
Delegating Responsibility in Digital Systems:

Horton’s “Who Done It?”

Mark S. Miller
Google Research

James E. Donnelley
NERSC, LBNL

Alan H. Karp
Hewlett-Packard Labs

Programs do good things, but also do bad,
making software security more than a fad.
The authority of programs, we do need to tame.
But bad things still happen. Who do we blame?

From the very beginnings of access control:
Should we be safe by construction,
or should we patrol?
Horton shows how, in an elegant way,
we can simply do both, and so save the day.

with apologies to Dr. Seuss

1 Introduction

There are two approaches to protect users from the
harm programs can cause, proactive control and re-
active control. Proactive controls help prevent bad
things from happening, or limit the damage when
they do. But when repeated abuse occurs, we need
some workable notion of “who” to blame, so we can
reactively suspend the responsible party’s access.

For reactive controls to work well, we must first
proactively limit attackers to causing only repairable
damage. A simple example is a wiki that proactively
grants untrusted users only read access to history, so
it can risk granting them write access to pages. If a
user posts abuse, damaged pages can be restored, and
that user’s access can be reactively suspended. We
need both approaches, but the main access control
paradigms each seem to support only one well. This
paper contributes a new answer to this dilemma.

Access Control List (ACL) systems support reac-
tive control directly. ACL systems presume a pro-
gram acts on behalf of its “user”. Access is allowed

or disallowed by checking whether this operation on
this resource is permitted for this user. By tagging
all actions with the identity of the user they allegedly
serve, they can log who to blame, and whose access
to suspend. But ACLs are weak at proactive control.
Solitaire runs with all its user’s privileges. If it runs
amok, it could do its user great harm.

Capabilities seem to have opposite strengths and
weaknesses. A capability—like an object-reference in
a memory-safe language—is a communicable and un-
forgeable token used both to designate some object
and to permit access to that object. Because the term
“capabilities” has since been used for many other ac-
cess control rules [11], we now refer to the original
model [2] as object-capabilities or ocaps for short.

By allowing the controlled delegation of narrow au-
thority, ocap systems support proactive control well.
The invoker of an object normally passes as argu-
ments just those objects (capabilities) that the re-
ceiver needs to carry out that request. A user can
likewise delegate to an application just that portion
of the user’s authority the application needs [21], lim-
iting damage should it be corrupted by a virus.

Because ocaps operate on an anonymous “bearer
right” basis, they seem to make reactive control im-
possible. Indeed, although many historical criticisms
of ocaps have since been refuted [11, 16, 10, 17],
a remaining unrefuted criticism is that they cannot
record who to blame for which action [6]. This lack
has led some to forego the benefits of ocaps.

How can we support both forms of control well in
one system? One approach combines elements of the
two paradigms in one architecture [7, 4]. Another
emulates some of the virtues of one paradigm as a



pattern built on the other. For example, Polaris [19]
uses lessons learned from ocaps to limit the authority
of ACL-based applications on Windows, as Plash [15]
does on Unix, without modifying either these appli-
cations or their underlying ACL OS.

In this paper, we show how to attribute actions in
an ocap system. As a tribute to Dr. Seuss [5], we call
our protocol Horton (H igher-Order Responsibility
Tracking of Objects in Networks). Horton can be
interposed between existing ocap-based application
objects, without modifying either these objects or
their underlying ocap foundations. Horton supports
identity-based tracking and control for delegating re-
sponsibility with authority. Horton thereby refutes
this criticism of the ocap paradigm.

2 The Horton Protocol

We explain Horton with a scenario where object A
executes b.foo(c), intending to send the “foo” mes-
sage to object B with a reference to object C as an
argument. If A had direct references to B and C,
then B would receive a direct reference to C.

Imagine that A, B, and C are application-level ob-
jects contributed by mutually suspicious parties, Al-
ice, Bob, and Carol, respectively. In order to at-
tribute possible misbehavior and suspend access, Al-
ice, Bob, and Carol interpose the intermediary ob-

jects shown in Figure 1: The outgoing half circles
are proxies and incoming half circles are stubs. Un-
der normal conditions, they wish their app-objects to
proceed transparently, as if directly connected.

When A sends the “foo” message on the path to B,
A actually sends it to Alice’s proxy P1 (Figure 1, ).
P1 logs the outgoing message as a request that Bob
is responsible for serving. P1 sends an encoding of
this message to Bob’s stub S1, which logs that Alice
is responsible for making this request (Figure 2, ).
S1 decodes the encoded message into a “foo” message
which it delivers to B (Figure 3, ). (Read the PDF
online to see the figures “animate” by flipping pages.)

