
Multiple Model-based Reinforcement Learning

Kenji Doya∗1235, Kazuyuki Samejima1,3,

Ken-ichi Katagiri45, and Mitsuo Kawato135

November 2, 2001

1Human Information Science Laboratories, ATR International

2-2-2 Hikaridai, Seika, Soraku, Kyoto 619-0288, Japan

Phone: +81-774-95-1251

Fax: +81-774-95-1259

Email: doya@atr.co.jp

2CREST, Japan Science and Technology Corporation

3Kawato Dynamic Brain Project, ERATO

Japan Science and Technology Corporation

4ATR Human Information Processing Research Laboratories

5Nara Institute of Science and Technology

Abstract

We propose a modular reinforcement learning architecture for non-linear, non-

stationary control tasks, which we call multiple model-based reinforcement learn-

ing (MMRL). The basic idea is to decompose a complex task into multiple domains

in space and time based on the predictability of the environmental dynamics. The

1

system is composed of multiple modules, each of which consists of a state predic-

tion model and a reinforcement learning controller. The “responsibility signal,”

which is given by the softmax function of the prediction errors, is used to weight

the outputs of multiple modules as well as to gate the learning of the predic-

tion models and the reinforcement learning controllers. We formulate MMRL for

both discrete-time, finite state case and continuous-time, continuous state case.

The performance of MMRL was demonstrated for discrete case in a non-stationary

hunting task in a grid world and for continuous case in a non-linear, non-stationary

control task of swinging up a pendulum with variable physical parameters.

1 Introduction

A big issue in the application of reinforcement learning (RL) to real-world control

problems is how to deal with non-linearity and non-stationarity. For a nonlinear,

high-dimensional system, the conventional discretizing approach necessitates a

huge number of states, which makes learning very slow. Standard RL algorithms

can perform badly when the environment is non-stationary, or has hidden states.

These problems have motivated the introduction of modular or hierarchical RL

architectures (Singh 1992; Dayan and Hinton 1993; Littman et al. 1995; Wiering

and Schmidhuber 1998; Parr and Russel 1998; Sutton et al. 1999; Morimoto and

Doya 2001). The basic problem in modular or hierarchical RL is how to decompose

a complex task into simpler subtasks.

This paper presents a new RL architecture based on multiple modules, each

of which is composed of a state prediction model and a RL controller. With this

architecture, a non-linear and/or non-stationary control task is decomposed in

space and time based on the local predictability of the environmental dynamics.

2

The “mixture of experts” architecture (Jacobs et al. 1991) has previously been

applied to non-linear or non-stationary control tasks (Gomi and Kawato 1993;

Cacciatore and Nowlan 1994). However, the success of such modular architecture

depends strongly on the capability of the gating network to decide which of the

given modules should be recruited at any particular moment.

An alternative approach is to provide each of the experts with a prediction

model of the environment and to utilize the prediction errors for the selection of

the controllers. In Narendra et al. (1995), the model that makes the smallest

prediction error among a fixed set of prediction models is selected, and its asso-

ciated single controller is used for control. However, when the prediction models

are to be trained with little prior knowledge, task decomposition is initially far

from optimal. Thus the use of ‘hard’ competition can lead to sub-optimal task

decomposition.

Based on the Bayesian statistical framework, Pawelzik et al. (1996) proposed

the use of annealing in a ‘soft’ competition network for time series prediction

and segmentation. A similar mechanism is used by Tani and Nolfi (1999) for

hierarchical sequence prediction. The use of the softmax function for module

selection and combination was originally proposed for a tracking control paradigm

as the “Multiple Paired Forward-Inverse Models (MPFIM)” (Wolpert and Kawato

1998; Wolpert et al. 1998; Haruno et al. 1999). It was recently reformulated

as “MOdular Selection and Identification for Control (MOSAIC)” (Wolpert and

Ghahramani 2000).

In this paper, we apply the idea of a softmax selection of modules to the

paradigm of reinforcement learning. The resulting learning architecture, which

we call “Multiple Model-based Reinforcement Learning (MMRL),” learns to de-

3

compose a non-linear and/or non-stationary task through the competition and

cooperation of multiple prediction models and reinforcement learning controllers.

In the following sections, we first formulate the basic MMRL architecture (Sec-

tion 2) and then describe its implementation in discrete-time and continuous-time

cases, including “Multiple Linear Quadratic Controllers (MLQC)” (Section 3). We

first test the performance of the MMRL architecture for the discrete case in a hunt-

ing task with multiple preys in a grid world (Section 4). We also demonstrate the

performance of MMRL for continuous case in a non-linear, non-stationary control

task of swinging up a pendulum with variable physical parameters (Section 5).

2 Multiple Model-based Reinforcement Learn-
ing

Figure 1 shows the overall organization of the multiple model-based reinforcement

learning (MMRL) architecture. It is composed of n modules, each of which consists

of a state prediction model and a reinforcement learning controller.

The basic idea of this modular architecture is to decompose a non-linear and/or

non-stationary task into multiple domains in space and time so that within each

of the domains the environmental dynamics is well predictable. The action output

of the RL controllers as well as the learning rates of both the predictors and the

controllers are weighted by the “responsibility signal,” which is a Gaussian softmax

function of the errors in the outputs of the prediction models. The advantage of

this module selection mechanism is that the areas of specialization of the modules

are determined in a bottom-up fashion based on the nature of the environment.

Furthermore, for each area of module specialization, the design of the control

strategy is facilitated by the availability of the local model of the environmental

4

dynamics.

