
https://www.researchgate.net/publication/221559736_Independent_Database_Schemas?enrichId=rgreq-fbc60fab3f8f1428d419c0cb3519058e-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1OTczNjtBUzoxNTMyODM5MTQxMTMwMjVAMTQxMzU1NzE0MTUwOA%3D%3D&el=1_x_2
https://www.researchgate.net/publication/221559736_Independent_Database_Schemas?enrichId=rgreq-fbc60fab3f8f1428d419c0cb3519058e-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1OTczNjtBUzoxNTMyODM5MTQxMTMwMjVAMTQxMzU1NzE0MTUwOA%3D%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-fbc60fab3f8f1428d419c0cb3519058e-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1OTczNjtBUzoxNTMyODM5MTQxMTMwMjVAMTQxMzU1NzE0MTUwOA%3D%3D&el=1_x_1
https://www.researchgate.net/profile/Mihalis_Yannakakis?enrichId=rgreq-fbc60fab3f8f1428d419c0cb3519058e-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1OTczNjtBUzoxNTMyODM5MTQxMTMwMjVAMTQxMzU1NzE0MTUwOA%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Mihalis_Yannakakis?enrichId=rgreq-fbc60fab3f8f1428d419c0cb3519058e-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1OTczNjtBUzoxNTMyODM5MTQxMTMwMjVAMTQxMzU1NzE0MTUwOA%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Columbia_University?enrichId=rgreq-fbc60fab3f8f1428d419c0cb3519058e-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1OTczNjtBUzoxNTMyODM5MTQxMTMwMjVAMTQxMzU1NzE0MTUwOA%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Mihalis_Yannakakis?enrichId=rgreq-fbc60fab3f8f1428d419c0cb3519058e-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU1OTczNjtBUzoxNTMyODM5MTQxMTMwMjVAMTQxMzU1NzE0MTUwOA%3D%3D&el=1_x_7

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 28, 121-141 (1984)

Independent Database Schemas

MARC H. GRAHAM

Georgia Institute of Technology, Atlanta, Georgia

AND

MIHALIS YANNAKAKIS

Bell Laboratories, Murray Hill, New Jersey

Received July 9, 1982; revised June 6, 1983

A database schema is independent with respect to a given set of constraints if the
constraints can be enforced separately in the relations. A polynomial time algorithm is
presented that recognizes independent schemas, when the given constraints consist of
functional dependencies and the join dependency of the database schema.

1. INTRODUCTION

Beeri and Rissanen have claimed that “the whole point with (schema design) is, of
course, to be able to replace the original scheme with a collection of the components
and not have to worry about the inter-component constraints.” ([BR], italics added.)
Their characterization of those schemas which eliminate intercomponent or
interrelation constraints is predicated on the assumption that all admissible states of
the database are, inter alia join consistent, that is, each state is the appropriate set of
projections of some instance of the universal relation scheme. This assumption,
known as the “pure universal assumption” to Fagin, Mendelzon, and Ullman [FMU],
has been known since at least the work of Beeri, Bernstein, and Goodman [BBG] to
be unrealistic.

Recently, an idea has been put forward which significantly weakens the pure
universal relation assumption while still providing for a global view of a database
state. We will call this idea the weak instance. It is due originally to Honeyman [HI,
and independently to Vassiliou [VI. It has been investigated by Graham [G],
Mendelzon [Ml, Yannakakis [Y]. In particular, Sagiv [Sl, S2] has addressed himself
to the problem discussed in this paper, when the dependencies are functional depen-
dencies given by keys of the relations. We will completely characterize the class of
schemas having no interrelational constraints when the only user specified constraints
are the join dependency of the database scheme and functional dependencies and the
definition of a state’s satisfying those dependencies is the existence of a weak
instance.

121
0022~OCW/84 $3.00

Copyright 0 1984 by Academic Press, Inc.

All rights of reproduction in any form reserved.

122 GRAHAM AND YANNAKAKIS

2. DEFINITIONS

We say that U = {A 1 ,..., Ak} is a universe whose elements are called attributes. A
relation scheme is any (conventionally nonempty) subset of U. A database schema is
any (likewise nonempty) collection of relation schemes. A tupfe of a relation scheme
is a mapping from R to a set of values called the domain of R. An instance of R is a
set of tuples of R. If t is a tuple of the scheme R and X is a subset of the attributes of
R, t[X] is the X-value of t, defined as the restriction of t to the attributes of X. If r is
an instance of R and X is a set of attributes, the projection of r onto X is given by

7rJr) = {t[X] 1 t E r}.

If r, s are instances of R and S, the join of r and s is

r*s = {t / t[R] E r A t[S] E s}.

A state of a database schema is an assignment of an instance to each relation scheme
of the schema.

We adopt the conventions endemic in relational theory. Thus we write the attribute
A where the singleton set {A} may be correct. We elide the operator when taking
unions; thus XY E XV Y. We use letters from the beginning of the italic alphabet,
often subscribed, to represent single attributes, thus: A 1, A, ,...; letters from the end of
the alphabet conventionally denote sets of attributes: Xi, X, ,... . A database schema
is denoted as D. Relation schemes as R 1, R,,... . If p is a state of a schema
D = {R, ,..., Rk}, we may write p as {r 1 ,..., rk} with the understanding that ri = p(R,).

