
CS-1992-17

A Proof Procedure for the Logic of

Hereditary Harrop Formulas

Gopalan Nadathur

Department of Computer Science

Duke University

Durham, North Carolina 27708-0129

November 1992

A Proof Procedure for the Logic of

Hereditary Harrop Formulas�

Gopalan Nadathur

Department of Computer Science
Duke University, Durham, NC 27706

gopalan@cs.duke.edu

Abstract

A proof procedure is presented for a class of formulas in intuitionistic logic. These formulas are the
so-called goal formulas in the theory of hereditary Harrop formulas. Proof search in intuitionistic
logic is complicated by the non-existence of a Herbrand-like theorem for this logic: formulas cannot
in general be preprocessed into a form such as the clausal form and the construction of a proof is
often sensitive to the order in which the connectives and quanti�ers are analyzed. An interesting
aspect of the formulas we consider here is that this analysis can be carried out in a relatively
controlled manner in their context. In particular, the task of �nding a proof can be reduced to
one of demonstrating that a formula follows from a set of assumptions with the next step in this
process being determined by the structure of the conclusion formula. An acceptable implementation
of this observation must utilize uni�cation. However, since our formulas may contain universal and
existential quanti�ers in mixed order, care must be exercised to ensure the correctness of uni�cation.
One way of realizing this requirement involves labelling constants and variables and then using these
labels to constrain uni�cation. This form of uni�cation is presented and used in a proof procedure
for goal formulas in a �rst-order version of hereditary Harrop formulas. Modi�cations to this
procedure for the relevant formulas in a higher-order logic are also described. The proof procedure
that we present has a practical value in that it provides the basis for an implementation of the logic
programming language �Prolog.

Key Words: hereditary Harrop formulas, proof procedure, logic programming, intuitionistic logic.

1 Introduction

The basis for logic programming has traditionally been provided by the logic of Horn clauses [26].
Using this logic has lead to the realization of novel and genuinely useful features in programming.
This logic has, for instance, provided for a paradigm that supports search as a primitive operation
and has revealed novel uses for the operation of uni�cation in programming. The simplicity of
this logic, nevertheless, prevents the natural realization of several features considered important in
modern day programming languages. One example of a facet that is not directly supported by this
logic is that of abstraction: using Horn clauses alone, there is no transparent method for capturing
the idea that some parts of the program are to be used only in solving speci�c tasks or for deeming
that certain names (of constants, functions or predicates) are to be visible only in speci�c contexts.

� This paper is to appear in the Journal of Automated Reasoning. Comments on its contents are welcome and may
be sent to the author at the indicated address.

1

Shortcomings such as these have lead to an interest in describing richer logics that, on the one
hand, preserve the features of Horn clause logic that are important to their programming use and,
on the other hand, provide a means for realizing additional desirable features.

A logic that has been proposed in this regard is that of hereditary Harrop formulas [11, 16].
This logic has a �rst-order and a higher-order variant. The essential sense in which (the �rst-order
version of) this logic extends the logic of Horn clauses is by permitting implications and universal
quanti�ers in goals. (The precise syntax of �rst-order hereditary Harrop formulas is presented in
Section 3). Hereditary Harrop formulas, when interpreted via the notion of intuitionistic provability,
constitute an abstract logic programming language in the sense de�ned in [16]. From an intuitive
perspective, this guarantees that the logical connectives that appear within these formulas can be
interpreted as symbols having a �xed search semantics. With regard to the new logical symbols,
this amounts to the following: A goal of the form D � G can be interpreted as an instruction to
augment the program with D in the course of solving G. A goal of the form 8xG can be interpreted
as an instruction to generate a new name and to use it for x in the course of solving G. These logical
symbols thus provide a means for realizing scoping with respect to program code and names and
detailed illustrations of this aspect are provided in [12]. The higher-order version of this logic also
provides for higher-order programming and for the use of higher-order terms as data structures. A
logic programming language called �Prolog that is based on this logic is described in [20] and has
been used in numerous applications (e.g., see [3, 6, 15, 24]).

Our interest in this paper is in describing a proof procedure for the logic of hereditary Harrop
formulas. The practical motivation for this endeavor is obvious: such a procedure could provide
the basis for an interpreter for �Prolog. From a theoretical perspective, the exercise undertaken
is interesting because it is provability in intuitionistic logic that is considered. In the context of
classical logic, the existence of certain logical equivalences permits the search for proofs for formulas
to be conducted in a carefully controlled fashion. In particular, any given formula can be converted
into a form in which a sequence of existential quanti�ers govern a quanti�er free matrix, and
determining provability then amounts to �nding instantiations for the quanti�ers that produces
a tautology. A similar observation can unfortunately not be made with regard to intuitionistic
logic. The construction of a proof in this context is much more sensitive to the order in which the
connectives and quanti�ers are analyzed and an important component of proof search is in fact
determining a satisfactory order.

The inherent complexity in �nding proofs in intuitionistic logic, and the fact that this is a
relatively unexplored domain, makes this an interesting topic for investigation. There are at least
two di�erent directions that can be followed in such a study. First, the issue of �nding proofs
in the general context can be examined with a view towards controlling the search e�ort for any
arbitrary formula. Some e�orts have been invested in this direction, e.g., those in [25, 27]. An
alternative direction for exploration is that of �nding restricted but interesting classes of formulas
for which simple search procedures can be used. Hereditary Harrop formulas are an example of
such a class of formulas. The interest in this class is apparent from the use for these formulas that
we have described above. From the perspective of �nding proofs, it turns out that the analysis of
the logical symbols in these formulas can be carried out in a relatively deterministic fashion: this
is in fact a consequence of the logic of these formulas possessing the property of uniform proofs
in the sense of [16]. Unlike the case in classical logic, however, the quanti�er structure of these
formulas cannot be simpli�ed prior to a search for a proof. Methods must therefore be provided for
dealing with existential and universal quanti�ers in the course of constructing proofs. Fortunately,

2

ideas similar to the dynamic Skolemization described in [4] can be used and, in conjunction with
the other properties of these formulas, this leads to a rather simple proof procedure.

We describe such a procedure in this paper and prove its soundness and completeness. It is
to be noted that the ideas used in this procedure are not completely novel. As mentioned above,
the adequacy of searching for uniform proofs in the logic of hereditary Harrop formulas is intrinsic
to this procedure, and this fact is demonstrated in [16]. Similarly, the problem of unifying terms
embedded under arbitrary sequences of quanti�ers is central to our proof procedure, and approaches
to this problem have been described in [23] and examined in detail in [14]. The speci�c solution
to this problem that is used here involves labelling constants and variables and using these labels
to constrain uni�cation. This possibility has also been appreciated previously: the author �rst
heard of it from Frank Pfenning in 1988. Finally, actual implementations of �Prolog exist [1, 2, 20]
that have closely related \proof" procedures as their bases. Despite these observations, we believe
the discussions in this paper are of interest for at least two reasons. First, there has been, to our
knowledge, no prior presentation of the particular proof procedure we describe here together with
a demonstration of the fact that it is indeed a proof procedure. As should be apparent from this
paper, this is a matter of some complexity and therefore worthy of careful treatment. Second, the
procedure that we describe here, especially the manner of constraining uni�cation that is employed
in it, is, we feel, congenial to an e�cient implementation of �Prolog1. This procedure (or one
closely related to it) has apparently been used in an implementation undertaken by Conal Elliott
and Frank Pfenning [1] (see the comments in [2]) and is also being used in an abstract machine
being developed by us for the language [8, 19]. The correctness of this procedure is, however, not
readily apparent from other discussions. The proofs in this paper are, in this sense, essential for
ensuring the correctness of possible implementations.

The rest of this paper is structured as follows. In the next section we summarize the various
logical notions that we need, including the notion of intuitionistic provability. In Section 3, we
describe the logic of �rst-order hereditary Harrop formulas and we present some properties that are
relevant to the construction of a simple proof procedure for this logic. We also outline here the need
for some mechanism for constraining uni�cation and describe informally a scheme for realizing these
constraints through a labelling of constants and variables. In Section 4 we describe this labelled
uni�cation | which is essentially �rst-order uni�cation restricted to respect constraints represented
by the labels on the variables and constants | and show the existence of most general uni�ers with
respect to it. In Section 5 we �nally present our proof procedure for �rst-order hereditary Harrop
formulas and prove it correct. The procedure, as we present it, is non-deterministic. However we
show that the nondeterminism is inconsequential in several respects. In Section 6 we outline the
manner in which the the procedure described in the previous section can be adapted to the context
of higher-order hereditary Harrop formulas. A detailed presentation and a proof of correctness
are somewhat tedious and we therefore do not undertake these in this paper. We conclude the
paper with a brief discussion of the manner in which the procedure described here is actually being

1Proof procedures have been presented together with proofs of correctness for closely related formula classes in
[10] and [13]. The structure of the procedure in [10] di�ers from the one considered here. Further, the discussions in
[10] seem largely to note the constraints that must be placed on substitution terms without detailing simple methods
for ensuring the satisfaction of these constraints. The procedure in [13] has a similar structure to our procedure and
this paper also studies the uni�cation problem for an interesting class of higher-order terms. However, the method
for realizing constraints on substitutions that is used in the procedure in [13] di�ers from the one we describe here.
We feel the that the method presented in this paper is better suited to an embedding in an abstract machine for a
�Prolog-like language. The discussions here complement, in this sense, those in [10] and [13].

3

implemented.

2 Logical Preliminaries

We shall use �rst-order intuitionistic logic in the discussions in this paper. The formulas in the logic
are de�ned in the customary fashion: The language has variables, constants and function symbols,
and terms are freely generated from these. There are predicate symbols and these are used in
conjunction with terms to obtain atomic formulas. Finally the connectives and quanti�ers are used
to construct arbitrary formulas. We assume that �, _, ^, and � are the primitive connectives
available and 9 and 8 are the quanti�ers.

To facilitate the description of our proof procedure we will need a (denumerably) in�nite supply
of constant symbols and we assume that this is in fact available. Further, we assume that these
symbols are partitioned into a denumerable collection of denumerable sets and that there is an
injective function from this collection to the natural numbers. Finally we shall need to talk about
labelling functions on constants and variables. We assume that the behavior of such functions is
�xed on the constants: any labelling function L must map a given constant to the natural number
associated with the set to which the constant belongs.