In the following, we consider a discrete-time, finite state environment

P (x(t)|x(t − 1), u(t − 1)) = F (x(t), x(t − 1), u(t − 1)), (t = 1, 2, ...), (1)

where x ∈ {1, ..., N} and u ∈ {1, ..., M} are discrete states and actions, and a

continuous-time, continuous-state environment

ẋ(t) = f(x(t), u(t)) + ν(t), (t ∈ [0,∞)), (2)

where x ∈ RN and u ∈ RM are state and action vectors, and ν ∈ RN is noise.

Actions are given by a policy, either a stochastic one

P (u(t)|x(t)) = G(u(t), x(t)) (3)

or a deterministic one

u(t) = g(x(t)). (4)

The reward r(t) is given as a function of the state x(t) and the action u(t). The

goal of reinforcement learning is to improve the policy so that more rewards are

acquired in a long run. The basic strategy of reinforcement learning is to estimate

cumulative future reward under the current policy as the “value function” V (x)

for each state and then to improve the policy based on the value function. We

define the value function of the state x(t) under the current policy as

V (x(t)) = E

[∞∑
k=0

γkr(t + k)

]
(5)

in discrete case (Sutton and Barto 1998) and

V (x(t)) = E
[∫ ∞

0
e−

s
τ r(t + s)ds

]
(6)

in continuous case (Doya 2000), where 0 ≤ γ ≤ 1 and 0 < τ are the parameters

for discounting future reward.

5

2.1 Responsibility Signal

The purpose of the prediction model in each module is to predict the next state

(discrete-time) or the temporal derivative of the state (continuous-time) based

on the observation of the state and the action. The responsibility signal λi(t)

(Wolpert and Kawato 1998; Haruno et al. 1999) is given by the relative goodness

of predictions of multiple prediction models.

For a unified description, we denote the new state in the discrete case as

y(t) = x(t) (7)

and the temporal derivative of the state in the continuous case as

y(t) = ẋ(t). (8)

The basic formula for the responsibility signal is given by the Bayes rule

λi(t) = P (i|y(t)) =
P (i)P (y(t)|i)∑n

j=1 P (j)P (y(t)|j) , (9)

where P (i) is the prior probability of selecting module i and P (y(t)|i) is the

likelihood of model i given the observation y(t).

In the discrete case, the prediction model gives the probability distribution of

the new state x̂(t) based on the previous state x(t− 1) and the action u(t− 1) as

P (x̂(t)|x(t − 1), u(t − 1)) = Fi(x̂(t), x(t − 1), u(t − 1)) (i = 1, ..., n).(10)

If there is no prior knowledge about module selection, we take the priors as uniform

(P (i) = 1/n) and then the responsibility signal is given by

λi(t) =
Fi(x(t), x(t − 1), u(t − 1))∑n

j=1 Fj(x(t), x(t − 1), u(t − 1))
, (11)

6

where x(t) is the newly observed state.

In the continuous case, the prediction model gives the temporal derivative of

the state

ˆ̇xi(t) = fi(x(t), u(t)) (12)

By assuming that the prediction error is Gaussian with variance σ2, the responsi-

bility signal is given by the Gaussian softmax function

λi(t) =
e−

1
2σ2 ||ẋ(t)−ˆ̇xi(t)||2

∑n
j=1 e−

1
2σ2 ||ẋ(t)−ˆ̇xi(t)||2

, (13)

where ẋ(t) is the actually observed state change.

2.2 Module Weighting by Responsibility Signal

In the MMRL architecture, the responsibility signal λi(t) is used for four purpos-

es: 1) weighting the state prediction outputs; 2) gating the learning of prediction

models; 3) weighting the action outputs; and 4) gating the learning of reinforce-

ment learning controller.

1) State prediction: The outputs of the prediction models are weighted by the

responsibility signal λi(t). In the discrete case, the prediction of the next state is

given by

P (x̂(t)) =
n∑

i=1

λi(t)Fi(x̂(t), x(t − 1), u(t − 1)). (14)

In the continuous case, the predicted state derivative is given by

ˆ̇x(t) =
n∑

i=1

λi(t)ˆ̇xi(t). (15)

These predictions are used in model-based RL algorithms and also for the anneal-

ing of σ as described later.

7

2) Prediction model learning: The responsibility signal λi(t) is also used for

weighting the parameter update of the prediction models. In general, it is realized

by scaling the error signal of prediction model learning by λi(t).

3) Action output: The outputs of reinforcement learning controllers are linearly

weighted by λi(t) to make the action output. In the discrete case, the probability

of taking an action u(t) is given by

P (u(t)) =
n∑

i=1

λi(t)Gi(u(t), x(t)). (16)

In the continuous case, the output is given by the interpolation of modular outputs

u(t) =
n∑

i=1

λi(t)ui(t) =
n∑

i=1

λi(t)gi(x(t)). (17)

4) Reinforcement learning: λi(t) is also used for weighting the learning of

the RL controllers. The actual equation for the parameter update varies with

the choice of the RL algorithms, which are detailed in the next section. When a

temporal difference (TD) algorithm (Barto et al. 1983; Sutton 1988; Doya 2000)

is used, the TD error,

δ(t) = r(t) + γV (x(t + 1)) − V (x(t)) (18)

in the discrete case and

δ(t) = r̂(t) − 1

τ
V (t) + V̇ (t) (19)

in the continuos case, is weighted by the responsibility signal

δi(t) = λi(t)δ(t) (20)

for learning of the i-th RL controller.

Using the same weighting factor λi(t) for training the prediction models and

the RL controllers helps each RL controller to learn an appropriate policy and

8

its value function for the context under which its paired prediction model makes

valid predictions.

2.3 Responsibility predictors

When there is some prior knowledge or belief about module selection, we incor-

porate the “responsibility predictors” (Wolpert and Kawato 1998; Haruno et al.

