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Abstract 

Recently, researchers have demonstrated that 
"loopy belief propagation" - the use of 
Pearl's polytree algorithm in a Bayesian 
network with loops - can perform well 
in the context of error-correcting codes. 
The most dramatic instance of this is the 
near Shannon-limit performance of "Turbo 
Codes" - codes whose decoding algorithm 
is equivalent to loopy belief propagation in a 
chain-structured Bayesian network. 
In this paper we ask: is there something spe­
cial about the error-correcting code context, 
or does loopy propagation work as an ap­
proximate inference scheme in a more gen­
eral setting? We compare the marginals com­
puted using loopy propagation to the exact 
ones in four Bayesian network architectures, 
including two real-world networks: ALARM 
and QMR. We find that the loopy beliefs of­
ten converge and when they do, they give a 
good approximation to the correct marginals. 
However, on the QMR network, the loopy be­
liefs oscillated and had no obvious relation­
ship to the correct posteriors. We present 
some initial investigations into the cause of 
these oscillations, and show that some sim­
ple methods of preventing them lead to the 
wrong results. 

1 Introduction 

The task of calculating posterior marginals on nodes 
in an arbitrary Bayesian network is known to be NP­
hard [5]. This is true even for the seemingly easier 
task of calculating approximate posteriors [6]. Never­
theless, due to the obvious practical importance of this 
task, there has been considerable interest in assessing 
the quality of different approximation schemes, in an 
attempt to delimit the types of networks and parame­
ter regimes for which each scheme works best. 

In this paper we investigate the approximation per-

formance of "loopy belief propagation" .  This refers to 
using the well-known Pearl polytree algorithm [12] on a 
Bayesian network with loops (undirected cycles). The 
algorithm is an exact inference algorithm for singly­
connected networks - the beliefs converge to the cor­
rect marginals in a number of iterations equal to the 
diameter of the graph.1 However, as Pearl noted, the 
same algorithm will not give the correct beliefs for mul­
tiply connected networks: 

When loops are present, the network is no 
longer singly connected and local propaga­
tion schemes will invariably run into trouble 
. .. If we ignore the existence of loops and 
permit the nodes to continue communicat­
ing with each other as if the network were 
singly connected, messages may circulate in­
definitely around the loops and the process 
may not converge to a stable equilibrium ... 
Such oscillations do not normally occur in 
probabilistic networks . . .  which tend to bring 
all messages to some stable equilibrium as 
time goes on. However, this asymptotic equi­
librium is not coherent, in the sense that it 
does not represent the posterior probabilities 
of all nodes of the network [12, p.l95] 

Despite these reservations, Pearl advocated the use of 
belief propagation in loopy networks as an approxima­
tion scheme (J. Pearl, personal communication) and 
exercise 4.7 in [12] investigates the quality of the ap­
proximation when it is applied to a particular loopy 
belief network. 

Several groups have recently reported excellent exper­
imental results by using this approximation scheme­
by running algorithms equivalent to Pearl's algorithm 
on networks with loops. Perhaps the most dramatic 
instance of this performance is in an error correcting 
code scheme known as "Turbo Codes" [4]. These codes 
have been described as "the most exciting and poten­
tially important development in coding theory in many 

1 This assumes parallel updating of all nodes. The algo­
rithm can also be implemented in a centralized fashion in 
which case it converges in two iterations [13). 
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years" [11] and have recently been shown [9, 10] to uti­
lize an algorithm equivalent to belief propagation in 
a network with loops. Although there is widespread 
agreement in the coding community that these codes 
"represent a genuine, and perhaps historic, break­
through" [11], a theoretical understanding of their per­
formance has yet to be achieved. Yet McEliece et. a! 
conjectured that the performance of loopy belief prop­
agation on the Turbo code structure was a special case 
of a more general phenomenon: 

We believe there are general undiscovered 
theorems about the performance of belief 
propagation on loopy DAGs. These theo­
rems, which may have nothing directly to 
do with coding or decoding will show that 
in some sense belief propagation "converges 
with high probability to a near-optimum 
value" of the desired belief on a class of loopy 
DAGs [10]. 

