
467

Loopy Belief Propagation for Approximate Inference: An
Empirical Study

Kevin P. Murphy and Yair Weiss and Michael I. Jordan
Computer Science Division

University of California
Berkeley, CA 94705

{ murphyk,yweiss,jordan }@cs.berkeley.edu

Abstract

Recently, researchers have demonstrated that
"loopy belief propagation" - the use of
Pearl's polytree algorithm in a Bayesian
network with loops - can perform well
in the context of error-correcting codes.
The most dramatic instance of this is the
near Shannon-limit performance of "Turbo
Codes" - codes whose decoding algorithm
is equivalent to loopy belief propagation in a
chain-structured Bayesian network.
In this paper we ask: is there something spe­
cial about the error-correcting code context,
or does loopy propagation work as an ap­
proximate inference scheme in a more gen­
eral setting? We compare the marginals com­
puted using loopy propagation to the exact
ones in four Bayesian network architectures,
including two real-world networks: ALARM
and QMR. We find that the loopy beliefs of­
ten converge and when they do, they give a
good approximation to the correct marginals.
However, on the QMR network, the loopy be­
liefs oscillated and had no obvious relation­
ship to the correct posteriors. We present
some initial investigations into the cause of
these oscillations, and show that some sim­
ple methods of preventing them lead to the
wrong results.

1 Introduction

The task of calculating posterior marginals on nodes
in an arbitrary Bayesian network is known to be NP­
hard [5]. This is true even for the seemingly easier
task of calculating approximate posteriors [6]. Never­
theless, due to the obvious practical importance of this
task, there has been considerable interest in assessing
the quality of different approximation schemes, in an
attempt to delimit the types of networks and parame­
ter regimes for which each scheme works best.

In this paper we investigate the approximation per-

formance of "loopy belief propagation" . This refers to
using the well-known Pearl polytree algorithm [12] on a
Bayesian network with loops (undirected cycles). The
algorithm is an exact inference algorithm for singly­
connected networks - the beliefs converge to the cor­
rect marginals in a number of iterations equal to the
diameter of the graph.1 However, as Pearl noted, the
same algorithm will not give the correct beliefs for mul­
tiply connected networks:

When loops are present, the network is no
longer singly connected and local propaga­
tion schemes will invariably run into trouble
. .. If we ignore the existence of loops and
permit the nodes to continue communicat­
ing with each other as if the network were
singly connected, messages may circulate in­
definitely around the loops and the process
may not converge to a stable equilibrium ...
Such oscillations do not normally occur in
probabilistic networks . . . which tend to bring
all messages to some stable equilibrium as
time goes on. However, this asymptotic equi­
librium is not coherent, in the sense that it
does not represent the posterior probabilities
of all nodes of the network [12, p.l95]

Despite these reservations, Pearl advocated the use of
belief propagation in loopy networks as an approxima­
tion scheme (J. Pearl, personal communication) and
exercise 4.7 in [12] investigates the quality of the ap­
proximation when it is applied to a particular loopy
belief network.

Several groups have recently reported excellent exper­
imental results by using this approximation scheme­
by running algorithms equivalent to Pearl's algorithm
on networks with loops. Perhaps the most dramatic
instance of this performance is in an error correcting
code scheme known as "Turbo Codes" [4]. These codes
have been described as "the most exciting and poten­
tially important development in coding theory in many

1 This assumes parallel updating of all nodes. The algo­
rithm can also be implemented in a centralized fashion in
which case it converges in two iterations [13).

468 Murphy, Weiss, and Jordan

years" [11] and have recently been shown [9, 10] to uti­
lize an algorithm equivalent to belief propagation in
a network with loops. Although there is widespread
agreement in the coding community that these codes
"represent a genuine, and perhaps historic, break­
through" [11], a theoretical understanding of their per­
formance has yet to be achieved. Yet McEliece et. a!
conjectured that the performance of loopy belief prop­
agation on the Turbo code structure was a special case
of a more general phenomenon:

We believe there are general undiscovered
theorems about the performance of belief
propagation on loopy DAGs. These theo­
rems, which may have nothing directly to
do with coding or decoding will show that
in some sense belief propagation "converges
with high probability to a near-optimum
value" of the desired belief on a class of loopy
DAGs [10].