Let X, Y be sets of attributes. The functional dependency (fd) X + Y is said to hold
in instance r of a scheme R 2 XY, whenever for all pairs of tuples I, u E r,
t[X] = u [X] implies t[Y] = u[Y]. An fd X + Y is said to be embedded in a relation
scheme R if R 2 XY. The closure Ft of a set of fd’s F is the set of all fd’s implied by
the set F. (See Armstrong [A] for the implication of an fd by a set of fd’s.) The
closure Xt of a set of attributes X is the set {A 1 X -+ A E Ft }. For a scheme R, we
denote by Ft 1 R the subset of Ft each element of which is embedded in R. If D is a
database schema, Ft 1 D denotes the set of fd’s in Ft which are embedded in some
relation scheme of D. D is cover embedding if a cover of F is embedded in D; that is,
if (F+ ID)’ = Ft.

A join dependency is a statement of the form *D, where D is a collection of
relation schemes R 1 ,..., R, whose union is U, the universe. The join dependency holds
in a universal relation r if 7zRl(r)* . . . *nR.(r) = r. We will sometimes write the state
lnR ,(r),..., qJr)} as rrD(r), and the join 7cR,(r)* .-- *n,“(r) as *nD(r).

Let Z be a set of dependencies. The instance r is said to satisfy Z: if each element
u E Z holds in r. We define the set of all satisfying instances of R w.r.t. Z

SAT(R, .Z) = { 1 r r is an instance of R satisfying Z}.

INDEPENDENT DATABASE SCHEMAS 123

Let p be a state of database schema D. Let Z be an instance of the scheme U (a
universal instance). Z is a containing instance for p if

7$(Z) 2 Ti for each ri E p.

In the special case that there exists an instance .Z of the scheme U such that 7rRi(J) = ri
for each ri E p, then p is said to be join consistent or the projection of a universal
instance. An instance u of U is said to be a weak instance for p w.r.t. a set of depen-
dencies .E if

(i) u is a containing instance for p,

(ii) u E SAT(U, z).

A database state is said to satisfy a set of dependencies if a weak instance exists for
the state w.r.t. the dependencies. The set of all satisfying states of a given schema,
dependency set is given by

WSAT(D, 2) E {p 1 p is a state of D satisfying C)

This definition of satisfaction can be interpreted as follows. The dependencies state
some known properties of reality. For example, if our attributes are C (Course), T
(Teachers), S (Students), H (Hour), R (Room), the functional dependency C -+ T
states that every course has only one teacher; the functional dependency TH -+ R
states that each teacher is at a given hour in only one room. The tuples of the
database state facts (relationships) that are known to hold. In our example a tuple
(CSlOl, Smith) of relation CT states that Smith teaches CSlOl. The data in the
database can be combined using the known properties of the real world (i.e., the
dependencies) to derive new information. For example, if we have also a relation
CHR containing a tuple (CSlOl, Mon. 10-l 1, 313) stating that course CSlOl meets
on Monday between 10 and 11 at room 3 13, then we can deduce that Smith is at this
hour in room 3 13. Note that in order to deduce this information, the fd C -+ T is
essential; i.e. we cannot make this conclusion if CSlOl has more than one teacher.
Thus, a given state p of the database scheme represents certain pieces of information,
which are either explicitly given in the tuples of p or can be derived from them using
the properties of real world. The state is satisfying if it does not represent
contradictory information.

We can test whether a database state satisfies a set of dependencies X using the
chase procedure of [MMS]. Let p = {rl,..., rk} be a database state. We form a
universal relation I@) by padding out to U every tuple of each ri with distinct
variables. The chase procedure modifies this relation using rules for the dependencies
in C. We will mention here only the rules for functional and join dependencies.

FD-rule. Let f: X-t Y be an fd in C and suppose there are two tuples u and u
that agree on X but disagree on an attribute Z3 of Y. If at least one of u[B], u[B] is a
variable then all occurrences of it are replaced by the other. If neither of them is a
variable (i.e., they are constants from the state p), then we say that a contradiction
has been found and p is declared inconsistent.

124 GRAHAM AND YANNAKAKIS

JD-rule. Let *{S, ,..., S,} be a join dependency of .?Y. If there is a universal tuple t
such that t[S,] is in the relation (projected on Si) for each i = l,..., n, then t is added
to the relation.

The rules for the dependencies in z are applied to the relation I@) as far as
possible until either a contradiction is found, in which case p does not satisfy C, or no
rule can further modify the relation, in which case p satisfies Z-the final relation is a
weak instance for p.

EXAMPLE 1. Suppose that our attributes are C (Course), T (Teacher), D
(Department), and the database schema consists of relation schemes CD
(Department offering the Course), CT (Teacher of the Course), TD (Department of
the Teacher) with functional dependencies C -+ D, C + T and T + D. We assume that
a teacher can teach courses outside his department. Consider the following instance

P:

C D C T T D

CS402 CS (3402 Jones Jones EE

From p we form the universal instance I@); c, d, and t are variables:

C D T

CS402 cs
CS402 d

C EE

t
Jones
Jones

An application of the FD-rule for T + D to the 2nd and 3rd tuples will change d to
EE. An application of the FD-rule for C + D to the first two tuples will then discover
a contradiction. Thus, p is not satisfying. Note, however, that every relation of p
satisfies the fd’s embedded in its scheme.

