
Multiparametric Linear Complementarity Problems

Colin N. Jones and Manfred Morrari
Automatic Control Laboratory

Swiss Federal Institute of Technology
Physikstrasse 3, CH-8092 Zurich

Switzerland
{jones}{morari}@control.ee.ethz.ch

Abstract— The linear complementarity problem (LCP) is a
general problem that unifies linear and quadratic programs and
bimatrix games. In this paper, we present an efficient algorithm
for the solution to multiparametric linear complementarit y
problems (pLCPs) that are defined by positive semi–definite
matrices. This class of problems includes the multiparametric
linear (pLP) and semi–definite quadratic programs (pQP),
where parameters are allowed to appear linearly in the cost
and the right hand side of the constraints. We demonstrate
that the proposed algorithm is equal in efficiency to the best
of current pLP and pQP solvers for all problems that they can
solve, and yet extends to a much larger class.

I. INTRODUCTION

It is standard practice to implement a model predictive
controller (MPC) by solving on–line an optimisation problem
where the decision variables provide the control action. In
recent years, it has become well-known that the optimal input
for a large class of systems is a piecewise affine function
(PWA) defined over a polyhedral partition of the feasible
states. By pre–computing this PWA function off–line, the
on–line calculation of the control input then becomes one
of evaluating the PWA function at the current measured
state, which allows for significant improvements in sampling
speed [1].

If the system is linear, the constraints polyhedral and the
cost linear or quadratic, then the optimisation problem to be
solved is a linear or quadratic program. Pre–computation of
the PWA control law then requires the solution of a (multi)
parametric linear (pLP) or quadratic program (pQP) [1]–[3].
These algorithms have a wider use in control, such as for
constrained control allocation [4] for solving sub–problems
in nonlinear optimisation [5] and for calculating penalty
weights in soft–constrained linear MPC [6].

A large number of algorithms for pQPs [2], [3], [7]–[11]
and pLPs [10], [12], [13] have been published in the control
literature in the past few years. In [3], [12], [14] all optimal
bases are enumerated with an algorithm based on the simplex
approach. A geometric approach has been proposed [10] that
directly explores the set of feasible parameters in a recursive
manner, subdividing the feasible parameter space into so-
called critical regions, in which the set of active constraints
at the optimiser does not change. This method can introduce
a large number of artificial cuts in the parameter space
and an extension of this algorithm in [7], [11] addresses
this problem by enumerating the regions in a non-recursive

manner by stepping a sufficiently small distance over the
facets of each region to find a point in a neighbouring
region. In [8], [9] the algorithm for pQPs was again improved
and it was shown that the adjacent critical region can be
determined by inspection if it satisfies fairly strict non–
degeneracy assumptions.

The algorithms [2], [7]–[11] can be applied only to strictly
convex pQPs and they implicitly make the assumption that
the intersection of two polyhedral critical regions is a face of
each. However, it was shown in [15], [16] that this property
does not hold either for strictly, or non-strictly convex pQPs
or pLPs/pQPs with parameterised costsand constraints,
although it does hold for non–degenerate pLPs [13]. As
a result, the algorithms [2], [7]–[11] cannot be guaranteed
to return the correct solution in general. The paper [16]
addressed this issue by combining the approach in [2] with
that in [8], although some of the efficiency of [8] is lost.

In this paper, we present a new method based on [17] for
computing the solution to a multi–parametric linear comple-
mentarity problem (pLCP), which is defined by a positive
semi–definite matrix. Linear complementarity problems are
considered fundamental and have been extensively studied
in various disciplines as they unify linear, quadratic and
bimatrix games. Specifically, the approach presented here
provides the solution to linear and semi-definite quadratic
multi–parametric programs in which parameters can appear
linearly in both the cost and the right hand side of the con-
straints. Furthermore, the proposed approach is numerically
robust, and is equal or superior in efficiency to [7], [11] for
all problems that can be solved using those approaches. In
the cases of non–degeneracy in pQPs, the proposed method
reduces to [8], [9] and extends these ideas naturally to a
much larger class of problems, whether degenerate or not.

The remainder of this paper is organised as follows.
Section II provides the necessary background on LCPs and
pLCPs. The proposed solution method is given in Section III,
complexity analysis in Section IV and conclusions in Sec-
tion V.