Progress in the analysis of loopy belief propagation 
has been made for the case of networks with a single 
loop [18, 19, 2, 1]. For the sum-product (or "belief 
update" ) version it can be shown that: 

• Unless all the conditional probabilities are deter­
ministic, belief propagation will converge. 

• There is an analytic expression relating the cor­
rect marginals to the loopy marginals. The ap­
proximation error is related to the convergence 
rate of the messages - the faster the convergence 
the more exact the approximation. 

• If the hidden nodes are binary, then thresholding 
the loopy beliefs is guaranteed to give the most 
probable assignment, even though the numerical 
value of the beliefs may be incorrect. This result 
only holds for nodes in the loop. 

In the max-product (or "belief revision") version, 
Weiss [19] showed that ( 1) belief propagation may con­
verge to a stable value or oscillate in a limit cycle and 
(2) if it converges then it is guaranteed to give the cor­
rect assignment of values to the hidden nodes. This 
result is independent of the arity of the nodes and 
whether the nodes are inside or outside the loop. 

For the case of networks with multiple loops, Richard­
son [14] has analyzed the special case of Turbo codes. 
He has shown that fixed points of the sum-product ver­
sion always exist, and has given sufficient conditions 
under which they will be unique and stable (although 
verifying these conditions may be difficult for large net­
works). 

To summarize, what is currently known about loopy 
propagation is that ( 1) it works very well in an error­
correcting code setting and (2) there are conditions for 
a single-loop network for which it can be guaranteed 
to work well. In this paper we investigate loopy prop­
agation empirically under a wider range of conditions. 

Is there something special about the error-correcting 
code setting, or does loopy propagation work as an 
approximation scheme for a wider range of networks? 

2 The algorithm 

For completeness, we briefly summarize Pearl's belief 
propagation algorithm. Each node X computes a be­
lief BEL(:x) = P(X = :xiE), where E denotes the ob­
served evidence, by combining messages from its chil­
dren ..\y;(:x) and messages from its parents 1rx(uk). 
(Following Peot and Shachter [13], we incorporate ev­
idence by letting a node send a message to itself, 
..\x(:x).) 

(1) 

where: 

BEL(:x) = a..\(:x)1r(x) 

,x(tl(x) = ..\x(x) IT ..\�}(x) 
j 

and: 

(2) 

7r('l(x) = LP(X = xiU = u) IT 1r�)(uk) (3) 
u k 

The message X passes to its parent U; is given by: 

(4) 
and the message X sends to its child Yj is given by: 

7r�;+l)(:x) = a?C('l(x)..\x(x) IT .>.W(x) (5) 
k;Cj 

For noisy-or links between parents and children, there 
exists an analytic expression for 1r( x) and Ax ( u;) that 
avoids the exhaustive enumeration over parent config­
urations [12]. 

We made a slight modification to the update rules in 
that we normalized both ..\ and 1r messages at each 
iteration. As Pearl [12] pointed out, normalizing the 
messages makes no difference to the final beliefs but 
avoids numerical underflow. 

Nodes were updated in parallel: at each iteration all 
nodes calculated their outgoing messages based on the 
incoming messages of their neighbors from the pre­
vious iteration. The messages were said to converge 
if none of the beliefs in successive iterations changed 
by more than a small threshold (10-4). All messages 
were initialized to a vector of ones; random initializa­
tion yielded similar results, since the initial conditions 
rapidly get "washed out" . 

For comparison, we also implemented likelihood 
weighting [17], which is a simple form of importance 
sampling. Like any sampling algorithm, the errors can 
be driven towards zero by running the algorithm for 
long enough; in this paper, we usually used 200 sam­
ples, so that the total amount of computation time was 
roughly comparable (to within an order of magnitude) 



to loopy propagation. We did not implement some of 
the more sophisticated versions of likelihood weight­
ing, such as Markov blanket scoring (16], since our goal 
in this paper was to evaluate loopy propagation rather 
than exhaustively compare the performance of alter­
native algorithms. (For a more careful evaluation of 
likelihood weighted sampling in the case of the QMR 
network, see (8].) 

