
1

Dynamic Parallel-Access to Replicated
Content in the Internet

Pablo Rodriguez Ernst W. Biersack

Institut EURECOM
2229, route des Crêtes. BP 193

06904, Sophia Antipolis Cedex, FRANCE�
rodrigue, erbi � @eurecom.fr

(Published in IEEE/ACM Transactions on Networking, August 2002)

Abstract—Popular content is frequently replicated in multiple
servers or caches in the Internet to offload origin servers and im-
prove end-user experience. However, choosing the best server is a
non-trivial task and a bad choice may provide poor end user ex-
perience. In contrast to retrieving a file from a single server, we
propose a parallel-access scheme where end users access multi-
ple servers at the same time, fetching different portions of that
file from different servers and reassembling them locally. The
amount of data retrieved from a particular server depends on the
resources available at that server or along the path from the user
to the server. Faster servers will deliver bigger portions of a file
while slower servers will deliver smaller portions. If the avail-
able resources at a server or along the path change during the
download of a file, a dynamic parallel-access will automatically
shift the load from congested locations to less loaded parts (server
and links) of the Internet. The end result is that users experience
significant speedups and very consistent response times. More-
over, there is no need for complicated server selection algorithms
and load is dynamically shared among all servers. The dynamic
parallel-access scheme presented in this paper does not require
any modifications to servers or content and can be easily included
in browsers, peer-to-peer applications or content distribution net-
works to speed up delivery of popular content.

I. INTRODUCTION

In order to offload popular servers and improve end
user experience, copies of popular content are often
stored in different locations. With network caching, ge-
ographically dispersed caches store copies of the docu-
ments required by their clients. With mirror site repli-
cation, documents from a primary site are proactively
replicated at secondary sites. With peer-to-peer appli-
cations, users fetch and store content from other peer-
users in a effort to share the load among nodes at the
edge of the network and bring content closer to the
users.

When a copy of the same document exists at multi-
ple servers, choosing the server that provides the best
response time is not trivial and the resulting perfor-
mance can dramatically vary depending on the server
selected [15] [?] [30]. Even when the fastest server
has been selected, its performance can fluctuate during
a download session, resulting sometimes in a poor re-
sponse time at the end of the download. Rather than
trying to choose the fastest available server, users can
experience a better and more uniform performance by
connecting to several servers that have an exact copy of

the document: Instead of downloading the entire docu-
ment from one server, a user downloads different parts
of the same document from each of the servers in par-
allel. Once all the parts of the document are received,
the user reconstructs the original document by reassem-
bling the different parts.

In this paper we propose a parallel-access scheme
to download content from multiple servers at the
same time. We consider two different parallel-access
schemes, (i) history-based TCP parallel-access, and
(ii) dynamic TCP parallel-access . With a history-
based parallel-access, clients specify a-priori which
part of a document must be delivered from each mirror
server, e.g., server one sends the first half of the docu-
ment, and server two sends the second half. The portion
of a document delivered by one server should be propor-
tional to its service rate, thus, a slow server will deliver
a small part of the document while a fast server will de-
liver a big part of the document. To calculate the portion
of a document assigned to each server, a history based
parallel-access uses a database of previous server rates,
which is refreshed periodically, e.g. every few minutes.
A history-based parallel-access scheme can speedup the
download of a document when the network/server con-
ditions are stable or easily predictable. However, when
network/server conditions change rapidly, server rates
are hard to predict and a history-based parallel-access
performs poorly.

With a dynamic parallel-access, on the other hand, a
client partitions a document into a large number of small
blocks. The client first requests a different block from
each server. Whenever a server finishes transmitting a
block, the client issues a new request for a block that
has not yet been requested from any other server. The
same process is repeated for each block until all blocks
are fully received. Note that at any given point in time
all servers are kept busy sending a block (except for the
idle times between block requests). When the client re-
ceives all blocks it reassembles to reconstruct the whole
document.

There are several advantages to using a dynamic
parallel-access. First, since the block size is small, a dy-

2

namic parallel-access can easily adapt to changing net-
work/server conditions. The servers contacted share the
load in a way that is proportional to the available re-
sources at the server or in the path from the user to the
server, therefore, performing automatic load balancing.
Fast servers will deliver bigger portions of a document
while slow servers will deliver smaller portions. This
automatic load balancing is performed without any a-
priori information about server rates. Second, since the
client is using several connections to different servers, a
parallel-access is more resilient to congestion and fail-
ure in the network/servers than connecting to a single
server. Load is automatically shifted from congested
parts of the Internet to other parts with more abundant
resources. Third, the server selection process is elimi-
nated since clients connect to all available servers with
a document copy. Fourth, the throughput seen by the
client increases. Ideally, the total throughput seen by
the client is equal to the sum of the bandwidths from
each individual server to the client.

A parallel-access, however, has some additional over-
head compared a single access. There is an additional
overhead incurred when opening multiple connections
and extra traffic generated to perform block requests
(for a complete discussion on the costs a parallel-access
see Section VI-A). To minimize the impact of these
costs, a parallel-access must be employed only with
documents of a certain size, e.g. in the order of sev-
eral hundreds of Kbytes. In the Web the number of ob-
jects of this size is relatively small, thus, instead of sug-
gesting a parallel-access for general Web downloads,
we propose a dynamic parallel-access for other con-
tent types such as large documents, software downloads,
music, video clips, or images.

Using analytical and experimental results we evaluate
the performance of a parallel-access scheme. We study
the parallel-access behavior under different number of
servers, document sizes and various network/server
conditions including high-speed links as well as con-
gested slow links. In addition, we use parallel-access
implementation to better understand its advantages and
limitations in a real deployment scenario and better de-
fine the scenarios where a parallel-access is most bene-
ficial.

The rest of the paper is organized as follows. Sec-
tion II presents and analyzes a history based parallel-
access. In Section III we present the dynamic parallel-
access and demonstrate that it offers dramatic speedups
for different document sizes, number of servers, and
network conditions. Section IV considers a dynamic
parallel-access where a client is connected through a
modem link. Section V compares a dynamic parallel-
access with a scheme where the client opens multiple
parallel connections to the same server, and also stud-
ies the impact of request pipelining. Section VI dis-
cusses several important issues for the deployment of a
parallel-access. Section VII discusses related work and

section VIII concludes the paper.