NOTATION

If A ∈ R
m×n and I ⊆ {1, . . . , n}, thenA∗,I ∈ R

m×|I|

is the matrix formed by the columns ofA indexed byI.
If c ∈ R

n is a vector thencI is the vector formed by the
elements ofc in I. If R ⊆ {1, . . . , m} then we will use the



notationAR,∗ ∈ R
|R|×n to be the matrix formed by the rows

of A indexed byR.
The set of affine combinations of points in a set

S ∈ R
n is called theaffine hull of S and is denoted

aff (S). The dimension dim(S) of a set S ⊆ R
n is

the dimension of aff (S). If dim(S) is equal to n,
then the set is called full–dimensional. The closure
of S is denotedS̄ and the relative interior is given by
relint(S) {x ∈ S | B(x, r) ∩ aff (S) ⊆ S, for somer > 0},
where the ballB(x, r) , {y | ‖x− y‖ < r } and‖·‖ is any
norm.

A polyhedron is the intersection of a finite number of
closed halfspaces and apolytopeis a bounded polyhedron. If
P = {x |Ax ≤ b} is a polyhedron andH =

{

x
∣

∣ aT x ≤ b
}

is a halfspace such thatP ⊆ H , thenP ∩
{

x
∣

∣ aT x = b
}

is a face of P . The inequality{x | Ai,∗x ≤ bi } is called
redundant if P =

{

x
∣

∣ A{1,...,n}\{i},∗x ≤ b{1,...,n}\{i}

}

and irredundantotherwise. If the dimension of the polytope
is d, then the zero– and(d−1)–dimensional faces are called
the verticesand thefacetsrespectively.

II. PRELIMINARIES

A feasible solution to the followinglinear complemen-
tarity problem (LCP), denoted(q, M), is a set of positive
vectorsw andz satisfying:

w −Mz = q, w ≥ 0, z ≥ 0, wT z = 0, (1)

where the square matrixM ∈ R
n×n and the vectorq ∈ R

n

are the problem data. The LCP is calledfeasibleif there exist
vectorsw andz that satisfy (1).

Consider the following system of linear equality con-
straints in positive variables:

Ax = q, x ≥ 0, (2)

whereA ,
[

I −M
]

and x ,
[

wT zT
]T

. Any set
B ⊂ {1, . . . , 2n} such that|B| = n and rankA∗,B = n
is called abasis and we writeN = {1, . . . , n} \B for its
complement and callxB and xN the basic and non-basic
variables respectively. A basis is called complementary ifi ∈
B impliesi+n /∈ B andi−n /∈ B. Note that complementary
bases are exactly those bases that satisfy the complementarity
conditionwT z = 0.

Every basisB defines a solution to the linear equations
in (2) or equivalently (1), which is given by restricting the
non-basic constraints to zero

xB = A−1
∗,Bq, xN = 0. (3)

A basis is called feasible if the resulting solution also satisfies
the positivity constraints in (2):A−1

∗,Bq ≥ 0.
Clearly, a basis gives a feasible solution for the LCP

(q, M) if only if it is a complementary and feasible basis.
Furthermore, every feasible solution to the LCP(q, M) can
be described by such a basis [18].

A. Lexicographic Perturbation

A basisB is calleddegenerateif at least one component
in the vectorA−1

∗,Bq is zero, and non–degenerate otherwise.
If a complementary feasible basis is degenerate then there
exists more than one feasible basis for the given LCP. This
non–uniqueness can cause several problems for parametric
algorithms [13], and so in this paper we will remove the
issue of degeneracy through the use of a lexicographic
perturbation.

Definition 1 (Lexico-positive):A vectora ∈ R
r is said to

be lexico-positive, denoted bya � 0, if the first nonzero
component ina is strictly positive. Given two vectorsx, y ∈
R

r, x � y if and only if x − y � 0. The lexico–minimum
of a set of vectors

{

a1, . . . , am
}

⊂ R
r is the vectoraj

satisfying the property thatai � aj for eachi = 1 to m. A
matrix is called lexico-positive if all rows of the matrix are
lexico-positive.