The notion of free variables for formulas and terms is de�ned in the customary fashion. We shall
use the notation F(t) to denote the set of variables free in (the term or formula) t. The notation
is extended to arbitrary structures containing formulas and terms, such as sets, tuples, etc, in the
following fashion: if S is such a structure, then F(S) is the collection of all the variables free in the
formulas and terms appearing in S.

We shall consider performing substitutions for the free variables in terms and formulas. Care
must be exercised in this process to avoid the usual capture problems. We describe one way in
which this may be done.

De�nition 1. A substitution � is a �nite set fhxi; tiij1 � i � ng of variable-term pairs such that,
for 1 � i; j � n, xi and xj are distinct variables if i 6= j. A substitution is, as usual, to be
interpreted as a mapping on variables that is the identity except at the points speci�ed. By an
abuse of terminology, we refer to the set fxjhx; ti 2 �g as the domain of �, and to the substitution
fhx; tijhx; ti 2 � and x 2 Vg as the restriction of � to (the set of variables) V . The mapping on
variables denoted by a substitution is extended in the usual fashion to terms. The application of �
to a formula is de�ned by recursion on the structure of the formula:

(i) G is atomic. In this case G is of the form (P t1 : : : tn). Simply replace G by the formula
that results from applying � to each ti.

(ii) G is �G1. Let G
0
1 be the result of applying � to G1. Replace G by �G0

1.

(iii) G is G1 _ G2, G1 ^ G2 or G1 � G2. Let G0
1 and G0

2 result from applying � to G1 and G2.
Replace G by G0

1 _G0
2, G

0
1 ^ G0

2 or G
0
1 � G0

2 as the case might be.

(iv) G is 8yG1 or 9yG1. Using the notation introduced already, F(�) denotes the set of variables
free in the substitution �, i.e., the set

S
fF(t)[fxgjhx; ti 2 �g: If y =2 F(�) and applying the

substitution to G1 yields G
0
1, the desired result is 8yG0

1 or 9yG
0
1. If y 2 F(�), pick a z such

that z =2 F(�) [F(G1) and let G0
1 be obtained by �rst substituting z for y in G1 and then

4

applying the given substitution to the result. The desired result is now 8zG0
1 or 9zG

0
1, as the

case might be.

Once again, we shall need to consider the application of a substitution to all the formulas and
terms contained in an arbitrary structure. We shall refer to this operation as the application of the
substitution to the structure and, if the structure is S and the substitution is �, we shall denote
the result of performing it by �(S).

We shall often consider singleton substitutions and we �nd it convenient to use an alternative
notation for the application of these to formulas and terms. If � is the substitution fhx; tig, then
the application of � to G may be written as [t=x]G. One formula is considered to be an alphabetic
variant of another if it is obtained by replacing some (possibly no) subparts of the form 8yG or
9yG by 8z([z=y]G) or 9z([z=y]G), where z is a variable not free in G. It may be observed that
the de�nition of substitution provided above does not identify a unique formula as the result, but
rather a class of formulas that are alphabetic variants of each other. However, any member of this
class is satisfactory for our purposes as will be apparent from the discussions below.

We need a concrete description of the notion of provability in the sequel. We adopt a formaliza-
tion based on the sequent calculus. In the setting of intuitionistic logic, a sequent is a pair h�;�i
of sets of formulas such that � is �nite (possibly empty) and � is either empty or a singleton.
The pair is usually written as � �! �, with � and � themselves being written as sequences.
The set � is referred to as the antecedent of the sequent and � as the succedent. Such a sequent
corresponds intuitively to the assertion that � is inconsistent in the case that � is empty and to the
assertion that the formula in � follows from those in � in the case that � is a singleton. Proofs for
sequents are constructed by putting sequents together using the inference rule schemata in Figure
1. In generating instances of these schemata, we assume that � and � are instantiated so as to
produce sequents, that t is instantiated by a term and c by a constant that does not appear in
the instantiation of the lower \sequent" of the relevant rule schema. In those sequents where the
antecedent has the form F;� for some formula F , we assume that F may appear in �, i.e., for-
mulas have arbitrary multiplicity. A proof for � �! � is a �nite tree constructed using inference
rules that are so de�ned and that has its root labelled with � �! � and its leaves labelled with
sequents that have an atomic formula common to their antecedent and succedent.

We shall write � ÌB if the sequent � �! B has a proof in the calculus described above. The
relation thus described corresponds to the provability in intuitionistic logic of the formula B from
a set of premises �. The set of premises may be empty, and in this case we simply write ÌB. The
sequent calculus presented here to formalize this relation bears several similarities to the one used,
for example, in [5]; the main di�erence is that the cut-elimination theorem has been incorporated
here into the presentation of the sequent calculus.

The height of a proof is its height when viewed as a tree. The length of a proof is de�ned by
recursion on its height: If the height is 1, then the length is 1. Otherwise we consider the cases for
the last inference rule. If this is a rule with one upper sequent whose proof has length l, then the
length of the entire proof is l + 1. If the rule has two upper sequents with proofs of length l1 and
l2 respectively, then the length of the entire proof is l1 + l2 + 1.

We observe some meta-theorems about proofs in our sequent calculus.

Theorem 1 If � �! � has a proof of length l (height h) and �0, �0 are obtained from � and �
by replacing some formulas by one of their alphabetic variants, then �0 �! �0 also has a proof of
length l (height h).

5

B;D;� �! �
^-L

B ^D;� �! �
� �! B � �! D ^-R

� �! B ^D

B;� �! � D;� �! �
_-L

B _D;� �! �

� �! B _-R
� �! B _D

� �! D _-R
� �! B _D

� �! B �-L
�B;� �! �

B;� �!
�-R

� �! �B

� �! B D;� �! �
� -L

B � D;� �! �
B;� �! D

� -R
� �! B � D

[t=x]P;� �! �
8-L

8xP;� �! �
� �! [t=x]P

9-R
� �! 9xP

[c=x]P;� �! �
9-L

9xP;� �! �
� �! [c=x]P

8-R
� �! 8xP

Figure 1: Inference Figure Schemata

6

Proof. By induction on the length (height) of the given proof. We need to observe that (a) two
atomic formulas are alphabetic variants only if they are identical, (b) the constants appearing in
alphabetic variants are identical, and (c) if 8xP and 8yP 0 are alphabetic variants then [t=x]P and
[t=y]P 0 must also be alphabetic variants and similarly for existential quanti�ers.

2

Theorem 2 If � �! � has a proof of length l (height h), then, for any substitution �, the sequent
�(�) �! �(�) has a proof of length l (height h).

Proof. The intuitive idea is to apply the substitution to every sequent in the given proof.
However, the quanti�er introduction rules require some care. The 8-L and the 9-R still work �ne.
For example, consider that the original proof had the following rule in it:

[t=x]P;� �! �
8xP;� �! �

Now, for any y =2 F(�), 8y �([y=x]P) is an alphabetic variant of �(8xP). Further, for such
a choice of y, �([t=x]P) is an alphabetic variant of [�(t)=y]�([y=x]P). Using Theorem 1 and
the proof for �([t=x]P); �(�) �! �(�) (whose existence follows from the induction hypothe-
sis), we see that [�(t)=y]�([y=x]P); �(�) �! �(�) has a proof. Using a 8-L rule below this,
we obtain a proof for 8y �([y=x]P); �(�) �! �(�). Using Theorem 1 again, we get a proof for
�(8xP); �(�) �! �(�). Finally, the length (height) of this proof must be the same as that of
the proof we started with, i.e., the proof for 8xP;� �! �.

For 9-L and 8-R we have the additional problem that the constant being generalized upon may
appear in the substitution. For this purpose, we must rename these constants to be distinct from
all those in the substitution prior to performing the transformation outlined in this proof. This can
be done, for instance, by using the method outlined in [5].

2

Theorem 3 If � �! � has a proof of length l (height h) and �0 and �0 are obtained from � and
� by replacing certain constants in a consistent manner by other constants or variables not bound
in the formulas in � [�, then �0 �! �0 also has a proof of length l (height h).

Proof. By an obvious induction on the length (height) of the proof. We omit the details but only
note that the argument is similar to that employed for renaming the constants generalized on by
8-R and 9-L.

2

3 First-Order Hereditary Harrop Formulas

We are interested in the G- and D-formulas de�ned by the following syntax rules in which we
assume A represents atomic formulas:

G ::= A j G ^ G j G _ G j 9xG j D � G j 8xG

D ::= A j G � A j D ^D j 8xD:

7

TheD-formulas de�ned here are called (�rst-order) hereditary Harrop formulas [17]. These formulas
de�ne a logic programming language in the following sense: a G-formula can be thought of as a
query or goal, a �nite set of closed D-formulas constitutes a program, and the process of answering
a query consists of constructing an intuitionistic proof of the existential closure of the query from
the given program. In keeping with this interpretation, we shall refer to a G-formula as a goal
formula and to a D-formula as a program clause. The proof-theoretic properties of G- and D-
formulas that justify this identi�cation and the usefulness of the logic programming language thus
described have, as we have mentioned already, been explored at length elsewhere and we do not
dwell on these aspects here.

Our objective in this paper is that of providing the basis for an interpreter for the logic pro-
gramming language described above. We do this in a later section by describing a non-deterministic
procedure for determining whether a proof exists for a goal formula from a �nite set of program
clauses. In proving the completeness of this procedure, we need certain relationships between
lengths of proofs of goal formulas. We observe these relationships in Theorem 5 below. First we
de�ne the notions of an instance and an elaboration of a D-formula.

De�nition 2. The elaboration of a program clause D, denoted by elab(D), is the set of formulas
de�ned as follows:

(i) If D is an atomic formula or of the form G � A, then it is fDg.

(ii) If D is D1 ^D2, then it is elab(D1)[elab(D2).

(iii) If D is 8xD0 then it is f8xD00jD00 2 elab(D0)g.

Evidently all the formulas in elab(D) are of the form 8x1 : : :8xnA or 8x1 : : :8xn(G � A), where A
is atomic and G is a goal formula. An instance of such a formula is any formula that can be written
as �(A) or �(G � A) where � is a substitution whose domain is fx1; : : : ; xng. The instances of a
D-formula are all the instances of the formulas in elab(D). The elaboration of P , a �nite set of
program clauses, is the union of the elaborations of the formulas in P . This collection is denoted
by elab(P).

There is an alternative characterization of the set of instances of a program clause that is useful
in the proof of Theorem 5. This is provided in the following lemma.