Progress in the analysis of loopy belief propagation
has been made for the case of networks with a single
loop [18, 19, 2, 1]. For the sum-product (or "belief
update") version it can be shown that:

• Unless all the conditional probabilities are deter­
ministic, belief propagation will converge.

• There is an analytic expression relating the cor­
rect marginals to the loopy marginals. The ap­
proximation error is related to the convergence
rate of the messages - the faster the convergence
the more exact the approximation.

• If the hidden nodes are binary, then thresholding
the loopy beliefs is guaranteed to give the most
probable assignment, even though the numerical
value of the beliefs may be incorrect. This result
only holds for nodes in the loop.

In the max-product (or "belief revision") version,
Weiss [19] showed that (1) belief propagation may con­
verge to a stable value or oscillate in a limit cycle and
(2) if it converges then it is guaranteed to give the cor­
rect assignment of values to the hidden nodes. This
result is independent of the arity of the nodes and
whether the nodes are inside or outside the loop.

For the case of networks with multiple loops, Richard­
son [14] has analyzed the special case of Turbo codes.
He has shown that fixed points of the sum-product ver­
sion always exist, and has given sufficient conditions
under which they will be unique and stable (although
verifying these conditions may be difficult for large net­
works).

To summarize, what is currently known about loopy
propagation is that (1) it works very well in an error­
correcting code setting and (2) there are conditions for
a single-loop network for which it can be guaranteed
to work well. In this paper we investigate loopy prop­
agation empirically under a wider range of conditions.

Is there something special about the error-correcting
code setting, or does loopy propagation work as an
approximation scheme for a wider range of networks?

2 The algorithm

For completeness, we briefly summarize Pearl's belief
propagation algorithm. Each node X computes a be­
lief BEL(:x) = P(X = :xiE), where E denotes the ob­
served evidence, by combining messages from its chil­
dren ..\y;(:x) and messages from its parents 1rx(uk).
(Following Peot and Shachter [13], we incorporate ev­
idence by letting a node send a message to itself,
..\x(:x).)

(1)

where:

BEL(:x) = a..\(:x)1r(x)

,x(tl(x) = ..\x(x) IT ..\�}(x)
j

and:

(2)

7r('l(x) = LP(X = xiU = u) IT 1r�)(uk) (3)
u k

The message X passes to its parent U; is given by:

(4)
and the message X sends to its child Yj is given by:

7r�;+l)(:x) = a?C('l(x)..\x(x) IT .>.W(x) (5)
k;Cj

For noisy-or links between parents and children, there
exists an analytic expression for 1r(x) and Ax (u;) that
avoids the exhaustive enumeration over parent config­
urations [12].

We made a slight modification to the update rules in
that we normalized both ..\ and 1r messages at each
iteration. As Pearl [12] pointed out, normalizing the
messages makes no difference to the final beliefs but
avoids numerical underflow.

Nodes were updated in parallel: at each iteration all
nodes calculated their outgoing messages based on the
incoming messages of their neighbors from the pre­
vious iteration. The messages were said to converge
if none of the beliefs in successive iterations changed
by more than a small threshold (10-4). All messages
were initialized to a vector of ones; random initializa­
tion yielded similar results, since the initial conditions
rapidly get "washed out" .