Let ǫ ∈ R
n be the vector

(

ǫ0, ǫ
2
0, . . . , ǫ

n
0

)

, whereǫ0 ∈ R is
strictly positive. Consider the perturbed system of equalities
in positive variables:

Ax = q + ǫ, x ≥ 0. (4)

If B is a basis for (4) andi ∈ B, the the basic variablesxB

are given by:

xi = βB(i),∗q + βB(i),1ǫ0 + βB(i),2ǫ
2
0 + · · ·+ βB(i),nǫn

0 ,
(5)

whereβ , A−1
∗,B and βB(i),∗ is the row ofβ associated to

the variablei (i.e. i is the B(i)th element inB). One can
see that the basis is feasible for sufficiently smallǫ0 if and
only if the matrix A−1

B,∗

[

q I
]

is lexico-positive; such a
basis is calledlexico-feasible.

We now state the main result of lexicographic perturbation:
Theorem 1 (Lexicographic Perturbation [19]):If an LCP

(q, M) is feasible, then there exists anǫ1 > 0 such that
for all 0 < ǫ0 < ǫ1 the lexicographically perturbed LCP
(q+ǫ, M) has a unique copmlementary feasible basis, where
ǫ ,

(

ǫ0, ǫ
2
0, . . . , ǫ

n
0

)

.
Remark 1:Note thatǫ is a symbolicperturbation. Only

the effectof ǫ on the problem is considered andǫ is never
assigned a real value. As a result, there are no numerical
concerns resulting from takingǫ to be too small or too large
a value.

B. Parametric LCP

The problem that we consider in this paper is the paramet-
ric linear complementarity problem, or pLCP(q+Qθ+ǫ, M):

w −Mz = q + Qθ + ǫ, w ≥ 0, z ≥ 0, wT z = 0, (6)

where Q ∈ R
n×d is a real matrix of rankd, ǫ is a

lexicographic perturbation andθ ∈ Θ ⊆ R
d is the parameter.

We make the following standing assumptions:
Assumption 1:The feasible setΘ is a full–dimensional

polyhedron.

Assumption 2:There exists a finite feasible solution to the
LCP (q + Qθ, M) for everyθ ∈ Θ.



Assumption 3:The matrixM is positive semi-definite.

Definition 2 (Critical Region):If B is a complementary
feasible basis of the pLCP(q +Qθ+ ǫ, M), then thecritical
region RB is defined as the set of all parametersθ◦ ∈ Θ
such thatB is feasible for the LCP(q + Qθ0 + ǫ, M)1.

From (3) and (5), it can be seen that the critical region
RB is the set

RB = {θ | β(Qθ + q + ǫ) ≥ 0}

=
{

θ
∣

∣ β
[

Qθ + q I
]

� 0
}

, (7)

whereA ,
[

I −M
]

, β , A−1
∗,B and� is taken row-

wise. Since the perturbationǫ is taken arbitrarily small, the
closure of the critical region is the polyhedron

R̄B = {θ | β(Qθ + q) ≥ 0} . (8)

Theorem 2:Let {RB0 , . . . , RBN
} be the set of all full–

dimensional critical regions, then:

1) RBi
∩RBj

= ∅ for all i 6= j
2) ∪N

i=0R̄Bi
= Θ

Proof: The first property follows directly from The-
orem 1. Since every lexico-perturbed LCP has a unique
feasible basis, every parameterθ must be in exactly one
critical region.

The second property follows from the assumption that
there exists a feasible solution for every value of the pa-
rameter in the setΘ.

The goal is to compute a feasible basis for each value
of the parameter in the setθ ∈ Θ. Since the pLCP is
lexicographically perturbed a critical regionRB may or may
not include its boundary. From a control point of view, the
goal in solving a pLCP is to define a mapping from the
measured state (the parameter) to the input (the variablex).
Since the measurement of the state is never exact, we make
the standard assumption that it will never lie in the relative
interior of a critical region that is not full–dimensional and
therefore enumerate only the full–dimensional regions.

C. Parametric Quadratic Programming

The main motivation for considering pLCPs from a control
viewpoint is that all parametric linear and quadratic pro-
grams (pLPs and pQPs) with positive semi–definite costs
can be posed as pLCPs. This class of problems includes
both parametric linear and quadratic programs in which
both the cost and the right hand side of the constraints are
parameterised.