1999). By assuming their outputs λ̂i(t) are proportional to the prior probability

of module selection, from (9), the responsibility signal is given by

λi(t) =
λ̂i(t)P (y(t)|i)∑n

j=1 λ̂j(t)P (y(t)|j) . (21)

In modular decomposition of a task, it is desired that modules do not switch

too frequently. This can be enforced by incorporating responsibility priors based

on the assumption of temporal continuity and spatial locality of module activation.

2.3.1 Temporal continuity

The continuity of module selection is incorporated by taking the previous respon-

sibility signal as the responsibility prediction signal. In the discrete case, we take

the responsibility prediction based on the previous responsibility

λ̂i(t) = λi(t − 1)α, (22)

where 0 < α < 1 is a parameter that controls the strength of the memory effect.

From (21) and (22), the responsibility signal at time t is given by the product of

likelihoods of past module selection

λi(t) =
1

Z(t)

t∏
k=0

P (x(t − k)|i)αk

, (23)

where Z(t) denotes the normalizing factor, i.e., Z(t) =
∑n

j=1

∏t
k=0 P (x(t−k)|j)αk

.

In the continuous case, we choose the prior

9

λ̂i(t) = λi(t − ∆t)∆tα∆t

, (24)

where ∆t is an arbitrarily small time difference (note (24) coincides with (22) with

∆t = 1).

Since the likelihood of the module i is given by the Gaussian P (ẋ(t)|i) =

e−
1

2σ2 ||ẋ(t)−ˆ̇xi(t)||2 , from recursion as in (23), the responsibility signal at time t is

given by

λi(t) =
1

Z(t)

t/∆t∏
k=0

P (ẋ(t − k∆t)|i)∆tαk∆t

=
1

Z(t)
e−

1
2σ2 ∆t

∑t/∆t

k=0
||ẋ(t−k∆t)−ˆ̇xi(t−k∆t)||2αk∆t

, (25)

that is, a Gaussian softmax function of temporally weighted squared errors. In

the limit of ∆t → 0, (25) can be represented as

λi(t) =
e−

1
2σ2 Ei(t)

∑n
j=1 e−

1
2σ2 Ej(t)

(26)

where Ei(t) is a low-pass filtered prediction error

Ėi(t) = log α Ei(t) + ||ẋ(t) − ˆ̇xi(t)||2. (27)

The use of this low-pass filtered prediction errors for responsibility prediction is

helpful in avoiding chattering of the responsibility signal (Pawelzik et al. 1996).

2.3.2 Spatial locality

In the continuous case, we consider a Gaussian spatial prior

λ̂i(t) =
e−

1
2
(x(t)−ci)

′M−1
i (x(t)−ci)∑n

j=1 e−
1
2
(x(t)−cj)′M−1

j (x(t)−cj)
, (28)

10

where ci is the center of the area of specialization, Mi is a covariance matrix that

specifies the shape, and ′ denotes transpose. These parameters are updated so

that they approximate the distribution of the input state x(t) weighted by the

responsibility signal, namely,

ċi = ηcλi(t)(−ci + x(t)), (29)

Ṁi = ηMλi(t)[−Mi + (x(t) − ci)(x(t) − ci)
′], (30)

where ηc and ηM are update rates.

3 Implementation of MMRL Architecture

For the RL controllers, it is generally possible to use model-free RL algorithms,

such as actor-critic and Q-learning. However, because the prediction models of the

environmental dynamics are intrinsic components of the architecture, it is advan-

tageous to utilize these prediction models not just for module selection but also

for designing RL controllers. In the following, we describe the use of model-based

RL algorithms for discrete-time and continuous-time cases. One special imple-

mentation for continuous-time is the use of multiple “linear quadratic controllers”

derived from linear dynamic models and quadratic reward models.

3.1 Discrete-time MMRL

Now we consider implementation of the MMRL architecture for discrete-time,

finite state and action problems. The standard way of utilizing a predictive model

in RL is to use it for action selection by the one-step search

u(t) = arg max
u

E[r̂(x(t), u) + γV (x̂(t + 1))], (31)

11

where r̂(x(t), u) is the predicted immediate reward and x̂(t + 1) is the next state

predicted from the current state x(t) and a candidate action u.

In order to implement this algorithm, we provide each module with a reward

model r̂i(x, u), a value function Vi(x), and a dynamic model Fi(x̂, x, u). Each

candidate action u is then evaluated by

q(x(t), u) = E[r̂(x(t), u) + γV (x̂(t + 1))|u]

=
n∑

i=1

λi(t)[r̂i(x(t), u) + γ
N∑

x̂=1

Vi(x̂)Fi(x̂, x(t), u)]]. (32)

For the sake of exploration, we use a stochastic version of the greedy action selec-

tion (31), where the action u(t) is selected by a Gibbs distribution

P (u|x(t)) =
eβq(x(t),u)∑M

u′=1 eβq(x(t),u′) , (33)

where β controls the stochasticity of action selection.

The parameters are updated by the error signals weighted by the responsibility

signal, namely, λi(t)(Fi(j, x(t − 1), u(t − 1)) − c(j, x(t))) for the dynamic model

(j = 1, ..., N ; c(j, x) = 1 if j = x and zero otherwise), λi(t)(r̂i(x(t), u(t)) − r(t))

for the reward model, and λi(t)δ(t) for the value function model.