3 The networks 

We used two synthetic networks, PYRAMID and 
toyQMR, and two real world networks, ALARM and 
QMR. The synthetic networks are sufficiently small 
that we can perform exact inference, using the junc­
tion tree algorithm. This allows us to measure the ac­
curacy of the approximation scheme. All the networks 
have many loops of different sizes. 

3.1 The PYRAMID network 

Figure 1 shows the structure of the PYRAMID net­
work. This is a multilayered hierarchical network with 
local connections between each layer and observations 
only at the bottom layer. We chose this structure be­
cause networks of this type are often used in image 
analysis- the bottom layer would correspond to pix­
els (see for example (15]). 

All nodes were binary and the conditional probabilities 
were represented by tables- entries in the conditional 
probability tables (CPTs) were chosen uniformly in the 
range (0, 1]. 

3.2 The toyQMR network 

Figure 2 shows the structure of a "toyQMR" network. 
This network is meant to represent the types of net­
works that arise in medical diagnosis - hidden dis­
eases in the top layer and observed symptoms in the 
bottom layer. Here we randomized over structure and 
parameters - for each experiment the parents of each 
node in the bottom layer was a randomly chosen subset 
of the nodes in the top layer. The parents subset was 
chosen using a simple procedure - each parent-child 
link was either present or absent with a probability of 
0.5. 

All nodes were binary and the conditional probabilities 
of the leaves were represented by a noisy-or: 

?(Child= OIParents) = e-Bo-L; B,Parent; (6) 

where 110 represents the "leak" term. 

The links !1; were chosen uniformly in the range (0, 1] 
while 110 was chosen uniformly in the range [0, 0.01] 
(hence the leaks are inhibited with very high probabil­
ity). The top layer had prior probabilities represented 
as CPTs and they were chosen uniformly in the range 
(0, 1]. 
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3.3 The ALARM network 

Figure 3 shows the structure of the ALARM network 
- a Bayesian network for monitoring patients in in­
tensive care. This network was used by (3] to compare 
various inference algorithms. The arity of the nodes 
ranges from two to four and all conditional distribu­
tions are represented by tables. The structure and the 
CPTs were downloaded from Nir Friedman's Bayesian 
network repository at: www. cs. huj i. ac. il/"nir. 

3.4 The QMR-DT network 

The QMR-DT is a bipartite network whose structure is 
the same as that shown in figure 2 but the size is much 
larger. There are approximately 600 diseases and ap­
proximately 4000 findin nodes, with a number of ob­
served findings that varies per case. Due to the form 
of the noisy-or CPTs the complexity of inference is ex­
ponential in the number of positive findings (7]. Fol­
lowing (8], we focused on the four CPC cases for which 
the number of positive findings is less than 20, so that 
exact inference is possible (using the QUICKSCORE 
algorithm (7]). 

4 Results 

4.1 Initial experiments 

The experimental protocol for the PYRAMID network 
was as follows. For each experimental run, we first gen­
erated random CPTs. We then sampled from the joint 
distribution defined by the network and clamped the 
observed nodes (all nodes in the bottom layer) to their 
sampled value. Given a structure and observations, we 
then ran three inference algorithms -junction tree, 
loopy belief propagation and sampling. 

We found that loopy belief propagation always con­
verged in this case with the average number of iter­
ations equal to 10.2. Figure 4(a) shows the correla­
tion plot between the exact marginals (calculated us­
ing junction tree) and the loopy marginals (BEL(x) 
in equation 1 at convergence). For comparison, fig­
ure 4(b) shows the correlation between likelihood 
weighting and the correct marginals. Note that the 
sampler has been run for 20 times as many iterations 
as loopy propagation. 