Lemma 4 Let D be a program clause. Then a formula D0 is an instance of D if and only if one
of the following is true:

(i) D is of the form A or G � A and D0 is identical to D.

(ii) D is D1 ^D2 and D0 is an instance of either D1 or D2.

(iii) D is 8xD1 and D0 is an instance of [t=x]D1 for some choice of term t.

Proof. By an obvious induction on the structure of D.
2

Now we observe the following property concerning the lengths of proofs.

8

Theorem 5 Let P be a �nite set of program clauses and let G be a goal formula such that P �! G

has a proof of length l.

(1) If G is atomic, it is either identical to an instance of a formula in P or there is an instance
G0 � G of some formula in P such that P �! G0 has a proof of length less than l.

(2) If G is G1 ^G2, then P �! G1 and P �! G2 have proofs of length less than l.

(3) If G is G1 _ G2, then, for i = 1 or i = 2, the sequent P �! Gi has a proof of length less
than l.

(4) If G is 9xG1, then there is a term t such that P �! [t=x]G1 has a proof of length less than
l.

(5) If G is D � G1, then D;P �! G1 has a proof of length less than l.

(6) If G is 8xG1, then there is a constant c that does not appear in P or in G1 such that
P �! [c=x]G1 has a proof of length less than l.

Proof. By induction on the length of the proof.
If the length is 1, then G is atomic and identical to some formula in P and thus the theorem

must be true.
If the length is greater than 1, we consider by cases the last rule used in the proof. The claim is

obviously true if this rule pertains to the formula in the succedent. Thus we only need to consider
� -L, ^-L and 8-L.

If the last rule is an � -L, then it has the form

� �! G0 A;� �! G
G0 � A;� �! G

The upper sequents have the form required by the theorem and the hypothesis applies to them.
We now consider the cases for the structure of G and show that the theorem holds in each case.
Suppose G is of the form D � G1. We observe �rst that D;� �! G0 must have a proof of the
same length as � �! G0; we obtain one for the former by simply a�xing D to the antecedent
of each sequent in the proof for the latter and possibly \renaming" the constant generalized upon
in some of the 8-R and 9-L rules. By the hypothesis, D;A;� �! G1 has a shorter proof than
that for A;� �! G. Putting the proofs for D;� �! G0 and D;A;� �! G1 together using
a � -L rule, we obtain a proof satisfying the theorem. Similar arguments can be supplied for the
other cases when G is non-atomic; the case where G is of the form 8xG1 may require a renaming
of a constant in a proof but this is, by now, straightforward. If G is atomic, then the hypothesis
applied to A;� �! G yields the theorem in all cases except when G is identical to A. However,
in the last case, the theorem follows by observing that G0 � A 2 P and P �! G0 must have a
proof of length identical to that for � �! G0.

The arguments for ^-L and 8-L follow a similar pattern. The only additional observation to be
made is that the characterization of instances provided in Lemma 4 is designed for these cases.

2

We shall need a slightly stronger observation than is contained in the above theorem for uni-
versally quanti�ed G-formulas. This is stated below.

9

Corollary 1 Let P be a �nite set of D-formulas and let 8xG be a goal formula such that the
sequent P �! 8xG has a proof of length l. Then, for any constant c, P �! [c=x]G has a proof
of length less than l.

Proof. From Theorem 5 we see that P �! [c0=x]G has a proof of length less than l for some
constant c0 that does not appear in P or G. We now invoke Theorem 3 to reach the desired
conclusion.

2

Our interest, as we have mentioned before, is in a procedure for determining if a proof exists for
a given goal formula from a set of program clauses. Theorem 5 contains information that might be
used in the design of a such procedure. In particular, the theorem indicates the manner in which
the search for a proof for a given goal formula can be reduced to a search for simpler proofs for
certain other formulas. When a non-atomic goal is encountered, the suggested step is one of goal
simpli�cation. The particular steps to be carried out are apparent when the top-level logical symbol
is a propositional connective; the procedure may conduct a conjunctive search, a disjunctive search
or a search based on augmenting the program clauses depending on whether this symbol is ^, _ or
�. However, there is some question as to what should be done when the top-level symbol in the
goal is a quanti�er. In particular, an instantiation term needs to be picked when this symbol is an
existential quanti�er and there is little information as to what this term should be. A suggestion
that is in keeping with the technique used with Horn clauses is to delay the instantiation. The
quanti�ed variable may be replaced by a \place-holder", usually referred to as a logic variable.
In implementing the condition pertaining to atomic goals, use may be made of the operation of
uni�cation, in this process also determining instantiations for logic variables.

While the above suggestions appear to provide the structure for a satisfactory procedure, care
needs to be exercised in their actual implementation to ensure correctness. The need for caution
arises from the presence of universal quanti�ers. The simpli�cation step that is indicated for a
quanti�er of this kind is that of instantiating it with a new constant and then searching for a proof
for the resulting goal. Notice that the newness of the constant is crucial for the correctness of the
search strategy: this is a requirement on the universal generalization step that produces a proof
for the quanti�ed formula from a proof of the formula that results from the simpli�cation. This
newness condition places a constraint on the instantiations that are permitted for the logic variables
appearing in the formula. To illustrate this situation, let us assume that we are searching for a proof
of the goal formula 9x8y(p x y) from a set of program clauses containing only the formula 8x(p x x);
we assume that p is a predicate symbol in these formulas and adopt the convention of using lower
case letters to denote constants and bound variables here and below. A cursory inspection of the
formulas in question reveals that the attempt to construct a proof should not succeed. Following
the \recipe" described above, we proceed to simplify the given goal formula �rst to 8y(p X y) and
then to (p X c), where X denotes a logic variable and c is a new constant. Now this formula uni�es
with an instance of the given program clause and we might therefore be tempted to conclude that
the attempted proof search is successful. This conclusion is obviously erroneous, and a closer look
at the instantiation for X reveals the source of the problem: our \solution" requires instantiating
X with the constant c, thereby constructing a \proof" for 8y(p c y) from one for (p c c).

The problem discussed above indicates the need for some method for constraining the permitted
substitutions for logic variables. In the context of classical logic the idea of Skolemization is generally
used for this purpose. Within this context, formulas are converted into a prenex normal form

10

and universal quanti�ers are then instantiated by a (new) function of the existentially quanti�ed
variables whose quanti�er scope governs them. Thus, the goal formula considered above would be
converted into the form 9x(p x (f x)), where f is a new function symbol. Such a conversion process,
when used with the recipe discussed above, makes logic variables appear within terms that should
not appear in their instantiations; as a particular example, our Skolemized goal will be simpli�ed to
(p X (f X)). The notion of \occurs-checking" that is part of the uni�cation operation now ensures
that the necessary constraints on instantiation terms are satis�ed.

The preprocessing phase that solves the problem within classical logic can unfortunately not be
employed within intuitionistic logic. An appreciation of this fact might be obtained by considering
the formula ((8x(p x) � q) � 9x((p x) � q)). This formula is a goal formula as de�ned in this
section. One interesting observation to make about this formula is that it cannot be converted into
an equivalent prenex normal form. The reason for this is that certain logical equivalences needed in
the conversion process do not hold in intuitionistic logic. In particular, if F1(x) and F2 respectively
represent formulas in which x does and does not appear free, then neither (8xF1(x) � F2) and
9x(F1(x) � F2) nor (F2 � 9xF1(x)) and 8x(F2 � F1(x)) are intuitionistically equivalent. One
might, nevertheless, attempt to convert a formula into a Skolemized form by instantiating essential
universal quanti�ers by Skolem functions of the essential existentially quanti�ed variables whose
quanti�er scope governs them. Applied to the formula at hand, this process would yield the
formula (((p c) � q) � 9x((p x) � q)), where c is assumed to be a new constant. However, such a
\Skolemization" process is not sound for intuitionistic logic. For example, for the formula considered
here, it is easily veri�ed that the Skolemized version is provable using the sequent calculus presented
in the last section whereas the original formula is not2.

Although static Skolemization is not possible, a dynamic version of Skolemization as described
in [4] can be used. The manner in which this would work is the following. Together with the goal
formula to be proved, we maintain a list of all the logic variables that have been introduced in the
search conducted up to that point. Now imagine that the top-level symbol in the goal formula is
a universal quanti�er. The search is then continued by instantiating the quanti�er by a Skolem
function of the logic variables present in the list. The use of such a function ensures, as before,
that the logic variables present at that point cannot be instantiated by a term that contains the
instantiation for the universal quanti�er. Thus, satisfaction of the \newness" constraint that goes
with the universal quanti�er is ensured. As an illustation of this idea, we may consider a search
for a proof for the formula presented above, i.e., for ((8x(p x) � q) � 9x((p x) � q)). Using
the recipe suggested, this would reduce to �nding a proof for 9x((p x) � q) from the program
clause (8x(p x) � q); the logic variable list is empty at this point. At this stage, the existential
quanti�er is encountered leading to a search for a proof for ((p X) � q) from the program clause
(8x(p x) � q) with the logic variable list containing the sole variable X . Iterating through a few
more steps, the goal becomes one of �nding a proof for 8x(p x) from the set of program clauses
f(p X); (8x(p x) � q)g in the context of the same logic variable list. The goal formula is at this
stage reduced to (p (f X)) where f is a new function symbol. It is easily seen that the search now
reaches a dead-end and this leads to the conclusion that no proof exists for the original formula.

Although the scheme outlined above functions correctly, it involves keeping track of a potentially

2It follows from this that a Herbrand-like theorem does not hold for hereditary Harrop formulas, contrary to the
claim in [17]. A deeper analysis reveals that the source of the problem is that, in contrast to the classical case, certain
propositional inference rules | in this case the � -L and � -R rules | cannot be permuted in our intuitionistic
sequent calculus. This observation, coincidentally using the same example, is also made in [25].

11

long list of logic variables and forming Skolem functions of these variables when universal quanti�ers
are encountered. A direct implementation of this scheme would therefore be rather cumbersome3.
However, an alternative scheme that has an e�cient implementation can be used. Under this
scheme, instead of using Skolem functions, we think of tagging logic variables with the set of
constants that may appear in terms instantiating them; this set can then be used in a modi�ed
occurs-check to be performed in the course of uni�cation. Fortunately, the di�erent sets of constant
symbols constitute a hierarchy of universes and a practical realization of this idea can be obtained
by using a numerical label with each constant and logic variable. The level 0 universe consists of
all the constant symbols that appear in the program clauses and the original goal. These symbols
may be labelled by 0 to indicate their position in the hierarchy. Each time a universal quanti�er is
encountered, the \universe index" is increased by 1 and a new constant labelled with this index is
introduced; thus, the universe at this level consists of the new constant and those in the universes
below it. When an existential quanti�er is encountered, it is instantiated by a logic variable labelled
with the current value of the universe index. The labels are then used in the following fashion:
the process of uni�cation culminates with trying to instantiate a logic variable with a term. In
the present context this would amount to setting a variable X with label i to a term t. This
instantiation is only permitted if t does not contain any constants with a label greater than i.