3.2 Continuous-time MMRL

Next we consider a continuous-time MMRL architecture. A model-based RL

algorithm for a continuous-time, continuous-state system (2) is derived from the

Hamilton-Jacobi-Bellman (HJB) equation

1

τ
V (x(t)) = max

u

[
r(x(t), u) +

∂V (x(t))

∂x
f(x(t), u)

]
, (34)

where τ is the time constant of reward discount (Doya 2000). Under the assump-

tions that the system is linear with respect to the action and the action cost is

convex, a greedy policy is given by

12

u = g

(
∂f(x, u)

∂u

′∂V (x)

∂x

′)
, (35)

where ∂V (x)
∂x

′
is a vector representing the steepest ascent direction of the value

function, ∂f(x,u)
∂u

′
is a matrix representing the input gain of the dynamics, and g is

a sigmoid function whose shape is determined by the control cost (Doya 2000).

To implement the HJB based algorithm, we provide each module with a dy-

namic model fi(x, u) and a value model Vi(x). The outputs of the dynamic models

(12) are compared with the actually observed state dynamics ẋ(t) to calculate the

responsibility signal λi(t) according to (13).

The model outputs are linearly weighted by λi(t) for state prediction

ˆ̇x(t) =
n∑

i=1

λi(t)fi(x(t), u(t)), (36)

and value function estimation

V (x) =
n∑

i=1

λi(t)Vi(x). (37)

The derivatives of the dynamic models ∂fi(x,u)
∂u

and value models ∂Vi(x)
∂x

are used to

calculate the action for each module

ui(t) = g

(
∂fi(x, u)

∂u

′∂Vi(x)

∂x

′)∣∣∣∣∣
x(t)

. (38)

They are then weighted by λi(t) according to (17) to make the actual action u(t).

Learning is based on the weighted prediction errors λi(t)(ˆ̇xi(t) − ẋ(t)) for dy-

namic models and λi(t)δ(t) for value function models.

3.3 Multiple Linear Quadratic Controllers

In a modular architecture like the MMRL, the use of universal non-linear func-

tion approximators with large numbers of degrees-of-freedom can be problematic

13

because it can lead to an undesired solution in which a single module tries to han-

dle most of the task domain. The use of linear models for the prediction models

and the controllers is a reasonable choice because local linear models have been

shown to have good properties of quick learning and good generalization (Schaal

and Atkeson 1996). Furthermore, if the reward function is locally approximated

by a quadratic function, then we can use a linear quadratic controller (see, e.g.,

Bertsekas 1995) for the RL controller design.

We use a local linear dynamic model

ˆ̇x(t) = Ai(x(t) − xd
i) + Biu(t) (39)

and a local quadratic reward model

r̂(x(t), u(t)) = r0
i −

1

2
(x(t) − xr

i)
′Qi(x(t) − xr

i) −
1

2
u′(t)Riu(t) (40)

for each module, where xd
i , x

r
i is the center of local prediction for state and reward,

respectively. The r0
i is a bias of quadratic reward model.

The value function is given by the quadratic form

Vi(x) = v0
i −

1

2
(x − xv

i)
′Pi(x − xv

i) (41)

The matrix Pi is given by solving the Riccati equation

0 =
1

τ
Pi − PiAi − A′

iPi + PiBiR
−1
i B ′

iPi − Qi. (42)

The center xv
i and the bias v0

i of the value function is given by

xv
i = (Qi + PiAi)

−1(Qix
r
i + PiAix

d
i), (43)

1

τ
v0

i = r0
i −

1

2
(xv

i − xr
i)

′Qi(x
v
i − xr

i) (44)

Then the optimal feedback control for each module is given by the linear feedback

14

ui(t) = −R−1
i BT

i Pi(x(t) − xv
i) (45)

The action output is given by weighting these controller outputs by the responsi-

bility signal λi(t):

u(t) =
n∑

i=1

λi(t)ui(t). (46)

The parameters of the local linear models Ai, Bi, and xd
i and those of the

quadratic reward models r0
i , Qi, and Ri are updated by the weighted prediction

errors λi(t)(ˆ̇xi(t)− ẋ(t)) and λi(t)(ri(x, u)− r(t)), respectively. When we assume

that the update of these models is slow enough, then the Riccati equations (42)

may be recalculated only intermittently. We call this method “Multiple Linear

Quadratic Controllers” (MLQC).

4 Simulation: Discrete Case

In order to test the effectiveness of the MMRL architecture, we first applied the

discrete MMRL architecture to a non-stationary hunting task in a grid world. The

hunter agent tries to catch a prey in a 7×7 torus grid world. There are 47 states

representing the position of the prey relative to the hunter. The hunter chooses

one of five possible actions: { north (N), east (E), south (S), west (W), stay}. A

prey moves in a fixed direction during a trial. At the beginning of each trial, one

of four movement directions { NE, NW, SE, SW} is randomly selected and a prey

is placed at a random position in the grid world. When the hunter catches the

prey, by stepping into the same grid as the prey’s, a reward r(t) = 10 is given.

Each step of movement costs r(t) = −1. A trial is terminated when the hunter

catches a prey, or it fails to catch it within 100 steps.

15

In order to compare the performance of MMRL with conventional methods, we

applied standard Q-learning and compositional Q-learning (CQ-L) (Singh 1992)

to the same task. A major difference between CQ-L and MMRL is the criteri-

on for modular decomposition: CQ-L uses the consistency of the modular value

functions while MMRL uses the prediction errors of dynamic models. In CQ-L,

the gating network as well as component Q-learning modules are trained so that

the composite Q-value well approximates the action value function of the entire

problem. In the original CQ-L (Singh 1992), the output of the gating network was

based on the “augmenting bit” that explicitly signaled the change in the context.

Since our goal now is to let the agent learn appropriate decomposition of the task

without an explicit cue, we used a modified CQ-L (See Appendix for the details

of the algorithm and the parameters).