For comparison, we also implemented likelihood
weighting [17], which is a simple form of importance
sampling. Like any sampling algorithm, the errors can
be driven towards zero by running the algorithm for
long enough; in this paper, we usually used 200 sam­
ples, so that the total amount of computation time was
roughly comparable (to within an order of magnitude)

to loopy propagation. We did not implement some of
the more sophisticated versions of likelihood weight­
ing, such as Markov blanket scoring (16], since our goal
in this paper was to evaluate loopy propagation rather
than exhaustively compare the performance of alter­
native algorithms. (For a more careful evaluation of
likelihood weighted sampling in the case of the QMR
network, see (8].)

3 The networks

We used two synthetic networks, PYRAMID and
toyQMR, and two real world networks, ALARM and
QMR. The synthetic networks are sufficiently small
that we can perform exact inference, using the junc­
tion tree algorithm. This allows us to measure the ac­
curacy of the approximation scheme. All the networks
have many loops of different sizes.

3.1 The PYRAMID network

Figure 1 shows the structure of the PYRAMID net­
work. This is a multilayered hierarchical network with
local connections between each layer and observations
only at the bottom layer. We chose this structure be­
cause networks of this type are often used in image
analysis- the bottom layer would correspond to pix­
els (see for example (15]).

All nodes were binary and the conditional probabilities
were represented by tables- entries in the conditional
probability tables (CPTs) were chosen uniformly in the
range (0, 1].

3.2 The toyQMR network

Figure 2 shows the structure of a "toyQMR" network.
This network is meant to represent the types of net­
works that arise in medical diagnosis - hidden dis­
eases in the top layer and observed symptoms in the
bottom layer. Here we randomized over structure and
parameters - for each experiment the parents of each
node in the bottom layer was a randomly chosen subset
of the nodes in the top layer. The parents subset was
chosen using a simple procedure - each parent-child
link was either present or absent with a probability of
0.5.

All nodes were binary and the conditional probabilities
of the leaves were represented by a noisy-or:

?(Child= OIParents) = e-Bo-L; B,Parent; (6)

where 110 represents the "leak" term.

The links !1; were chosen uniformly in the range (0, 1]
while 110 was chosen uniformly in the range [0, 0.01]
(hence the leaks are inhibited with very high probabil­
ity). The top layer had prior probabilities represented
as CPTs and they were chosen uniformly in the range
(0, 1].

Loopy Belief Propagation 469

3.3 The ALARM network

Figure 3 shows the structure of the ALARM network
- a Bayesian network for monitoring patients in in­
tensive care. This network was used by (3] to compare
various inference algorithms. The arity of the nodes
ranges from two to four and all conditional distribu­
tions are represented by tables. The structure and the
CPTs were downloaded from Nir Friedman's Bayesian
network repository at: www. cs. huj i. ac. il/"nir.

3.4 The QMR-DT network

The QMR-DT is a bipartite network whose structure is
the same as that shown in figure 2 but the size is much
larger. There are approximately 600 diseases and ap­
proximately 4000 findin nodes, with a number of ob­
served findings that varies per case. Due to the form
of the noisy-or CPTs the complexity of inference is ex­
ponential in the number of positive findings (7]. Fol­
lowing (8], we focused on the four CPC cases for which
the number of positive findings is less than 20, so that
exact inference is possible (using the QUICKSCORE
algorithm (7]).

4 Results

4.1 Initial experiments

The experimental protocol for the PYRAMID network
was as follows. For each experimental run, we first gen­
erated random CPTs. We then sampled from the joint
distribution defined by the network and clamped the
observed nodes (all nodes in the bottom layer) to their
sampled value. Given a structure and observations, we
then ran three inference algorithms -junction tree,
loopy belief propagation and sampling.

We found that loopy belief propagation always con­
verged in this case with the average number of iter­
ations equal to 10.2. Figure 4(a) shows the correla­
tion plot between the exact marginals (calculated us­
ing junction tree) and the loopy marginals (BEL(x)
in equation 1 at convergence). For comparison, fig­
ure 4(b) shows the correlation between likelihood
weighting and the correct marginals. Note that the
sampler has been run for 20 times as many iterations
as loopy propagation.

