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KEYWORDS Abstract Up to now biometric methods have been used in cryptography for au-
Biometric methods; thentication purposes. In this paper we propose to use biological data for generat-
Random number ing sequences of random bits. We point out that this new approach could be
generator; particularly useful to generate seeds for pseudo-random number generators and
Stochastic process; so-called “key sessions”. Our method is very simple and is based on the observation
Statistical tests; that, for typical biometric readings, the last binary digits fluctuate “randomly”. We
Computer apply our method to two data sets, the first based on animal neurophysiological
communication brain responses and the second on human galvanic skin response. For comparison
protocols we also test our approach on numerical samplings of the Ornstein—Uhlenbeck sto-

chastic process. To verify the randomness of the sequences generated, we apply
the standard suite of statistical tests (FIPS 140-2) recommended by the National In-
stitute of Standard and Technology for studying the quality of the physical random
number generators, especially those implemented in cryptographic modules. Addi-
tionally, to confirm the high cryptographic quality of the biometric generators, we
also use the often recommended Maurer’s universal test and the Lempel—Ziv com-
plexity test, which estimate the entropy of the source. The results of all these ver-
ifications show that, after appropriate choice of encoding and experimental
parameters, the sequences obtained exhibit excellent statistical properties, which
opens the possibility of a new design technology for true random number genera-
tors. It remains a challenge to find appropriate biological phenomena characterized
by easy accessibility, fast sampling rate, high accuracy of measurement and vari-
ability of sampling rate.
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Introduction

Biometrics is the science and technology of mea-
suring and statistically analyzing biological data.
In information technology, biometrics usually re-
fers to techniques for measuring and analyzing hu-
man body characteristics such as fingerprints, eye
retinas and irises, voice patterns, facial patterns,
and hand measurements, especially for authenti-
cating someone (Information Technology—Secur-
ity Techniques, 2002; Jain et al., 1999; X9. F4
Working Group, 2001). This kind of application
needs to study stationary properties uniquely
determined by the attributes of each individual.

In this paper we propose the use of biometric
data in quite the opposite way. Namely, we would
like to explore the randomness of biometric data in
order to use them (after codification in integer or
bit format) as seeds for pseudo-random number
generators or, directly, as random number sequen-
ces. This could be of great practical importance
for generating the “key session” in the SSL, SSH,
PGP or SET computer communication protocols. It
would reduce also the security concerns that arise
when one uses software random generators based
on the system clock, the content of the input/out-
put buffers, etc. because of their weakness against
intruder’s attacks.

This method can also be used during the “Key
Generation Ceremony” performed in the Certifica-
tion Authorities Offices (Key Management Policy
and Practical Framework, 2002). In this ceremony,
the seed, which is unknown to all participants and
produced by a physical random number generator
implemented in a cryptographic module, could
be replaced by a biological random seed coming
from the “key administrators”. The biological
data collected from each key administrator would
be transformed into a bit sequence and then all
these sequences could be XOR-ed into a single bit
sequence. This procedure would increase the con-
fidence of the key administrators to the Key Gen-
eration Ceremony. Biological random seeds could
also be applied to key generation for electronic
signatures used by subscribers.

Random number generators (RNG) can be imple-
mented either in hardware or in software. Random
number generation performed by software utilizes
a mathematical algorithm that produces a
sequence of statistically independent numbers
following a uniform distribution. However, this
sequence is deterministic given the algorithm and
the seed. While it is possible to implement a math-
ematical algorithm in hardware and call it a “hard-
ware random number generator”, these particular

RNG clearly belong in the category of pseudo-
random number generators because they require
a seed and produce a deterministic sequence of
numbers. True random number generation in hard-
ware depends upon the random characteristics of
some physical systems; for example lava lamps, ra-
dioactive decay of atomic nuclei, or noise from
a resistor or diode. One of the most important pro-
perties of such generators is that they do not need
any seed to start producing random sequences.

The number of uses of the random numbers has
steadily increased over time, especially since the
advent of the digital technologies. Some important
examples are complex scientific and financial
model simulations, modern lotteries and gambling
machines, equation solving, etc. Because of com-
puter security, there is also a growing interest in
random key generation for cryptography, digi-
tal signatures and protected communication pro-
tocols. At the base of these techniques used to
secure data and data transmissions lies key gener-
ation, which requires the production of secret, un-
guessable keys. Hence, key generation depends on
an RNG to provide the necessary entropy to make
the key indeterminable.