II. HISTORY BASED PARALLEL-ACCESS

A history-based parallel-access uses information
about the previous transmission rates between the client
and every mirror server. It needs this information to de-
cide a-priori which part of a document should be deliv-
ered by each server. The client divides a document into�

disjoint blocks, and requests one block from every
mirror server. Let ��� be the transmission rate for server�
, ��� � � �

and let � be the document size. If 	 � � is
the size of the block delivered by server

�
then
 ��������� �denotes the download time of this block. To achieve

a maximum speedup, all servers must finish transmit-
ting their block at the same time, thus,
 ���
�� for all��������� � � ���!�!�"�$#

. When all servers transmit their block
at the same time, there are no servers that stop trans-
mitting before the document is fully received. The rate
�&% achieved with parallel-access when all servers keep
sending useful data until the document is fully received,
is equal to the sum of the individual rates of all servers,
i.e. �&% �('*)�,+.- � � . Fast servers send a bigger portion
of the document, while slow servers send smaller por-
tions. To achieve a maximum speedup, the size 	/�0� of
the block sent by server

�
, must be equal to 	/�1� � � �� 2 .

A history-based parallel-access needs to keep a
database with information about the previous rates from
the different servers to the receiver in order to esti-
mate the rate ��� to every server. Instead of having one
database per-client, a single database could be shared by
a group of receivers connected through a proxy-cache.
The database is actualized every time that a client con-
nects to a server or can be updated periodically with an
automated probing from the proxy.

A. Experimental Setup

To evaluate history-based parallel-access we have
implemented this scheme as a JAVA client program
that takes as input parameters the URLs and uses a
database of previous rates from every mirror server to
the client. The JAVA client performs a history-based
parallel-access for the requested document, saves the
document locally, and records the time it took to down-
load the document. To calculate the size of every block,
clients need to know the total document size � . To ob-
tain � , the parallel-access JAVA client polls the servers
using a HTTP request at the beginning. The document
size could also be pre-recorded in a proxy cache or
given to the client through a DNS server, thus, avoid-
ing additional RTTs to poll the servers.

To analyze the performance of a history-based
parallel-access scheme, we performed several experi-
ments using mirror servers in the Internet. In particu-
lar, we considered several mirror servers of the Squid
Web Page (http://squid.nlanr.net/) [32]. Figure 1 shows
a network map with the mirror servers considered and
the bandwidth of the slowest link in every path as given

3

by pathchar [18]. The Java client is always located at
EURECOM, France. Since the servers are situated in
different countries and given that the connection from
our institution (EURECOM) into the Internet has a high
access rate, a parallel-access connection from a EU-
RECOM client to the mirror servers is likely to be
bottleneck-disjoint.

3.3 Mbps

86 Mbps

44 Mbps

66 Mbps124 Mbps

57 Mbps

130 M
bps 41

 M
bp

s

9.4 M
bps

5.6 Mbps 66 Mbps

1.7 Mbps

446 kbps

Israel

Australia

Japan

UK

Australia

29 Mbps

Spain

Austria

PortugalSlovakia Greece

286 kbps 995 kbps 7.1 Mbps

3.5 Mbps

7.8 Mbps

Client

Mirror Site

Eurécom, France

Fig. 1. Mirror servers for the Squid home page. Client is located at
EURECOM, France.

We evaluated a history-based parallel-access scheme
every ��� minutes, making sure that different experi-
ments do not overlap. We run the experiments ��� hours
a day during a ��� -day period and averaged over the ��� -
day period.

B. Analysis of the Results

Next, we present the performance results of a history-
based parallel-access where a client at EURECOM re-
quests a document of ���
	 KBytes from two servers
(Austria and UK), which have average transmission
rates between �
� - ���
� Kbps. The document requested
is the gzipped beta version of the SQUID 1.2 soft-
ware [32]. The database with the previous rates from the
client to every server is updated when the JAVA client
performs a request for the document, that is every ���
minutes. The client assumes that the average rate � � of-
fered by every server will be equal to the rate obtained
��� minutes before.

In Figure 2 we show the download time obtained us-
ing a history-based parallel-access, and the download
time obtained using an individual connection to every
server. We see that during the nights, when network
conditions do not vary much, a history-based parallel-
access can efficiently estimate the average rate offered
by every server and allows to significantly decrease
the download time compared to the situation where the
client accesses a single server. However, during day-
time, network conditions rapidly change and estimating
the rate to every server by using the previously achieved
rates, results in poor estimates. Thus, the download
times obtained with a history-based parallel-access can
be higher than the download times when clients access

0 2 4 6 8 10 12 14 16 18 20 22
0

5

10

15

20

time of day

T
im

e
to

 d
ow

nl
oa

d
(s

ec
)

UK
Austria
Parallel
Optimum

(a) �������� KB, ����� .

0 2 4 6 8 10 12 14 16 18 20 22
0

50

100

150

200

250

time of day

T
im

e
to

 d
ow

nl
oa

d
(s

ec
)

Japan
Protugal
Slovakia
Australia
Parallel
Optimum

(b) �������� KB, ����� .

Fig. 2. History-based parallel-access .

a single server. Similar performance for a history-based
parallel-access is also obtained for a different set of mir-
ror servers (Figure 2(b)). In figure 2 we also show the
optimum download time. The optimum download time
is defined as the download time achieved by a parallel-
access scheme where all servers send useful informa-
tion until the document is fully received. To calculate
(a-posteriori) the optimum download time, the average
rates obtained from every server after the reception of a
document are used.

To improve the performance history-based parallel-
access schemes, the database could be refreshed more
frequently during day-time and other more sophisti-
cated estimation algorithms could be used. However,
finding the right refresh period and a good algorithm to
estimate the rates is not an easy task. In next section, we
present another parallel-access scheme that does not re-
quire any past information and does not need to estimate
the rates to the servers. Instead, the scheme dynamically

4

adapts to the changing network conditions in real-time.

