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Abstract

One way of coping with uncertainty in the
world is to build plans that include actions that
will produce information about the world when
executed, and constrain the execution of sub-
sequent steps in the plan to depend on that in-
formation. Literature on decision making dis-
cusses the concept of information-producing ac-
tions (also called sensory actions, diagnostics,
or tests), the value of information, and plans
contingent on information learned from tests,
but these concepts are missing from most AI
representations and algorithms for plan gener-
ation.
This paper presents a planning representa-
tion and algorithm that models information-
producing actions and constructs plans that
exploit the information produced by those ac-
tions. We extend the BURIDAN [Kushmerick
et al., 1993] probabilistic planning algorithm,
adapting the action representation to model the
behavior of imperfect sensors, and combine it
with a framework for contingent action that
extends the CNLP algorithm [Peot and Smith,
1992] for conditional execution. The result,
C-BURIDAN, is an implemented planner that
builds plans with probabilistic information-
producing actions and contingent execution.

*This paper has been submitted to AI Planning Systems
(1994). This research was funded in part by NASA GSRP
Fellowship NGT-50822, National Science Foundation Grants
IRI-9206733 and IRI-8957302, and Office of Naval Research
Grant 90-J-1904.

1 Introduction

One way of coping with uncertainty in the world is to
build plans that include both information-producing ac-
tions and other actions whose execution depends on that
information. For example if we wished to acquire a car,
we might plan to ask a mechanic to examine a particu-
lar car and purchase it only if the report indicates the
car is in good working order. Information-producing ac-
tions and contingent plans are complementary: it makes
no sense to improve one’s information about the world
if that information can’t be exploited later. Likewise,
building a contingent plhn is useless unless the agent
can learn more at execution time than it knows while
planning.

This paper presents an implemented algorithm for
probabilistic planning with information-producing ac-
tions and contingent execution. We extend the BURIDAN
[Kushmerick el al., 1993] probabilistic action representa-
tion to allow actions with both informational and causal
effects, and combine it with a framework for building
contingent plans that builds on the CNLP algorithm [Peot
and Smith, 1992]. C-BURIDAN takes as input a prob-
ability distribution over initial world states, a goal ex-
pression, a set of action descriptions, and a probability
threshold, and produces a contingent plan that makes
the goal expression true with a probability no less than
the threshold.

1.1 Example

Suppose that a manufacturing robot is given the goal of
having a widget painted (PA), processed (PR), and 
notifying (NO) the supervisor that it is done. Process-
ing the widget is accomplished by rejecting (reject) parts
that are flawed (FL) or shipping (ship) parts that are 
flawed (F--L’). The robot also has an action paint that usu-
ally makes PA true, and an action notify that makes NO
true. Initially all flawed widgets are also blemished (BI_),
and vice versa.

Although the robot cannot directly tell if the widget
is flawed, the action inspect can be used to determine
whether or not it is blemished: executing inspect is sup-
posed to produce a report of ok if the widget is un-
blemished and a report of bad if a blemish is detected.
The inspect action can be used to decide whether or not
the widget is flawed because the two are initially per-
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fectly correlated. The use of.inspect is complicated by
two things, however: (1) inspect is sometimes wrong: 
the widget is blemished then 90% of the time it will re-
port bad, but 10% of the time it will erroneously report
ok. If the widget is not blemished, however, inspect will
always report ok. (2) Painting the widget removes 
blemish but not a flaw, so executing inspect after the
widget has been painted no longer conveys information
about whether it is flawed.

Assume that initially there is a0.3 chance that the
widget is both flawed and blemished and a 0.7 chance
that it is neither. A planner that cannot use information-
producing actions or contingencies can at best build a
plan with success probability 0.7: it assumes the widget
will not be flawed, and generates a plan to paint and
ship the widget, then notify the supervisor. A planner
that can exploit sensor actions and contingencies can
generate a plan that works with probability .97 (Figure
1): first inspect the widget, then paint it. Then if the
inspection reported ok, ship the widget, otherwise re-
ject it. Either way, notify the supervisor of completion.
This plan, which C-BURIDAN generates, fails only in the
case that the widget was initially flawed but the sen-
sor erroneously reports ok. It has success probability
(0.3)(0.1)- 0.03.