4.1 Result

Figure 2 shows the performance difference of standard Q-learning, CQ-L, and

MMRL in the hunting task. The modified CQ-L did not perform significantly

better than standard, flat Q-learning. Investigation of the modular Q functions of

CQ-L revealed that, in most simulation runs, modules did not appropriately dif-

ferentiate for four different kinds of preys. On the other hand, the performance of

MMRL approached close to theoretical optimum. This was because four modules

successfully specialized in one of four kinds of prey movement.

Figure 3 shows examples of the value functions and the prediction models

learned by MMRL. From the output of the prediction models Fi, it can be seen

that the modules 1,2,3 and 4 were specialized for the prey moving to NE, NW,

SW, and SE, respectively. The landscapes of the value functions Vi(x) are in

16

accordance with these movement directions of the prey.

A possible reason for the difference in the performance of CQ-L and MMRL in

this task is the difficulty of module selection. In CQ-L, when the prey is far from

the hunter, the differences in discounted Q values for different kinds of preys are

minor. Thus it would be difficult to differentiate modules based solely on the Q

values. In MMRL, on the other hand, module selection based on the state change,

in this case prey movement, is relatively easy even when the prey is far from the

hunter.

5 Simulation: Continuous Case

In order to test the effectiveness of the MMRL architecture, we first applied the

MLQC algorithm described in Section 3.3 to the task of swinging up a pendulum

with limited torque (Figure 4) (Doya 2000). The driving torque T is limited in

[−Tmax, Tmax] with T max < mgl. The pendulum has to be swung back and forth

at the bottom to build up enough momentum for a successful swing up.

The state space was 2-dimensional, i.e. x = (θ, θ̇)′ ∈ [−π, π]×R where θ is the

joint angle (θ = 0 means the pendulum hanging down). The action was u = T .

The reward was given by the height of the tip and the negative squared torque

r(x, u) = − cos θ − 1

2
RT 2. (47)

A trial was started from random joint angle θ ∈ [−π/4, π/4] with no angular

velocity, and lasted for 20 seconds. We devised the following automatic annealing

process for the parameter σ of the softmax function for the responsibility signal

(26).

σk+1 = ηaEk + (1 − η)σk, (48)

17

where k denotes the number of trial and Ek is the average state prediction error

during the k-th trial. The parameters were η = 0.25, a = 2, and the initial value

set as σ0 = 4.

5.1 Task Decomposition in Space: Non-linear Control

We first used two modules, each of which had a linear dynamic model (39) and

a quadratic reward model (40). The centers of the local linear dynamic models

were initially placed randomly with the angular component in [−π, π].

Each trial was started from a a random position of the pendulum and lasted

for 30 seconds.

Figure 4 shows an example of swing up performance from the bottom position.

Initially, the first prediction model predicts the pendulum motion better than the

second one, so the responsibility signal λ1 becomes close to 1. Thus the output

of the first RL controller u1, which destabilizes the bottom position, is used for

control. As the pendulum is driven away from the bottom, the second prediction

model predicts the movement better, so λ2 becomes higher and the second RL

controller takes over and stabilizes the upright position.

Figure 5 shows the changes of linear prediction models and quadratic reward

models before and after learning. The two linear prediction models approximat-

ed the non-linear gravity term. The first model predicted the negative feedback

acceleration around the equilibrium state with the pendulum hanging down. The

second model predicted the positive feedback acceleration around the unstable

equilibrium with the pendulum raised up. The two reward models also approxi-

mated the cosine reward function using parabolic curves.

Figure 6 shows the dynamic and reward models when there were eight mod-

18

ules. Two modules were specialized for the bottom position and three modules

were specialized near the top position, while two other modules were centered

somewhere in between. The result shows that proper modularization is possible

even when there are redundant modules.

Figure 7 compares the time course of learning by MLQC with two, four, and

eight modules and a non-modular actor-critic (Doya 2000). Learning was fastest

with two modules. The addition of redundant modules resulted in more variability

in the time course of learning. This is because there were multiple possible ways

of modular decomposition and due to the variability of the sample trajectories, it

took longer time for modular decomposition to stabilize. Nevertheless, learning by

the 8-module MLQC was still much faster than by the non-modular architecture.

An interesting feature of the MLQC strategy is that qualitatively different con-

trollers are derived by the solutions of the Riccati equations (42). The controller

at the bottom is a positive feedback controller that de-stabilizes the equilibrium

where the reward is minimal, while the controller at the top is a typical linear

quadratic regulator that stabilizes the upright state. Another important feature

of the MLQC is that the modules were flexibly switched simply based on the pre-

diction errors. Successful swing up was achieved without any top-down planning

of the complex sequence.

5.2 Task Decomposition in Time: Non-stationary Pen-
dulum

We then tested the effectiveness of the MMRL architecture for the both non-linear

and non-stationary control task in which mass m and length l of the pendulum

were changed every trial.

19

We used four modules, each of which had a linear dynamic model (39) and a

quadratic reward model (40). The centers xi of the local linear prediction models

were initially set randomly. Each trial was started from a random position with

θ ∈ [−π/4, π/4] and lasted for 40 seconds.

We implemented responsibility prediction with τc = 50, τM = 200, and τp =

0.1. The parameters of annealing were η = 0.1, a = 2, and an initial value of

σ0 = 10.

In the first 50 trials, the physical parameters were fixed at {m = 1.0, l =

1.0}. Figure 8(a) shows the change in the position gain ({A21} = ∂θ̈
∂θ

) of the four

prediction models. The control performance is shown in Figure 8(b). Figures

8(c,d,e) show prediction models in the section of {θ = 0, T = 0}.
Initial position gains are set randomly (Figure 8(c)). After 50 trials, module

1 and module 2 both specialized in the bottom region (θ � 0) and learned similar

prediction models. Module 3 and module 4 also learned the same prediction

model in the top region (θ � π) (Figure 8(d)). Accordingly, the RL controllers in

module 1 and module 2 learned a reward model with a minimum near (0, 0)′ and a

destabilizing feedback policy was given by (15)-(17). Module 3 and module 4 also

learned a reward model with a peak near (π, 0)′ and implemented a stabilizing

feedback controller.