1Note that this definition differs slightly from that generally given in the
literature, in which the set of all active constraints is taken to define a critical
region. However, as our problem has been lexicographicallyperturbed it is
never degenerate and therefore these two definitions are equivalent.

Consider the following parameterised quadratic program2:

minimise
u

1
2uT Du + (Eθ + c)

T
u

subject to Au ≥ Fθ + b

u ≥ 0

(9)

whereD ∈ R
l×l, E ∈ R

l×d, c ∈ R
l, A ∈ R

m×l, F ∈ R
m×d

and b ∈ R
m. The Karush-Kuhn-Tucker (KKT) optimality

conditions for (9) are:

Du + Eθ + c−AT λ− ν = 0

λT (Au− Fθ − b) = 0, νT u = 0

Au ≥ Fθ + b, u ≥ 0

(10)

Defining the slack variableσ , Au−Fθ−b allows the KKT
conditions (10) to be written as the following pLCP:
(

ν

σ

)

−

[

D −AT

A 0

]

(

u

λ

)

=

[

E
−F

]

θ +

[

c
−b

]

(

ν

σ

)T (

u

λ

)

= 0, ν, σ, u, λ ≥ 0

Note that the matrixM =

[

D −AT

A 0

]

is positive semi–

definite and Assumption 3 is satisfied ifD is also positive
semi–definite.

III. R EGION ENUMERATION

The goal of the pLCP algorithm is to identify all lexico–
feasible bases that define full–dimensional critical regions.

Definition 3 (Adjacent Regions [16]):Two full–
dimensional critical regionsRA and RB are said to
be adjacent ifdim

(

R̄A ∩ R̄B

)

= d− 1.
The algorithm proposed for this enumeration is similar to

the geometric approach in [13] for solving pLPs and [7],
[11] for pQPs. The exploration begins from a single full-
dimensional critical region. Each of the facets of the closure
of the region are considered in turn and all adjacent critical
regions whose closures intersect the facet are enumerated.
In turn each of these adjacent critical regions are considered
and so on, until there are no more regions to be discovered.
The algorithm is outlined below as Algorithm 1.

The following theorem, from [16] proves that this proce-
dure will enumerate all full–dimensional critical regions.

Theorem 3 (Correctness of Algorithm [16]):If
{RB0 , . . . , RBN

} is the set of full–dimensional critical
regions returned by Algorithm 1, then∪N

i=0R̄Bi
= Θ.

There are two operations that must be detailed for this
approach: computation of the facets of the closure of a
critical region, and computation of the adjacent regions
containing a given facet. The following two sections cover
these procedures.

2Note that the standard parametric quadratic program resulting from
control problems does not have positivity constraints on the variablesu.
All parametric quadratic programs can be converted to the form (9) through
a simple change of variables.



Algorithm 1 Parametric Linear Complementary Problem
Input: BasisB0 of pLCP (6) such thatdim RB = d.
Output: All basesB such thatdimRB = d

1: Lunexplored ←− {B} , Ldiscovered ←− {B}
2: while Lunexplored is not emptydo
3: Select and remove any basisB from Lunexplored

4: for each facetf of R̄B do
5: Compute set of basesA that are

adjacent toRB along facetf

A = pivot(B, 2n + 1, F̂ )

Section III-B

6: Lunexplored ←− Lunexplored ∪ (A\Ldiscovered)
7: Ldiscovered ←− Ldiscovered ∪ A
8: end for
9: end while

10: Return listLdiscovered

A. Facet Calculation

Consider the closure of the full–dimensional critical region
RB, which is defined by a given basisB:

R̄B = {θ | β(Qθ + q) ≥ 0} , (11)

where β , A−1
∗,B. The facets ofR̄B are given by the

irredundant inequalities of (11). Testing if an inequalityis
redundant requires a single linear program of dimensiond.
This is a standard redundancy elimination operation, and the
reader is reffered to [20] for computational details.