The actual realization of the latest scheme thus depends on a uni�cation process that respects
the constraints represented by labels on constants and variables. We describe such a notion of
uni�cation in the next section. We then use this in a precise description of the proof procedure
outlined above and in a proof of its correctness.

4 Labelled Uni�cation

The interpreter that we describe in the next section will have to consider unifying terms under
certain restrictions pertaining to substitutions. These restrictions are obtained from the labels
on constants and variables that are given by the labelling functions alluded to in Section 2. As
mentioned, the behavior of these functions is �xed on the constants but may vary on the variables.
The particular behavior of any given function will not concern us in this section but will be relevant
to the discussions in Section 5.

De�nition 3. Let � = fhxi; tiij1 � i � ng be a substitution and let L be a labelling function. �
is proper with respect to L if, for 1 � i � n, it is the case that L(c) � L(xi) for every constant c
appearing in ti. The labelling induced by � from L is then the labelling function L0 whose behavior
on variables is given as follows:

L0(x) = min(fL(x)g [fL(xi) j hxi; tii 2 � and x appears in tig):

As mentioned already, the behavior of labelling functions on constants is �xed, and hence L0 is
identical to L with respect to these symbols.

3There is a dual to Skolemization, called raising in [14] and lifting in [23], that can be used in a higher-order
context. Raising requires maintaining a list of universal, as opposed to existential, quanti�ers encountered in a proof
search. In practical contexts this entails less bookkeeping and Skolemization also has other ills in the higher-order
context [14]. However, even raising appears not to be an operation at low enough a level to be incorporated into
an abstract machine for �Prolog. The scheme that is eventually used here seems to be such an operation and also
captures directly the constraints Skolemization and raising are designed to capture.

12

De�nition 4. The composition of two substitutions is the composition of these when viewed as
functions. The composition of �1 and �2 will be written as �1 � �2, i.e., for any term t, �1 � �2(t) =
�1(�2(t)). This operation is easily seen to be associative, so there is no essential ambiguity in an
expression of the form �1 � �2 � �3. A substitution �1 is more general than �2 relative to a labelling
function L if �1 and �2 are proper with respect to L and there is a substitution � that is proper
with respect to the labelling induced by �1 from L such that �2 = � � �1.

De�nition 5. We refer to a �nite set of pairs of terms or atomic formulas as a disagreement set.
Let T = fhti; siij1 � i � ng be a disagreement set and let L be a labelling function. A uni�er
for T under L is a substitution � that is proper with respect to L and such that �(ti) = �(si) for
1 � i � n. In the case that T is a singleton containing the pair ht; si, we shall refer to a uni�er for
T as a uni�er of t and s. A most general uni�er for T under L is a uni�er � that is more general
as a substitution that any other uni�er relative to L.

Although we have de�ned the notion of a most general uni�er for a uni�cation problem posed
by disagreement set T and a labelling function L, it is not clear that this notion makes sense. We
show that it does by outlining a procedure that �nds a most general uni�er for a disagreement set
whenever the set has a uni�er. This procedure is modelled on the �rst nondeterministic algorithm
presented in [9]. No attention is given to e�ciency at this stage; the only purpose is to show the
existence and computability of most general uni�ers.

We begin by de�ning the following transformations on disagreement sets and labelling functions.
The former is given generically by T below and the latter by L.

(1) Term Reduction. Let h(f t1 : : : tn); (f s1 : : : sn)i 2 T . Then transform T by replacing this
pair by the pairs ht1; s1i; : : : ; htn; sni. The labelling function is preserved.

(2) Variable Elimination. Let hx; ti be a pair in T with x being a variable. Transform T by
applying fhx; tig as a substitution to all the other pairs in T . The labelling function is
preserved.

(3) Label Adjustment. Let hx; ti be a pair in T with x being a variable. Transform L into the
labelling induced from L by fhx; tig.

We now observe the following properties that go towards showing that the set of uni�ers is
preserved under the transformations described above.

Lemma 6 Let T be a disagreement set and let h(f t1 : : : tn); (g s1 : : : sm)i 2 T . If f 6= g then T
has no uni�ers. Otherwise the set obtained from T by applying term reduction has the same set of
uni�ers as does T . Furthermore, these observations are true relative to any labelling function.

Proof. If f 6= g, no substitution can make the two terms in the given pair identical. Otherwise
a substitution makes the two terms identical if and only if it makes the pairs produced by term
reduction identical. Since the labelling function is preserved, the set of proper substitutions remains
unchanged.

2

Lemma 7 Let T be a disagreement set containing the pair hx; ti where x is a variable and let L be
a labelling function. If x occurs in t and t 6= x or if there is a constant c in t such that L(x) < L(c)

13

then T has no uni�ers relative to L. Otherwise let T 0 be obtained from T by applying variable
elimination with respect to hx; ti. Then the set of uni�ers for T 0 relative to L is identical to that
for T relative to L.

Proof. Let � be a uni�er for T relative to L. Then hx; �(t)i 2 �. If x occurs in t, this would be
impossible since �(t) must be �nite. Further, any constant occurring in t must occur in �(t) as well.
Thus if there is a constant c in t such that L(x) < L(c), then � cannot be proper with respect to L.
Finally, observe that if s0 is obtained from s by replacing x by t and �(x) = �(t), then �(s) = �(s0).
Thus the substitutions making the elements in each pair in T identical must be the same as those
making the elements of each pair in T 0 identical.

2

Lemma 8 Let T be a disagreement set, let L be a labelling function and let L0 be the new labelling
function obtained by applying label adjustment relative to some pair hx; ti in T . Then T has the
same sets of uni�ers relative to L0 as it does relative to L.

Proof. Any substitution that is proper with respect to L0 must clearly be proper with respect to
L as well. Hence any uni�er for T relative to L0 must also be one relative to L. In the converse
direction, let � be a substitution that is proper with respect to L but not L0. Then for some
variable y occurring in t there must be a pair hy; si in � with a constant c occurring in s such that
L(x) < L(c). But then � cannot be a uni�er for T relative to L: if it were, hx; �(t)i 2 � and thus �
is not proper with respect to L.

2

We think of a disagreement set T as being in solved form in the context of a labelling function
L if the following conditions are satis�ed:

(i) the �rst component of each pair in T is a variable,

(ii) a variable occurring as the �rst component of any pair in T occurs only there, and

(iii) for each pair hx; ti 2 T it is the case that L(a) � L(x) for all constants and variables a
occurring in t.

Lemma 9 A disagreement set T that is in solved form in the context of a labelling function L is
its own most general uni�er relative to L.

Proof. It is obvious that T is its own uni�er relative to L. The labelling induced by T from L
is L. If � is any other uni�er, then it must be the case that � = � � T . Finally, � is by de�nition
proper with respect to L.

2

We now present a nondeterministic algorithm for �nding most general uni�ers in our context.

Algorithm 1

Given a disagreement set T and a labelling function L, perform the following transformations. If
none applies, return the resulting set of term pairs as the most general uni�er.

14

(1) Replace any pair in T of the form ht; xi where x is a variable and t is not by the pair hx; ti.

(2) Remove from T any pair of the form hx; xi where x is a variable.

(3) Pick any pair in T of the form ht; si where t and s are not variables. If the root function
symbols of t and s are distinct, declare non-uni�ability and stop. Otherwise apply term
reduction.

(4) Pick any pair in T of the form hx; ti where x is a variable that occurs somewhere else in T

and t is distinct from x. If x occurs in t or if L(x) < L(c) for some constant c occurring in t,
declare non-uni�ability and stop. Otherwise apply variable elimination.

(5) Pick a pair in T of the form hx; ti where x is a variable and for some variable y occurring in
t it is the case that L(x) < L(y). Apply label adjustment.

The above algorithm purportedly produces a most general uni�er or determines that the given
set has no uni�ers under the corresponding labelling function. We show now that this is in fact the
case, i.e., that the algorithm is correct in its judgement.

Theorem 10 Algorithm 1 will terminate for any given disagreement set T and labelling function
L. If it terminates after declaring non-uni�ability, T has no uni�ers relative to L. Otherwise the
set returned is the most general uni�er.

Proof. The argument for termination is similar to that in [9]. Speci�cally, we associate with
each disagreement set T and labelling function L a quadruple of natural numbers hn1; n2; n3; n4i
as follows. The number n1 is a count of the number of variables that do not occur only once as
the �rst element of a pair in T . The second number n2 is the count of the number of occurrences
of function symbols in T . The third number n3 is a count of the number of pairs in T of the form
hx; xi and ht; xi where x is a variable and t is not. The fourth number n4 is the summation of
L(x) over all the variables x occurring in T . We now assume an ordering on disagreement sets
and labelling functions given by the lexicographic ordering on the associated quadruples. It is then
easily shown that each application of the steps in Algorithm 1 produces a disagreement set and a
labelling function that is smaller with respect to this ordering. Termination follows, the ordering
being well-founded.

Using the Lemmas 6, 7 and 8 and an induction on the number of steps applied, we see that
for the disagreement set T 0 and corresponding labelling function L0 produced at any intermediate
stage by the algorithm, the set of uni�ers for T 0 relative to L0 is identical to the set of uni�ers for T
relative to L. The correctness of the algorithm when it declares non-uni�ability follows from this
by once again using Lemmas 6, 7 and 8. If the algorithm succeeds after producing the set T 0 with
the associated labelling function L0, it follows from Lemma 9 that (a) T 0 is a uni�er and (b) for
any other uni�er � there is a substitution � that is proper with respect to L0 such that � = � � T 0.
But it is easily seen that � must be proper with respect to the labelling induced by T 0 from L and
thus T 0 is a most general uni�er for T relative to L.