III. DYNAMIC PARALLEL-ACCESS

We consider now a parallel-access scheme that uses
dynamic requests between a client and the servers as
the download of the document progresses. With a dy-
namic parallel access, the document is divided by the
client into � blocks of equal size. In the case of Web
access, a block is specified as a range of bytes in a doc-
ument, e.g. from byte ����� to byte �
��� . A block re-
quested can be specified using the HTTP1.1 byte-range
header [16]. The dynamic parallel-access scheme pro-
ceeds as follows:
� A client first requests one block from every server.
� Every time a client has completely received one block
from a server, the client requests from this server an-
other block that has not yet been requested from any
other server.
� When the client has received all blocks, it reassem-
bles them to reconstruct the whole document.
Since a client typically issues several requests to the
same server during the download of a document, TCP-
persistent connections are used between the client and
every server to minimize the overhead of opening mul-
tiple TCP connections [27].

In order to best exploit the advantages of parallel-
access , one needs to keep all servers busy until all
blocks have been received. In the dynamic parallel-
access scheme outlined above this is not the case.
� Each server will be idle between two consecutive
block transfers (see Figure 3). This idle time is referred
to as inter-block idle time and corresponds to one round-
trip time RTT. One can entirely avoid the inter-block
idle times by pipelining requests for different blocks to
the same server: A request for a new block is made be-
fore the previous block is fully received, thus keeping
the server busy at all the time while there are still blocks
to transmit. We will elaborate more on this point in Sec-
tion IV-A.
� Not all servers terminate at the same time: If there
are fewer than

�
blocks left (where

�
is the number

of servers contacted) that have not been received, some
servers will no longer transmit a block. The period of
time since there are less than

�
servers transmitting

blocks until the instant the document is fully received
is referred to as termination idle time. The termination
idle time is smaller or equal than ���� ��� , where �� is the
block size and ��� is the rate to the slowest server.

The following points need to be considered when de-
termining the size of the blocks requested:
� The number � of blocks should be chosen to be much
larger than the number

�
of mirror servers that are ac-

cessed in parallel.
� Each block should be small enough to provide a fine
granularity of striping and ensure that the transfer of
the last block requested from each server terminates
at about the same time, thus, fully utilizing the server

iBlock

iget Block

get Block

Time of Block i

Idle Time

 Transmission

j

Client Mirror Site

(RTT)

Fig. 3. Dynamic parallel-access : Block request.

and network resources until complete termination of the
document transfer.
� Each block should also be sufficiently large as to keep
the inter-block idle time small compared to the down-
load time of a block.

To reconcile the last two points, the document re-
quested via parallel-access must be sufficiently large,
i.e. in the order of several hundreds of KBytes.

A. Analysis of the results

To evaluate the performance of dynamic parallel-
access, we implemented the scheme as a JAVA client.
The JAVA client takes as input parameters the URLs of
the servers with replicated content, performs a dynamic
parallel-access, saves the document locally, and records
the transmission rate obtained. We evaluate the dynamic
parallel-access scheme using the experimental setup de-
scribed in Section II-A.

Our current implementation of dynamic parallel-
access does not consider pipelining to reduce the inter-
block idle times. However, the implementation reduces
the termination idle time as follows: When there are
fewer than

�
blocks missing, the client requests idle

servers to deliver a block that is already requested from
another server but that has not yet been fully received.
With this approach, clients experience a transmission
rate that is at least equal to the transmission rate of the
fastest server at the expense of some bandwidth over-
head. The bandwidth wasted in the worst case, is equal
to '*)	� -�,+.- � �� , where �� is the block size. The band-
width wasted on average is much smaller than the worst
case scenario since slow servers that did not complete
the transmission of their last block are stopped after the
document is fully received.

There are some more ways to minimize the band-
width wasted1

� One can decrease the block size �� of the blocks re-
quested from slow servers. More general, by dynami-
cally adjusting the block size so that all servers finish

These improvements have not be included in our implementation

of the parallel access scheme.

5

at the same time, the bandwidth wasted would be zero.
However, this approach requires accurate bandwidth es-
timations for each connection at runtime, which may be
difficult to obtain [13].
� One can stop slow servers as soon as there are less
than

�
blocks missing and request the missing bytes

only of the last blocks from the fastest server.
We now compare the transfer time of dynamic

parallel-access with the transfer time of an individual
access to every server and the optimum transfer time
that would be achieved if there are neither intra-block
nor termination idle times. The optimum transfer time
provides a lower bound on the transfer time achievable
by any implementation of a parallel-access scheme.

We first consider a dynamic parallel-access to down-
load a �
�
	 KByte document, which is replicated in� � � mirror servers (Figure 4). The actual servers are
located in Australia, Japan, Slovakia, and Portugal, to
ensure disjoint paths. The average rate to these servers
ranges from � to ��� KBytes/sec, however, the instan-
taneous rates greatly fluctuate during the course of the
day. We have chosen � � 	
� blocks.

0 2 4 6 8 10 12 14 16 18 20 22
0

50

100

150

200

250

time of day

T
im

e
to

 d
ow

nl
oa

d
(s

ec
)

Japan
Portugal
Slovakia
Australia
Parallel
Optimum

Fig. 4. Dynamic parallel-access . � � ��� Kbytes, � � ��� , � �
� .

From Figure 4 we can see that dynamic parallel-
access offers significant speedups compared to an in-
dividual document transfer from any single server. The
transfer time is reduced from ��� - ����� seconds to �
� sec-
onds during all the periods of the day. Even during
highly congested periods, where the network conditions
rapidly change, a dynamic parallel-access offers very
small transfer times. We also observe that the transfer
time of a dynamic parallel-access is very close to the
optimum transfer time. Moreover, a dynamic parallel-
access that would implement pipelining to avoid inter-
block idle times would have performance almost equal
to that of the optimum parallel scheme.

Next, we consider the situation with two fast servers
(��� KBytes/sec) and two slow ones (��� KBytes/sec).
The fast servers are located in Greece and Spain, and
the slow ones in Australia and Israel (Figure 5). The

document size is smaller than in the previous experi-
ment, � � �
��� KBytes, and we have also reduced the
number of blocks to � � ��� to avoid that inter-block
idle times account for too high a percentage of the total
transfer time (the document requested is the FAQ from
SQUID in postscript format [32]).