We have checked the randomness of two types
of biometric data. The first one consisted of neuro-
nal membrane voltages recorded by intracellular
recordings in the primary visual cortex of a cat dur-
ing series of visual stimulation. For the second we
used the electrical conductances of the galvanic
skin responses of humans in a virtual reality exper-
iment. In both cases we applied a method we call
‘last digit fluctuation’ (see below for the descrip-
tion) to extract a random bit sequence from this
biological data. The randomness of the generated
bit sequences was then verified at a high level of
significance by a variety of methods including the
standard FIPS 140-2 tests (recommended by the
National Institute of Standards and Technology),
the Maurer universal test and the Lempel—Ziv
complexity. Let us mention in this context that
a third data set, the bit sequences obtained from
the action potentials (“spike trains”) simulated
by networks of artificial neurons, did not pass the
randomness tests, although such networks have
been checked to simulate very well other aspects
of the real neuronal activity. This serves as a con-
trol example, where simulated biological data did
not have the randomness properties that we have
discovered for the real biological data.

These results therefore open new possibilities of
obtaining (true) random numbers by means of bio-
logical systems, to be added to the traditional
ones, based on physical systems. Of course, other
biologically generated data can be and will be
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studied in order to confirm the results of this cur-
rent study. The main advantage of this alternative
in eventual implementations would be, apart from
privacy (say, a better protection of the generator
to externals manipulations), to provide random
bits in real time in a simple and very portable way.

The last digit fluctuation method

Generally speaking, the randomness of an informa-
tion source means that it outputs sequences of
statistically independent symbols (also called
“letters”). In other words, all sequences of a given
length are equally probable. In practice, the ran-
domness is verified at a given significance level
by applying a set of appropriate statistical tests to
a representative sample of sequences generated
by the source. We will focus henceforth on real
number sources (in practice, physical systems)
and how to draw random bit sequences out of their
outputs (resp. readings).

The fundamental idea of our approach to ran-
dom number generation is based on the fact that
for the physical measurements at noisy sources
the rightmost (or least significant) digits exhibit
generally random properties. Indeed, the noise
present in most of the physical processes produces
comparatively small disturbances of the measured
quantities which, in turn, translates into a random
fluctuation of the less significant digits of their
exact values (i.e. after discarding those digits af-
fected by the measurement precision). The sim-
plest approach, which we favor and propose
under the name of the last digit fluctuation method,
consists in keeping only the rightmost bit of each
measurement after some appropriate binary codifi-
cation. Let us emphasize that it is the randomness
due to quantum or thermal noise we are invoking
here, and not at all the finite precision inherent
to any physical measurement which, even in the
absence of any kind of noise, produces a normally
distributed fluctuation of the observed values
around the average. The accuracy of the measure-
ment instrument can be determined by means of
non-random processes and it is, in practice,
a known parameter. Of course, it is possible to
apply the same method to many different types
of data sets, such as tables of logarithms or even
economic trend data. However, the point here is
that the random digits are generated in real time
in such a way that it is impossible to guess the
key in advance.

We now describe more precisely our method.
Let {x;}} , be the sequence of real N real numbers

(measurements) produced by the source. Our goal
is to convert (encode) these sequence into a new
binary sequence {b,-}?:}, where N’ < N. We use
the estimators of the average and the standard
deviation of the sequence {x;} ,,

to eliminate the large fluctuations in the data,
which improves the performance of the method.
This means that we record only those measure-
ments which are not too far from the average,
e.g. [x; — X| < Rs, where R is a parameter of the or-
der of 1. Let {x}},denote (after an eventual
renumbering) the measurements which passed
the previous screening. Subdivide now the interval
[X — Rs,X+Rs] into L equal subintervals numbered
from 0 to L — 1. Call (; the subinterval containing
x;. In this way, every x; is associated with an inte-
ger number 0 < [; <L — 1. Finally, take b; = 0 if (;
is even and b; = 1 if [; is odd. All these operations
can be written in the compact formula

— (X —Rs)

Xi
b;=limod2 = { RS LJmodZ

where symbol |y| denotes the integer part of the
number y. In particular, when L is the k-th power
of 2, the sequence {b;}}, can be obtained as
the k-th bit in the binary representation of the
elements of {li}f;. In practice, the biological
data have three or four accurate decimal digits,
which suggest us to take 500 <L <5000 so
that the resulting sequence {b,~}f’:'1 is closely rel-
ated to the fluctuation of the last digits of the
measurements.