1.2 Contributions

C-BURIDAN is an implemented contingent planner, ex-
tending existing planning technology in several ways:

¯ Informational effects: C-BURIDAN can distin-
guish between an action that observes whether an
object is blemished (inspect) and one that changes
whether an object is blemished (paint). This dis-
tinction is crucial for effective planning in realistic
domains [Etzioni et al., 1992].

¯ Branching plans that rejoin: C-BURIDAN gen-
erates contingent plans in which different ac-
tions are executed depending on prior observations.
C-BURIDAN builds plans whose execution paths can
diverge then rejoin, unlike previous planners [War-
ren, 1976, Peot and Smith, 1992] that support di-
verging plan branches but do not allow them con-
verge later in the plan.

¯ Noisy sensors: C-BURIDAN’S probabilistic action
model can represent perfect, noisy, or biased sen-
sors. The accuracy of a sensor can depend on the
prevailing world state.

¯ Informational dependencies: C-BURIDAN can
make use of correlated information, such as plan-
ning to sense BL when it needs information about
FFI_.

2 Actions & Contexts

Our representation and semantics is based on the
BURIDAN planner [Kushmerick el al., 1993]; here we pro-
vide a brief summary, and refer the reader to [Draper et
al., 1993] for more detail. A state is a complete de-
scription of the world at a point in time. Uncer-
tainty about the world is represented using a random

variable over states. An expression is a set (conjunc-
tion) of literals. In our example, the world is initially
in one of two possible states: sl = (l=l_, Bl_, PR, PA, NO}
and su = {l=l-, BI_, PR, PA, NO}, and the distribution ~I
over these states is P[~x - Sl] - 0.3, P[~x - s2] -- 0.7.
In other words, the both states agree that the widget is
not PAinted, or PRocessed and that the supervisor has
not been NOtified. The most probable state, sg., has the
widget not FLawed and not BLemished.

2.1 Actions

Our action representation distinguishes between changes
an action makes to the state of the world and changes it
makes to the agent’s state of knowledge about the world.
The paint action shown in Figure 2 changes the state of
the world: if the widget has not yet been PRocessed, with
probability 0.95 it will become PAinted and all BLemishes
removed, otherwise the action will not change the state
of the world at all. The leaves in the figure are called
consequences; they represent the effect of the action un-
der different conditions in the world.

The inspect action, in contrast, doesn’t change
whether BI_ is true or not, but it does provide the agent
with information about Bl_’s state. To model the infor-
mation conveyed by executing an action, we associate
a set of observation labels with each action--when an
action is executed, it will report exactly one of its ob-
servation labels to the agent. We identify the conditions
that produce an observation label by partitioning the
action’s consequences into sets called discernible equiva-
lence classes, or DECs (indicated in the figures by heavy
double ovals), and assign a label to each one. The inspect
action has two observation labels, ok and bad, and two
corresponding DECs. If an agent executes inspect and
receives the report bad, it is certain that BI_ was true
when inspect was executed. A report of ok would tend to
indicate that BL was false, though the agent could not be
certain. The information conveyed by inspect is charac-
terized by the conditional probabilities P[badI BI_] = 1,
P[badlB---q = 0, e[oklB--L"] = 0.9, and P[okIBL] = 0.1,
which is a standard probabilistic representation for an
evidence source. The agent’s state of belief about BL af-
ter receiving a report--P[BL[ok] or P[BL[bad]--can be
computed using Bayes’ rule, and depends both on these
conditional probabilities and also on the prior probabil-
ity that BL is true when inspect is executed.

Formally, an action is a set of consequences, a set of
observation labels, and their corresponding discernible
equivalence classes. Each consequence is a tuple of the
form (Z,P~, £~), where Z is a conjunction of literals
known as the consequence’s trigger, p~ is the conditional
probability of this consequence given its trigger, and C~ is
the set of effects associated with the consequence. Each
DEC is a subset of the action’s consequences, and to-
gether they form a partition of the consequences. Many
actions, such as paint will have a single DEC, in which
case executing the action provides no information to
the agent about which of its consequences actually oc-
curred (and in this case we do not indicate the DEC in
the pictorial representation of the action). An action
is information.producing if it has more than one DEC,
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Figure 1: A contingent plan with rejoining branches.

Figure 2: A causal and an information-producing action.

and causal if it has nonempty effect sets. Actions can be
both information-producing and causal. For example,
we might model a pickup action that both potentially
changes the state of the world--whether the block was
being held--and contains observation labels indicating
whether or not the action was successful. Likewise a
test-blood action might detect a disease, but also affects
the state of the patient.