0 2 4 6 8 10 12 14 16 18 20 22
0

10

20

30

40

50

time of day

T
im

e
to

 d
ow

nl
oa

d
(s

ec
)

Australia
Israel
Greece
Spain
Parallel
Optimum

Fig. 5. Dynamic parallel-access . � ����� Kbytes, � � ��� , � �
� .

We can see that a dynamic parallel-access scheme
achieves a transfer time that is almost half the trans-
fer time of the fast servers (slow servers only contribute
very few blocks and decrease the transfer time of the
document by little). The latency benefits may not seem
so important if they are compared to the case where a
client connects to a fast server (from � - � seconds to
� seconds). However, if the client chooses the wrong
server and connects to a slow server, it will end up ex-
periencing transfer times up to 	
� seconds.

In the next experiment we consider only two mir-
ror servers (Austria and UK) and perform a dynamic
parallel-access for a large document of � MBytes (Fig-
ure 6). Since both servers have a similar rate, a parallel-
access will reduce the transfer time by half. The time
to download the document of � MBytes from a sin-
gle server can be up to �
� seconds. Using a dynamic
parallel-access, the transfer rate is less than 	
� seconds.
The difference between the transfer time measured and
the one of the optimal parallel-access scheme is due to
the inter-block idle times.

B. Performance of Parallel Access to Small Documents

Even though a parallel-access scheme is not intended
to be used with small documents, we study the perfor-
mance of a dynamic parallel-access with small docu-
ments of several KBytes in size.

In Figure 7 we see the performance of a dynamic
parallel-access scheme for a ��� KByte document. We
consider two mirror servers (Spain and Greece) and
choose � � � blocks. We see that a dynamic parallel-
access has a download time that varies very little with
the time of the day and is in most cases lower than the

6

0 2 4 6 8 10 12 14 16 18 20 22
0

20

40

60

80

100

120

time of day

T
im

e
to

 d
ow

nl
oa

d
(s

ec
)

UK
Austria
Parallel
Optimum

Fig. 6. Dynamic parallel-access . � � Mbytes, � � ��� , � ��� .

download time of the fastest server. Compared to the
optimum download time, a dynamic parallel-access has
a much higher download time since the inter-block idle
times account for a high percentage of the total down-
load time.

0 2 4 6 8 10 12 14 16 18 20 22
0

0.5

1

1.5

2

2.5

3

3.5

4

time of day

T
im

e
to

 d
ow

nl
oa

d
(s

ec
)

Greece
Spain
Parallel
Optimum

Fig. 7. Dynamic parallel-access . � � ��� � , � ��� , ��� � .

In addition, with small documents the connection
setup time may account for a non-negligible portion of
the total download time. While a parallel-access scheme
speeds up the download time of the document it can not
do anything about the connection time. To obtain better
performances with a parallel-access, several small doc-
uments could be grouped together, i.e. all documents in
a Web page, to perform one dynamic parallel-access to
the bigger document.

IV. DYNAMIC PARALLEL-ACCESS IN CASE OF A

SHARED BOTTLENECK LINK

In this section we study the performance of a dynamic
parallel-access where a client is connected through a
modem link, i.e. a low speed access link. In this case the
paths from the client to the servers are not bottleneck-
disjoint. A single server may already consume all the

0 2 4 6 8 10 12 14 16 18 20 22
40

50

60

70

80

90

100

110

120

130

time of day

T
im

e
to

 d
ow

nl
oa

d
(s

ec
)

Japan 1
Australia
Japan 2
Parallel

(a) � ����� KBytes, � � � � , � ��� .

0 2 4 6 8 10 12 14 16 18 20 22
120

140

160

180

200

220

240

260

280

300

time of day

T
im

e
to

 d
ow

nl
oa

d
(s

ec
)

Austria
Slovakia
Parallel

(b) �� ����� KBytes, � ����� , ��� � .

Fig. 8. Retrieval latency for a parallel-access scheme and for an
individual-access scheme to every server over a shared bottleneck.

bandwidth of the modem link. Therefore, when a client
uses another server in parallel there is no residual net-
work bandwidth and packets from different servers in-
terfere and compete for bandwidth.

In Figure 8 we consider dynamic parallel-access for a
client connected through a modem line at ��� Kbits/sec.
We show the download time achieved when connecting
to every server individuallyand when connecting in par-
allel to all servers using a dynamic parallel-access. In
Figure 8(a) we consider two slow servers (Japan 2 and
Australia) and a fast server (Japan 1). In case of an indi-
vidual access to the fast server, the modem bandwidth is
fully utilized and the download time varies little during
all the periods of the day. For an individual access to
one of the slow servers, the rates obtained are about ���
Kbits/sec, which is much lower than the modem speed
of �
� Kbits/sec. In this situation, the modem link is
not fully utilized and the download time fluctuates de-

7

pending on the different levels of congestion in the net-
work/servers along the day. A similar effect can be seen
in Figure 8(b), where there are two mirror-servers, a fast
one and a slow one.

For the dynamic parallel-access, we see that the
download time achieved is close to the one of the fastest
server, which is limited by the transmission rate of the
modem link. The fact that the download time obtained
with a dynamic parallel-access is always slightly higher
than the download time obtained for the fastest server is
due to the inter-block idle times. Next, we study the per-
formance of a dynamic parallel-access that uses pipelin-
ing to avoid idle these times.

A. Evaluation of Request Pipelining

In this section we repeat the previous experiments
(Figure 8(a) and 8(b)) and simulate a dynamic parallel-
access with block request pipelining. With request
pipelining, a new block is requested from a server be-
fore the previously requested block is fully received. To
fully avoid inter-block idle times, a new block should
be requested at least one RTT before the current block
is completely received (see Figure 3). Pipelining there-
fore requires a minimum block size. The block size
should such that ������

�� � . For instance, if the
RTT between the client and most distant server is equal
to RTT= ����� msec and the server has a transmission rate
� � ��� KBytes/sec, the block size must be �� � ��� � .