Now our goal is to determine, for a given exper-
iment, a pair (R, L) such that the sequences {b,-}f’;1
obtained are random, i.e. they pass the suite of
tests which are commonly used by the crypto-
graphic community. Once the parameters (R,L)
have been optimised for a type of biometric
data, they can be generically used in practical
designs of a random bit generator based on the
corresponding biometric signal. The choice of the
parameters R and L used in the binary encoding
method we proposed determines, on the one
hand, the generating rate and, on the other
hand, the statistical quality of the ensuing bit se-
quence. A larger R means a higher generating
rate, while for the parameter L the situation is
a little bit more complicated. When one considers
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readings with more digits, a larger L means better
statistical properties. In practice, readings contain
three or four fluctuating digits and one has to
determine the proper L taking into account the
applied parameter R. The other two parameters
of the design, (X,s), which characterize the data
window, can also be fixed dynamically or once and
for all from an initial batch of readings.

Statistical tests to measure randomness

Various tests can be applied to a would-be random
bit generator in order to detect several weak-
nesses the generator may have. All of them target
different properties the truly random sequences
are expected to exhibit and, therefore, involve
the statistical analysis of a sample of output se-
quences. When one considers physical generators,
the most commonly used suite of tests for that pur-
pose is the FIPS 140-2 suite recommended by the
National Institute of Standards and Technology
(NIST). This suite consists (Menezes et al., 1996)
of four tests: (i) monobit test, (ii) poker test, (iii)
runs test and (iv) long run test.? We have used
the 1/10,000 significance level, which is the one
recommended for this suite. The bounds corre-
sponding to this level can be found in FIPS PUB
140-2 (2001). However, there might be sequences
that pass these tests albeit they possess very
poor random attributes since the certificates of
randomness can be only probabilistic, the proba-
bility of wrongly rejecting random sequences
(Type | error) being given by the significance level.

In order to ensure randomness in a stronger
way, some publicly available programs implement
some more sophisticated tests such as Maurer’s
universal test (Maurer, 1990), based on compres-
sion techniques, which is able to detect any one
of a very general class of possible defects a bit
generator might have. To be more specific, instead
of actually compressing the sequences, Maurer’s
test computes a statistic (basically, the average
of the logarithmic distances between successive
identical blocks of a predetermined length chosen
from the interval [6,16]) that is related to the
length of the compressed sequence. For random
sequences, this statistic follows approximately
a normal distribution whose mean and variance

Z As of this writing, the requirement for the implementation
of the runs test and the long run test in cryptographic modules
has been temporarily suspended. Once the replacement tests
are decided, the FIPS PUB 140-2 will be updated with a revision
and a transition time period after which the implementation of
the replacement tests will become mandatory.

depend on the block length used in a known way
(Menezes et al., 1996). Following the current wis-
dom, we apply Maurer’s test to our sequences
and, additionally, the normalized Lempel—Ziv
complexity (Lempel and Ziv, 1976), which meas-
ures the generation rate of new patterns along
a sequence of symbols. All these tests together
provide a very comprehensive (though probabilis-
tic) picture of the random nature of the source in
question.

Our experience with time series has shown us
that the (normalized) Lempel—Ziv complexity is
a very fast and accurate estimator of the source
entropy (Amigo et al., 2004). However, unlike the
Lempel—Ziv complexity version which is part of
the statistical tests recommended by the NIST
(2001), for the Lempel—Ziv complexity that we ac-
tually used, no rigorous method to calculate the
bounds for a given significance level is known yet.
In the present analysis we estimated the expect-
ation value of the Lempel—Ziv complexity and
the corresponding bounds using the Monte Carlo
method for the Lahey—Fujitsu random number gen-
erator. In this test we assumed the significance
level to be 0.003 (three standard deviations).

Experimental data

In our opinion, there are some desirable features
that should guide the search and choice of a
biometric random number generator. These are
basically:

(i) sufficiently fast sampling rate,
(ii) relatively simple data acquisition,
(iii) high accuracy of measurement (at least 3—4
decimal digits),
(iv) variability of biological data for the applied
sampling rate.

To give a start to our biometric approach to ran-
dom bit generation, we have analyzed the two
kinds of biological data which were most accessi-
ble to us: neurophysiological brain signals (NBS)
and galvanic skin response (GSR). Before describ-
ing them in detail, let us point out right from the
beginning that they suffer from some shortcom-
ings, namely, NBS do not fulfil (ii), whereas GSR
do not fulfil (i).