The given set of dependencies z implies a certain set of dependencies for each
relation scheme. Thus, the dependencies C + T and TH + R imply that the relation
CHR must satisfy CH+ R. We denote by Xi the set of all constraints that are
implied for relation scheme Ri ; that is, a relation ri over R,. satisfies Ci iff there is a
universal instance Z satisfying z such that ri c n,,(Z). ’ Thus, an instance ri for Ri

’ We require only containment of ri in zai(Z) and not equality, in order to be consistent with the
definition of satisfaction of a set of dependencies C by a database state; i.e., ri satisfies Ci iff the state
{a,..., ri, 0,...) satisfies C. However, in the case we are interested in (where C consists of the jd of the
database schema and fd’s), what follows remains valid if containment is replaced by equality.

INDEPENDENTDATABASE SCHEMAS 125

does not contain any contradictory information (in itself) if and only if ri satisfies Zi.
The locally satisfying states of D are elements of the set

LSAT(D, C) E {P 1 p(Ri) E SAT(Ri, Zi) for each Ri E D}.

That is, p is locally satisfying if no relation of it is inconsistent in itself. A schema D
is said to be independent w.r.t. a set of dependencies Z when

LSAT(D, C) = WSAT(D, Z).

That is, D is independent when verification of the dependencies local to each instance
of a state suffices to ensure that the state is satisfying.

The join dependency of the database scheme is the dependency *D that states the
relations have a lossless join [ABU]. Our interest in this paper is the characterization
of independent schemas in general, when only the join dependency of the schema and
functional dependencies appear as constraints. Thus we assume we are given a
schema D and set of dependencies F, chosen independently (although w.r.t. the same
universe), and wish to determine if D is independent w.r.t. F and *D. We recognize
that in practice D and F are not independently chosen,

Schema independence is aesthetically pleasing in that it assures the “principle of
seperation” as in [BBG]. It has practical advantages as well. The maintenance
problem for relational database states is the following decision problem: “If p is a
state satisfying Z:, and p’ results from a simple modification of p (e.g., the insertion of
a single tuple into a single instance of p), is p’ satisfying?” Very fast solutions to this
problem are essential in practice. Such solutions are not always possible.

It is shown in [Y] that testing if a database state p over schema D does not satisfy
the jd *D and a set F of fd’s is NP-complete (even if p is the projection of a universal
instance). We shall show in a similar way that the maintenance problem is intrac-
table. Since the “if’ clause in the definition of the maintenance problem is itself a
hard predicate, care must be taken in defining what an algorithm for the maintenance
problem has to do. Such an algorithm, when given a quadruple @,p’, D, F) must
answer Yes if p and p’ are database states over the schema D, both of them satisfy
C = F U {*D} and p’ results from inserting a single tuple in a relation of p. It must
answer No if p and p’ are states over D such that p’ results by inserting a single tuple
in a relation of p, p satisfies Z, but p’ does not. The algorithm can give either answer
in any other case (e.g., p is not satisfying or p’ does not result from p by inserting a
single tuple).

THEOREM 1. Unless P = NP there is no polynomial time algorithm that solves the
maintenance problem.

ProoJ Let L be the language of those quadruples @, p’, D, F) for which an
algorithm for the maintenance problem answers Yes. We shall show that any such L
is coNP-hard.

The reduction is from the following NP-complete problem [Y]. Given a universal

126 GRAHAM AND YANNAKAKIS

relation r, a database schema {R 1 ,..., Rk} and an X-tuple t, determine if
t E 7r&&)* *** *rr&)]. We add two new attributes A and B to form a new
universe U. Let s be obtained from r by adding identical A-values a and B-values b to
all tuples of r. We extend t to a universal tuple t, by adding new values (that do not
appear in s) at the attributes in U - X. Let s, = s U {t, }. The database schema D is
obtained from {R 1 ,..., Rk} by adding A to all relation schemes and B only to the last
relation scheme; i.e., D = {R 1A ,..., R,_ IA, R,AB}. The set F has only one functional
dependency: X+ B. The old database state p has as its first k - 1 components the
projections of s, on the corresponding relation schemes, and as its last component the
projection of s on R,AB. The new state p’ is obtained from p by inserting l,[R,AB]
into the last relation; i.e., p’ = am.

We claim that (1) p satisfies 2: = F U {*D}, and (2) p’ is satisfying if and only if
t @ 7cx[~nRi(r)]. To see (l), let t, be identical to t, except in attribute B in which it
has value b. Let s2 = s U {t,}. The universal instance s? = *rr,(s,) is a weak instance
for p: Clearly, it is a containing instance, it satisfies the jd *D, and furthermore it
satisfies X+ B because all tuples have the same B-value.

To see (2), note that any containing instance for p’ that satisfies the jd *D must
contain SF = *x,(s,). Suppose that t E n,[*xRi(r)]. Then there is a tuple u in *xD(s)
(and therefore also in SF) with X-value t and B-value b. This tuple together with tuple
t, of SF violates the fdX-1 B. Conversely, suppose that t @ xX[*rr,Jr)]. Since
attribute A appears in all relation schemes and t, differs in A from all the tuples of
s, sl* is equal to *rrD(s) U {t,}. Since no tuple of *Q(S) agrees with t, on X, ST
satisfies X + B, and therefore is a weak instance for p. 1

For the class of acyclic database schemes [BFM], a polynomial solution is possible
[Y] (the chase procedure can be carried out essentially in polynomial time). Even in
this case, however, it would clearly be of a great advantage if the modification could
be tested in only one relation, since states can be very large in practice, and contain
many relations.