The experimental protocol for the toyQMR network
was similar to that of the PYRAMID network except
that we randomized over structure as well. Again we
found that loopy belief propagation always converged,
with the average number of iterations equal to 8.65.
Figure 5 shows the two correlation plots.

The protocol for the ALARM network experiments dif­
fered from the previous two in that the structure and
parameters were fixed - only the observed evidence
differed between experimental runs. We assumed that
all leaf nodes were observed and calculated the pos-

470 Murphy, Weiss, and Jordan

Figure 1: The structure of the PYRAMID network. All nodes are binary and observations appear only on the
bottom layer. Such networks occur often in image analysis where the bottom layer would correspond to pixels.

Figure 2: The structure of a toyQMR network. This is a bipartite structure where the conditional distributions
of the leaves are noisy-or's. The network shown represents one sample from randomly generated structures where
the parents of each symptom were a random subset of the diseases.

Figure 3: The structure of the ALARM network - a network constructed by medical experts for monitoring
patients in intensive care.

0.8

0.7

�0.4 ,JJ
0.3 :P"'o
0.2 ./ •. 0

0

0.1 / 0

0 0.2 0.4 0.6
exact marginal

a

,.,/

0.8

0.9

0.8

� 0.7

1?().6 �
"'o.s
:a �0.4
�

0.3

0 0.2

0

0.4 0.6
exact marginal

b

0.8

Figure 4: Correlation plots between the correct and approximate beliefs for the PYRAMID network, using (a)
loopy propagation and (b) likelihood weighting with 200 samples.

0.9

0.8

0.7

]i0.6
]i ,..o.s
§­
.20.4

0.3

0 0.2 0.4 0.6
correct marginals

a

0.8

0.9

0.8

0.7

� 0.6 -"

Loopy Belief Propagation 471

0 0

ofjflfl
o o o 00

0
0 Bo o oa oOo

0�(§)0
0 0
0 0 0 .�0.5 c. � 0.4 0 00 0 0

0 0
0 00 0

0.3 oo <>g0 o 0 0 0 0
0.2

a orA0 8
0.1 0 8 c

��! 0
0 0.2 0.4 0.6

correct marginals

b

0.8

Figure 5: Correlation plots between the correct and approximate beliefs for the toyQMR network, usmg (a)
loopy propagation and (b) likelihood weighting with 200 samples.

terior marginals of all other nodes. Again we found
that loopy belief propagation always converged with
the average number of iterations equal to 14.55. Fig­
ure 6 shows the correlation plots. With 200 samples,
the correlation for likelihood weighting is rather weak,
perhaps due to the larger arity of some of the nodes
(and hence the larger state space); after 1000 samples,
the correlation improves considerably.

The results presented up until now show that loopy
propagation performs well for a variety of architectures
involving multiple loops. We now present results for
the QMR-DT network which are not as favorable.

In the QMR-DT network there was no randomization.
We used the fixed structure and calculated posteriors
for the four cases for which posteriors have been cal­
culated exactly by Heckerman [7]. For none of these
four cases did loopy propagation converge. Rather, the
loopy marginal oscillated between two quite distinct
values for nearly all nodes. Figure 7(a) shows three
such marginals. After two iterations the marginal
seems to converge to a limit cycle with period two.
In Figure 7(b) it seems that the correct posteriors al­
ways lie inside the interval defined by the limit cycle.
However, this is not always the case (except, of course,
when the interval is 0 to 1 !) .

4.2 What causes convergence versus
oscill ation?

What our initial experiments show is that loopy prop­
agation does a good job of approximating the correct
posteriors if it converges. Unfortunately, on the most
challenging case- the QMR-DT network- the al­
gorithm did not converge. We wanted to see if this
oscillatory behavior in the QMR-DT case was related
to the size of the network - does loopy propagation
tend to converge less for large networks than small

networks?

