 are undisturbed.)

(b) The previous step yields a decomposition into trees having at most two levels (i.e., stars).
For the singleton nodes created in this process, (i.e., nodes that are in level 2p + 2 and have
no children), attach them to their parent in T ′. We add the set of trees created to Γ3.

It is immediate that property (P0) is true. Property (P4) is true, since we do not create any new
nodes that are not level-0 or level-1. Property (P2) is true, since we do not create singleton trees in
the second phase. Property (P1) is true, since we do not create any new parent-child relationships.
Property (P3) is true, since the parent of each new root created is a level-1 node. Therefore, all of
the properties (P0)–(P4) are true for the collection of trees, Γ3.

7.3 Step B: Distribution over 3-level trees

In this section, we specify a probability distribution of integer solutions, given the 3-level trees, and
show that the distribution satisfies the desired properties.

We start by introducing some additional definitions. A tree T ∈ Γ3 is said to be an even tree
if

∑
j∈T ŷj is integral; otherwise, it is said to be an odd tree. Clearly the number of odd trees will

be even. An even tree T with
∑

j∈T ŷj = p will be assigned p centers. For each odd tree, we have
that

∑
j∈T ŷj = p + 1

2 , for some p ≥ 1: notice that this follows from property (P2). For half of the
odd trees, we will round up this fractional value to obtain the number of centers opened, whereas
in the other half, we will round this fractional value down. If we round up the number of centers
(from p + 1

2 to p + 1), then we will say that the tree is a 1-tree. Otherwise, if we round down (from
p + 1

2 to p), then we will say that the tree is a 0-tree.
We will choose half of the odd trees to be 1-trees uniformly at random. The other odd trees

will be 0-trees. It is immediate that we will open exactly k centers in total.
There are two cases, depending on whether the root i of a tree in Γ3 has ŷi equal to 1 or 1

2 .
We present the former, and simpler, case first. Throughout this discussion, by saying that we
uniformly choose p elements from a given set, we will mean that we choose a subset of p elements
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uniformly at random from amongst all subsets of size p. The selections for different trees are made
independently of each other.

Case 1: Suppose that the root i of a tree has ŷi = 1. The root is picked as a center. The
remaining centers are picked from the following distribution:

(i) If the root has 2p descendants (level-1 and level-2 nodes), uniformly choose p of them to build
a center.

(ii) If the root has 2p + 1 descendants, uniformly choose p + 1 of them if the tree is a 1-tree, and
otherwise, uniformly choose p of them.

Before we proceed to Case 2, we can easily show that

Lemma 12 If root j of a tree in Γ3 has ŷj = 1, then the above distribution satisfies (D0)-(D5).

Proof: Since the root is chosen (D0)-(D2) is satisfied immediately. The probability of choosing
any other node is exactly 1

2 in case (i). The probability of choosing a node in case (ii) is also
1
2 . With probability 1

2 the tree is a 1-tree in which case the probability of a node being chosen is
(p + 1)/(2p + 1). Otherwise with probability 1

2 the tree is a 0-tree with the probability that a node
is chosen is p/(2p+1). Thus the probability that a node is chosen is 1

2 . This proves (D3) and (D4).
The proof of (D5) is straightforward. If we condition on the event that a level-2 node i is not

chosen, the probability of choosing its parent s(i) can only increase. Since s(i) was chosen with
probability 1

2 overall, the conditional probability of choosing s(i) is still at least 1
2 . 2

Case 2. We are now ready to specify our distribution for any tree in Γ3, rooted at a node j for
which ŷj = 1/2. We will further subdivide this case into two subcases: first, where the number
of level-1 nodes is odd or the number of level-2 nodes is even, and the second, where both these
conditions do not hold.

Case 2.a: The number of level-1 nodes is odd or the number of level-2 nodes is even. The dis-
tribution will be specified by giving two independent distributions: there will be one distribution
specifying the selection of level-0 (i.e., the level-1 nodes and another distribution that specifies the
selection of the level-2 nodes. We will describe the distribution over level-2 nodes first.

(i) If there are 2r level-2 nodes, uniformly choose r to open as centers. If there are 2r + 1 nodes
in level 2, (and so the number of level-1 nodes is odd, and this is an odd tree), uniformly
choose r + 1 of them if this is a 1-tree, and uniformly choose r of them if it is 0-tree.

(ii) If there is a single level-1 node, then open a center at the root with probability 2
3 and at the

single level-1 node with probability 1
3 .

(iii) If the number of level-1 nodes is 2t+1 (t ≥ 1), open a center at the root and uniformly choose
t level-1 vertices as centers.