If the schema is independent then we can test a modification to a relation Ti by
checking if the new relation satisfies the dependencies in a cover of Ci. In general, the
set of dependencies Zi that are implied by the jd *D and fd’s F contains much more
complicated types of dependencies and can contain an exponential number of them
(in any cover). However, we show that if the schema is independent, then (1) pi is
covered by a set of functional dependencies Fi, and (2) F, is not “too large.” Thus,
the maintenance problem can be solved very efficiently. Furthermore, the sets of
fd’s Fi can be found efficiently from F and D.

Besides the algorithmic reasons there are also semantic reasons for the desirability
of independent schemas. Often, the fact that a schema is not independent is a warning
that the universal relation scheme assumption [FMU] is violated; i.e., attributes are
overloaded and there are multiple, drastically different, relationships between some
attributes. Consider, for instance, the case of Example 1. We have two functions from
courses to departments: C + D (department offering the course) and C + D --j T
(department of the teacher of the course). The contradiction arose in the instance of

INDEPENDENT DATABASE SCHEMAS 127

Example 1 because the two functions had different values on CS402-CS and EE,
respectively. For another example, suppose that we replace T by S (students). Now
there is only one function from courses to departments, but there are two functions
from CS to D (one from C + D and another from S + D); thus, there are two
different relationships among C, S, and D. In Section 4 we will see that whenever the
fd’s are embedded, a database schema is not independent exactly if there are such
multiple relationships.

3. ‘THE EFFECT OF THE JOIN DEPENDENCY

Let D be a database schema, F a set of functional dependencies and
C = F U {“D}. Let G be the set of functional dependencies implied by z. In this
section we will show

THEOREM 2. The database schema D is independent with respect to Z if and only
if the following two conditions are sati@ed.

(1) D embeds a cover H of G.

(2) D is independent with respect to H alone.

We will also give a polynomial algorithm which tests for condition (l), and finds
an embedded cover H of G if there is one. In the next section we will give a
polynomial algorithm to test for condition (2), and show that if D is independent then
I (the dependencies on R, implied by z) is covered by the fd’s of H which are
embedded in Ri.

EXAMPLE 2. Let us consider again the academic example. Suppose that our
relation schemes are CT, CS, CHR, with functional dependencies C -+ T, CH + R.
Since the dependencies are embedded, condition (1) of Theorem 2 is satisfied; it can
be shown also that condition (2) is satisfied, and thus D is independent. If we now
include the fd SH + R, the schema is no longer independent: we could have a student
that takes two courses which meet at the same time. Note that the new dependency
cannot be derived from the embedded ones, and therefore condition (1) is not
satisfied.

We will start with some useful lemmas.

LEMMA 1. Let D be a database schema and F, a set of fd’s embedded in it. For
every fd f, F, implies f if and only if F, U (*D) implies J

Proof: Only if Obvious.

If Suppose that F, does not imply f, and let I be a counterexample to this
implication. Let p = z,(I) = (r I,..., rk} and Z* = *p. We claim that Z* satisfies
F, U {*D} but notf.

511/28/l-9

128 GRAHAM AND YANNAKAKIS

(1) I* satisfies F, U {*II}.

Since Z* = *nD(Z), Z* satisfies the jd *D. Let X+ A be an fd of F, embedded, say, in
relation scheme Ri. Suppose that there are two tuples u, v of Z* that agree on X but
disagree on A. Then rQZ*) has also two such tuples, and consequently the same is
true for rrRi(Z) and for I. That is, Z violates X+ A, contradiction.

(2) I* violatesJ:

Since Z G *zD(Z) = Z* and Z violates f, also I* violates f: 1

LEMMA 2. Let G be the set of fd’s implied by z = F U {*D}, and H a set of fd’s
from G that are embedded in D. H k G if and only if H k F.

Proof. Only if Obvious, since F s G.

Zf Suppose that H I= F and let f be an fd in G. By Lemma 1, H k=f iff
HU{*D}!=J Since FU{*D}l=f and Hk=F, we have HU{*D}kJ: Therefore H
impliesf: I

LEMMA 3. Zf D does not embed a cover of G then it is not independent with
respect to 2Y.

Proof:. Let G, = G 1 D. By Lemma 2 there is an fdf: X --+ A of F which is not
implied by G,. As is well known, there is a 2-tuple counterexample instance Z to the
implication G, k F. In particular, Z is formed as follows. Let Xl be the closure of X
under G, ; i.e., X: = {B 1 X+ B E G: }. The instance Z has 2 tuples that agree on X:
and disagree on the rest of the attributes. Let p = zD(Z). We claim that p is locally but
not globally satisfying.

(1) p is locally satisfying. Let Ri be a relation scheme of D and ri = zRi(Z). If
R, G X:, then ri has only one tuple. Padding out this tuple to a universal one with
arbitrary values gives an I-tuple instance q whose projection on R, is ri. Since an l-
tuple relation satisfies all fd’s and jd’s, ri satisfies Ci,. Suppose now that R, is not a
subset of XT. Then ri has two tuples that agree on X: n Ri and disagree on the rest
of the attributes. Form a universal instance Z(ri) by padding out the two tuples with
distinct variables. Consider what happens if we chase Z(ri) under F and *D. A
contradiction will be discovered if the chase tries to equate two constants, that is, the
two values in some column B in R i - X:. But this would mean then that F U { *D} k
X: n Ri + B (recall how one can test the implication of an fd using the chase
procedure [MMS]). Since the fd Xt n Ri + B is embedded in Ri, B must belong to
X: contradicting the assumption that B E Ri -X:. Therefore, the chase will not find
a contradiction. Thus, the universal relation I’@,) that results from the chase satisfies
z, and ri 5 7rR,(Z’(ri)); i.e., ri satisfies z,. Furthermore, since R, is a relation scheme
of the only jd *D in xc, we have in fact ri = xR,(Z’(ri)).