2

15

5 A Non-Deterministic Proof Procedure

We now wish to describe a procedure for determining whether a proof exists for an instance of a
goal formula from a �nite set of D-formulas. The procedure we describe will operate in a context
provided by a set of constants, a set of variables and a labelling function. Its purpose will be
to transform a set of tuples of the form hG;P ; Ii where G is a goal formula, P is a �nite set of
program clauses and I is a natural number that, intuitively, bounds the labels of the constants
and variables appearing in G and P . We assume hereafter that G, used perhaps with subscripts,
denotes a collection of such tuples, that C and V similarly denote sets of constants and variables,
that L denotes a labelling function and that � is a syntactic variable for a substitution. A state
in our procedure is de�ned by a tuple of the form hG; C;V ;L; �i and the transformation that this
procedure a�ects on states is given by the following relation between them.

De�nition 6. A tuple hG2; C2;V2;L2; �2i is derived from another tuple hG1; C1;V1;L1; �1i if one of
the following holds:

(i) hG1 ^ G2;P ; Ii 2 G1 and G2 = (G1 � fhG1 ^ G2;P ; Iig)[fhG1;P ; Ii; hG2;P ; Iig, C2 = C1,
V2 = V1, L2 = L1 and �2 = ;.

(ii) hG1 _ G2;P ; Ii 2 G1 and G2 = (G1 � fhG1 _ G2;P ; Iig) [fhGi;P ; Iig for i = 1 or i = 2,
C2 = C1, V2 = V1, L2 = L1 and �2 = ;.

(iii) h9xG;P ; Ii 2 G1 and, for some variable w not in V1,

G2 = (G1 � fh9xG;P ; Iig)[fh[w=x]G;P; Iig;

C2 = C1, V2 = V1 [fwg, L2 is like L1 except that L2(w) = I , and �2 = ;.

(iv) hD � G;P ; Ii 2 G1 and G2 = (G1 � fhD � G;P ; Iig)[fhG;P [fDg; Iig, C2 = C1, V2 = V1,
L2 = L1 and �2 = ;.

(v) h8xG;P ; Ii 2 G1 and for some constant c not in C1 and such that L1(c) = I + 1

G2 = (G1 � fh8xG;P ; Iig)[fh[c=x]G;P ; I+ 1ig

and C2 = C1 [fcg, V2 = V1, L2 = L1, and �2 = ;.

(vi) Let hA;P ; Ii 2 G1, let 8x1 : : :8xnA
0 2 elab(P) and let � = fhx1; w1i; : : : ; hxn; wnig be a

renaming substitution such that, for 1 � i � n, wi is a distinct variable not in V1. Then
A and �(A0) are uni�able with a most general uni�er � relative to the labelling function L0

which is like L1 except that it maps each wi to I and G2 = �(G1 � fhA;P ; Iig), C2 = C1,
V2 = V1 [fw1; : : : ; wng, �2 = � and L2 is the labelling induced by � from L0.

(vii) Let hA;P ; Ii 2 G1, let 8x1 : : :8xn(G � A0) 2 elab(P) and let � = fhx1; w1i; : : : ; hxn; wnig be a
renaming substitution such that, for 1 � i � n, wi is a distinct variable not in V1. Also let A
and �(A0) be uni�able with a most general uni�er � relative to the labelling function L0 which
is like L1 except that it maps each wi to I . Then G2 = �((G1�fhA;P ; Iig)[fh�(G);P ; Iig),
C2 = C1, V2 = V1 [fw1; : : : ; wng, �2 = � and L2 is the labelling induced by � from L0.

16

De�nition 7. A sequence hG1; C1;V1;L1; �1i; : : : ; hGn; Cn;Vn;Ln; �ni is a derivation sequence if
the (i+ 1)th tuple in it is derived from the ith tuple. Such a derivation sequence terminates if no
tuple can be derived from hGn; Cn;Vn;Ln; �ni. The sequence terminates successfully if Gn = ;.

De�nition 8. Let G be a goal formula and P be a �nite set of closed program clauses such that
the label associated with each constant in these formulas is 0. Also let G1 = fhG;P ; 0ig, let C1 and
V1 be, respectively, the set of constants and the set of free variables appearing in the formulas in
fGg[P , let L1 be the constant 0 valued function over V1 and let �1 = ;. Then a derivation sequence
of the form hG1; C1;V1;L1; �1i; : : : ; hGn; Cn;Vn;Ln; �ni is said to be a derivation for G relative to P .
It is a derivation of G from P if it is successfully terminated and, in this case, its associated answer
substitution is the restriction of �n � � � � � �1 to the free variables of G, i.e., to V1.

A (non-deterministic) procedure for determining if a proof exists for an instance of a goal
formula G from a set of closed program clauses P can now be described as one that searches for
a derivation of G from P . The correctness and adequacy of such an identi�cation is demonstrated
through Theorems 13 and 15 below. First we introduce a de�nition and observe a property that
will be useful in proving these theorems.

De�nition 9. A tuple hGi; Ci;Vi;Li; �ii is said to be proper if the following conditions hold:

(i) Ci and Vi include all the constants and free variables in the formulas appearing in Gi, and

(ii) for each hG;P ; Ii 2 Gi it is the case that Li(a) � I for each constant or free variable a
appearing in the formulas in fGg [P .

Lemma 11 Every tuple in a derivation for a goal formula G from a set of closed program clauses
P is proper.

Proof. Obvious from an inspection of De�nitions 8 and 6. We only mention that most general
uni�ers do not introduce any constants or variables not already in the formulas and that the
labelling induced by a substitution from a given labelling may only reduce the label values for some
variables.

2

The property of derivations that is observed in the following lemma is central to ensuring the
soundness of the suggested proof procedure.

Lemma 12 Let hG1; C1;V1;L1; �1i; : : : ; hGn; Cn;Vn;Ln; �ni be a derivation of G from P. Let �n
denote the empty substitution and, for 1 � i < n, let �i denote the substitution �n � � � � � �i+1;
alternatively �i = �i+1 � �i+1. Then, for 1 � i � n,

(1) �i restricted to Vi is proper with respect to Li, and

(2) for each hG0;P 0; Ii 2 Gi it is the case that �i(P
0) Ì �i(G

0).

17

Proof. The lemma is proved by a backward induction on the given sequence. It is vacuously true
for the case when i = n. For the case when i < n we consider the possibilities by which the (i+1)th
tuple may have been derived from the ith one. Referring to the cases in De�nition 6, a simple use
of the induction hypothesis su�ces for (i), (ii) and (iv). For (iii) and (v), we observe �rst that
�i = �i+1. The requirement in the lemma concerning the \properness" of �i now follows in these
cases from the induction hypothesis by observing that Li and Li+1 agree on all the variables in Vi.
As for the second requirement, the induction hypothesis immediately veri�es its truth for all the
tuples in Gi that also belong to Gi+1. This leaves only one other tuple to be argued for.

In the case of (iii), this tuple is of the form h9xG0;P 0; Ii. We observe here that h[w=x]G0;P 0; Ii is
a member of Gi+1 and hence, by hypothesis, �i(P 0) Ì �i([w=x]G

0). Now, for some y =2 F(G0)[F(�i),
[�i(w)=y]�i([y=x]G

0) is an alphabetic variant of �i([w=x]G
0). Thus, it follows from Theorem 1 that

�i(P
0) Ì [�i(w)=y]�i([y=x]G

0);

and, observing the structure of the 9-R rule, therefore �i(P
0) Ì 9y�i([y=x]G

0). But 9y�i([y=x]G
0)

is an alphabetic variant of �i(9xG
0). Hence, by virtue of Theorem 1, the second requirement must

be true for the tuple under consideration as well.
In the case of (v), the remaining tuple is of the form h8xG0;P 0; Ii. We know that, for some con-

stant c with label I+1, h[c=x]G0;P 0; I+1i 2 Gi+1. Thus �i(P 0) Ì �i([c=x]G
0). Once again, for some

y that is distinct from the free variables of G0 and of �i, [c=y]�i([y=x]G
0) is an alphabetic variant of

�i([c=x]G0) and hence �i(P 0) Ì [c=y]�i([y=x]G
0). Now, we have just noted that �i restricted to Vi is

proper with respect to Li. Further, by lemma 11, the tuple hGi; Ci;Vi;Li; �ii is proper. From these
observations it is clear that the constants appearing in �i(P 0) and in �i([y=x]G

0) must have labels
that are bounded from above by I . Thus, c cannot appear in either �i(P

0) or �i([y=x]G
0). But then

we can use the 8-R rule in conjunction with the proof of �i(P 0) �! [c=y]�i([y=x]G
0) to obtain a

proof for �i(P
0) �! 8y�i([y=x]G

0). The second requirement in the lemma is now veri�ed for the
tuple under consideration by observing that 8y�i([y=x]G

0) is an alphabetic variant of �i(8xG
0).

The only remaining cases, then, are (vi) and (vii). In these cases, �i+1 must be proper with
respect to a labelling function that is like Li on all the variables in Vi. By the induction hypothesis,
�i+1 is proper with respect to a labelling induced from this labelling by �i+1. It is easily seen from
these facts that �i+1 � �i+1 restricted to the variables in Vi must be proper with respect to Li. But
this substitution is identical to the restriction of �i to Vi.

The second requirement in the lemma follows directly from the hypothesis for all the tuples
hG1;P1; I1i 2 Gi for which h�i+1(G1); �i+1(P1); I1i 2 Gi+1. There is only one other tuple to be
considered. Let this be hA0;P 0; Ii. We provide an argument for only (vii), the argument for
(vi) being similar but simpler. In case (vii), there is a formula 8x1 : : :8xm(G00 � A00) that is an
alphabetic variant of some formula in elab(P 0) such that

(a) �i+1(A
00) = �i+1(A

0) and hence �i(A
00) = �i(A

0), and

(b) h�i+1(G00); �i+1(P 0); Ii 2 Gi+1.