The experimental protocol for the toyQMR network 
was similar to that of the PYRAMID network except 
that we randomized over structure as well. Again we 
found that loopy belief propagation always converged, 
with the average number of iterations equal to 8.65. 
Figure 5 shows the two correlation plots. 

The protocol for the ALARM network experiments dif­
fered from the previous two in that the structure and 
parameters were fixed - only the observed evidence 
differed between experimental runs. We assumed that 
all leaf nodes were observed and calculated the pos-
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Figure 1: The structure of the PYRAMID network. All nodes are binary and observations appear only on the 
bottom layer. Such networks occur often in image analysis where the bottom layer would correspond to pixels. 

Figure 2: The structure of a toyQMR network. This is a bipartite structure where the conditional distributions 
of the leaves are noisy-or's. The network shown represents one sample from randomly generated structures where 
the parents of each symptom were a random subset of the diseases. 

Figure 3: The structure of the ALARM network - a network constructed by medical experts for monitoring 
patients in intensive care. 
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Figure 4: Correlation plots between the correct and approximate beliefs for the PYRAMID network, using (a) 
loopy propagation and (b) likelihood weighting with 200 samples. 
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Figure 5: Correlation plots between the correct and approximate beliefs for the toyQMR network, usmg (a) 
loopy propagation and (b) likelihood weighting with 200 samples. 

terior marginals of all other nodes. Again we found 
that loopy belief propagation always converged with 
the average number of iterations equal to 14.55. Fig­
ure 6 shows the correlation plots. With 200 samples, 
the correlation for likelihood weighting is rather weak, 
perhaps due to the larger arity of some of the nodes 
(and hence the larger state space); after 1000 samples, 
the correlation improves considerably. 

The results presented up until now show that loopy 
propagation performs well for a variety of architectures 
involving multiple loops. We now present results for 
the QMR-DT network which are not as favorable. 

In the QMR-DT network there was no randomization. 
We used the fixed structure and calculated posteriors 
for the four cases for which posteriors have been cal­
culated exactly by Heckerman [7]. For none of these 
four cases did loopy propagation converge. Rather, the 
loopy marginal oscillated between two quite distinct 
values for nearly all nodes. Figure 7(a) shows three 
such marginals. After two iterations the marginal 
seems to converge to a limit cycle with period two. 
In Figure 7(b) it seems that the correct posteriors al­
ways lie inside the interval defined by the limit cycle. 
However, this is not always the case (except, of course, 
when the interval is 0 to 1 !) . 

4.2 What causes convergence versus 
oscill ation? 

What our initial experiments show is that loopy prop­
agation does a good job of approximating the correct 
posteriors if it converges. Unfortunately, on the most 
challenging case- the QMR-DT network- the al­
gorithm did not converge. We wanted to see if this 
oscillatory behavior in the QMR-DT case was related 
to the size of the network - does loopy propagation 
tend to converge less for large networks than small 

networks? 

To investigate this question, we tried to cause oscil­
lation in the toyQMR network. We first asked what, 
besides the size, is different between toyQMR and real 
QMR? An obvious difference is in the parameter val­
ues - while the CPTs for toyQMR are random, the 
real QMR parameters are not. In particular, the prior 
probability of a disease node being on is extremely low 
in the real QMR (typically of the order of 10-3). 
Would low priors cause oscillations in the toyQMR 
case? To answer this question we repeated the ex­
periments reported in the previous section but rather 
than having the prior probability of each node be ran­
domly selected in the range [0, 1] we selected the prior 
uniformly in the range [0, U] and varied U. Unlike 
the previous simulations we did not set the observed 
nodes by sampling from the joint - for low priors all 
the findings would be negative and inference would be 
trivial. Rather each finding was independently set to 
positive or negative. Figure 8 shows the results - for 
small priors the toyQMR network does not converge 
and we find the same oscillatory behavior as in the real 
QMR network case. 

If indeed small priors are responsible for the oscilla­
tion, then we would expect the real QMR network to 
converge if the priors were sampled randomly in the 
range [0, 1]. To check this, we reran loopy propaga­
tion on the full QMR network with the four tractable 
cases but changed the priors to be randomly sampled 
in the range [0, 1]. All other parameters remained the 
same as in the real QMR network. Now we found 
convergence on all four cases and the beliefs gave a 
very good correlation with the ones calculated using 
QUICKSCORE. 