(2) p is not satiflying. Let J be a containing instance for p that satisfies the
jd *D. We have, I& *7rD(Z) = *p c J. Since Z violates the fd f of F, the same is true
ofJ. 1

INDEPENDENT DATABASE SCHEMAS 129

LEMMA 4. Let D be a database schema and F, a set of fd’s embedded in it. D is
independent with respect to F, if and only if D is independent with respect to
F,U {*D}.

Proof: Note at first that (as in the proof of Lemma 1) if a universal instance I
satisfies F,, then *Q,(I) satisfies both F, and *D. Therefore, a database state is
locally (or globally) satisfying with respect to F, if and only if it is with respect to
F, U {*D}. The lemma follows then from the definition of independence. !

We are ready now for the

Proof of Theorem 2. Only if Condition (1) follows from Lemma 3 and
condition (2) from Lemma 4.

If Suppose that conditions (1) and (2) are satisfied. From Lemma 4 and
condition (2), D is independent w.r.t. HU {*D}, and therefore w.r.t. z, an equivalent
set of dependencies by condition (1). 1

In the remainder of this section we will show how to test for condition (1). Beeri
and Honeyman have given a polynomial algorithm that tests if a database schema
embeds a cover of a given set F of fd’s [BH]. Our algorithm is a simple extension of
their method.

If z is any set of dependencies and Z a set of attributes, let us denote by cl,(Z) the
set {A 1 C t= 2 -+ A }. From Lemma 2, D embeds a cover of the fd’s G implied by
F U {*D} if and only if A E clGI(X) for every fdX+A in F, where G, = G 1 D. It
suffices therefore to compute clc,(X) for each left-hand side X of an fd of F.

LEMMA 5. Let D be a database schema, z a set of dependencies, G the set of fd’s
implied by .?Y:, and G, = G (D. For any set Z of attributes, clG,(Z) = Z if and only if
for all relation schemes R, of D, Ri n cl,(R, n Z) = Ri n Z.

Proof: Only if Suppose that Z is a closed set under G, , but for some Ri in D,
Ri n cl,(R, n Z) # Ri n Z. Then there is an attribute A in R, - Z such that
xk RinZ-t A. But this is an fd of G embedded in R,; i.e., an fd of G,. Thus,
A E clG,(Z) contradicting clG,(Z) = Z.

If clG,(Z) # Z means that there is an fd X + A of G, embedded in some R, such
that XzZ but A@Z. Then XcZnRi, and since zl=G, we have JYl=X+Ak
ZnR,+A. Therefore, AERif3cl,(RinZ)-RinZ. 1

The closure of a set X of attributes under the set G, of embedded fd’s can be
computed now as follows:

While there is a change do
for each relation scheme R i do

add to X the attributes in Ri n cl,(Ri n X) - X.

Let Z be the set of attributes upon termination. Since for any Y the fd R i n Y--t
Ri n cl,(R, n Y) is implied by z and is embedded in Ri, it follows that G, b X + Z.

130 GRAHAMANDYANNAKAKIS

When the algorithm terminates, we have for each Ri E D, Ri n cl,(R i n Z) = Ri n Z.
Thus, from Lemma 5, Z = clG1(Z). Therefore, Z = clG,(X).

The complexity of the algorithm depends on the complexity of computing closures
under 2, that is, on the complexity of inferring fd’s from z. If z consists of jd’s and
fd’s this can be done in polynomial time [MSY]. Therefore, if C = FU { *D}, we can
test condition (1) of Theorem 2 in polynomial time as follows:

(1) For each fdX-+ A in F compute c&(X).

(2) Verify that A E clG,(X).

If D is cover embedding, then we can find an embedded cover H of G as follows.
ForeachfdX-+AofFwetake thefd’softheformRinY-+Rincl,(Rif7~-Y
that added attributes to the closure of X in the previous computation; clearly, there
are at most 1 UI of them. (Not all of them may actually be needed-only those that
contributed to the addition of A to the closure.) The cover H is the union of all these
fd’s for all fd’s of F. Clearly,]H] < / FI 1171. From the construction of H, H + F. Since
H is also embedded, it follows from Lemma 2 that H is an embedded cover of G.

4. INDEPENDENCE W.R.T. EMBEDDED FD's

Let us assume now that we have an embedded cover F of the functional depen-
dencies implied by the jd *D and the given set of fd’s. Let F = F, U . . . U F,, where
Fi is a set of fd’s embedded in relation scheme Ri. * Note that we do not assume that
Fi is a cover of Ft 1 Ri (the fd’s embedded in R,); F is the cover produced by the
algorithm at the end of last section.

In this section we are going to give a polynomial algorithm to test if D is
independent with respect to F. We shall show, in fact,

THEOREM 3. Let F = Ui Fi be a set of functional dependencies embedded in
database schema D = {Ri}. The following are equivalent:

(1) D is independent w.r.t. FV (*D}.

(2) D is independent w.r.t. F.

(3) If in a database state p = {ri} each ri satisfies F+ / Ri, then p is a satisfying
state.