To investigate this question, we tried to cause oscil­
lation in the toyQMR network. We first asked what,
besides the size, is different between toyQMR and real
QMR? An obvious difference is in the parameter val­
ues - while the CPTs for toyQMR are random, the
real QMR parameters are not. In particular, the prior
probability of a disease node being on is extremely low
in the real QMR (typically of the order of 10-3).
Would low priors cause oscillations in the toyQMR
case? To answer this question we repeated the ex­
periments reported in the previous section but rather
than having the prior probability of each node be ran­
domly selected in the range [0, 1] we selected the prior
uniformly in the range [0, U] and varied U. Unlike
the previous simulations we did not set the observed
nodes by sampling from the joint - for low priors all
the findings would be negative and inference would be
trivial. Rather each finding was independently set to
positive or negative. Figure 8 shows the results - for
small priors the toyQMR network does not converge
and we find the same oscillatory behavior as in the real
QMR network case.

If indeed small priors are responsible for the oscilla­
tion, then we would expect the real QMR network to
converge if the priors were sampled randomly in the
range [0, 1]. To check this, we reran loopy propaga­
tion on the full QMR network with the four tractable
cases but changed the priors to be randomly sampled
in the range [0, 1]. All other parameters remained the
same as in the real QMR network. Now we found
convergence on all four cases and the beliefs gave a
very good correlation with the ones calculated using
QUICKSCORE.

Small priors are not the only thing that causes oscil­
lation. Small weights can, too. The effect of both

472 Murphy, Weiss, and Jordan

0.9

0.8

0.7
o;
£0.6 �
E0.5 >­c.
�0.4

0.3

0.2

0.1

0

0
0.2

0
0

@

0

0

0.4 0.6
true marginal

0 0
oo o .. !P

0

a

<D

0
0 o .. o8 0 11'

0 0

0

0
0
0

0

0

0

0.8

co

0 0
<9 0

0 0
0

0
0

0.4 0.6 0.8
true marginal

c

0 0
0 'il> 0

0 o., 0
0 0 0 0

0 0 :0
0 0

0 0 0 0
0 co

0 0
0 0 0

0 0 0 0 0
<DOoo

0
g 0 co

0 0 co 0
0

0.8

b

0 co

Figure 6: Correlation plots between the correct and approximate beliefs on the ALARM network, using (a) loopy
propagation, (b) likelihood weighting with 200 samples, and (c) likelihood weighting with 1000 samples.

0.9

0.8

0.7

]i0.6
]l ,._0.5

Io.4

0.3

0.2
· -

0.1 � ·-

" � - �
OOL-�--��5�--�--�10--�---L-1�5�--��20

iteration

a

1

0.9

0.8

0.7

�0.6
.g
*0.5 0
0.0.4

0.3

0.2

0. 1
•

5

l
. . . 4 L tlio<l ·�

10 15 20 25
disease num.

b

30

I•

iHJ,� 1
35 40

Figure 7: (a) The marginal posteriors for three of the nodes in the QMR-DT network. Note the limit cycle
behavior. (b) The exact marginals are represented by the circles; the ends of the "error bars" represent the loopy
marginals at the last two iterations. We only plot the diseases which had non-negligible posterior probability.

0.9

0.8

0.5

0.4

Loopy Belief Propagation 473

0·3oc_ __ -=-o�.2---=-o�.4---=-o�. s---=-o�. a-----'
range of prior

Figure 8: The probability of convergence in the toyQMR case as the upper bound on the priors of the diseases
is increased. When the prior is small (similar to the real QMR regime) toyQMR converges quite rarely. This
suggests that the failure of convergence in the real QMR cases is related to the low prior

is to reduce the probability of positive findings. We
conjectured that the reason for the oscillations is that
the observed data, which has many positive findings,
is very untypical in this parameter regime. This would
also explain why we didn't find oscillations in the other
examples, where the data was sampled from the joint
distribution encoded by the network.