From (a) it follows that �i(A
00); �i(P

0) �! �i(A
0) is an initial sequent. From (b) and the induction

hypothesis it follows that �i(P 0) �! �i(G00), i.e., �i+1(�i+1(P 0)) �! �i+1(�i+1(G00)), has a proof.
Now, we can rewrite �i(A

00) as

[�i(xm)=ym] : : : [�i(x1)=y1]�i([ym=xm] : : : [y1=x1]A
00)

18

and, similarly, �i(G00) as

[�i(xm)=ym] : : : [�i(x1)=y1]�i([ym=xm] : : : [y1=x1]G
00)

for some distinct variables y1; : : : ; ym =2 F(A00)[F(G00)[F(�i). Using this observation and noting
that the proofs for �i(A

00); �i(P 0) �! �i(A
0) and �i(P 0) �! �i(G

00) can be combined by an � -L
rule, we see that a proof exists for the sequent

[�i(xm)=ym] : : : [�i(x1)=y1]�i([ym=xm] : : : [y1=x1](G
00 � A00)); �i(P

0) �! �i(A
0):

By repeated uses of 8-L below this proof, we obtain one for

8y1 : : :8ym�i([ym=xm] : : : [y1=x1](G
00 � A00)); �i(P

0) �! �i(A
0)

and thus for �i(8y1 : : :8ym(G
00 � A00)); �i(P

0) �! �i(A
0). Noting that �i(8y1 : : :8ym(G

00 � A00))
is an alphabetic variant of a formula in elab(�i(P 0)), it is easily seen that �i(P 0) �! �i(A0) has a
proof. The desired conclusion is thus obtained.

2

The soundness of a proof procedure that essentially searches for a derivation of a goal formula
from a given set of program clauses is now stated and proved.

Theorem 13 Let there be a derivation of a goal formula G from the set of closed program clauses
P and let � be the associated answer substitution. Then, for any formula G0 that can be obtained
by applying a substitution to �(G), it is the case that P ÌG

0.

Proof. Let hG1; C1;V1;L1; �1i; : : : ; hGn; Cn;Vn;Ln; �ni be a derivation of G relative to P . We
observe that hG;P ; Ii 2 G1. Using Lemma 12 and noting that �1 is the empty substitution it
follows then that

�n � � � � � �1(P) Ì �n � � � � � �1(G):

Since the formulas in P are closed, �n � � � � � �1(P) is an alphabetic variant of P . Since � is the
restriction of �n � � � � � �1 to the free variables of G, �(G) is an alphabetic variant of �n � � � � � �1(G).
Thus, with a possible recourse to Theorem 1, we see that P Ì �(G). The desired conclusion now
follows from Theorem 2.

2

We are now interested in a converse to Theorem 13, i.e., we would like to show that our
nondeterministic procedure is adequate as a device for determining whether a proof exists for a
goal formula from a given set of program clauses. The strategy that we adopt in this direction can
be characterized as follows. Let us say that a tuple of the form hG; C;V ;L; �i is \solvable" if there
is some (proper) substitution � such that for every hG;P ; Ii 2 G it is the case that �(P) Ì �(G).
We show then that, given any solvable tuple that is not a terminated derivation, a new solvable
tuple can be derived from it that is in a certain sense closer to being a terminated derivation. In
fact we show that this is true independently of several choices that can be made in generating the
new tuple. This fact is then used to show that if our procedure is started out with a solvable tuple,
then it will construct a successfully terminated derivation, provided, of course, that it makes the
correct choices at the critical points.

19

In order to execute the strategy outlined above, we need a measure that indicates the complexity
of proofs for a goal formula from a �nite set of program clauses. Such a measure is now de�ned.

De�nition 10. Let P be a �nite set of program clauses and let G be a goal formula such that
P Ì G. Further, let l be the length of the shortest proof for P �! G. Then �(P ; G) = 3l.

The �rst step in our strategy, then, is the content of the following lemma.

Lemma 14 Let hG1; C1;V1;L1; �1i be a proper tuple and let � be a substitution that is proper with
respect to L1 and such that �(P) Ì �(G) for every hG;P ; Ii 2 G1. If hG1; C1;V1;L1; �1i is not
a successfully terminated derivation sequence, then there is a tuple hG2; C2;V2;L2; �2i that can be
derived from it and a substitution ' that together satisfy the following properties:

(i) ' is proper with respect to L2,

(ii) � and ' � �2 agree on V1,

(iii) '(P) Ì '(G) for every hG;P ; Ii 2 G2, and

(iv)
P

hG;P;Ii2G2 �('(P); '(G))<
P

hG;P;Ii2G1 �(�(P); �(G))

Furthermore, such a tuple and a corresponding substitution can be obtained by picking the element
from G1 that is to be acted upon in an arbitrary fashion.

Proof. Let hG;P ; Ii 2 G1. We consider by cases the structure of G and exhibit the desired tuple
and substitution in each case. Implicit in this argument is the fact that it is irrelevant which tuple
is picked from G1.

Let G be of the form G1 ^ G2, G1 _ G2 or D � G1. Then one of the cases (i), (ii) or (iv) in
De�nition 6 is applicable. We let ' = � and also let hG2; C2;V2;L2; �2i be the tuple indicated in
the relevant case. It is easily seen that all the requirements are met by this choice. We only note
that Theorem 5 is needed to ensure that the measure decreases.

Let G be of the form 9xG0. Then case (iii) in De�nition 6 is applicable. Let hG2; C2;V2;L2; �2i
be the tuple that is obtained by a use of this case. Towards exhibiting ', we observe �rst that, for
some y =2 F(�), 9y�([y=x]G) is an alphabetic variant of �(9xG). Now, there is, by assumption, a
proof for �(P) �! �(9xG). Using Theorems 1 and 5, it follows that there is a term t such that
�(P) �! [t=y]�([y=x]G) also has a proof and, in fact, one that is shorter than any proof for the
previous sequent. Further, using Theorem 3, we may assume that no parameter occurs in t that
does not already occur in �(P) or in �([y=x]G). Finally, we let ' be the substitution like � except
that, for the w chosen in the application of step (iii), '(w) = t.

It remains to be veri�ed that the requirements of the lemma are met by the indicated substi-
tution and tuple for the case considered above. Clearly ' is proper with respect to L2; the only
case where this might be in question pertains to the substitution for w, but L2(w) = I and t was
chosen such that the labels of the constants appearing in it are bounded by I . The second condition
follows by noting that �2 = ; and � and ' agree on V1. The choice of w and the properness of
hG1; C1;V1;L1; �1i ensure that �(G00) = '(G00) and �(P 0) = '(P 0) for all the tuples hG00;P 0; I 0i
in G2 that are distinct from h[w=x]G0;P ; Ii. Thus, the third requirement is satis�ed with regard
to these tuples. For the remaining case, the choice of w, y and ' ensures that '([w=x]G0) is an
alphabetic variant of [t=y]�([y=x]G0) as also is '(P) of �(P). Thus '(P) Ì'([w=x]G

0) and in fact

20

�('(P); '([w=x]G0)) < �(�(P); �(9xG0)). Thus (iii) holds and the last observation also veri�es
(iv).

Consider now the case when G is of the form 8xG0. By assumption, �(P) �! �(8xG0) has
a proof. Now, for any y =2 F(�), 8y�([y=x]G0) is an alphabetic variant of �(8xG0). By Corollary
1, for any constant c, �(P) �! [c=y]�([y=x]G0) has a proof that is shorter than any proof for
�(P) �! �(8xG0). But [c=y]�([y=x]G0) is actually an alphabetic variant of �([c=x]G0). Letting '
be identical to � and using these observations, the lemma is easily veri�ed for this case.

The only remaining case is that when G is an atomic formula, say A. Now, �(P) �! �(A)
has a proof by assumption. Hence, by virtue of Theorem 5, one of two situations must hold:

(a) �(A) must be identical to an instance of a formula in �(P), or

(b) some formula in �(P) must have as instance a formula of the form G0 � �(A) where G0 is
such that �(P) �! G0 has a proof that is shorter than any proof for �(P) �! �(A).

We verify the requirements of the lemma only when the latter case holds, the argument when the
former is true being similar but simpler.

In the case being examined, there must be a formula F of the form 8x1 : : :8xm(G00 � A00) in
elab(P), that is such that G0 � �(A) is an instance of �(F). We eventually consider the application
of (vii) in De�nition 6 with regard to this formula. However some prior analysis is necessary to
ensure this step can be applied and to also make it possible to identify the substitution '. Let
w1; : : : ; wm =2 V1 be the variables that might be chosen in the step under consideration for renaming
the quanti�ed variables in F , let L0 be the labelling function obtained by modifying L1 as required
for these \new" variables and let 1 = fhxi; wiij1 � i � mg be the renaming substitution. Now, the
wi variables may be free in �, so we have to consider a further renaming step in order to exhibit
an instance of �(F) in a form useful for further analysis. Speci�cally, let y1; : : : ; ym be distinct
variables not in F(�)[V1 [fw1; : : : ; wmg and let 2 = fhwi; yiij1 � i � mg. Now, letting �0 be �
restricted to V1, it is easily seen that there is a substitution � with domain fy1; : : : ; ymg such that

� � �0 � 2 � 1(A
00) = �(A) and � � �0 � 2 � 1(G

00) = G0:

Finally this � can be transformed into a substitution �0 that satis�es the following properties:

(1) �0 � �0 � 2 is proper with respect to L0,

(2) �0 � �0 � 2 � 1(A00) = �(A), and

(3) there is a proof for P �! �0 � 0 � 2 � 1(G00) that is shorter than any for �(P) �! �(A).

In essence, we obtain �0 from � by replacing constants that have labels greater than I with ones
that have labels bounded by I . This transformation is designed to make (1) true: if � � �0 � 2
itself is not satisfactory, it is only because the substitutions for some of the wi variables contain
constants with label greater than I . Since hG1; C1;V1;L1; �1i is proper and � is proper relative to
L1, the labels on the constants appearing in �(A) and �(P) are bounded by I . Thus, (2) follows
from � � �0 � 2 � 1(A

00) = �(A) by noting that nothing is replaced in �(A) by the transformation
just described. Finally (3) follows from the assumption that �(P) �! G0 has a proof that is
shorter than any proof for �(P) �! �(A) with a possible recourse to Theorem 3; the latter may

21

be needed because some constants in G0, i.e., in � ��0 �2 �1(G00), may have to be renamed to get
�0 � �0 � 2 � 1(G

00).
Now, it is easily seen that �0 � �0 � 2(A) = �(A). Thus, noting properties (1) and (2) above,

it follows that �0 � �0 � 2 is a uni�er for A and 1(A
00) relative to L0. Since these formulas have

a uni�er relative to L0, they must, by Theorem 10, have a most general uni�er. Let �2 be a most
general uni�er and let L2 be the labelling induced from L0 by �2. Then there is a substitution '

that is proper with respect to L2 and such that �0 � �0 � 2 = ' � �2. Let

G2 = �2((G1 � fhA;P ; Iig)[fh1(G
00);P ; Iig);

V2 = V1 [fw1; : : : ; wmg and C2 = C1. Clearly hG2; C2;V2;L2; �2i is derived from hG1; C1;V1;L1; �1i.
We claim that ' and hG2; C2;V2;L2; �2i satisfy the requirements of the lemma. The �rst requirement
is true by construction. The second follows from observing that � and �0��0�2 agree on V1. For the
third requirement, we observe �rst that the free variables of G1 and P 0 for every tuple hG1;P 0; I 0i
in G1 are contained in V1 and hence '(�2(G1)) and �(G1) are alphabetic variants as also are
'(�2(P 0)) and �(P 0). Thus this requirement follows from the assumptions for each tuple in G2 that
is obtained by applying the substitution �2 to a tuple in G1. For the only other tuple, i.e., for
h�2(1(G00)); �2(P); Ii, we have observed that there is a proof for �(P) �! �0 � �0 � 2 � 1(G00)
that is shorter than any for �(P) �! �(A). But '(�2(P)) and �(P) are alphabetic variants and
so are '(�2(1(G00))) and �0 ��0 �2 �1(G00). Thus the third requirement holds for this case as well
and, the additional information concerning the lengths of proofs actually ensures that the fourth
requirement is also met.