To estimate the improvement offered by request
pipelining, we first measure for each server

�
,
� �

� � � �!�!�!� �$#
the download time �
	 � obtained by parallel-

access without pipelining and the average round-trip
time ������ . Then, we assume the inter-block idle
time to be equal to ������� . If server

�
has transmit-

ted ��� � blocks, we estimate the download time �
	 % �
with request pipelining as �
	 % � � �
	 ���������"��� �����
������� . The estimated time
 % to completely down-
load the document using pipelining is then given as

 % �����! �#"!$ -&%('('('(%)*) �
	

% � .
In Figure 9 we show the estimated download time
 %

achieved by a parallel-access with pipelining through a
modem link. We observe that the download time of a
parallel-access with pipelining is smaller (Figure 9(a))
or equal (Figure 9(b)) than the download time achieved
by a single connection to the fastest server. In Fig-
ure 9(a) the download time of each server is much
smaller than the maximum modem link rate, thus, a sin-
gle server connection does not fully utilize the modem
link. In this case, a parallel-access with pipelining can
speedup the transfer of a document compared to a sin-
gle server connection, and achieve download times that
are even smaller than those offered by the fastest server.
From Figure 9(a) it is also important to notice, that the
transfer time achieved with a dynamic parallel-access
using pipelining is almost equal to the optimum down-
load time. Thus, the additional delay that the JAVA im-
plementation of dynamic parallel-access introduces is

0 2 4 6 8 10 12 14 16 18 20 22
50

100

150

200

250

300

time of day

T
im

e
to

 d
ow

nl
oa

d
(s

ec
)

Japan 1
Australia
Japan 2
Paral+Pipe
Optimum

(a) ������ � KBytes, � ����� , ����� . Pipelining

0 2 4 6 8 10 12 14 16 18 20 22
100

150

200

250

300

350

400

450

500

time of day

T
im

e
to

 d
ow

nl
oa

d
(s

ec
)

Austria
Slovakia
Paral+Pipe

(b) �������� KBytes, � ����� , ����� . Pipelining

Fig. 9. Retrieval latency for a dynamic parallel-access scheme and
for an individual-access scheme to every server through a modem
link.

very small.
We would like to note that it is easy to implement

pipelining. It does not require to calculate the exact
RTTs but one simply needs to estimate an upper bound
on the RTTs. Using an overestimated (too high a)
RTT, pipelining eliminates the idle times with no per-
formance degradation.

V. DYNAMIC PARALLEL-ACCESS VS. PARALLEL

ACCESS TO A SINGLE SERVER

In this section we compare a dynamic parallel-access
to multiple mirror-servers with a parallel-access to a sin-
gle server. For a fair comparison, we consider the situ-
ation where a single client opens

�
TCP-parallel con-

nections to the same server and compare this case to a
dynamic parallel-access to

�
servers. Let � � be the rate

to the slowest server, and �,+ be the rate to the fastest
server. If the residual bandwidth of the path from the

8

client to the server is large enough, a
�

-parallel con-
nection to a single server with rate ��� will have in the
best case a transmission rate equal to

� � ��� . A dy-
namic parallel-access to

�
servers has a transmission

rate ��% � ')� +.- � � , which is higher than the transmis-
sion rate of a

�
-parallel-access to the slowest server,

but smaller than the transmission rate of a
�

-parallel-
access to the fastest server,

� � � � � �&% � � �"� + .
Next, we consider the situation where there are two

mirror servers, a slow one in Greece and a fast one
in Spain, and perform the following experiments (i)
clients retrieve a document using a single connection
to each server, (ii) clients retrieve a document using a
dynamic parallel-access to both servers, (iii) clients re-
trieve a document using a dynamic parallel-access with
two connections to the same server.

Figure 10 shows the download time obtained for the
different schemes and for two different document sizes.
For the fast server in Spain, the available resources from
the client to the server are abundant, and therefore a two
parallel connections to this server result in a reduction
of the download time compared to a single connection
to the same server. However, when two connections are
simultaneously opened to the slow server in Greece, the
resulting download time is sometimes higher than the
download time obtained if the client would open only
one connection to this server. This is due to the fact that
the server or network path to Greece is very instable
and variable. Thus, opening two TCP connections to
the same server does not ensure better response times
since the server or the networks may be experiencing
high load at that time. With a dynamic parallel-access to
both servers, on the other hand, load dynamically shifts
to use resources where they are available, thus keeping
the load on congested servers/network paths low. As a
result, the download time for a dynamic parallel-access
to both servers is smaller than a parallel-access to the
slowest server and quite comparable to a parallel-access
to the fastest server only.

In Figure 11 we have considered the situation where
the client opens four parallel connections to a single
server and we compare the obtained speed-up with that
of a dynamic parallel-access to both servers. We can see
that for both Greece and Spain, opening four connec-
tions to the same server gives better performance than
opening just one. While opening four connections to
the fast server in Spain offers smaller download times
than a dynamic parallel-access to both servers, in the
case of opening four connections to the slow server in
Greece, the download time is equal or even higher than
a dynamic parallel-access to both servers.

Therefore, while parallel connections to a single
server may result in high speedups if the fastest server is
selected, they will also result in little speedup if a slow
server is selected, even for a high number of concurrent
connections. On the other hand, a dynamic parallel-
access to both servers automatically achieves very good

0 2 4 6 8 10 12 14 16 18 20 22
0

5

10

15

20

25

30

35

time of day

T
im

e
to

 d
ow

nl
oa

d
(s

ec
)

Greece*2
Spain*2
Greece
Spain
Parallel

(a) � � ��� KBytes, � � � � .

0 2 4 6 8 10 12 14 16 18 20 22
0

5

10

15

20

25

30

35

40

time of day

T
im

e
to

 d
ow

nl
oa

d
(s

ec
)

Austria*2
UK*2
Austria
UK
Parallel

(b) �������� KBytes, � ����� .

Fig. 10. Retrieval latency for a dynamic parallel-access scheme to
� � � servers compared to a double parallel connection to the
same server.

speedups without any server selection. Moreover, when
using multiple connections to the same server the links
close to the server or the actual server may become
congested, and clients will not experience any speedup.
With a dynamic parallel-access to different servers, on
the other hand, the load is gracefully shared among the
servers and there is a higher number of receivers that
can experience significant speedups.