(iv) If the number of level-1 nodes is 2 (and so the number of level-2 nodes is even and this is an
odd tree), then, if the tree is a 1-tree, build a center at both level-1 nodes with probability
2
3 , and build a center at the root and at one of the level-1 nodes (arbitrarily selected), with
probability 1

3 . If the tree is a 0-tree, build a center at the root.
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(v) If the number of level-1 nodes is 2t (t > 1), open a center at the root and uniformly choose t
level-1 nodes if the tree is a 1-tree. Otherwise, open a center at the root and uniformly choose
t− 1 level-1 nodes as centers.

Lemma 13 For any tree in Γ3, rooted at a node j for which ŷj = 1/2 where the number of level-1
nodes is odd or the number of level-2 nodes is even, the above distribution satisfies the properties
(D0)-(D5).

Proof: Property (D0) is true vacuously. Property (D1) is true by construction. Property (D2) is
true since the only cases in which the root is not chosen are (ii) and (iv) (only when the tree is
chosen as a 1-tree) and in both cases, the root is chosen with probability 2

3 (taking into account in
(iv) that it is a 0-tree with probability 1

2 ).
In case (ii), property (D3) follows directly from the construction. In case (iii), it holds since

t/(2t + 1) ≥ 1
3 , for t ≥ 1. In case (iv), the tree is chosen to be a 1-tree with probability 1

2 , and
in that case a level-1 node is chosen with probability 2

3 ; thus, the probability of selecting a level-1
node is at least 1

3 , even ignoring the other case. In case (v), the probability of choosing a level-1
node is 1

2 if the tree is a 1-tree and is (t − 1)/(2t) if the tree is a 0-tree; once again, since the
probability that the tree is a 1-tree is exactly 1

2 , the probability of choosing a level-1 node is at
least 1

4 + (t− 1)/(4t) ≥ 3
8 > 1

3 .
Property (D4) holds by the same argument as in Lemma 12: That is, if the number of level-2

nodes is even, we are done. If it is odd, the tree is odd as was pointed out in the construction. In
that case, with probability 1

2 , the tree is a 1-tree and we choose each level-2 node with probability
(r + 1)/(2r + 1), and with probability 1

2 , the tree is a 0-tree and we choose each level-2 node with
probability r/(2r + 1). Thus, the overall probability of choosing a level-2 node is 1

2 .
Property (D5) holds, since for any level-2 node i, the probability distributions governing the

choice of i and s(i) are independent, and we have already proved that (D3) holds. 2

Case 2.b: If there are an even number of level-1 nodes and an odd number of level-2 nodes, we
consider a different distribution:

(i) If there are 2 level-1 nodes and 2r + 1 level-2 nodes (r ≥ 0), then, with probability 2
3 , open

centers at the root and r + 1 uniformly chosen level-2 nodes; and, with probability 1
3 , open

centers at the 2 level-1 nodes and r uniformly chosen level-2 nodes.

(ii) If there are 2t level-1 nodes (t > 1) and 2r + 1 level-2 nodes (r ≥ 0), always open a center
at the root. With probability 1

2 , uniformly choose t − 1 level-1 nodes and independently,
uniformly choose r + 1 level-2 nodes. With probability 1

2 , uniformly choose t level-1 nodes
and independently, uniformly choose r level-2 nodes.

Lemma 14 The above distribution satisfies the properties (D0)-(D5).

Proof: Property (D0) is true vacuously. Property (D1) follows directly from the construction. To
see that property (D2) is also true, note that the only case in which the root is not chosen is (i),
and in that case, the root is chosen with probability 2

3 .
It is easy to check that property (D3) is true in case (i). In case (ii), a level-1 node is chosen

with overall probability
1
2
· t− 1

2t
+

1
2
· t

2t
=

2t− 1
4t

.

Since t > 1, it follows that property (D3) holds in this case as well.
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In case (ii), property (D4) is true, since the overall probability of choosing a level-2 node is

1
2
· r + 1
2r + 1

+
1
2
· r

2r + 1
=

1
2
.

In case (i), the probability of choosing a level-2 node is

2
3
· r + 1
2r + 1

+
1
3
· r

2r + 1
=

3r + 2
6r + 3

>
1
2
.

To verify that (D5) is true, for a level-2 node i, we will compute the probability that s(i) is chosen
given that i is not chosen. This can be done using the fact that Prob[A|B] = Prob[A and B]/Prob[B].
In case (i), the probability is:

1 · (r + 1)
2 · r + 1 · (r + 1)

≥ 1
3
.

In case (ii), the probability is

t− 1
2t
· r

2r + 1
+

t

2t
· r + 1
2r + 1

≥ 3r/4 + 1/2
2r + 1

≥ 1
3
.

2

Thus, we have created a distribution satisfying properties (D0)-(D5) on a collection of 3-level trees
Γ3 that satisfies the properties (P0)-(P4).
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