2.2 Contexts

We represent contingent execution in a manner nearly
identical to CNLP [Peot and Smith, 1992]. Each action
in the plan is annotated with a contezt, dictating the cir-
cumstances under which the action should be executed.
A context is a set (conjunction) of observation labels
from previous steps in the plan, denoted context(Ai).
We say two contexts are compatible if they do not dis-
agree on any action’s label) During execution, a step
will only be executed when its context is compatible with
the actual observations produced by executing previous
steps (called the execution context).

For example, consider this sequence of annotated ac-
tions: (inspect{}, ship{ok}, reject{bad}). An agent
would always execute the first step, inspect, since the
empty context is always acceptable. Suppose that
inspect returned the report bad, which would be in-
cluded in the execution context. The agent would then
consider, but decline, to execute ship, since its context
is not compatible with the execution context. The agent
would finally execute reject, since its context is compat-
ible with the execution context.

3 An Overview of the C-BURIDAN
Algorithm

C-BURIDAN takes as input a probability distribution ~1
over initial states, a set of actions {Ai}, a goal expres-

1In other words, two contexts are compatible if their con-
junction is satisfiable.

sion G, and a probability threshold r. For the problem
described in this paper, ~t is defined in Section 2, the set
of actions is {inspect, paint, ship, reject, notify}, the goal
is {PR, PA, NO}, and we will set ~" = 0.8. As output,
C-BUR.IDAN returns a sequence of annotated actions such
that their execution achieves G with probability at least
T.

C-BURIDAN searches a space of plans. Each plan con-
sists of a set of actions {Ai}, contexts for each At, a
partial temporal ordering relation over {AI}, a set of
causal links, and a set of subgoals. A causal link caches
C-BUR, IDAN’S commitment that a particular consequence
of a particular action should help make a literal true
later in the plan. For example, the presence of the link
paint~e-&goal indicates that the planner has decided

that the a consequence of paint is supposed to make PA
true for use by goal. Our causal links are similar to the
causal links or protection intervals used by many plan-
ners, but there are important differences which we will
explain below. A subgoal is a pair of the form (d,Ai),
and represents the planner’s intent to make literal d true
when action Ai is executed. Threats play the same role
as in other causal-link planners, but an additional pro-
vision is made for contexts: At threatens link Aphid Ac

if some consequence of At asserts d, if At can occur be-
tween Ap and Ac, and if context(At) is compatible with
both context(Ap) and context(A~).

Like BUR.IDAN, C-BUR.IDAN begins searching from an
initial null plan (Figure 3), which contains the two
dummy actions A0 and AG (encoding the initial state
distribution and the goal expression respectively), and
the ordering constraint A0 < AG. The initial action A0
has one consequence for each state in the initial prob-
ability distribution with non-zero probability. The goal
action AG has a single SUCCESS consequence triggered
by the goal expression. The null plan’s subgoals are all
pairs of the form (g, goal/, where g is a literal in the goal
expression.

Starting from the null plan, C-BURIDAN performs two
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Figure 3:A0 and AG encode the initial state distribution and the goal.

operations:

1. Plan Assessment: Determine if the probability that
the current plan will achieve the goal exceeds r, ter-
minating successfully if so2

2. Plan Refinement: Otherwise, try to increase the
probability of goal satisfaction by nondeterministi-
cally choosing to support a subgoal (by adding 
causal link to a new or existing action) or to pro-
tect a threatened link. Fail if there are no possible
refinements, otherwise loop.

Refining a plan with conditional and probabilistic ac-
tions differs from classical plan refinement (e.g. SNLP
[McAllester and Rosenblitt, 1991]) in two important
ways. First, where SNLP establishes a single causal link
between a producing action and a consuming action,
C-BURIDAN may require several. Any SNLP link alone
assures that the supported literal will be true. In our rep-
resentation, a link Ap~-~Ac ensures that d will be true
at action Ac only if the trigger Tp~ holds with probabil-
ity one at Ap, and the consequence’s probability pp~ = 1.
But when no single link can make the literal sufficiently
likely, several links (representing different situations un-
der which the literal might be made true) may suffice.
We lose SNLP’s clean distinction between an "open con-
dition" and a "supported condition," in return for the
ability to represent cumulative support from actions with
uncertain consequences.