VI. DISCUSSION

A. Cost of Parallel-Access

A parallel-access improves the download perfor-
mance and provides several other performance advan-
tages compared to accessing a single server. However, a
parallel-access also has several costs involved that need
to be considered.

There is the overhead of doing an extra server access

9

0 2 4 6 8 10 12 14 16 18 20 22
0

5

10

15

20

time of day

T
im

e
to

 d
ow

nl
oa

d
(s

ec
)

Greece*4
Spain*4
Greece
Spain
Parallel

Fig. 11. Retrieval latency for a dynamic parallel-access scheme to
� � � servers compared to a four parallel connections to the
same server. ������� KBytes, � � ��� .

to find out the document size (this could be done with
a HEAD request [16]). Note that for large documents
the overhead incurred in obtaining the document size is
negligible. Moreover, issuing a first block request with a
predetermined fixed size, which would include the doc-
ument size plus some data, and then using a parallel-
access on further block requests, could eliminate this
overhead.

There is the overhead incurred by the block request
messages. To reduce this cost, an intelligent block as-
signment policy can be used to gradually increase the
size of those blocks assigned to fast servers.

There is an increase in the overall number of TCP
connections compared to a single server access. How-
ever, the duration of the TCP connections with a
parallel-access is smaller since each server delivers only
a portion of the whole document. Also, the connec-
tion setup is relatively insignificant when big documents
are considered. Finally, using servers in different time-
zones (e.g. selecting servers from places in the world
where it is night time), reduces the impact of opening
multiple connections since idle servers can be selected.

B. When to use a Parallel-Access: Benefits and Limita-
tions

To outweigh the costs described in the previous sec-
tion, a parallel-access must be applied to large files in
the order of several hundreds of KBytes. Examples
of such files are large document downloads, software
packages, music, video, and large images. In the Web,
most of the files tend to be quite small, and only the
root file of a Web page is usually big enough to bene-
fit from a parallel-access. Nevertheless, parallel-access
can be used to download Web content if several Web ob-
jects are bundled together into a big file. This technique
allows, for instance, to rapidly prefetch all the compo-
nents of a Web page into a Web proxy cache.

When clients access the Internet through slow links,

e.g. modem link, the rate of each server may be higher
than the rate at the client’s access link. In this case
performing a parallel-access may result in no additional
speedup versus an individual access to one server. How-
ever, the servers rates are usually not known a-priori by
the client and servers or network conditions may fluc-
tuate during a download session. A parallel-access re-
duces the uncertainty of selecting a very slow or insta-
ble server and brings the client’s access link to its full
utilization, thus, providing a faster and more consistent
experience. One important point to note in this scenario
is that disjoint paths are not a necessary condition for
speedup. Instead a necessary condition is spare or abun-
dant resources (both at the server and along the path).

When clients access the Internet through fast links,
it is very likely that the bottleneck capacity is some-
where in the network or in the servers themselves. As
more and more users access the same popular content,
the likelihood of sharing the same bottleneck rapidly in-
creases. When the bottleneck resources are fully uti-
lized, all users compete for the same resources and in-
creasing the number of parallel-access connections per
user does not result in additional speedups. Though the
benefits of a parallel-access in a shared bottleneck en-
vironment are limited, a parallel-access still provides
a much better experience than selecting a single server
since it avoids the risk of selecting a very slow server.
Moreover, a parallel-access provides the same average
performance to all users that share the same bottleneck
since it prevents that some users are assigned to fast
servers and experience low download times, while other
users are assigned to very slow servers and experience
high download times. Besides, a parallel-access hides
sudden changes in server/link performance by shifting
load from servers/links that are overloaded to other parts
on the Internet where resources are spare.

One way to reduce the probability that all users share
the same bottleneck and thus improve the speedup of-
fered by a parallel-access is to use a dynamic parallel-
access in the context of peer-to-peer applications or con-
tent distribution networks. In a peer-to-peer environ-
ment when a client downloads content from another
peer-client, the new client becomes itself a server for
future clients. As content becomes more and more pop-
ular, it gets replicated in new mirror sites throughout
the network. These new mirror sites can be used as new
sources to perform multiple parallel-accesses that avoid
to compete for the same resources.

In summary, we see the greatest potential for dynamic
parallel-access in the area of peer-to-peer applications
such as Napster, where the size of content accessed is
typically large and the machines storing these copies
of the same content are distributed over a large geo-
graphical area, which helps improve path-disjointness.
An application such as Napster also has the nice prop-
erty that the more popular a content, the more mirror
servers there are. This is due to the fact that as con-

10

tent becomes more and more popular, i.e. an increasing
number of clients have been downloading this content,
all these clients potentially become mirror servers.

C. Deployment Issues

These are a number of possible issues that should be
considered when deploying a parallel-access system.

Concerning the discovery of mirror servers, the most
frequent approach is to publish a list of mirror servers
on the master Web server. Clients, manually select the
server that they believe will offer the lowest retrieval
time. Some search engines provide a full list of mirror
servers and rate them in terms of loss rate and round-
trip-time [4]. Several organizations who run mirror
servers have modified DNS servers or delegate the DNS
resolution to other modified DNS servers that return to
the client the IP addresses of the administratively clos-
est mirror servers/caches [10] [2]. Other recent studies
suggest to extend DNS servers [19] or a central direc-
tory [17] to return a full list of all servers containing a
copy of a certain document. Current cache-sharing pro-
tocols [29] [14] keep local information about the loca-
tion of duplicated document copies in neighbor caches.
When a client requests a certain document and the docu-
ment is not found in the local cache, the local cache will
re-direct the request to the best neighbor cache with a
document copy.

To start a parallel-access, the client needs to know
the document size. The document size could be given
to the clients when they obtain the list of servers (from
a central repository, a modified DNS, the origin server,
etc). If this is not the case, the client can obtain the
document size with a first initial request for a fixed small
block.

The number of servers that a client connects to does
not necessarily need to comprise all mirror-servers.
In fact, most of the performance improvement of-
fered by a parallel-access can be achieved using a few
servers [25] [20]. Instead of using all mirror-servers,
clients can obtain a reduced subset of mirror servers
and perform a parallel-access in this subset. Obtaining
a subset of servers requires some server selection pro-
cess, however, this scoping process is still much easier
than selecting the fastest server.