To test this hypothesis, we reparameterized the pyra­
mid network as follows: we set the prior probability of
the "1" state of the root nodes to 0.9, and we utilized
the noisy-OR model for the other nodes with a small
(0.1) inhibition probability (apart from the leak term,
which we inhibited with probability 0.9). This param­
eterization has the effect of propagating 1 's from the
top layer to the bottom. Thus the true marginal at
each leaf is approximately (0.1, 0.9), i.e., the leaf is 1
with high probability. We then generated untypical
evidence at the leaves by sampling from the uniform
distribution, (0.5, 0.5), or from the skewed distribu­
tion (0.9, 0. 1). We found that loopy propagation still
converged2, and that, as before, the marginals to which
it converged were highly correlated with the correct
marginals. Thus there must be some other explana­
tion, besides untypicality of the evidence, for the os­
cillations observed in QMR.

4.3 Can we fix oscillations easily?

When loopy propagation oscillates between two steady
states it seems reasonable to try to find a way to com­
bine the two values. The simplest thing to do is to
average them. Unfortunately, this gave very poor re­
sults, since the correct posteriors do not usually lie in
the midpoint of the interval (cf. Figure 7 (b)).

2More precisely, we found that with a convergence
threshold of 10-4, 98 out of 100 cases converged; when
we lowered the threshold to 10-3, all 100 cases converged.

We also tried to avoid oscillations by using "momen­
tum"; replacing the messages that were sent at time
t with a weighted average of the messages at times t

and t- 1. That is, we replaced the reference to >.�) in '
Equation 2 with

(1- p).\y1(x)(t) + p.\y1(x)(t-1) (7)

and similarly for 11"�) in Equation 3, where 0 :::; J.l :::; 1
is the momentum term. It is easy to show that if the
modified system of equations converges to a fixed point
F, then F is also a fixed point of the original system
(since if>.�)= >.�-1), then Equation 7 yields>.�)). ' ' '
In the experiments for which loopy propagation con­
verged (PYRAMID, toyQMR and ALARM), we found
that adding the momentum term did not change the
results - the beliefs that resulted were the same be­
liefs found without momentum. In the experiments
which did not converge (toyQMR with small priors
and real QMR), we found that momentum significantly
reduced the chance of oscillation. However, in several
cases the beliefs to which the algorithm converged were
quite inaccurate- see Figure 9.

5 Discussion

The experimental results presented here suggest
that loopy propagation can yield accurate posterior
marginals in a more general setting than that of error­
correcting coding - the PYRAMID, toyQMR and
ALARM networks are quite different from the error­
correcting coding graphs yet the loopy beliefs show
high correlation with the correct marginals.

In error-correcting codes the posterior is typically
highly peaked and one might think that this feature
is necessary for the good performance of loopy prop­
agation. Our results suggest that is not the case -

474 Murphy, Weiss, and Jordan

0.9

0.8

0.7

0.6

15: � 0.5

0.4

0.3

0.2

0.2

case 16 momentum=0.1

true

a
case 34 momentum=0.1

0

0
0.4 0.6

true

c

case 32 momentum=0.1

true

b
case 46 momentum=0.1

0.8

d

Figure 9: Correlation plots between the correct and approximate beliefs on the QMR-DT network and loopy
propagation with momentum for the four tractable cases. With 11 = 0.1, we get converge!!ce at the 10-3 level for
cases 16, 32 and 34, but not for case 46. (a), (b) and (c) plots the results for the first three cases at convergence
(usually 10-15 iterations): note several highly uncorrelated points. (d) plots the results for case 46 at time 20
('o') and time 19 ('x'). This 'flip-flop' behavior around the diagonal is typical for the non-converging QMR cases.

in none of our simulations were the posteriors highly
peaked around a single joint configuration. If the prob­
ability mass was concentrated at a single point the
marginal probabilities should all be near zero or one;
this is clearly not the case as can be seen in the figures.