The second difference lies in how C-BUKIDAN resolves
threats. Like classical planners, C-BURIDAN may pro.
mote or demote a threatening action by ordering it be-
fore the producer or after the consumer of the threat-
ened link. Like 8UmDAN or UCPOP [Penberthy and Weld,
1992], C-BUP..IDAN may also confront a threat: when the
threatening action has benign as well as threatening con-
sequences, C-BURIDAN can adopt the triggers of one of
the benign consequences as subgoals, which has the ef-
fect of decreasing the probability of the threatening con-
sequences.

Finally, C-BURIDAN has an additional threat-
resolution technique, branching, unique to a contingent

~[Kushmerick et al., 19931 and [Draper et at., 1993] discuss
plan assessment in detail. Here we will mention only that
correlated information is discovered during assessment. The
assessor generates alternative execution profiles, and it notes,
for example, that sequences in which FL is initially true are
likely to cause inspect to generate an observation of bad,
and that subsequent_~ly executing reject is likely to succeed,
and conversely for FL, ok, and ship. As a result, the assessor
reports that a plan in which reject is executed when bad is
received and ship is executed when ok is received has a high
probability of success. The correlation between FL and BL is
thus detected by assessment, although an explicit connection
between the two propositions is never made.

planner,s Intuitively, branching ensures that the agent
will never execute the threatening step when the link’s
consuming step is depending on an effect generated by
the producing step. We will explain the branching tech-
nique in detail in Section 3.1, but first let us examine
what progress the planner could make without it:

If (non-contingent) BURIDAN was applied to our ex-
ample, it would add a paint action to support PAinted, a
ship action to support PRoccessed, and a notify action to
support NOtified. Assessment would show that the plan
has probability of only 0.665, since ship only achieves
the desired PRoccessed outcome when the part is not
FLawed. If BUR.IDAN tried to provide additional support
for PR by adding a new reject action and linking it to
the goal, it would produce the plan shown in Figure 4.
The problem with this plan is that it has a pair of irrec-
oncilable threats (shown in grey): reject makes PR true,
which threatens the link from initial to ship, and like-
wise ship makes PR true, threatening a link from initial
to reject. Adding orderings can resolve only one of these
two threats, and confronting the threat would mean that
the planner would be trying to achieve two mutually ex-
clusive consequences at once. The predicament becomes
apparent: the planner needs to be able to execute either
ship or reject but not both, and needs some way to decide
under which conditions each step should be executed.

3.1 Threat resolution by branching

"Branching" works by introducing branches--a new kind
of plan element--into a plan. A branch connects an
information-producing action to a subsequent action,
indicating which observation labels of the first per-
mit execution of the second. In Figure 5, for ex-
ample, there are two branches: inspect=ok=~ship and
inspect=bad=~reject. The first means that ship should
be executed only if the execution of inspect generates
an observation label of ok, the second means that reject
should be executed only if the execution of inspect gen-
erates bad.

We will use our example to illustrate the branching
procedure, attempting to resolve the threat posed by
reject~ to the link initial~P-~ship.

1. We can separate the context of the threatening step
At = reject from the context of either the link’s con-
sumer or its producer, so first choose a step A, to
separate. We will choose A, = ship.4

3[Peot and Smith, 1992] call this technique "condition-
ing." We adopt an alternative term to avoid confusion with
"conditional effects" in the action representation.

4All choices are nondeterministic--as a practical matter
the planner must be prepared to backtrack. For the sake of
brevity we will illustrate one correct series of choices.
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Figure 4: ship and reject threaten each other (indicated by grey links).

2. Choose some new or existing information-producing
action Ai that can be ordered before both A, and
A~, and has a context compatible with context(A,)
and context(At). We choose to add a new inspect
action to the plan, ordering it before ship and reject.
All three actions have empty contexts, so inspect is
compatible with both.

3. Choose two observation labels c and d from Ai.5

We choose c = bad, d = ok.
4. Add the branches Ai=c=~A~ and Ai=c~=~A, to

the plan. Thus we add inspect--ok=g, ship and
inspect=bad=~reject.

5. update the contexts of A, and At to include the new
observation labels: context(At) := context(At) 
c, and context(A,) := context(A,) A c’. Specifi-
cally, context(reject) : = {bad} and context(ship) 
{ok}.