If Alice decides she no longer wishes to use Bob’s
services, she shuts off her “Bob” proxies such as P1.
If Bob decides he no longer wishes to accept Alice’s
requests, he shuts off his “Alice” stubs such as S1.

Every protocol which builds secure relationships
must face two issues: 1) the base case, building an ini-
tial secure relationship between players not yet con-
nected by this protocol, and 2) the inductive case, in
which a new secure relationship is bootstrapped from
earlier assumed-secure relationships.

This paper discusses the inductive case. Ocap
systems create new relationships by passing argu-
ments. We must show that the relationship repre-
sented by the new B→P3→S3→C path in Figure 3
attributes responsibility sensibly, assuming that the
A→P1→S1→B and A→P2→S2→C paths already
do. An example attack would be if Alice could fool
Bob into blaming Carol for bad service provided by
Alice. To avoid non-repudiation [1], we accept that
Bob can log bad data fooling himself into blaming
the wrong party.

What represents a responsible identity? Crypto-
graphic protocols often represent identity as a key
pair. For example, a public encryption key identifies
whoever knows the corresponding private decryption
key. Put another way, knowledge of a decryption key
provides the ability to be (or speak for [9]) the entity
identified by the corresponding encryption key.

In ocap systems, the sealer/unsealer pattern [12]
provides a similar logic. Rectangles such as the one
labeled “Alice” represent Who objects, providing a
seal(contents) operation, returning an opaque box
encapsulating the contents. All such rectangles with



the same label are references to the same Who ob-
ject. The corresponding BeAlice object provides the
authority to be the entity identified by Alice’s Who
object. BeAlice provides an unseal(box) operation
that returns the contents of a box sealed by Alice’s
Who. The large rounded rectangles and colors ag-
gregate all objects we assume to behave according to
the intentions of a given Who.

Complete Horton implementations in Java and
E are available at erights.org/download/horton/.
For expository purposes, the E code after Figure 3
shows just the Horton code needed for the illustrated
case. The line numbers on the code show the or-
der of execution taken by our example. The code
expresses just the minimal default behavior for par-
ticipating in the Horton protocol. The LA, LB, and
LC lines mark opportune places for each to insert
identity-based control hooks. Mostly, this simplified
code uses just the simple sequential five-minute sub-
set of E explained in [10, Ch6: A Taste of E].

When the foo message arrives at proxy P1, it does
not match any of the proxy’s method definitions, so it
falls through to the match clause (02), which receives
messages reflectively. The clause’s head is a pattern
matched against a pair of the message name (here,
"foo") and the list of arguments (here, a list holding
only proxy P2).

P1 asks for the value of P2’s stub and whoBlame
fields, which hold S2 and Carol’s Who (03–05). (To

protect against misbehaving app-objects, P1 actu-
ally does this by rights amplification [12] rather than
the getGuts message shown here.) P1 then sends
intro(whoBob) to S2 (06), by which Alice is saying
in effect “Carol, I’d like to share with Bob my access
to C. Could you create a stub for Bob’s use?” Noth-
ing forces Alice to share her rights in this indirect
way; Alice’s P1 could just give Bob direct access to
S2. But then Carol would necessarily blame Alice for
Bob’s use of S2, which Alice might not like.

Carol makes S3 for Bob’s use of C (08). Carol
tags S3 with Bob’s Who, so Carol can blame Bob for
messages sent to S3. Carol then “gift wraps” S3 for
Bob and returns gs3, the gift-wrapped S3, to Alice
as the result of the intro message (09–11). Alice
includes gs3 in the p3Desc record encoding the P2
argument of the original message (12). By including
this in the deliver request to Bob’s S1 (13), Alice
is saying in effect “Bob, please unwrap this to get the
ability to use a service provided by Carol.”

Bob’s S1 unpacks the record (15), unwraps gs3 to
get S3 (16–26), which it uses to make proxy P3 (27).
Bob tags P3 with Carol’s Who, so Bob can blame
Carol for the behavior of S3. S1 then includes P3 as
the argument of the app-level foo message it sends
to B using E’s reflective E.call primitive (28).

Clearly the unwrap function must be the inverse of
the wrap function. Identity functions would be sim-
ple, but would also give Alice’s P1 access to S3. Since
P1 behaves as Alice wishes, P1’s access to S3 would
let Alice fool Carol into blaming Bob for messages
Alice sends to S3.