It might be expected that loopy propagation would
only work well for graphs with large loops. However,
our results, and previous results on turbo codes, show
that loopy propagation can also work well for graphs
with many small loops.

At the same time, our experimental results suggest
a cautionary note about loopy propagation, showing
that the marginals may exhibit oscillations that have
very little correlation with the correct marginals. We
presented some preliminary results investigating the
cause of the oscillations and showed that it is not sim­
ply a matter of the size of the network or the number
of parents. Rather the same structure with different
parameter values may oscillate or exhibit stable be­
havior.

For all our simulations, we found that when loopy
propagation converges, it gives a surprisingly good ap­
proximation to the correct marginals. Since the dis­
tinction between convergence and oscillation is easy to
make after a small number of iterations, this may sug­
gest a way of checking whether loopy propagation is
appropriate for a given problem.

Acknowledgements

We thank Tommi Jaakkola, David Heckerman and
David MacKay for useful discussions. We also thank
Randy Miller and the University of Pittsburgh for the
use of the QMR-DT database. Supported by MURI­
ARO DAAH04-96-1-0341.

References

[1] J. M. Agosta. The structure of Bayes networks
for visual recognition. In UAI, volume 4, pages
397-405, 1990.

[2] S.M. Aji, G.B. Horn, and R.J. McEliece. On the
convergence of iterative decoding on graphs with
a single cycle. In Proc. 1998 !SIT, 1998.

[3] I. Beinlich, G. Suermondt, R. Chavez, and
G. Cooper. The alarm monitoring system: A
case study with two probabilistic inference tech­
niques for belief networks. In Proc. 2 'nd European
Conf. on AI and Medicine, 1989.

[4] C. Berrou, A. Glavieux, and P. Thitimajshima.
Near Shannon limit error-correcting coding and
decoding: Turbo codes. In Proc. IEEE Interna­
tional Communications Conference '93, 1993.

[5] G. Cooper. The computational complexity of
probabilistic inference using Bayesian belief net­
works. Artificial Intelligence, 42:393-405, 1990.

Loopy Belief Propagation 475

[6] P. Dagum and M. Luby. Aproximate probabilis­
tic inference in Bayesian networks in NP hard.
Artificial Intelligence, 60:141-153, 1993.

[7] D. Heckerman. A tractable inference algorithm
for diagnosing multiple diseases. In Proc. Fifth
Conf. on Uncertainty in AI, 1989.

[8] T.S. Jaakkola and M.l. Jordan. Variational prob­
abilistic inference and the QMR-DT network.
lAIR, 10, 1999.

[9] F. R. Kschischang and B. J. Frey. Iterative de­
coding of compound codes by probability prop­
agation in graphical models. IEEE Journal on
Selected Areas in Communication, 16(2) :219-230,
1998.

[10] R.J. McEliece, D.J.C. MacKay, and J.F. Cheng.
Turbo decoding as as an instance of Pearl's 'be­
lief propagation' algorithm. IEEE Journal on
Selected Areas in Communication, 16(2):140-152,
1998.

[11] R.J. McEliece, E. Rodemich, and J.F. Cheng. The
Turbo decision algorithm. In Proc. 33rd Aller­
ton Conference on Communications, Control and
Computing, pages 366-379, Monticello, 11, 1995.

[12] Judea Pearl. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Mor­
gan Kaufmann, 1988.

[13] M.A. Peot and R.D. Shachter. Fusion and prop­
agation with multiple observations in belief net­
works. Artificial Intelligence, 48:299-318, 1991.

[14] Thomas Richardson. The geometry of turbo­
decoding dynamics. IEEE Trans. on Info. Theory,
1999. To appear.

[15] L.K. Saul, T. Jaakkola, and M.l. Jordan. Mean
field theory for sigmoid belief networks. lAIR,
4:61-76, 1996.