B. Adjacent Region Computation

Given a full–dimensional critical regionRB and a hyper-
planef ,

{

θ
∣

∣ γT θ + b = 0
}

, such thatf∩R̄B is a facet of
the closure, the goal is to compute all adjacent critical regions
RB′ such thatR̄B∩R̄B′ ⊆ f anddim

(

R̄B ∩ R̄B′

)

= d−1.
If θ0 is a point in the relative interior of the facetf ∩ R̄B,

then the goal is to compute the feasible basis for the pLCP at
the pointθ = θ0+γα, which is just outside the critical region
for some strictly positiveα. Note that we have assumedγ
to be facing outward from the facet and for convenience we
also assume that‖γ‖2 = 1.

In order to simplify the computations, we begin by re–
writing the hyperplanef as:

f =
{

θ
∣

∣ ∃θf ∈ R
d−1, θ = Nθf − γb

}

,

where N ∈ R
d×d−1 is a matrix whose columns span the

left–nullspace ofγ. Further, we define the set

F̂ ,
{

θf ∈ R
d−1

∣

∣ Nθf − γb ∈ f ∩ R̄B ∩Θ
}

The problem to be solved can now be written as the pLCP:

(q −Qγb + QNθf + Qγα + ǫ, M), α > 0, θf ∈ F̂

(q̂ + Q̂θf − γ̂α + ǫ, M), α > 0, θf ∈ F̂

whereq̂ , q −Qγb, Q̂ , QN and γ̂ , −Qγ.
We now describe an algorithm similar to that given

in [18] for one–dimensional parametric linear complemen-
tarity problems in the parameterα, where augmentations are

made in order to handle the parametric nature ofθf . The
algorithm proceeds throughpivoting operations, beginning
at the basisB. At each stage, anenteringvariable is chosen
from the non–basic constraints and is increased until one of
the basic variables decreases to zero. At this point this basic
variable, called theleaving variable, is removed from the
basis, and the entering variable is brought into it. This pro-
cedure maintains the feasibility of the new basis, continuing
until we arrive at a basisB′ that remains complementary and
feasible for a strictly positive value ofα.

Consider the following linear equalities in positive vari-
ables:

Âx̂ = q̂ + Q̂θf , x̂ ≥ 0 (12)

where Â ,
[

−I M γ̂
]

∈ R
n×2n+1 is a matrix and

x̂ , (x, α)
T ∈ R

2n+1 is a positive vector.
Definition 4 (ACLFB [18]): A basisB of (12) is anal-

most complementary lexico-feasible basis(ACFLB) if it
1) is lexico-feasible
2) contains at most one element from each pair of com-

plementary variables{wi, zi}
3) contains exactly one basic variable from each of

(n − 1) complementary pairs of variables, and the
remaining pair is non–basic

1) Pivoting: The pivoting function takes as input an
entering variablêxe, e ∈ N , and an ACLFBB, which is
assumed to contain the variableα and to be lexico-feasible
for all θf in the setF̂ :

x̂B = β
(

q̂ + Q̂θf + ǫ
)

≥ 0,

whereβ , Â−1
∗,B.

a) Leaving Variable: Consider now the effect of in-
creasing the variablêxe while maintaining lexico-feasibility:

x̂B = β
(

q̂ + Q̂θf + ǫ
)

− βÂ∗,ex̂e ≥ 0

As x̂e increases, the first constraint to become active is
clearly given by:

l = lexmin

{

βB(i),∗

[

q̂ + Q̂θf I
]

βB(i),∗Â∗,e

∣

∣

∣

∣

∣

i ∈ P

}

, (13)

whereP ,

{

i
∣

∣

∣
βB(i),∗Â∗,e > 0

}

andβB(i),∗ is the row of

β associated to the variablei (i.e. i is theB(i)th element in
B). As the variablêxl is now equal to zero, it is removed
from the basis and the entering variablee is added to it and
allowed to be positive. Recall that all non-basic variables
are zero and only basic variables can be positive. Note that
because the leaving variable is chosen in order to maintain
lexico-feasibility, the new basisB′ = B∪{e} \ {l} will also
be an ACLFB.

We now consider how (13) is computed. We define the
setZ ,

{

i
∣

∣ βB(i),∗

[

q̂ Q̂
]

= 0
}

and differentiate two
cases3:

3The setZ contains all of the inequalities of the closure of the critical
region that are equal to the facet hyperplanef , or are active everywhere in
RB .