(4) If in a database state p = {ri} each ri satisfies Fi, then p is a satisfying
state.

The equivalence of (1) and (2) was shown in the previous section (Lemma 4). It is
obvious from the definitions that (4) * (3) 3 (2). The implication (2) =P (4) will

’ If an fd of F is embedded in more than one Ri’s, then it can be included in one or more of the Fls. It
will turn out that in this case D is not independent, and our algorithm will discover this regardless of
where we choose to include such an fd.

INDEPENDENT DATABASE SCHEMAS 131

follow from the proof of correctness for our algorithm. A consequence of the theorem
is that if D is independent, then Fi is a cover of Ci ; thus, to check if a database state
p is satisfying we just have to check if each Ti satisfies Fi.

Before describing the algorithm let us explain the basic ideas behind it. As we
mentioned in Section 2, we can test if a database state p satisfies the given set F of
fd’s using the chase procedure: we form a universal instance I@) by padding out to U
with variables every tuple of p, and then we chase the fd’s on this relation. The chase
identifies variables and replaces variables by constants until no more changes can be
made or a contradiction is found. The latter case happens if the chase tries to identify
two constants. The chase has the property that if it replaces the variable at attribute
A of a tuple t from ri, then the functional dependency Ri -+ A is a consequence of the
given set of fd’s F. Thus, this replacement by a constant of the variable off on A can
be seen as the calculation on tuple t of the function R,+A from Ri-tuples to A-
values. For the schema to be independent, the calculation of every such function
implied by F must be unique in every locally satisfying state.

Suppose that we are given a state p, a tuple t of Ti, and that R i + A is an fd implied
by F. The chase will replace the variable of t at A by a constant only if there are
tuples in p which match each other and t appropriately in some attributes. For
example, in Example 1 of Section 2, the chase replaces the variable d of the tuple
(CS402, Jones) of the CD relation by EE, because there is a tuple (Jones, EE) in the
TD relation that matches on the attribute T. The existence of tuples that match each
other in selected attributes can be conveniently represented using tagged tableaux.

A tagged tableau for a universe U is an instance of the scheme UU {Tag}
(Tag 6? v). The domain of A E U is a set containing a unique distinguished variable
(dv) and countably many nondistinguished variables (ndv’s). The domain of Tag is
D, the relation schemes. The value t[Tag] is called the tag of row t. A tableau T is
weaker than a tableau T’, written T < T’ if there exists a function on tableau symbols
which is the identity on the Tag domain and the distinguished variables and takes
each row of T to a row of T’; such a function is called a homeomorphism from T to
T’. T E T’ abbreviates T < T’ and T’ < T. (This is the notion of tableau equivalence
due to Chandra and Merlin [CM] and Aho, Sagiv, and Ullman [ASU].) A valuation
h from a tagged tableau T to a state p is a mapping from the variables of T to the
entries of p which sends every row of T tagged Ri to a tuple of relation ri of p. We
say that the valuation h agrees with a tuple v over set of attributes V if h maps the
distinguished variable in each attribute B of V (if it exists in T) to v[B]. It follows
from the definitions that, if there is a valuation h from a tagged tableau T to a state p
that agrees with a tuple v, and T is weaker than another tableau T’, then there is also
a valuation h’ from T’ to p that agrees with u; h’ is the composition of h with the
homeomorphism from T to T’.

Suppose that for a given database state p and tuple t of ri, the chase replaces the
variable of t at attribute A by a constant c; from the changes on I@) which enabled
the chase to make this replacement we can extract a tagged tableau T, such that there
is a valuation from T to p which agrees with the tuple tc over R,A. Thus, the
calculation of the function Ri -+ A that mapped t to c can be associated with a tagged

571/28/l-10

132 GRAHAM AND YANNAKAKIS

tableau T. For every fd R, --t A implied by F, our algorithm attempts to find a
minimal calculation (tagged tableau) of the function; minimal in the sense that the
requirements on the existence of matching tuples are as weak as possible. The
algorithm declares D to be independent, if it determines that a minimal calculation of
each function of the form R i -+ A exists. In this case, if the function R i -+ A can be
calculated at all in any locally satisfying state, it can be calculated by the method
discovered by the algorithm. It turns out that, if for some function Ri -+ A there is no
unique minimal calculation, then there is a locally satisfying state p and a tuple t of Ti
which can be mapped to two different A-values by two different calculations.

We use the following notation. We say X is a left-hand side (1.h.s.) of Ri if
X + A E Fi for some A. We distinguish the appearances of the same set of attributes
as an 1.h.s. in distinct schemes. We will use the notation X* to denote the local
closure of X: X* is the closure of X under Fi where X is a 1.h.s. of Ri. We retain X+
for closure under F = iJ , (iG k Fi .

The algorithm is run for each scheme seperately. Assume it is being run for R,.
For each A E R: and for each 1.h.s. XC R f of each Rj (j # l), a tagged tableau,
T(A) and T(X), respectively, is constructed. We will say that X is weaker than Y,
X < Y, when T(X) < T(Y). Likewise X E Y when T(X) = T(Y). For the tableaux
constructed by the algorithm, computing the Q relation is easy. The available
attributes are the subset of R: for which a potentially minimal calculation has been
found. An 1.h.s. X is available when each A E X is available. The tableau T(A)
becomes defined when the attribute A becomes available. For a 1.h.s. X, T(X) is the
tableau U, EX T(A) U {X*-row} where the X*-row has: distinguished variables in the
columns X*; in the remaining columns of U nondistinguished variables which are
unique with respect to the set of all tableaux constructed by the algorithm; and
tag Ri, where X is an 1.h.s. of R,.