Carol’s S2 should at least gift-wrap S3 so only Bob
can unwrap it. Could we simply use the seal/unseal
operations of Bob’s who/be pair as the wrap/unwrap
functions? Unfortunately, this would still enable Al-
ice to give Bob a gift allegedly from Carol, but which
Bob unwraps to obtain a faux S3 created by Alice.

In our solution, Carol’s wrap creates a provide
function, seals it so only Bob can unseal it, and re-
turns the resulting box as the wrapped gift (11).
Bob’s unwrap unseals it to get a provide function
allegedly from Carol (18). Bob will need to call
provide (21) so that only Carol can provide S3 to
him. Bob declares an assignable result variable
(19), and a fill function for Carol to call to set this

http://erights.org/download/horton/


variable to S3. He seals this in a box only Carol can
unseal (20) and passes this to provide (21). Carol’s
provide unseals it to get Bob’s fill function (23),
which Carol can call to set the result to S3 (24–25).
After Carol’s provide returns, Bob’s unwrap returns
whatever it finds in the result variable (26).

Should Bob and Carol ever come to know that the
other is independent of Alice, they can then blame
each other, rather than Alice, for actions logged by
P3 and S3. Say C is a wiki page. If Carol believes
that Bob is not a pseudonym for Alice, and Carol
decides that Bob has abused this page, Carol should
then revoke Bob’s access without revoking Alice’s ac-
cess by shutting off her “Bob” stubs such as S3. If
Bob decides that C is flaky, he can stop using Carol’s
services by shutting off his “Carol” proxies such as
P3. This completes the induction.

3 Related Work

Some distributed ocap systems interpose objects to
serialize/unserialize messages [3, 14], stretching the
reference graph between local ocap systems. Secure
Network Objects [20] and Client Utility [8] leveraged
their intermediation to add some identity tracking.
Horton unbundles such identity-based control as a
separately composable abstraction.

Reactive security ocap patterns include the logging

01: # A says:. . . b.foo(c) . . .

def makeProxy(whoBlame, stub) {
return def proxy {

04: to getGuts() { # as P2

05: return [stub, whoBlame]}
02: match [verb, [p2]] { # as P1

03: def [s2, whoCarol] := p2.getGuts()

06: def gs3 := s2.intro(whoBlame)

12: def p3Desc := [gs3, whoCarol]

LA: #. . . check and log service. . .

13: stub.deliver(verb, [p3Desc])}}}

def makeStub(beMe, whoBlame, targ) {
return def stub {

07: to intro(whoBob) { # as S2

08: def s3 := makeStub(beMe,whoBob,targ)

LC: #. . . check and log intro. . .

09: return wrap(s3, whoBob, beMe)}
14: to deliver(verb, [p3Desc]) { # as S1

15: def [gs3, whoCarol] := p3Desc

16: def s3 := unwrap(gs3, whoCarol, beMe)

27: def p3 := makeProxy(whoCarol, s3)

LB: #. . . check and log request. . .

28: E.call(targ, verb, [p3])}}}

29: # B implements:. . . to foo(c) {...} . . .

10: def wrap(s3, whoBob, beCarol) { # as S2

22: def provide(fillBox) {
23: def fill := beCarol.unseal(fillBox)

24: fill(s3)}
11: return whoBob.seal(provide)}
17: def unwrap(gs3,whoCarol,beBob){ # as S1

18: def provide := beBob.unseal(gs3)

19: var result := null

25: def fill(s3) {result := s3}
20: def fillBox := whoCarol.seal(fill)

21: provide(fillBox)

26: return result}

forwarder [18] and the caretaker [13]. Horton’s main
contribution is the inductive formation of these pat-
terns among mutually suspicious parties.

Petmail [22] and SPKI [4] provide some Horton-like
features in non-ocap systems. They show how Carol



need not be involved during the delegation of C from
Alice to Bob. Future work should try to express this
in terms of ocaps, without explicit cryptopgraphy.

4 Conclusions

Delegation is fundamental to human society. If dig-
ital systems are to mediate ever more of our inter-
actions, we must be able to delegate responsibility
within them. While some systems support the con-
trolled delegation of authority, and other systems
support assignment of responsibility, today we have
no means for delegating responsibility, that is, del-
egating authority coupled with assigning responsi-
bility for using that authority. Horton shows how
delegation of responsibility can be added to systems
that already support delegation of authority—object-
capability systems.

We thank the cap-talk community, especially Peter
Amstutz, David Chizmadia, Tyler Close, Bill Frantz,
David Hopwood, Terence Kelly, Charles Landau,
Sandro Magi, Rob Meijer, Chip Morningstar, Toby
Murray, Kevin Reid, Jonathan Shapiro, Terry Stan-
ley, Marc Stiegler, Pierre Thierry, Brian Warner,
and Meng Weng Wong.