Case 1Z ∩ P 6= ∅
In this case, one can see that the minimum in (13) will be
given by:

l = lexmin

{

βi,∗

βi,∗Â∗,e

∣

∣

∣

∣

∣

i ∈ P ∩ Z

}

, (14)

Notice that (14) is independent of the parameterθf .
Remark 2:Note that the minimum in (14) is always

unique since the choice could only be non–unique ifβ were
not invertible.

Remark 3: If every pivot of a problem is in this case
then the adjacent region is independent of the point on the
facet θf and therefore satisfies the so–called facet–to–facet
property [16]
Case 2Z ∩ P = ∅
In this case, the leaving variable will be a function of the
parameterθf . There may be more than one possible leaving
variable and therefore more than one adjacent critical region
along this facet.

Theorem 4:If B is an ACLFB,e is an entering variable
andZ ∩ P = ∅, then the basisB′ = B ∪ {e} \ {l} is an
ACLFB anddim

(

R̄B ∩ R̄B′

)

= d− 1 if and only if

dim
{

θf ∈ R
d−1

∣

∣

∣
Γ
(

Q̂θf + q̂
)

≥ 0
}

∩ F̂ = d− 1 (15)

and

Γi

[

q̂ I
]

� 0 for all i ∈ P such that ΓiQ̂ = 0

where

Γi ,

(

βi,∗Â∗,e

)

βl,∗ −
(

βl,∗Â∗,e

)

βi,∗, ∀i ∈ P

Proof: The variablex̂l, l ∈ P can be the leaving
variable if and only if there exists aθf ∈ int F̂ such that
l is the minimum in (13). This condition can be posed as the
following set of linear lexico-inequalities:

βi,∗

[

q̂ + Q̂θf I
]

βi,∗Â∗,e

�
βl,∗

[

q̂ + Q̂θf I
]

βl,∗Â∗,e

, ∀i ∈ P

(16)

Straightforward algebraic manipulation converts (16) to the
two conditions given in the statement of the theorem.

Each parameterθf that satisfies the conditions of the
theorem will be in the closures of both critical regionRB

andRB′ . Therefore, their intersection is of dimensiond− 1
if and only if the polytope (15) is full–dimensional.

Remark 4:Note that a polytope can be tested for full–
dimensionality through the use of a single linear program by
computing the Chebyshev centre [21].

Remark 5:We consider only full–dimensional intersec-
tions in Theorem 4 because Theorem 3 demonstrates that
this is sufficient to guarantee that all full–dimensional critical
regions will be discovered.

Remark 6:Note that once a pivot has been made using
Theorem 4 in which the value ofθf determines the leaving
variable, the constraints (15) must hold for all future pivots.
This is ensured by settinĝF ←

{

θf

∣

∣

∣
Γ
(

Q̂θf + q̂
)

≥ 0
}

∩

F̂ for all subsequent pivots.

b) Entering Variable:After a pivot is taken, the result-
ing basis is required to be an ACLFB. As a result, the next
entering variable must be chosen to be the complement of
the leaving variable. In other words ifxl = wi, then the
entering variablexe would bezi, andvice versa.

c) Termination Conditions:
Theorem 5 (Optimal Termination Condition):If B is an

ACLFB, 2n + 1 ∈ B and e is an entering variable,
then the basisB′ = B ∪ {e} \ {2n + 1} is a comple-
mentary lexico-feasible basis such thatdimRB′ = d and
dim

(

R̄B ∩ R̄B′

)

= d− 1 if

1) P ∩ Z = ∅
2) 2n + 1 ∈ P

Proof: The goal is to find a feasible basis for which
α can be increased to a strictly positive value. Ifxe is the
entering variable, thenα is given by the equation:

α = βB(2n+1),∗

(

q̂ + Q̂θf + ǫ− Â∗,ex̂e

)

,

where β , Â−1
∗,e and we recall thatα = x̂2n+1.

We note, however, thatB(2n + 1) is in the set Z;
βB(2n+1),∗

[

q̂ Q̂θf

]

= 0. This is because ifB(2n + 1)

is not in the setZ, then by definition there exists aθf ∈ F̂
such thatα > 0.