The NBS data that we used for random number
generation was the neuronal membrane voltage
values (in millivolts) obtained by intracellular re-
cordings in the primary visual cortex of the cat
during series of visual stimulation (Sanchez-Vives
et al., 2000). These recordings were acquired at
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a frequency of 200 Hz. Visual stimulation consisted
in the succession of various stimuli on the mem-
brane potential of cortical neurons. For this pur-
pose, we presented a sequence of either a gray
screen (0% contrast), high contrast (40—80%) opti-
mal sinewave drifting grating presented over the
whole screen, or the same drifting grating with
an artificial scotoma consisting of a 4-9°
(6.5° +1.7°, mean + S.D.) gray square (0% con-
trast, same average luminance as the peripheral
grating) centered over the discharge receptive
field. The experimental voltage recordings gave
rise, after application of the last digit fluctuation
method, to a sample comprising seven binary
sequences of about 360,000 bits each.

As for the GSR data, which actually are electri-
cal conductance readings in microsiemens (uS),
these were collected in the context of an experi-
ment investigating objective responses to avatars
(virtual humans) in an immersive virtual environ-
ment (Garau et al., in press). Participants spent
several minutes exploring a space in which avatars
reacted to their proximity in different ways. Dur-
ing this time, their electrodermal activity, or pal-
mar sweating, was measured using some sensors
attached to the hand. Electrodermal activity is tra-
ditionally used as a measure of arousal. Four sce-
narios were presented to experimental subjects
in a between subject design (each subject only
saw one of the scenarios). These scenarios were
(a) the avatars were all static, (b) the avatars
moved but did not respond to the presence of
the experimental subject, (c) the avatars moved
and looked at the subjects when they came within
a certain distance, and (d) the avatars talked to
the subjects when the subjects first entered the
room and otherwise behaved as in (c). Getting
these data in this way just allowed us to monitor
physiological parameters continuously and sub-
jected to a diverse range of “natural” experiences
(though in a virtual environment); needless to say,
a human under everyday conditions (moments of
stress, relaxation, excitation, etc.) would have
similar GSR. The main technical features of the
GSR sensors and data acquisition are as follows.
Signal input range: 0—30.0 puS; accuracy: =+5%
and +0.2 uS; maximal bandwidth: 5 Hz; and sam-
ple rate: 32 Hz. In this case, the ensuing binary se-
quence count amounts to 37 of approximately
45,000 bits each.

Finally, we also tested our approach against nu-
merical samplings of the Ornstein—Uhlenbeck sto-
chastic process (Van Kampen, 1985). The rationale
for using this stochastic process as a comparison
with the real biological processes is that most of
the stochastic processes observed in nature are

very well modelled by this process. In fact, it is
the only stochastic process (up to a Galilean trans-
formation) that is Gaussian, Markovian and station-
ary. Its probability and transition probability
functions are given by

P(x,t) =

1 2
Nz [_ (Xzag ) ]

1
P, tyxn, 1) = V2o (1 — e-2&-t/r)

X exp

(= p) = (1 — p) e Aty
262(1 — e—z(tz—t1)/7)2

respectively, where u is the mean value of the sto-
chastic variable, ¢ its standard deviation and 7 is
the relaxation time of the process. In order to be
closer to the real experiments, we furthermore
rounded down the numerical outputs to only three
or at most four decimal digits.

Last but not least, the outputs of a numerical
network of 1024 artificial Hodgkin—Huxley neurons
underwent as well the above statistical scrutiny
but failed and, hence, will be not considered here-
after. This negative result can be interpreted as
the natural randomness being an attribute difficult
to simulate numerically or, for the numerical
models, as a further benchmark to be taken into
account.

Results of calculations

As it was suggested in The last digit fluctuation
method, we start determining the optimal en-
coding parameters R, L. They have the following
values:

1. R=3.600, L=3136 for
brain response data.

2. R=1.268, L =560 for galvanic skin response
data.

3.R=0.500, L=512 for Ornstein—Uhlenbeck
numerical sampling.

neurophysiological

Table 1 summarizes the results obtained after
applying the usual statistical tests described in
Statistical tests to measure randomness to two
samples of experimental biometric data labelled
as NBS | and NBS Il (for neurophysiological brain
signals) and GSR (for galvanic skin response). The
samples consisted of 126, 126 and 39 sequences,
respectively, of 20,000 bits each, obtained after
partitioning the original bit sequences (see Exper-
imental data for details) into shorter subsequences
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Table 1 Results of FIPS statistical tests