The set of available attributes is initialized to R,, the tableau T(A) = 0 for each
A E R,. The available l.h.s., their tableaux, and their order under < are computed.
Every 1.h.s. is marked unprocessed. The algorithm is essentially a computation of the
closure R : of R 1 under F. The differences with the standard algorithm are that (1)
available left-hand sides are processed in order of weakness (instead of processing
them in arbitrary order), and (2) when a 1.h.s. is processed, all attributes in its local
closure are added to R :, instead of adding only the attributes in the right-hand side.

The Loop

While there is an available but unprocessed 1.h.s. X of some relation scheme Ri do

(1) Pick a weakest such X and let E(X) be the set of available 1.h.s. (of Ri)
that are equivalent to X under <.

(2) Determine the set W(X) of available 1.h.s. of Ri that are strictly weaker
than X (from our choice of X, these are all marked processed).

(3) Let X&, be the closure of X according to the set of fd’s

WF(X)= (Z+Z*lZE W(X)}.

INDEPENDENTDATABASE SCHEMAS 133

Let X,*,, =X” -x2,.

(4) Verify that each attribute in X&, is not available; if one is, halt and reject.

(5) For each Y in E(X) (besides X) do
Compute the closure Y&, of Y according to WF(X) (which is identical to WI;(Y))
and verify that Y,*,, =X&, ; if not, then halt and reject.

(6) Mark every attribute A of X,*,, available, and define T(A) to be r(X).

(7) Update the set of available l.h.s., compute their tableaux and update the
order <.

(8) Mark each unprocessed 1.h.s. Z of Ri with Z* c X*, processed.

End of Loop

Observation. For the set of all tableau constructed by the algorithm, (i) every
row has dv’s in a locally closed set of attributes; i.e., if a row t has tag Ri then the set
of columns of t having dv’s is X* for some 1.h.s. X of Ri ; (ii) no ndv appears more
than once.

This observation indicates that computing < among the tableaux of the algorithm
is easy. T< T’ precisely when for every row t E T there exists t’ E T’ with
t[Tag] = t’[Tag], t an X*-row, t’ a Y*-row for l.h.s.‘s X, Y, and X* E Y*.

EXAMPLE 3. Clearly the algorithm will reject the system of Example 1. For a
more complex example, consider

Let us examine the application of the algorithm for R 1. Since an attribute A may
also be a 1.h.s. we shall denote the tableau of the attribute by T(A) and that of the
1.h.s. by T((A }). Note that T({A }) has one more row than T(A) which contains
distinguished symbols in A *.

Initially, the available attributes are A 1 and B, with empty tableaux. Thus, the
available 1.h.s. are {A,}, {B,}, and A,B,. We have, A: =A,A,, B: =B,B,, and
(A 1 B,)* = A ,A, B, B, C. Thus, the tableaux of the available 1.h.s. are as shown
below, where a is the distinguished symbol and the blanks indicate distinct
nondistinguished symbols.

A, B, A, B, C Tag

a a 4

134 GRAHAM AND YANNAKAKIS

A, B, A, B, C Tag

a a R2

T(A,B,)

A, B, A, B, C Tag

a a a a a RI

Clearly, both A I and B, are weaker than A 1 B, . Thus, the weakest available 1.h.s.
are A, and B,. Suppose that we pick A, at line 1; E({A ,}) contains only {A 1};
W({A 1 }) is empty. Thus, (A J&, = {A, }, and (A J$,,, = {A,}. Attribute A, becomes
available and T(A,) = T({A,}). The available 1.h.s. now are {B,} and A,B,, with the
first strictly weaker than the second. Therefore, in the next iteration we pick the 1.h.s.
B, and B, becomes available with T(B,) = T({B,}). Now the available 1.h.s. are A, B,
again, and A,B, with the tableau

T(A,BJ

A, B, A, B, C Tag

a a R*
a a R2

a a a a a R2

It is easy to see that this tableau is equivalent to T(A 1 B,), and therefore the two
available 1.h.s. are equivalent. Suppose A,B, is chosen for processing at the next
iteration of the loop. We have E(A2B2)= {A,B,,AZB2}; W(A,B,)= (A,,B,}.
Therefore (A2BZ)& = A,B, and (AzBz)new * = A, B, C. Then rejection will come at
line 4, as both of A, and B, are available attributes in (A,B,),*,,. If A, B, is chosen,
rejection will come at line 5. This state demonstrates that D is not independent w.r.t.
F,

A, B, A, B, A, B, C

0 0 0 2 0 3 4
5 0 6 0 7
1 1 0 0 1

INDEPENDENT DATABASE SCHEMAS 135

We shall show at first that if the algorithm rejects then D is not independent with
respect to F. We need beforehand some technical lemmas.

LEMMA 6. Suppose that ri is a relation over relation scheme Ri such that every
tuple of ri has O’s in a set of attributes which is closed under Ft 1 Ri and distinct
positive integers in the rest of the attributes (i.e., integers not appearing in any other
tuple of ri). Then ri satisfies xi.

Proof. Extend ri to a universal instance r as follows. If a tuple u of ri has O’s in
the set of attributes X, u is extended to a tuple u’ with O’s in X+ (the closure of X
under F) and new distinct integers in the rest of the attributes, Since X is closed under
F+ IRi, X+ nRi=X.