Therefore, increasing the variablexe will only causeα
to be a strictly positive value ifxe itself becomes strictly
positive andβB(2n+1),∗Â∗,e < 0, which are precisely the
conditions of the theorem.

Theorem 5 provides the conditions under which the algo-
rithm terminates with a list of adjacent critical regions. Note
however, that if the setP = ∅, then either the parameterα or
another variable can be increased forever without the basis
becoming infeasible. It follows that in this case the facet is
on the boundary of the feasible regionΘ.

d) Initialisation: The algorithm begins by bringingα
into the feasible complementary basisB by calling the
functionpivot with α as the entering variable. The pivoting
function will then continue recursively until one of the
termination conditions in Section III-B.1.c is reached, at
which point either a list of adjacent regions will have been
computed, or it will have been discovered that the facet is
on the boundary of the feasible region.

e) Correctness:The above procedure is a generalisa-
tion of the one–dimensional parametric LCP method pre-
sented in [17]. Given a basisB′ that defines an adjacent
region, the above procedure takes precisely the same pivots
as that in [17] for a fixedθf in the relative interior of
R̄B ∩ R̄B′ . For a fixed value ofθf , the following theorem
proves the correctness of the algorithm. It follows that the
above method computes all adjacent full–dimensional bases.

Theorem 6 ([17]): Consider the parametric LCP(q +
γα, M), where M is positive semi–definite andB is a
feasible basis forα = 0. The algorithm discussed above
finds a solution to this pLCP for a strictly positiveα in a
finite number of pivot steps. Also, the solution obtained is
the unique solution of this parametric LCP.



Algorithm 2 Functionpivot(B,e,F )

Input: ACFB B, entering variablee and facet constraintŝF
1: β , Â−1

∗,B,
Z ,

{

i
∣

∣ βB(i),∗

[

Q̂ q̂
]

= 0
}

,

P ,

{

B(i)
∣

∣

∣
βi,∗Â∗,e > 0

}

2: if P = ∅ then Feasible solution unbounded
3: return∅
4: end if
5: if P ∩ Z = ∅ and2n + 1 ∈ B andβB(2n+1),∗A∗,e < 0 then
6: returnB ∪ {e} \ {2n + 1} Theorem 5
7: end if
8: if Z ∩ P = ∅ then Adjacent basis is independent ofθf

9: l = lexmin
{

βB(i),∗

βB(i),∗Â∗,e

| i ∈ Z ∩ P
}

10: returnpivot(B ∪ {e} \ {l}, comp(l)a, F̂ )
11: else Adjacent basis is a function ofθf

12: L ←− ∅
13: for each i ∈ P do
14: if conditions of Theorem 4 is satisfiedthen
15: F ′ ←− F̂ ∩

{

θf

∣

∣

∣
Γ
(

Q̂θf + q̂
)

≥ 0
}

16: L ←− L ∪ pivot(B ∪ {e} \ {l} , comp(l), F ′)
17: end if
18: end for
19: returnL
20: end if

aThe functioncomp(l) returns the complement of the variablêxl. If x̂l = wi,
then comp(x̂l) = zi andvice versa.

IV. COMPLEXITY

The above procedure is output sensitive, in that it com-
putes the facets and calculates the adjacent neighbours of
each full–dimensional critical region exactly once. We note
that for every problem that the methods [7], [11], [13]
can solve, the proposed approach will not execute a larger
number of operations, since these problems will always
fall into Case 1 in Section III-B.1. Furthermore, in every
case that [8], [9] can determine the adjacent critical region
by inspection, (13) will contain exactly one element and
therefore one pivot will be made to find the adjacent region.

We therefore claim that the approach presented in this
paper is computationally efficient as it is equal in complexity
to the best known methods for all problems that they can
solve, and yet extends to a much larger class of problems.

V. CONCLUSIONS

This paper has presented a new method for computing
the solution to a multiparametric complementarity problem.
The proposed approach is as efficient as the current best
methods for computing multiparametric linear and quadratic
programs, and yet can tackle a much larger class of problems.

Space limitations prevented the inclusion of any examples
in this paper. However, code and examples are available as

part of the Multiparametric Toolbox MPT [22].
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