2

We now use the above lemma to conclude, in the manner outlined earlier, the proof of com-
pleteness of our procedure.

Theorem 15 Let P be a �nite set of closed program clauses and let G be a goal formula. Further,
let � be a substitution that is proper with respect to the labelling function that is 0 valued on variables
and such that P Ì �(G). Then there is a derivation of G from P with an answer substitution � that
can be composed with another substitution to yield the restriction of � to the free variables of G.
Further, such a derivation and such an answer substitution exists regardless of the element acted
upon at each stage in constructing a derivation sequence.

Proof. Let S = hG; C;V ;L; �i be a proper tuple and let ' be a substitution that is proper with
respect to L and such that '(P) Ì '(G) for every hG;P ; Ii 2 G. We associate the following measure
with such a tuple and substitution:

�(S; ') =
X

hG;P;Ii2G

�('(P); '(G)):

Given such a tuple and substitution, using Lemma 14 in conjunction with the measure just de-
�ned, a derivation sequence hG1; C1;V1;L1; �1i; : : : ; hGn; Cn;Vn;Ln; �ni and an associated sequence
of substitutions '1; : : : ; 'n satisfying the following properties can be identi�ed:

(a) hG1; C1;V1;L1; �1i = hG; C;V ;L; �i and '1 = ',

(b) the derivation sequence terminates successfully, and

22

(c) for 1 � i < n, 'i and 'i+1 � �i+1 agree on Vi+1.

Now, let G be fhG;P ; 0ig, let C and V be, respectively, the set of constants and the set of free
variables in fGg [P , let L be the constant 0 valued function over V and let � be the empty
substitution. Further, let ' be �. From the assumptions in the theorem, these assignments ensure
that the requirements of hG; C;V ;L; �i and ' are satis�ed. But then the indicated derivation
sequence is really a derivation of G from P . Further, using an induction on the length of the
sequences together with (c) and the observations that �1 = ; and, for 1 � i < n, Vi � Vi+1, it
can be seen that there is a substitution such that ' and � �n � � � � � �1 agree on V1. But then
it follows that � agrees with � � on the free variables in G, where � is the answer substitution
corresponding to the derivation under consideration.

We have thus exhibited a derivation of G from P with an answer substitution satisfying the
requirements of the theorem. Lemma 14 guarantees that, in constructing this derivation and the
associated sequence of substitutions, an arbitrary element of Gi can be used to generate the (i+i)th
items in the sequences. Thus, the �nal requirement of the theorem is seen to be true.

2

6 Extension to Higher-Order Formulas

The propositional and quanti�er structure of the higher-order goal formulas and program clauses
bears a close similarity to the �rst-order versions. One distinction is that the higher-order formulas
are typed. Typing is necessary to ensure the consistency of the underlying logic. In the discussions
here we implicitly assume the presence of types. Another di�erence, introduced only for technical
reasons, is that we include in the vocabulary of our logic the symbol > to denote the tautologous
proposition and we consider this to be an acceptable goal formula. The �nal, and most signi�cant
di�erence is that �rst-order terms are replaced by the terms of a (simply typed) lambda calculus.

The lambda terms in higher-order logic can generally contain within them arbitrary quanti�ers
and connectives. However, we shall only use terms that do not contain the symbols � and �.
These terms are referred to as positive terms and the restriction to them is necessary for reasons
explained in [16]. A (positive) atomic formula is then a formula of the form (P t1 : : : tn) where P
is a predicate name or variable and, for 1 � i � n, ti is a positive term. We refer to such an atomic
formula as a rigid one in the case that P is a constant and as a exible one otherwise. Using the
symbol Ar to represent a rigid atomic formula and A to denote an arbitrary atomic formula, the
higher-order versions of goal formulas and program clauses are given by the following syntax rules:

G ::= > j A j G ^G j G _ G j 9xG j D � G j 8xG;

D ::= Ar j G � Ar j D ^D j 8xD:

In formalizing the notion of intuitionistic provability for our higher-order logic, a sequent calcu-
lus very similar to the one presented in Section 2 may be used. There are in fact only two changes
that need to be made. First, we permit leaves in proofs to be labelled with sequents of the form
� �! >. Second, we allow the inference rules generated from the following schema to be used:

�0 �! �0
�

� �! �

23

where �0 and �0 are obtained from � and � by replacing some formulas by ones that can be
obtained from them via �-conversion (speci�cally, �-, �- and �-conversion) rules. A point to note
is that the operation of substitution needs to be more carefully de�ned in the higher-order context
because of the presence of abstractions in terms. However, there is a simple, and standard, way of
doing this using �-conversion. We assume such a de�nition here; the reader unfamiliar with this
formalization of substitution may look, for example, at [21].

As in the �rst-order context, the idea of programming can be thought of as asking if a proof
exists for a goal formula from a set of program clauses. Now, a property very similar to that
presented in Theorem 5 holds in the higher-order context as well and this is once again useful
in designing a procedure for determining the existence of a proof. This property is stated in the
following theorem.

Theorem 16 Let P be a �nite set of higher-order program clauses and let G be a higher-order goal
formula such that P �! G has a derivation of length l. Then one of the following holds:

(1) G is >.

(2) G is an atomic formula and it is identical to an instance of a formula in P or there is an
instance G0 � G of some formula in P such that P �! G0 has a derivation of length less
than l.

(3) G is G1 ^G2 and P �! G1 and P �! G2 have derivations of length less than l.

(4) G is G1 _ G2 and, for i = 1 or i = 2, the sequent P �! Gi has a derivation of length less
than l.

(5) G is 9xG1 and there is a positive term t such that P �! [t=x]G1 has a derivation of length
less than l.

(6) G is D � G1 and D;P �! G1 has a derivation of length less than l.

(7) G is 8xG1 and, for some constant c not appearing in P or in G1, P �! [c=x]G1 has a
derivation of length less than l.

The proof of this theorem is not provided here, but it may be found (in essence) in [16]. The
critical step is in showing that the restriction to positive instantiation terms in (5) is possible.
Once this fact is shown, arguments similar to those employed in Section 3 can be used to reach the
desired conclusion.

Given this theorem, the discussion at the end of Section 3 becomes relevant to the design of a
proof procedure in the higher-order context as well. One point to note is that quanti�cations over
higher-order variables is permitted in the new context. Our labelling scheme will therefore have to
be extended to apply to constants and variables of function type as well. A second point to note is
that in the course of solving goals, it is possible that we encounter exible atomic formulas. The
analysis in the proof of Theorem 16 shows that solutions of such goal formulas can be delayed till
no other goals are left to be solved. At this stage a simple solution can be provided. This solution
e�ectively consists of substituting the universal relation of appropriate type | i.e., the predicate
term �x1 : : :�xn>, where the number of abstractions and the type of each abstraction depends on

24

the type of the variable being substituted for | for the predicate variables that are the \heads" of
the atomic formulas.

There is, however, one signi�cant di�erence between the proof procedures for the �rst- and
higher-order formulas: the notion of uni�cation in the higher-order context must incorporate an
equality relation on terms that is based on �-conversion. The problem of unifying terms under
this extended notion of equality di�ers in several respects from the �rst-order uni�cation problem:
the higher-order uni�cation problem is an undecidable one in general and most general uni�ers
might not exist even when there are uni�ers for given terms. There is, nevertheless, a procedure
that can be used to �nd uni�ers for terms whenever they exist, and this procedure is described in
[7]. This procedure can be factored into the repeated application of certain simple steps, and this
permits its amalgamation into a notion of derivation akin to the one described in Section 5. Such
an amalgamation is described explicitly for a higher-order version of Horn clauses in [21], and a
similar process can be used in the case of hereditary Harrop formulas. The one di�erence is that
substitutions that are suggested for the purpose of uni�cation must respect the constraints imposed
by labels on symbols. As in the �rst-order case, this can be ensured by incorporating checks into
the generation of substitutions. In particular, substitutions are suggested when an attempt is made
to unify a pair of terms of the form �x1 : : : �xn(f t1 : : : tp) and �y1 : : : �ym(c s1 : : : sq), where
f is a variable and c is a constant or one of the variables y1; : : : ; ym. Two kinds of substitutions
are considered here for f :

(1) If c is a constant, then f might be made to \imitate" the head of the other term. Speci�cally,
a substitution of the form

�w1 : : : �wp(c (h1 w1 : : : wp) : : : (hq w1 : : : wp))

where h1; : : : ; hq are new variables is considered for f .

(2) The \projection" of f onto one of its arguments might be attempted. In this case, substitu-
tions of the form

�w1 : : : �wp(wi (h1 w1 : : : wp) : : : (hj w1 : : : wp));

where 1 � i � m and h1; : : :hj are new variables, are considered for f ; certain typing
constraints have to be satis�ed by wi for these substitutions to be actually used and the
number of arguments in the substitution term then depends on the type of wi.

Given the overall structure of the proof procedure for hereditary Harrop formulas, we see that an
additional constraint has to be satis�ed for the imitation substitution to be a possibility: the label
of c would have to be less than the label of f . If this condition is satis�ed, the substitution may
be generated, but the labels associated with h1; : : : ; hq must be made identical to that associated
with f . Intuitively, this is necessary for ensuring that later instantiations of these variables do
not violate the constraint on substitution terms for f . As for the projection substitutions, these
continue to be possibilities. However, once again the labelling constraint on substitutions for f will
have to be passed on to the variables hi; : : : ; hj , i.e., their label values become that of f .