We claim that r satisfies F. Let u’, v’ be two tuples of r, extensions of tuples u and
v of ri. Let X, Y be the sets of attributes in which u and v have 0’s. The tuples u’ and
v’ agree on Xt n Yt. But the intersection of two closed sets is also closed; i.e.,
X’ f7 Yt = (X’ f7 Y+)+. Therefore, r satisfies F, and ri satisfies Zi. 1

We assume from now on for simplicity that the right-hand side of each fd is a
single attribute. A derivation h of a functional dependency X -+ A from F is a
sequence fi ,..., f, of fd’s of F such that the attributes in the 1.h.s. of eachf, occur in X
or in the r.h.s. of the previous fj’s, and the r.h.s. off, is A. The derivation is
nonredundent if the r.h.s. of each fr(l) is not in X, (2) is not the r.h.s. of another A,
and (3) occurs in the 1.h.s. of a laterh. In short, a derivation is nonredundant if we
cannot get another derivation (of the same fd) by deleting some of the fd’s.

LEMMA 7. Suppose that there is a nonredundant derivation of an fd embedded in
Ri which uses an fd from some Fj, j # i. Then D is not independent w.r.t. F.

Proof. Let d = (g , ,..., g,) be a derivation as in the statement of the lemma. Let g,
be the latest fd in d that is not in Fi, and let A be the r.h.s. of g,. If I= n, then
A E Ri. If If n, then A appears in the 1.h.s. of a subsequent fd, since d is
nonredundant. Since all later fd’s of d are in F,, it follows again that A E Ri.
Therefore, d’ = (g, ,..., g,) is a derivation of Ri -A -+ A. Delete from d’ all useless
fd’s to get a nonredundant derivation h = (f, ,...,f,) of Ri -A -+ A. Then no fd& is in
Fi.

Consider now the following database state p = {r 1 ,..., rk}. Relation ri has only one
tuple with O’s in all attributes of Ri except A in which it has an 1. For j # i, relation
rj has one tuple for every fd ft from Fj in the derivation h. If fi is the fd Y -+ B, the
corresponding tuple of rj has O’s in Yt n Rj (i.e., the closure of Y under Ft) R j) and
new distinct positive integers in the rest of the attributes. We claim that p is locally
satisfying but not globally satisfying.

It follows from Lemma 6 that each rj with j # i satisfies Zj. Also, since ri has only
one tuple it satisfies Zi. Thus, p is locally satisfying.

Form now the universal instance I@) as explained in Section 2, and consider the
application of the chase procedure on I@). Applying in turn the fd-rules for the

136 GRAHAMANDYANNAKAKIS

dependencies fi ,..., f,_ 1 between the (single) tuple u of li and the tuples that
correspond respectively to the fd’s f,,...&_, will replace by 0 all variables of the
tuple u of ri in the attributes that are the r.h.s. of these fd’s. Applying now the fd-rule
for f, between u and the tuple that corresponds to f,,, gives a contradiction. fl

COROLLARY. If for some i, Fi does not cover F’ 1 Ri, then D is not independent
w.r.t. F.

Proof Let f be an fd of F’ 1 Ri that is not implied by Pi. Then every derivation
off from F has to use an fd from some Fj, j # i. 1

We will prove now some properties of the tableaux constructed by the algorithm.

LEMMA 8. Suppose that after j iterations the algorithm has not rejected.

(1) If X is a processed I.h.s.and A E X *, then (a) A is available, and (b)

r(A) < r(X).
(2) Let A be an available attribute, and suppose that T(A) has a X*-row

tagged Ri. If Z is a 1.h.s. of R, with Z s X* then Z is marked processed.

(3) If A is an available attribute and T(A) has a distinguished variable in
attribute B then B is available and T(B) < T(A).

Proof. (1) By induction on j. The basis (j = 0) is trivial since no 1.h.s. is
processed. So, assume (a) and (b) for j < m and let us prove them for j = m. Look at
the iteration 1 in which X was marked processed. If 1 < m there is nothing to prove.
So, let I= m.

Case 1. X is the 1.h.s. that was picked at the mth iteration in line 1 of the
algorithm.

Since A E X*, there are 3 cases: A E X,*,, or A E X&, -X or A E X. In the first case
A is available from line 6 and T(A) = T(X). In the second case A E Z* for some
Z E W(X). Since Z was available at the beginning of the iteration, and since Z is
strictly weaker than X, it follows that Z * was processed after the (m - 1)th iteration.
Thus, from the induction hypothesis, A was available, and T(A) < T(Z) < T(X). In
the third case (A E X), clearly A was available, and T(A) E T(X); therefore,
T(A) < T(X).

Case 2. A 1.h.s. Y # X was picked at the m th iteration.

We have X* G Y* (line 9). Thus, A E Y*. From Case 1, A is available, and
T(A) < T(Y). If X was not available at the beginning of the iteration, then some
attribute B of it became available now, and therefore T(B) = T(Y) c T(X); thus,
T(A) < T(Y) < T(X). S o, assume that X was available. From Case 1 we have
T(B) < T(Y) for every attribute B of X. Therefore, U,,, T(B) < T(Y). Since also
x* c y*, we have T(X) < T(Y). But from our choice of Y this implies that
r(X) 3 T(Y). Therefore, T(A) < T(X).