In the case where there are several slow servers and
a few mirror-servers with relatively high transmissions
rates, almost all blocks will be requested from these fast
servers. In this case, a parallel-access may wish to drop
the connections from the slow servers to conserve server
resources without significantly affecting performance.
Moreover, if a server happens to be fast enough to use
all the bandwidth in the access link of the end user, a
parallel-access may decide to continue just with this fast
server or continue using multiple servers for load bal-
ancing reasons and to improve reliability and resilience
against possible congestion.

Parallel-access to Web documents requires that

clients and servers support range requests as specified
in HTTP 1.1 and TCP persistent connections. However,
current server implementations of range requests and
TCP persistent connections have some unpredictable
behavior that can affect the performance of a parallel-
access. For instance, servers are not required to honor
every range request and there may be cases where
servers respond with data that does not cover the re-
quested range. Also servers may choose not to honor
range requests for certain types of files. Moreover, not
all servers support persistent connections and may de-
cide to close the connection after each request transac-
tion. For a more detailed study of the peculiarities of
HTTP 1.1 server implementations see [21]. One way
to solve these problems is by placing a reverse proxy
in front of a server or farm of servers that implements
persistent connections as well as range requests.

Parallel-access only works when the replicated con-
tent is identically replicated. To make sure that differ-
ent servers store the exact same version of a document,
servers could provide a hashing tag that determines the
current version of the document.

Parallel-access can be deployed in client browsers,
cache sharing protocols, or content distribution net-
works. Moreover, parallel-access can be easily inte-
grated in peer-to-peer schemes [7] [3].

VII. RELATED WORK

Currently there exist several software packages that
allow clients to dynamically pause, resume, and jump
from one mirror server to another during a docu-
ment download if the current mirror server is very
slow [4] [8] [6]. Other software packages allow to open
multiple parallel connections to a certain server to speed
the download of a certain document [1].

Choosing the best mirror server has been subject of
research during the last years. Several techniques have
been proposed including multicast communication to
poll all the mirror servers [11], dynamical probing [?],
combining server push with client probes[15], and sta-
tistical record-keeping [31]. The work in [31], indicates
that the choice of the best server is often not obvious and
that the obtained performance can dramatically vary de-
pending on the server selected.

Maxemchuk’s work on dispersity routing [24] and
Rabin’s work on information dispersal [28] explored
how to improve document delivery from a single server
along multiple paths. Using erasure codes, the server
takes the original document, breaks it into � blocks and
generates � parity blocks with the property that any �
out of the ����� data/parity blocks can be used to recon-
struct the original � blocks. By transmitting more than
� blocks, the server reduces the download time and in-
creases the probability that the receiver is able to recon-
struct the original document even if some of the blocks
are lost.

Byers et al. [12] proposed to access multiple servers

11

in parallel. They use an open-loop multicast distribution
where different servers generate different sets of par-
ity blocks and cyclically transmit parities and originals.
Clients can recover the whole document as soon as they
receive enough (�) different blocks, regardless of which
servers the blocks came from [12]. To efficiently encode
large documents with small encoding/decoding delays,
special erasure codes [22], such as Tornado Codes[23],
must be used. However, this approach has a major draw-
back compared to the dynamic parallel-access scheme
discussed in this paper. It requires the servers to encode
all their documents and the clients to install decoders to
reconstruct the encoded documents. In addition, some
problems still remain unresolved such as how to stop
the servers or how to perform congestion control.

For these reasons, we propose a parallel access
scheme where clients and servers communicate via uni-
cast using TCP. To the best of our knowledge our
implementation of dynamic parallel-access is the first
parallel-access system that uses standard TCP and
HTTP protocols to dynamically request different pieces
of a document from the mirror servers, and does not re-
quire re-encoding of the content.

More recent experiments based on the parallel-
access technique described in this paper were presented
in [25]: Several tests were performed for a different im-
plementation of dynamic parallel-access in an environ-
ment where the available bandwidth between the client
and the servers is much higher (a factor of 	 to �) than
in our experiments. The results obtained indicate that
the performance of a parallel-access in such scenarios
can be smaller than the performance results presented
in this paper. However, the implementation in [25] can
benefit from a series of optimizations used in our pa-
per to significantly improve the performance. The main
optimization consists in keeping all servers busy at any
point in time by avoiding the inter-block and termina-
tion idle times. Using these enhancements, a parallel-
access continues to offer significant performance im-
provements compared to a single server selection even
in a high bandwidth scenario for documents of several
hundreds of KBytes.

Our implementation of dynamic parallel-access can
be easily integrated in Web browsers without any mod-
ification of the mirror servers and no additional buffer
requirements at the clients (since current Web browsers
already support opening multiple parallel connections
to the same server). It can also be included in cache
sharing protocols [14] [29] to share the load among
neighbor caches with the same document copy or con-
tent distribution networks [2] to speedup the download
of popular documents into proxy caches.

The dynamic parallel-access scheme described in this
paper has already been integrated into several peer-to-
peer applications such as Morfeus [26] or OpenCola [9],
which are used to download software, music, images, or
video. Both applications provide a mechanism to iden-

tify all the peer servers that store the same copy of the
content and they perform a parallel-access to speed up
content delivery. More recently companies such as Kon-
tiki [5] are using a content distribution network based
on end-hosts to provide efficient content delivery. Kon-
tiki uses a dynamic parallel-access scheme to eliminate
the selection process while speeding up content delivery
and offering a more consistent user experience.

VIII. CONCLUSIONS AND FUTURE WORK

Given that popular documents are often replicated on
multiple servers, we suggested that clients connect in
parallel to several mirror servers for retrieving a docu-
ment. We presented a dynamic parallel-access scheme
that speeds up document downloads, balances automati-
cally the load among servers, and avoids complex server
selection.