FIPS statistical Source of data

e NBS GSR OU  Pseudo-
random

Monobit test 1 1 1 1

Poker test 1 0.976 1 1

Runs test 0.992 0.976 1 1

Long run test 1 1 1 1

Total results 0.992 0.976 1 1

The entries denote the fraction of sequences that passed
the corresponding test.

of the said length, which is sufficient for the tests
shown in Table 1. The column NBS comprises the
results from the samples NBS | and Il. The short-
hand OU stands for Ornstein—Uhlenbeck and refers
to the test performed using the OU process (126
numerically generated sequences). For the pseudo-
random sequences (PRG) we used the Lahey—
Fujitsu generator. One can see that practically all
sequences satisfy the conditions required by FIPS
tests.

[2]
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o |/ —— NBS|I
] / —— NBSII
S 510/ o-U
—— Ps.Random
5.05 i
50 T T T T T T
0 10000 20000 30000 40000 50000 60000
Number of 6-bit blocks
(b)
[} o .
B |/
@
% —— NBS|
5 —— NBSII
5 — O-U
g —— Ps.Random
590 T T T T T
0 10000 20000 30000 40000 50000
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Figure 1

Table 2 Results of the Maurer and Normalized
Complexity tests

Source of data

NBS GSR OU Pseudo-
random
Maurer test
Block length = 6 1 = 1 1
Block length =7 1 = 1 1
Block length = 8 1 — 1 1
Block length =9 1 = 1 1
Block length = 10 1 = 1 1
Block length = 11 1 — 1 1

Normalized complexity 1 1 1 1

The entries denote the fraction of sequences that passed
the corresponding Maurer test and Lempel—Ziv normalized
complexity test.

The results of the Maurer and normalized com-
plexity tests applied to the same data are pre-
sented in Table 2 but, because Maurer’s test
requires very long sequences to perform well, it
could only be applied to the original (360,000 bit

(c)
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Plots of Maurer’s test statistics versus the number of blocks for blocks of lengths 6—9.
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Figure 2 Plots of Maurer’s test statistics versus the
number of blocks for blocks of lengths 10 and 11.
Observe that, in this case, the biological random
sequences perform even better than the Lahey—Fujitsu
benchmark.

long) NBS sequences. The GSR data are at the mo-
ment too short due to the experimental restric-
tions. The column NBS comprises the results from
the samples NBS | and II.

Since Maurer’s test is particularly recommended
by many authors and institutions (ALGO, 2001), we
additionally present the graphs of the value of
Maurer’s statistics plotted versus the number of
blocks of a given length (Figs. 1 and 2).

It is worthy of notice that the “biological”
curves lie very well between the predetermined
bounds (NIST, 2001) for the significance level
0.01. One can even see that, for the longer blocks,
biological data behave even better than the
Lahey—Fujitsu benchmark.

Conclusions

We proposed a new method of generating random
sequences based on biological phenomena and
specified two of them which we have extensively

analyzed. The crucial fact in implementations of
our method is the use of biological systems that al-
low a simple data acquisition and provide a profuse
sampling of readings with at least four fluctuating
accurate digits. In this paper we showed that our
method works very well for the two biological phe-
nomena considered, namely, brain signals and
galvanic skin responses, providing some clear evi-
dence in support of our approach. Let us underline
again that the use of a virtual environment in obtain-
ing the latter responds only to a methodological
convenience; similar data had been obtainedinare-
al environment. It turns out that, applying a very
natural encoding method, we are able to obtain ran-
dom bit sequences that pass in almost 100% of the
cases both the commonly recommended FIPS statis-
tical tests and the more sophisticated Maurer and
Lempel—Ziv complexity tests. Interestingly enough,
neuronal signals generated artificially failed to pro-
duce random bit sequences.

Other biometric signals that we consider inter-
esting to be checked for randomness are EEG
(electroencephalogram) and EMG (electromyo-
gram). Both of them can be obtained with non-
invasive techniques with the only requirement of
an adequate amplifier. Further candidates to bio-
metric random number generators include blood
volume pulse and similar easy-to-get measure-
ments that, even when regular on the surface, may
contain randomness in their internal structure. Any
of these possibilities might be very important from
the point of view of the implementation of our
algorithms for generating random bit sequences
via biometric methods. The practical introduction
of such technology will need extensive scrutiny
and verification procedures.
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