In 50 to 200 trials, the parameters of the pendulum were switched between

{m = 1, l = 1.0} and {m = 0.2, l = 10.0} in each trial. At first, the degenerated

modules tried to follow the alternating environment (Figure 8(a)), and thus swing

up was not successful for the new, longer pendulum. The performance for the

shorter pendulum was also disturbed (Figure 8(b)). After about 80 trials, the

prediction models gradually specialized in either new or learned dynamics (Fig-

20

ure 8(e)), and successful swing up was achieved both for the shorter and longer

pendulums.

We found similar module specialization in six of ten simulation runs. In four

other runs, due to the bias in initial module allocation, three modules were ag-

gregated in one domain (top or bottom) and one model covered the other domain

during the stationary condition. However, after 150 trials in the non-stationary

condition, module specialization as shown in Figure 8(e) was achieved.

6 Discussion

We proposed a multiple model-based reinforcement learning (MMRL) architecture

that decomposes a non-linear and/or non-stationary task in space and time based

on the local predictability of the system dynamics. We tested the performance of

the MMRL in both non-linear and non-stationary control tasks. It was shown in

simulations of the pendulum swing up task that multiple prediction models were

successfully trained and corresponding model-based controllers were derived.

The modules were specialized for different domains in the state space. It was

also confirmed in a nonstationary pendulum swing-up task that available modules

are flexibly allocated for different domains in space and time based on the task

demands.

The modular control architecture using multiple prediction models was pro-

posed by Wolpert and Kawato as a computational model of the cerebellum (Wolpert

et al. 1998; Wolpert and Kawato 1998). Imamizu et al. showed in fMRI exper-

iments of novel tool use that a large area of the cerebellum is activated initially

and then a smaller area remains to be active after long training. They proposed

that such local activation spots are the neural correlates of internal models of

21

tools (Imamizu et al. 2000). They also suggested that internal models of different

tools are represented in separated areas in the cerebellum (Imamizu et al. 1997).

Our simulation results in a non-stationary environment can provide a computa-

tional account of these fMRI data. When a new task is introduced, many modules

initially compete to learn it. However, after repetitive learning, only a subset of

modules are specialized and recruited for the new task.

One might argue whether MLQC is a reinforcement learning architecture s-

ince it uses LQ controllers that were calculated off-line. However, when the linear

dynamic models and quadratic reward models are learned on-line, as in our simu-

lations, the entire system realize reinforcement learning. One limitation of MLQC

architecture is that the reward function should have helpful gradients in each mod-

ular domain. A method for back-propagating the value function of the successor

module as the effective reward for the predecessor module is under development.

In order to construct a hierarchical RL system, it appears necessary to combine

both top-down and bottom-up approaches for task decomposition. The MMRL

architecture provides one solution for the bottom-up approach. Combination of

this bottom-up mechanism with a top-down mechanism is the subject of our

ongoing study.

Acknowledgments

We thank Masahiko Haruno, Daniel Wolpert, Chris Atkeson, Jun Tani, Hidenori

Kimura, and Raju Bapi for helpful discussions.

22

Appendix: Modified Compositional Q-learning

On each time step, the gating variable gi(t) is given by the prior probability of

module selection, in this case from the assumption of temporal continuity (22)

gi(t) =
λi(t − 1)α∑n

j=1 λj(t − 1)α
. (49)

The composite Q-values for state x(t) are then computed by

Q̂(x(t), u) =
n∑

i=1

gi(t)Qi(x(t), u) (50)

and an action u(t) is selected by

P (u|x(t)) =
eβQ̂(x(t), u)∑

v∈U eβQ̂(x(t), v)
. (51)

After the reward r(x(t), u(t)) is acquired and the state changes to x(t + 1), the

TD error for the module i is given by

ei(t) = r(x(t), u(t)) + γ max
u

Q̂(x(t + 1), u) − Qi(x(t), u(t)). (52)

From Gaussian assumption of value prediction error, the likelihood of module i is

given by

P (ei(t)|i) = e−
1

2σ2 ei(t)
2

(53)

and thus the responsibility signal, or the posterior probability for selecting module

i, is given by

λi(t) =
gi(t)e

− 1
2σ2 ei(t)2

∑
j gj(t)e

− 1
2σ2 ej(t)2

. (54)

The Q values of each module is updated with the weighted TD error λi(t)ei(t) as

the error signal.

23

The discount factor was set as γ = 0.9 and the greediness parameters as

β = 1 for both MMRL and CQ-L. The decay parameter of temporal responsibility

predictor was α = 0.8 for MMRL. We tried different values of α for CQ-L without

a success. The value used in Figures 2 and 3 was α = 0.99.

References

Barto, A. G., R. S. Sutton, and C. W. Anderson (1983). Neuronlike adaptive el-

ements that can solve difficult learning control problems. IEEE Transactions

on Systems, Man, and Cybernetics 13, 834–846.

Bertsekas, D. P. (1995). Dynamic Programming and Optimal Control. Belmont,

MA, USA: Athena Scientific.

Cacciatore, T. W. and S. J. Nowlan (1994). Mixture of controllers for jump

linear and non-linear plants. In J. D. Cowan, G. Tesauro, and J. Alspector

(Eds.), Advances in Neural Information Processing System, Volume 6. San

Mateo, CA, USA: Morgan Kaufmann.