Small priors are not the only thing that causes oscil­
lation. Small weights can, too. The effect of both 
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Figure 6: Correlation plots between the correct and approximate beliefs on the ALARM network, using (a) loopy 
propagation, (b) likelihood weighting with 200 samples, and (c) likelihood weighting with 1000 samples. 
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is increased. When the prior is small (similar to the real QMR regime) toyQMR converges quite rarely. This 
suggests that the failure of convergence in the real QMR cases is related to the low prior 

is to reduce the probability of positive findings. We 
conjectured that the reason for the oscillations is that 
the observed data, which has many positive findings, 
is very untypical in this parameter regime. This would 
also explain why we didn't find oscillations in the other 
examples, where the data was sampled from the joint 
distribution encoded by the network. 

To test this hypothesis, we reparameterized the pyra­
mid network as follows: we set the prior probability of 
the "1" state of the root nodes to 0.9, and we utilized 
the noisy-OR model for the other nodes with a small 
(0.1) inhibition probability (apart from the leak term, 
which we inhibited with probability 0.9). This param­
eterization has the effect of propagating 1 's from the 
top layer to the bottom. Thus the true marginal at 
each leaf is approximately (0.1, 0.9), i.e., the leaf is 1 
with high probability. We then generated untypical 
evidence at the leaves by sampling from the uniform 
distribution, (0.5, 0.5), or from the skewed distribu­
tion (0.9, 0. 1). We found that loopy propagation still 
converged2, and that, as before, the marginals to which 
it converged were highly correlated with the correct 
marginals. Thus there must be some other explana­
tion, besides untypicality of the evidence, for the os­
cillations observed in QMR. 

4.3 Can we fix oscillations easily? 

When loopy propagation oscillates between two steady 
states it seems reasonable to try to find a way to com­
bine the two values. The simplest thing to do is to 
average them. Unfortunately, this gave very poor re­
sults, since the correct posteriors do not usually lie in 
the midpoint of the interval ( cf. Figure 7 (b)). 

2More precisely, we found that with a convergence 
threshold of 10-4, 98 out of 100 cases converged; when 
we lowered the threshold to 10-3, all 100 cases converged. 

We also tried to avoid oscillations by using "momen­
tum"; replacing the messages that were sent at time 
t with a weighted average of the messages at times t 

and t- 1. That is, we replaced the reference to >.�) in ' 
Equation 2 with 

(1- p).\y1(x)(t) + p.\y1(x)(t-1) (7) 

and similarly for 11"�) in Equation 3, where 0 :::; J.l :::; 1 
is the momentum term. It is easy to show that if the 
modified system of equations converges to a fixed point 
F, then F is also a fixed point of the original system 
(since if>.�)= >.�-1), then Equation 7 yields>.�)). ' ' ' 
In the experiments for which loopy propagation con­
verged (PYRAMID, toyQMR and ALARM), we found 
that adding the momentum term did not change the 
results - the beliefs that resulted were the same be­
liefs found without momentum. In the experiments 
which did not converge (toyQMR with small priors 
and real QMR), we found that momentum significantly 
reduced the chance of oscillation. However, in several 
cases the beliefs to which the algorithm converged were 
quite inaccurate- see Figure 9. 

5 Discussion 

The experimental results presented here suggest 
that loopy propagation can yield accurate posterior 
marginals in a more general setting than that of error­
correcting coding - the PYRAMID, toyQMR and 
ALARM networks are quite different from the error­
correcting coding graphs yet the loopy beliefs show 
high correlation with the correct marginals. 

In error-correcting codes the posterior is typically 
highly peaked and one might think that this feature 
is necessary for the good performance of loopy prop­
agation. Our results suggest that is not the case -
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in none of our simulations were the posteriors highly 
peaked around a single joint configuration. If the prob­
ability mass was concentrated at a single point the 
marginal probabilities should all be near zero or one; 
this is clearly not the case as can be seen in the figures. 