[16] R. D. Shachter and M. A. Peat. Simulation ap­
proaches to general probabilistic inference on be­
lief networks. In Uncertainty in AI, volume 5,
1990.

[17] M. Shwe and G. Cooper. An empirical analysis of
likelihood-weighting simulation on a large, multi­
ply connected medical belief network. Computers
and Biomedical Research, 24:453-475, 1991.

[18] Y. Weiss. Belief propagation and revision in net­
works with loops. Technical Report 1616, MIT AI
lab, 1997.

[19] Y. Weiss. Correctness of local probability prop­
agation in graphical models with loops. Neural
Computation, to appear, 1999.

476

Learning Bayesian Networks from Incomplete Data with
Stochastic Search Algorithms

James W. Myers
George Mason University
Fairfax, VA 22032-4444
mvers2Waierols.com

Kathryn Blackmond Laskey
George Mason University
Fairfax, VA 22032-4444
klaskeyCdlgmu.edu

Tod Levitt
lET
Setauket, NY 11733
tlevitt@iet.com

Abstract
This paper describes stochastic search
approaches, including a new stochastic
algorithm and an adaptive mutation
operator, for learning Bayesian
networks from incomplete data. This
problem is characterized by a huge
solution space with a highly
multimodal landscape. State-of-the-art
approaches all involve using
deterministic approaches such as the
e:�.-pectation-maximization algorithm.
These approaches are guaranteed to
find local maxima, but do not explore
the landscape for other modes. Our
approach evolves structure and the
missing data. We compare our
stochastic algorithms and show they all
produce accurate results.

1 INTRODUCTION
Bayesian networks are growing in popularity as
the model of choice of many AI researchers for
problems involving reasoning under uncertainty.
They have been implemented in applications in
areas such as medical diagnostics, classification
systems, software agents for personal assistants,
multisensor fusion, and legal analysis of trials.
Until recently, the standard approach to
constructing belief networks was a labor­
intensive process of eliciting knowledge from
experts. Methods for capturing available data to
construct Bayesian networks or to refine an
expert -provided network promise to greatly
improve both the efficiency of knowledge
engineering and the accuracy of the models. For
this reason, learning Bayesian networks from
data has become an increasingly active area of
research. Most of the research to date has relied

on the assumption that data are complete; that
is, the values of all variables are known for all
cases in the database. This assumption is not
very realistic since most real world situations
involve incomplete information.

Learning a Bayesian network can be
decomposed into the problem of learning the
graph structure and learning the parameters.
The first attempts at treating incomplete data
involved learning the parameters of a fixed
network structure [Lauritzen 1995]. Very
recently, researchers have begun to tackle the
problem of learning the structure of the network
from incomplete data. A major stumbling block
in this research is that when information is
missing, closed form expressions do not exist for
the scoring metric used to evaluate the network
structures. This has led many researchers down
the path of estimating the score using
parametric approaches such as the expectation­
maximization (EM) algorithm [Dempster, Laird
et al. 1977], [Friedman 1998]. The EM
algorithm is a proven approach for dealing with
incomplete information when building statistical
models [Little and Rubin 1987]. EM and
related algorithms show promise. However, it
has been noted [Friedman 1998] that the search
space is large and multimodal. and deterministic
search algorithms are prone to find local optima.
Multiple restarts have been suggested as a way
to deal with this problem.

An obvious choice to combat the problem of
"getting stuck" on local maxima is to use a
stochastic search method. This paper explores
the use of evolutionary algorithms (EA) and
Markov chain Monte Ccirlo (MCMC) algorithms
for learning Bayesian networks from incomplete
data. We also introduce an algorithm, the
Evolutionary Markov Chain Monte Carlo
(EMCMC) algorithm. which combines the
advantages of the EA and MCMC. which we
believe. advances the state of the art for both EA