The ideas described above can be used to detail a satisfactory proof procedure for the logic
of higher-order hereditary Harrop formulas. A proof of correctness for this procedure can also
be provided. In outline, this proof would amalgamate the arguments in [21] showing that all the

25

possible substitutions are considered with the arguments in Section 5 showing that the substitutions
that are considered respect the necessary constraints. The detailed presentation of this procedure
and its correctness proof is somewhat tedious and is therefore not undertaken in this paper.

7 Conclusion

We have described a proof procedure in this paper for the logic of hereditary Harrop formulas.
The procedure exploits the possibility of conducting a search directed by the logical structure
of the goal formula. Further, it uses uni�cation in order to control the search for instantiations
for existentially quanti�ed goal formulas. The formulas for which proofs are sought may have
appearances of universal and existential quanti�ers in mixed order and this necessitates a careful
use of uni�cation. This problem is dealt with in our proof procedure by a numeric labelling of
variables and constants coupled with an occurs-check based on these labels. The overall scheme is
discussed in a comprehensive fashion for the �rst-order case and a proof of correctness is provided.
We have also indicated the manner in which this scheme can be extended to the higher-order case.

The proof procedure that we have presented for �rst-order goal formulas is, we believe, amenable
to e�cient implementation. The labels associated with constants and variables can be incorporated
as an additional component in the representation of these objects and would then be readily avail-
able when the \consistency" check has to be done. Labels for (logic) variables can be generated by
using a global register that is initially set to 0 and is incremented within the scope of a universal
goal. Several aspects of the procedure can also be compiled. Techniques used in conjunction with
Horn clauses can be employed in compiling the search speci�ed by _, ^ and 9. The �rst of these
symbols is still a source of non-determinism, but the usual depth-�rst search with backtracking
can be used to implement it. A signi�cant portion of uni�cation can also be compiled. In this
mode, the process of label checking either becomes redundant or reduces to setting up labels that
will be used in the interpretive part of uni�cation. Universal quanti�ers can be compiled into the
operation of incrementing the \label" register and generating a new constant with a label identical
to the value of this register. With regard to implications, our presentation of the proof procedure
makes it appear as though each goal must carry its own \program" context. However, this is
unnecessary and a stack based approach can be used to update programs. Thus, a goal such as
(D1 � G1) ^ (D2 � G2) can be solved by adding D1 to the existing program and solving G1 and
then removing D1 and adding D2 to solve G2. The possibility of backtracking complicates the
situation (e.g., consider what must be done upon failure in solving G2 in the goal above), but a
bookkeeping mechanism can be integrated into the basic scheme to deal with this. This scheme
also supports the compilation of the actions that need to be carried out when an implication is
encountered. Finally, it is also possible to compile the program clauses that appear on the left of
implications. We have in general to consider program clauses containing variables that might be
further instantiated (e.g., consider solving the goal 9x(P (x) � G(x))) but a notion similar to the
closures used in functional programming can be employed for this purpose.

The various ideas outlined above are also useful in implementing the appropriate proof procedure
for the higher-order case. However, there are substantial additional problems that must be dealt
with in providing an implementation of this procedure that is of acceptable e�ciency. One of these
problems concerns the representation of lambda terms and the implementation of operations such
as beta reduction on these terms. This issue has been considered in the past, especially in the realm
of functional programming. However, the particular use that is made of these terms in our context

26

requires a solution to this problem that is of a somewhat di�erent nature. Speci�cally, uni�cation
requires the comparison of terms and therefore makes it necessary to examine the structure of a
term, perhaps even parts of it embedded under abstractions. We have examined this problem in
some detail in [22] and we believe that the notation for lambda terms developed there provides
the basis for a satisfactory solution. Another problem concerns the implementation of higher-order
uni�cation itself. One issue here is whether any aspect of this operation can be compiled. A
start in this direction has been made in [18] | for example, it is shown there that some of the
\�rst-order" aspects of this operation can be compiled | but there is clearly much more that can
be done. Another issue is that of dealing with the possibility for branching within the uni�cation
process. Mechanisms for accommodating this possibility have been suggested in [18], but we suspect
that these can be bettered, especially after experience is gained with an actual implementation of
these mechanisms. Finally it is of interest to examine whether a recognition of special kinds of
uni�cation problems can be built into the uni�cation procedure of [7] to improve its behavior in
practical situations. This aspect has been studied in [14] and [13], but, once again, this is a topic
that can bene�t from additional research.

As we have mentioned already, the proof procedure presented in this paper and the ideas
concerning its implementation are of immediate practical utility: they can be used in a realization
of �Prolog, a logic programming language based on hereditary Harrop formulas. We have, in fact,
used them in this capacity towards an implementation of a �rst-order version of �Prolog [8, 19], and
the additional machinery needed to extend this implementation to the full language is the subject
of a forthcoming paper.

Acknowledgements

This paper has bene�tted greatly from comments that were provided by Dale Miller on an earlier
draft. Suggestions from the referees have also contributed to improvements in presentation. This
work has been supported by NSF Grant CCR-89-05825.

References

[1] Conal Elliott and Frank Pfenning. eLP, a Common Lisp Implementation of �Prolog. Imple-
mented as part of the CMU ERGO project, May 1989.

[2] Conal Elliott and Frank Pfenning. A semi-functional implementation of a higher-order logic
programming language. In Peter Lee, editor, Topics in Advanced Language Implementation,
pages 289{325. MIT Press, 1991.

[3] Amy Felty and Dale Miller. Specifying theorem provers in a higher-order logic programming
language. In Ewing Lusk and Ross Overbeek, editors, Ninth International Conference on
Automated Deduction, pages 61{80, Argonne, IL, May 1988. Springer-Verlag.

[4] Melvin Fitting. First-order logic and automated theorem proving. Springer-Verlag, 1990.

[5] Gerhard Gentzen. Investigations into logical deduction. In M. E. Szabo, editor, The Collected
Papers of Gerhard Gentzen, pages 68{131. North Holland Publishing Co., 1969.

27

[6] John J. Hannan. Investigating a Proof-Theoretic Meta-Language for Functional Programs.
PhD thesis, University of Pennsylvania, August 1990.

[7] G�erard Huet. A uni�cation algorithm for typed �-calculus. Theoretical Computer Science,
1:27{57, 1975.

[8] Bharat Jayaraman and Gopalan Nadathur. Implementation techniques for scoping constructs
in logic programming. In Koichi Furukawa, editor, Eighth International Logic Programming
Conference, pages 871{886, Paris, France, June 1991. MIT Press.

[9] Alberto Martelli and Ugo Montanari. An e�cient uni�cation algorithm. ACM Transactions
on Programming Lanuages and Systems, 4(2):258{282, April 1982.

[10] L. Thorne McCarty. Clausal intuitionistic logic II. Tableau proof procedures. Journal of Logic
Programming, 5:93{132, 1988.

[11] Dale Miller. Hereditary Harrop formulas and logic programming. In Proceedings of the VIII
International Congress of Logic, Methodology, and Philosophy of Science, pages 153{156,
Moscow, August 1987.

[12] Dale Miller. Lexical scoping as universal quanti�cation. In G. Levi and M. Martelli, editors,
Sixth International Logic Programming Conference, pages 268{283, Lisbon, Portugal, June
1989. MIT Press.

[13] Dale Miller. A logic programming language with lambda-abstraction, function variables, and
simple uni�cation. Journal of Logic and Computation, 1(4):497{536, 1991.

[14] Dale Miller. Uni�cation under a mixed pre�x. Technical Report MS-CIS-91-81, Computer
Science Department, University of Pennsylvania, October 1991. To appear in the Journal of
Symbolic Computation.

[15] Dale Miller and Gopalan Nadathur. A logic programming approach to manipulating formulas
and programs. In Seif Haridi, editor, IEEE Symposium on Logic Programming, pages 379{388,
San Francisco, September 1987.

[16] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform proofs as a
foundation for logic programming. Annals of Pure and Applied Logic, 51:125{157, 1991.

[17] Dale Miller, Gopalan Nadathur, and Andre Scedrov. Hereditary Harrop formulas and uniform
proof systems. In David Gries, editor, Symposium on Logic in Computer Science, pages 98{105,
Ithaca, NY, June 1987.

[18] Gopalan Nadathur and Bharat Jayaraman. Towards a WAM model for �Prolog. In Ewing
Lusk and Ross Overbeek, editors, Proceedings of the North American Conference on Logic
Programming, pages 1180{1198, Cleveland, Ohio, October 1989.

[19] Gopalan Nadathur, Bharat Jayaraman, and Keehang Kwon. Scoping constructs in logic pro-
gramming: Implementation problems and their solution. Submitted, May 1992.

28

[20] Gopalan Nadathur and Dale Miller. An Overview of �Prolog. In Kenneth A. Bowen and
Robert A. Kowalski, editors, Fifth International Logic Programming Conference, pages 810{
827, Seattle, Washington, August 1988. MIT Press.

[21] Gopalan Nadathur and Dale Miller. Higher-order Horn clauses. Journal of the ACM, 37(4):777{
814, October 1990.

[22] Gopalan Nadathur and Debra Sue Wilson. A representation of lambda terms suitable for
operations on their intensions. In Proceedings of the 1990 ACM Conference on Lisp and
Functional Programming, pages 341{348. ACM Press, 1990.

[23] Lawrence R. Paulson. The representation of logics in higher-order logic. Technical Report
Number 113, University of Cambridge, Computer Laboratory, August 1987.

[24] Frank Pfenning. Partial polymorphic type inference and higher-order uni�cation. In Proceed-
ings of the ACM Lisp and Functional Programming Conference, pages 153{163, 1988.

[25] Natarajan Shankar. Proof search in the intuitionistic sequent calculus. In Deepak Kapur, ed-
itor, Proceedings of the Eleventh International Conference on Automated Deduction { CADE-
11, pages 522{536. Springer Verlag, June 1992.

[26] M. H. van Emden and R. H. Kowalski. The semantics of predicate logic as a programming
language. Journal of the ACM, 23(4):733{742, 1976.

[27] Lincoln A. Wallen. Automated Proof Search in Non-Classical Logics: E�cient Matrix Proof
Methods for Modal and Intuitionistic Logics. MIT Press, 1990.

29