It might be expected that loopy propagation would 
only work well for graphs with large loops. However, 
our results, and previous results on turbo codes, show 
that loopy propagation can also work well for graphs 
with many small loops. 

At the same time, our experimental results suggest 
a cautionary note about loopy propagation, showing 
that the marginals may exhibit oscillations that have 
very little correlation with the correct marginals. We 
presented some preliminary results investigating the 
cause of the oscillations and showed that it is not sim­
ply a matter of the size of the network or the number 
of parents. Rather the same structure with different 
parameter values may oscillate or exhibit stable be­
havior. 

For all our simulations, we found that when loopy 
propagation converges, it gives a surprisingly good ap­
proximation to the correct marginals. Since the dis­
tinction between convergence and oscillation is easy to 
make after a small number of iterations, this may sug­
gest a way of checking whether loopy propagation is 
appropriate for a given problem. 
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Abstract 
This paper describes stochastic search 
approaches, including a new stochastic 
algorithm and an adaptive mutation 
operator, for learning Bayesian 
networks from incomplete data. This 
problem is characterized by a huge 
solution space with a highly 
multimodal landscape. State-of-the-art 
approaches all involve using 
deterministic approaches such as the 
e:�.-pectation-maximization algorithm. 
These approaches are guaranteed to 
find local maxima, but do not explore 
the landscape for other modes. Our 
approach evolves structure and the 
missing data. We compare our 
stochastic algorithms and show they all 
produce accurate results. 

1 INTRODUCTION 
Bayesian networks are growing in popularity as 
the model of choice of many AI researchers for 
problems involving reasoning under uncertainty. 
They have been implemented in applications in 
areas such as medical diagnostics, classification 
systems, software agents for personal assistants, 
multisensor fusion, and legal analysis of trials. 
Until recently, the standard approach to 
constructing belief networks was a labor­
intensive process of eliciting knowledge from 
experts. Methods for capturing available data to 
construct Bayesian networks or to refine an 
expert -provided network promise to greatly 
improve both the efficiency of knowledge 
engineering and the accuracy of the models. For 
this reason, learning Bayesian networks from 
data has become an increasingly active area of 
research. Most of the research to date has relied 

on the assumption that data are complete; that 
is, the values of all variables are known for all 
cases in the database. This assumption is not 
very realistic since most real world situations 
involve incomplete information. 

Learning a Bayesian network can be 
decomposed into the problem of learning the 
graph structure and learning the parameters. 
The first attempts at treating incomplete data 
involved learning the parameters of a fixed 
network structure [Lauritzen 1995]. Very 
recently, researchers have begun to tackle the 
problem of learning the structure of the network 
from incomplete data. A major stumbling block 
in this research is that when information is 
missing, closed form expressions do not exist for 
the scoring metric used to evaluate the network 
structures. This has led many researchers down 
the path of estimating the score using 
parametric approaches such as the expectation­
maximization (EM) algorithm [Dempster, Laird 
et al. 1977], [Friedman 1998]. The EM 
algorithm is a proven approach for dealing with 
incomplete information when building statistical 
models [Little and Rubin 1987]. EM and 
related algorithms show promise. However, it 
has been noted [Friedman 1998] that the search 
space is large and multimodal. and deterministic 
search algorithms are prone to find local optima. 
Multiple restarts have been suggested as a way 
to deal with this problem. 

An obvious choice to combat the problem of 
"getting stuck" on local maxima is to use a 
stochastic search method. This paper explores 
the use of evolutionary algorithms (EA) and 
Markov chain Monte Ccirlo (MCMC) algorithms 
for learning Bayesian networks from incomplete 
data. We also introduce an algorithm, the 
Evolutionary Markov Chain Monte Carlo 
(EMCMC) algorithm. which combines the 
advantages of the EA and MCMC. which we 
believe. advances the state of the art for both EA 