References
[1] Y. Aumann and M. Rabin. Efficient deniable authenti-

cation of long messages. Int. Conf. on Theoretical Com-
puter Science in Honor of Professor Manuel Blum’s 60th
birthday, pages 20–24, 1998.

[2] J. B. Dennis and E. C. V. Horn. Programming Semantics
for Multiprogrammed Computations. Technical Report
TR-23, MIT, LCS, 1965.

[3] J. E. Donnelley. A Distributed Capability Comput-
ing System. In Proc. Third International Conference
on Computer Communication, pages 432–440, Toronto,
Canada, 1976.

[4] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas,
and T. Ylonen. SPKI Certificate Theory (IETF RFC
2693), Sept. 1999.

[5] T. S. Geisel. Horton Hears a Who! Random House Books
for Young Readers, 1954.

[6] V. D. Gligor, J. C. Huskamp, S. Welke, C. Linn, and
W. Mayfield. Traditional capability-based systems: An
analysis of their ability to meet the trusted computer

security evaluation criteria. Technical report, National
Computer Security Center, Institute for Defense Analy-
sis, 1987.

[7] P. A. Karger and A. J. Herbert. An Augmented Capabil-
ity Architecture to Support Lattice Security and Trace-
ability of Access. In Proc. 1984 IEEE Symposium on Se-
curity and Privacy, pages 2–12, Oakland, CA, Apr. 1984.

[8] A. H. Karp, R. Gupta, G. Rozas, and A. Banerji. The
Client Utility Architecture: The Precursor to E-Speak.
Technical Report HPL-2001-136, Hewlett Packard Labo-
ratories, June 09 2001.

[9] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Au-
thentication in Distributed Systems: Theory and Prac-
tice. ACM Trans. Comput. Syst., 10(4):265–310, 1992.

[10] M. S. Miller. Robust Composition: Towards a Unified Ap-
proach to Access Control and Concurrency Control. PhD
thesis, Johns Hopkins University, Baltimore, Maryland,
USA, May 2006.

[11] M. S. Miller, K.-P. Yee, and J. S. Shapiro. Capability
Myths Demolished. Technical Report SRL2003-02, Sys-
tems Research Laboratory, Department of Computer Sci-
ence, Johns Hopkins University, mar 2003.

[12] J. H. Morris, Jr. Protection in Programming Languages.
Communications of the ACM, 16(1):15–21, 1973.

[13] D. D. Redell. Naming and Protection in Extensible Op-
erating Systems. PhD thesis, Department of Computer
Science, University of California at Berkeley, Nov. 1974.

[14] R. D. Sansom, D. P. Julin, and R. F. Rashid. Extending a
Capability Based System into a Network Environment. In
Proc. 1986 ACM SIGCOMM Conference, pages 265–274,
Aug. 1986.

[15] M. Seaborn. Plash: The Principle of Least Authority
Shell, 2005. plash.beasts.org/.

[16] J. S. Shapiro and S. Weber. Verifying the EROS Con-
finement Mechanism. In Proc. 2000 IEEE Symposium on
Security and Privacy, pages 166–176, 2000.

[17] A. Spiessens. Patterns of Safe Collaboration. PhD the-
sis, Université catholique de Louvain, Louvain la Neuve,
Belgium, February 2007.

[18] M. Stiegler. A picturebook of secure cooperation, 2004.
erights.org/talks/efun/SecurityPictureBook.pdf.

[19] M. Stiegler, A. H. Karp, K.-P. Yee, T. Close, and M. S.
Miller. Polaris: Virus-safe Computing for Windows XP.
Commun. ACM, 49(9):83–88, 2006.

[20] L. van Doorn, M. Abadi, M. Burrows, and E. P. Wobber.
Secure Network Objects. In Proc. 1996 IEEE Symposium
on Security and Privacy, pages 211–221, 1996.

[21] D. Wagner and E. D. Tribble. A Security Analysis of the
Combex DarpaBrowser Architecture, Mar. 2002.
combex.com/papers/darpa-review/.

[22] B. Warner. Petmail. Codecon, 2004. petmail.lothar.com.

http://plash.beasts.org/
http://erights.org/talks/efun/SecurityPictureBook.pdf
http://combex.com/papers/darpa-review/
http://petmail.lothar.com

	Introduction
	The Horton Protocol
	Related Work
	Conclusions