We implemented a dynamic parallel-access scheme
and evaluated its performance for different numbers of
servers, document sizes, and network conditions. We
showed that dynamic parallel-access achieves signifi-
cant speedups and has a performance that comes very
close to the optimum performance that can by achieved
with any parallel-access scheme. Even when clients are
connected through modem lines, a dynamic parallel-
access offers a download time that is close to the down-
load time of the fastest server without any server selec-
tion. A dynamic parallel-access scheme can be easily
implemented and does not require modifications of the
content in the mirror servers, in contrast with the dig-
ital fountain approach that requires re-encoding of the
document [12].

Future versions of our implementation will include
pipelining of several blocks to avoid idle times. How-
ever, the expected improvement will be modest since
a dynamic parallel-access without pipelining already
gives download times that are very close to the optimum
ones. To reduce the number of negotiations between the
client and the servers, clients could keep track of the
fastest server during the download of the first blocks and
instead of using a fixed block size, dynamically increase
the block size for the fast servers. This approach would
require some more complexity at the client, but seems a
natural extension to our scheme.

The integration of dynamic parallel-access into sev-
eral existing peer-to-peer applications and content dis-
tribution networks is an indication of the importance
of dynamic parallel-access for speeding up the object
download. Audio/video content is particularly well
suited for parallel-access since it is usually static, large,
and popular. Easy extensions of the parallel-access
technique described in this paper could also be used to
greatly improve audio/video streaming performance.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous review-
ers for their helpful comments. Eurecom’s research is

12

partially supported by its industrial partners: Ascom,
Cegetel, France Telecom, Hitachi, Motorola, Swisscom,
Texas Instruments, and Thomson CSF.

REFERENCES

[1] “Agiletp”, http://www.daemon-info.com/Us/products.htm.
[2] “FreeFlow: How it Works. Akamai, Cambridge, MA, USA. Nov

1999”.
[3] “Gnutella”, http://gnutella.wego.com.
[4] “Go!zilla”, http://www.gizmo.net/.
[5] “Kontiki”, http://www.kontiki.com.
[6] “Leechftp”, http://linux.fh-heilbronn.de/ debis/leechftp/.
[7] “Napster”, http://www.napster.com.
[8] “Netscape Smart Download”, http://www.netscape.com/.
[9] “OpenCola Swarmcast””, http://www.opencola.org/projects/swarmcast.shtml.
[10] “World Wide Web Consortium”, http://www.w3c.org/.
[11] J. Bernabeu, M. Ammar, and M. Ahamad, “Optimizing a

generalized polling protocol for resource finding over a multi-
ple access channel”, Computer Networks and ISDN Systems,
27:1429–1445, 1995.

[12] J. Byers, M. Luby, and M. Mitzenmacher, “Accessing Multi-
ple Mirror Sites in Parallel: Using Tornado Codes to Speed Up
Downloads”, In INFOCOM 99, April 1999.

[13] R. Carter and M. Crovella, “Server Selection Using Dynamic
Path Characterization in Wide-Area Networks”, 1997.

[14] L. Fan, P. Cao, J. Almeida, and A. Broder, “Summary Cache:
A Scalable Wide-Area Web Cache Sharing Protocol”, pp. 254–
265, Feb 1998, SIGCOMM’98.

[15] Z. Fei, S. Bhattacharjee, E. W. Zegura, and M. H. Ammar, “A
Novel Server Selection Technique for Improving the Response
Time of a Replicated Service”, In Proceedings of IEEE INFO-
COM, San Francisco, CA, USA, March 1998.

[16] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, T. Berners-Lee,
et al., “RFC 2068: Hypertext Transfer Protocol — HTTP/1.1”,
January 1997.

[17] S. Gadde, M. Rabinovich, and J. Chase, “Reduce, Reuse, Recy-
cle: An Approach to Building Large Internet Caches”, In The
Sixth Workshop on Hot Topics in Operating Systems (HotOS-
VI), May 1997.

[18] V. Jacobson, “Pathchar”, http://www.caida.org/Pathchar/
Source: ftp://ftp.ee.lbl.gov/pa thchar.

[19] J. Kangasharju, K. W. Ross, and J. Roberts, “Locating Copies
of Objects Using the Domain Name System”, In Proceedings
of the 4th International Caching Workshop, San Diego, March
1999.

[20] A. Kirpal, “Study of Parallel Access Schemes to Speed up the
Internet”, M.S. Thesis, University of Munich/Institut Eurécom,
Sophia Antipolis, France, April 1999.

[21] B. Krishnamurthy, J. Mogul, and D. Kirstol, “Key differences
between HTTP/1.0 and HTTP/1.1”, Proceedings of WWW-8
Conference, Toronto, May 1999.

[22] M. Luby, “Information Additive Code Generator and Decoder
for Communication Systems, US Patent No: 6,307,487 B1”,
October 2001.

[23] M. Luby et al., “Practical Loss-Resilient Codes”, In STOC,
1997.

[24] N. F. Maxemchuk, “Dispersity Routing in Store-and-Forward
Networks”, PhD Thesis, University of Pennsylvania, 1975.

[25] A. Miu and E. Shih, “Performance Analysis of a Dynamic Par-
allel Downloading Scheme from Mirror Sites Throughout the
Internet”, Term Paper, LCS MIT, Dec 1999.

[26] Musiccity, “http://www.musiccity.com”.
[27] V. N. Padmanabhan and J. Mogul, “Improving HTTP Latency”,

In Second World Wide Web Conference ’94: Mosaic and the
Web, pp. 995–1005, October 1994.

[28] M. O. Rabin, “Efficient Dispersal of Information for Security,
Load Balancing, and Fault Tolerance”, Journal of the ACM,
36(2):335–348, April 1989.

[29] A. Rousskov and D. Wessels, “Cache Digest”, In 3rd Interna-
tional WWW Caching Workshop, June 1998.

[30] M. Sayal, Y. Breibart, P. Scheuermann, and R. Vingralek, “Se-
lection Algorithm for Replicated Web Servers”, In Workshop
on Internet Server Performance, SIGMETRICS, Madison, USA,
June 1998.

[31] S. Sesham, M. Stemm, and R. Katz, “SPAND: Shared Pas-
sive Network Performance Discovery”, In Proceedings of the
USENIX Symposium on Internet Technologies and Systems, De-
cember 1997.

[32] D. Wessels, “Squid Internet Object Cache:
http://www.nlanr.net/Squid/”, 1996.