6. Adopt each of Ai’s triggers as subgoals--we adopt
(BL, inspect) and (B’L, inspect).

Now ship and reject are restricted to mutually exclu-
sive execution contexts, but as yet there is no ordering
constraint between inspect and paint. If paint is exe-
cuted first, however, it will destroy the correlation be-
tween BLemishes and FLaws. C-BURIDAN discovers this
problem when it supports the subgoal (BL, inspect) with
a link from the initial step’s j3 consequence, and finds
that paint a threatens this link. C-BURIDAN can promote
the threat, yielding the plan shown in Figure 5. The
assessment algorithm determines that the success prob-
ability of this plan is 0.9215 > r, and returns it as a
solution. (The plan fails only if paint fails to make PA
true or if the widget was initially blemished and inspect
incorrectly reports ok.) Note that notify will be executed

SMore precisely we choose any partition of Ai’s observa-
tion labels; technically, this requires the more compIex defi-
nition of context presented in [Draper et al., 1993].

regardless of what inspect reports, even though both ship
and reject are subject to contingent execution. This il-
lustrates how C-BURIDAN allows execution sequences to
diverge and later rejoin.

3.2 Context propagation

Branching restricts steps to different contexts only when
one threatens another. This policy results in plans that
are correct, but possibly inefficient: the agent may end
up executing actions which are not actually useful, even
though they do not interfere with other steps in the plan.
Suppose, for example, that the ship action had an ad-
ditional precondition--to have a box--produced by an
action get-box. C-BURIDAN would produce the plan frag-
ment in the left of Figure 6, in which the get-box action
is always executed, whether or not ship is executed. We
would prefer to restrict the context of get-box so it is
executed only under the same circumstances as ship, as
in the right half of Figure 6. The contexts in which an
action is useful depend on the contexts of the actions
to which it is connected by causal links. Thus we can
determine when an action will be useful by propagat-
ing contexts along causal links, and we can restrict an
action’s context based on the propagated information.
[Draper et al., 1993] defines precisely when an action is
"useful" in a plan, and develops a propagation algorithm
that restricts an action’s context accordingly. The algo-
rithm is similar to to the way CNLP propagates context
labels, but is adapted to our more general plan structure.

4 Summary and Related Work

C-BURIDAN is an implemented probabilistic contingent
planner, combining probabilistic reasoning about actions
and information with symbolic least-commitment plan-
ning techniques. Causal and informational effects can
be freely mixed, and the planner correctly distinguishes
between them. The action representation models noisy
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Figure 6: Using propagation to constrain an action’s context.

and context-dependent information sources, and allows
reasoning about correlated information. C-BURIDAN gen-
erates contingent plans in which different actions are ex-
ecuted depending on the result of prior observations, and
the representation allows execution sequences to diverge
and rejoin.

Related work in conditional planning includes work in
decision analysis as well as previous AI planning systems.
C-BURIDAN uses a standard Bayesian framework for as-
sessing the value of information and reasoning about se-
quential decisions [Winkler, 1972], but our emphasis is
on automated plan construction from schematic action
descriptions and an input problem, whereas work in the
decision sciences emphasizes modeling issues.

Our approach to contingent planning borrows much
from the CNLP algorithm of [Peot and Smith, 1992].
In particular, branching derives from CNLP~s method of
conditioning. CNLP uses a very different action model,
closely related to the STRIPS representation. CNLP~s
action model cannot represent a situation in which an
action behaves differently depending on the prevailing
world state or on unmodeled (chance) factors. CNLP
therefore cannot model noisy sensing actions such as
inspect. We also treat contingencies differently: in
CNLP, every time a new execution context is introduced
into the plan (by conditioning or branching) a new in-
stance of the goal step is also added with that context--
CNLP’s plans are thus completely tree-structured.

Cassandra [Pryor and Collins, 1993] is another deter-

ministic causal-link contingency planner. It manipulates
a more expressive action representation than CNLP, but
uses similar mechanisms for generating branching (con-
tingent) plans.

Future work is oriented toward increas-
ing C-BURIDAN’S expressive power (extending the action
representation and allowing plans to be evaluated using
explicit utility models) and toward building effective ap-
plications (developing heuristic methods for controlling
the plan-generation and assessment process that allow
the solution of larger problems).
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