Dayan, P. and G. E. Hinton (1993). Feudal reinforcement learning. In C. L.

Giles, S. J. Hanson, and J. D. Cowan (Eds.), Advances in Neural Infor-

mation Processing Systems 5, pp. 271–278. San Mateo, CA, USA: Morgan

Kaufmann.

Doya, K. (2000). Reinforcement learning in continuous time and space. Neural

Computation 12, 215–245.

Gomi, H. and M. Kawato (1993). Recognition of manipulated objects by motor

learning with modular architecture networks. Neural Networks 6, 485–497.

24

Haruno, M., D. M. Wolpert, and M. Kawato (1999). Multiple paired forward-

inverse models for human motor learning and control. In M. S. Kearns, S. A.

Solla, and D. A. Cohen (Eds.), Advances in Neural Information Processing

Systems, 11, Cambridge, MA, USA, pp. 31–37. MIT Press.

Imamizu, H., S. Miyauchi, Y. Sasaki, R. Takino, B. Pütz, and M. Kawato

(1997). Separated modules for visuomotor control and learning in the cere-

bellum: A functional MRI study. In A. W. Toga, R. S. J. Frackowiak, and

J. C. Mazziotta (Eds.), NeuroImage: Third International Conference on

Functional Mapping of the Human Brain, Volume 5, Copenhagen, Denmark,

pp. S598. Academic Press.

Imamizu, H., S. Miyauchi, T. Tamada, Y. Sasaki, R. Takino, B. Putz, T. Yoshio-

ka, and M. Kawato (2000). Human cerebellar activity reflecting an acquired

internal model of a new tool. Nature 403, 192–195.

Jacobs, R. A., M. I. Jordan, S. J. Nowlan, and G. E. Hinton (1991). Adaptive

mixtures of local experts. Neural Computation 3, 79–87.

Littman, M., A. Cassandra, and L. Kaelbling (1995). Learning policies for par-

tially observable environments: Scaling up. In A. Prieditis and S. Russel

(Eds.), Machine Learning: Proceedings of the 12th International Confer-

ence, San Francisco, CA, USA, pp. 362–370. Morgan Kaufmann.

Morimoto, J. and K. Doya (2001). Acquisition of stand-up behavior by a real

robot using hierarchical reinforcement learning. Robotics and Autonomous

Systems 36, 37–51.

Narendra, K. S., J. Balakrishnan, and M. K. Ciliz (1995). Adaptation and

learning using multiple models, switching and tuning. IEEE Control Systems

25

Magazine June, 37–51.

Parr, R. and S. Russel (1998). Reinforcement learning with hierarchies of ma-

chines. In M. I. Jordan, M. J. Kearns, and S. A. Solla (Eds.), Advances

in Neural Information Processing Systems 10, Cambridge, MA, USA, pp.

1043–49. MIT Press.

Pawelzik, K., J. Kohlmorge, and K. R. Müller (1996). Annealed competition of

experts for a segmentation and classification of switching dynamics. Neural

Computation 8, 340–356.

Schaal, S. and C. G. Atkeson (1996). From isolation to cooperation: An alter-

native view of a system of experts. In D. S. Touretzky, M. C. Mozer, and

M. E. Hasselmo (Eds.), Advances in Neural Information Processing Systems

8, pp. 605–611. Cambridge, MA, USA: MIT Press.

Singh, S. P. (1992). Transfer of learning by composing solutions of elemental

sequential tasks. Machine Learning 8, 323–340.

Sutton, R., D. Precup, and S. Singh (1999). Between mdps and semi-mdps:

A framework for temporal abstraction in reinforcement learning. Artificial

Intelligence 112, 181–211.

Sutton, R. S. (1988). Learning to predict by the methods of temporal difference.

Machine Learning 3, 9–44.

Sutton, R. S. and A. G. Barto (1998). Reinforcement Learning. Cambridge,

MA, USA: MIT Press.

Tani, J. and S. Nolfi (1999). Learning to perceive the world as articulated: an

approach for hierarchical learning in sensory-motor systems. Neural Net-

works 12, 1131–1141.

26

Wiering, M. and J. Schmidhuber (1998). HQ-learning. Adaptive Behavior 6,

219–246.

Wolpert, D. M. and Z. Ghahramani (2000). Computational principles of move-

ment neuroscience. Nature Neuroscience 3, 1212–1217.

Wolpert, D. M. and M. Kawato (1998). Multiple paired forward and inverse

models for motor control. Neural Networks 11, 1317–1329.

Wolpert, D. M., R. C. Miall, and M. Kawato (1998). Internal models in the

cerebellum. Trends in Cognitive Sciences 2, 338–347.

27

Figure Legends

Figure 1

Schematic diagram of multiple model-based reinforcement learning (MMRL) ar-

chitecture.

Figure 2

Comparison of the performance of standard Q-learning (gray line), modified CQ-L

(dashed line), and MMRL (thick line) in the hunting task. The average number

of steps needed for catching a prey during 200 trial epochs in 10 simulation runs

are plotted. The dash-dotted line shows the theoretically minimal average steps

required for catching the prey.

Figure 3

Example of value functions and prediction models learned by MMRL after 10000

trials. Each slot in the grid shows the position of the prey relative to the hunter,

which was used as the state x. (a) The state value functions Vi(x). (b) The

prediction model outputs Fi(x̂, x, u), where current state x of the prey was fixed

as (2, 1), shown by the circle, and the action u was fixed as ”stay.”

Figure 4

(a) Example of swing-up performance. Dynamics are given by ml2θ̈ = −mgl sin θ−
µθ̇ + T . Physical parameters are m = l = 1, g = 9.8, µ = 0.1, and Tmax = 5.0.

(b) Trajectory from the initial state (0[rad],0.1[rad/s]). o: start, +: goal. Solid

line: module 1. Dashed line: module 2. (c) Time course of the state (top), the

action (middle), and the responsibility signal (bottom).

28

Figure 5

Development of state and reward prediction of models. (a) and (b): outputs of

state prediction models before (a) and after (b) learning. (c) and (d): outputs of

the reward prediction model before (c) and after (d) learning. Solid line: module

1. Dashed line: module 2; dotted line: targets (ẍ and r). ◦: centers of spatial

responsibility prediction ci.

Figure 6

Outputs of 8 modules. (a) state prediction models. (b) reward prediction models.

Figure 7

Learning curves for the pendulum swing up task. The cumulative reward
∫ 20
0 r(t)dt

during each trial is shown for five simulation runs. (a) n=2 modules. (b) 4

modules. (c) 8 modules. (d) non-modular architecture.

Figure 8

Time course of learning and changes of the prediction models. (a) Changes of

a coefficient A21 = ∂θ̈
∂θ

of the four prediction models. coefficient with angle. (b)

Change of average reward during each trial. Thin lines: results of 10 simulation

runs. Thick line: average to 10 simulation runs. Note that the average reward

with the new, longer pendulum was lower even after successful learning because

of its longer period of swinging. (c), (d), and (e): Linear prediction models in the

section of {θ = 0, T = 0} before learning (c), after 50 trials with fixed parameters

(d), and after 150 trials with changing parameters (e). Slopes of linear models

correspond to A21 shown in (a).

29

Figures

Σ

value Vi(x)

policy µi(x)

RL controller

state
predictor

responsibility
predictor

Predictor

reward r(t)

action
u(t)

re
sp

on
sib

ilit
y

sig
na

l λ i(
t)

Environment

state x(t)

.x(t)

action u(t)

module 1

module n
:

ui(t)

exp[-Ei(t)/2σ2]

λ̂i(t)

.
xi(t)

so
ftm

ax

δi(t)

u(t)

x(t)

Figure 1: Kenji Doya, 2265.

30

0 1000 2000 3000 4000 5000
0

10

20

30

40

50

60

70

80

Number of trial

N
um

be
r

of
 s

te
ps

 in
 a

 tr
ia

l

MMRL

CQL

Flat Q

Optimal

Figure 2: Kenji Doya, 2265.

31

0

2

4

6

8

10

0.2

0.4

0.6

0.8

1

Module 2 Module 1 Module 3 Module 4

���

��� ����	
���	
�������

��� ����	 ��	������� ���	�

�� �� �� � � � �
��
��
��
�
�
�
�

Figure 3: Kenji Doya, 2265.

32

(a)

0
1

2
3

4
5
Time [sec]

-1 0 1 2 3
-2

-1

0

1

2

3

4

θ [rad]

θ�

0 2 4 6 8 10 12 14 16 18 20-2

0

2

4

0 2 4 6 8 10 12 14 16 18 20-5

0

5

0 2 4 6 8 10 12 14 16 18 200

0.5

1

T
[N

]
 [r

ad
]

θ
[r

ad
/s

]

Time [sec]

θ
�

λ1 λ2

(c)

(b)

θ �

θ

λ
[r

a
d
/s

]

Figure 4: Kenji Doya, 2265.

33

6 4 2 0 2 4 6 -6 -4 -2 0 2 4 6
-2
-1
0
1
2

6 4 2 0 2 4 6
-20
-10

0
10
20

-6 -4 -2 0 2 4 6
-2
-1
0
1
2

θ�
�

��
�
�
��
�
�

2

[rad] [rad]

[rad] [rad]

θ

Quadratic reward models

 R
ew

ar
d

 R
ew

ar
d

Linear prediction models

θ

θ

θ

-20
-10

0
10
20

θ�
�

[r
ad

/s
ec

]2

Before Learning

After Learning

(a)

(b)

(c)

(d)

Before Learning

After Learning

Figure 5: Kenji Doya, 2265.

34

θ�
�

[r
ad

/s
ec

]�
 R

ew
ar

d

0
-20

-10

0

10

20

0
-2

-1

0

1

2

θ [rad]

θ [rad]

(b) Quadratic reward models

(a) Local linear state prediction models

π−π

−π π

1,2

3

45
6
78

1,23 4

5

6,7,8

Figure 6: Kenji Doya, 2265.

35

0 10 20 30 40 50 60 70 80 90 100

(a)

(b)

(c)

(d)

Number of trials

M-LQC(2)

M-LQC(4)

M-LQC(8)

ACTOR-CRITIC

20

0

-20

20

0

-20

20

0

-20

20

0

-20

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

Figure 7: Kenji Doya, 2265.

36

-20

-10

0

10

20

π 2π−π−2π 0
-20

-10

0

10

20

π 2π−π−2π 0

0 20 40 60 80 100 120 140 160 180 200
-10

-5

0

5

10

0 20 40 60 80 100 120 140 160 180 200
-1

 -0.5

0

0.5

1

(c) before learning (d) after 50 trials (e) after 200 trials

[rad]θθ

Trials

Stationary non-Stationary Trials

A
ve

ra
ge

 R
ew

ar
d

a
21

(a)

(b)

θ.
. [ra

d/
se

c
]2

-20

-10

0

10

20

π 2π−π-2π 0

module 3

module 4

module 1

module 2

1,2 3,4 1,2 3,4

1

2 3

4
4

3

l=1,m=1

l=10, m=0.2

[rad]θ[rad]

Figure 8: Kenji Doya, 2265.

37

