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1. Introduction

Various packet or circuit switching random access schemes for compu-
ter, broadcasting or telecommunication networks have been introduced and
investigated over the last decades (cf. [2], [10}, {13}, f{1l4], [15]},
[18], [20], [21], [22], (23], [27]). Most notably among these are the
ALOHA (e.g. [137, [20]) and CSMA (e.g. [13], [1l4], [20]) packet
switching protocols and their various extensions (e.g. [2], [16], [23]).
Particularizing to CSMA-protocols, explicit product form expressions for
the steady state distribution have been established under exponentiality
assumptions and simple interactions such as arising in single-hop radio
packet networks. Recently, in [16] for the so-called "rude CSMA"-proto-
col and in [2], these results were extended to multihdp random access‘
schemes which take into account the well-known "hidden terminal prob-
lem". Relaxatioms to non-exponential packet lenghts {(cf, [2]) and trans-
mitter dependent parameters (cf. [5]) were also established. However,
transmissions are still assumed to be exponential and several random

access schemes of practical interest are not yet covered.

This paper aims to show that a conceptually simple framework unifies
and extends the above CSMA-product form results, while it also provides
new product forxm results for several other random access schemes.
Particularized to the recent multihop CSMA-results from {2], {5] and

[lé] the extensions are the following:

(i) Non-exponential transmissions and packets.
(ii) More general random access mechanisms.
(iii) State dependent transmission speeds.

(iv) Link selective characteristics.
Generally, the main results are:
1) An insensitive product form expression.

2) A concrete comdition in terms of system protocols,

3) A generalization of product form random access protocols.
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Here, insensitivity means that the wunderlying random distributions
{transmizsion times, packet lengths) play a role through only their
means. A product form stands for factorization teo individual components
or stations. This product form result is related to product form results
in the extensive literature on queueing networks (cf. {3], [4], [7],
[8], [12], [26]), but has as such not been reported or recognized for
the system under study. It can be shown that it conceptually fits in the
framework of reversibility (ef. [12]) or of job-local-balance (cf., [8],
[91), provided appropiate conditions are met. However, sufficient condi-
tions in terms of concrete system protocols are hereby left open and
not obvious. To this end, a general invariance condition will be provid-
ed.It so turns out that wvarious known product form telecommunication
examples can be unified (e.g. examples 2.1-2.4). But also new product
form transmission examples (e.g. examples 3.4-3.6) and a genexralization
of the multihop-CSMA protocols from [2] and (16]) (see section 5) are

easily concluded.

The organization is as follows. First, in section 2 the model is
outlined. Next, in section 3 the condition upon the system protocols is
presented and iliustrated by some examples. The product form is derived
in section 4. Finally, the particular models of [16] (Rude-CSMA) and [2]

are extended as special examples, An evaluation concludes the paper.

2. Model

Consider a system of N nodes, numbered 1,...,N. Each of these nodes
alternates between idle and busy periods as follows, After a think time,
during which a node is called idle, a node h requests to become busy. If
upon this request also other nodes h,,...,h, are already busy, this

request is accepted with probability
Athihy, ... hy)

and node h starts a holding time, during which it is called busy. When

this regquest is not accepted, node h has to restart a new think time and



thus remains idle. Conversely, upon completion of a holding time node h
requests to become idle. When other nodes h;,...,h, are currently busy,

this request is accepted with probability

Dchiky, ..., hy)

and node h starts a think time. When this request is not accepted, node
h has to restart a new holding time and thus remains busy. A think time
of node h corresponds to a random service with distribution function T, .
A holding time of node h corresponds to a random service, with distribu-

tion function H,. When nodes h,....,h;, are busy, then
v(hihg,...,0), hehy L. by

is the service speed of idle node h, while
@(h; by, ... 0,), i=1,...,n,

is the service speed of busy node h,, i=1,...,n.

Queuneing model correspondence. The desceription above can be visualized

by

D(hin,,...,h.)

#(h|hy,. .. h,) B(hy [by, ... hy)

YV &4

(Idle) Athlhy, ..., hy) (Busy)

with the interpretation of a queueing example in which M jobs are sent
back and forth between two stations with accessibility constraints (re-
flected by A(.I.) and D(.|.)) and processor sharing servicing (refliected
by ¥(.|.) and &(.|.)). The same description applies alsc to seemingly
more complex communication or broadcasting systems as will be

illustrated below. Herein we choose D(.f.) - W(.].) = ﬁ(.l.) = 1.
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Throughout let H = {h;,...,h;} and denote by H + h the state in which
node bt is added (+) or deleted (-) as a busy node.

Example 2.1. (Interference graph; standard CSMA) (cf, [14], [1&6], [18],
[20]). Let the nodes in a graph represent transmitters with the restriec-
tion that adjacent nodes cannot transmit at the same time. Let N{(h) be

the set of all neighbors of node h. Then the above description applies
with

1 if hy,....,h, & N(h)
A(h|h1,...,hn)={

0 otherwise.
For example, in the two-hop CSMA-figure below (a hop means that all
nodes within this hop can hear each other) node 3 prohibits all other

nodes to trangmit at the same time

1 4

Example 2.2. (Multihop CSMA; hidden terminal problem) (ef. [2], [16]).
As in example 2.1, again consider a graph of nodes with its neighbors
all nodes that can hear this node. However, a node is not allowed to

hear two nodes at the same time,.

For instance in the above structure nodes 1 and 2 cannot transmit simul-
taneously as they are both heard by node 3 (and 4). (This is referred to
as the hidden terminal problem). Though this structure cannot be modeled
as a graph in which merely neigbors exclude each other, the parametriza-
tion of example 2.1 still applies if we replace N(h) be the set of
neighbors that is either transmitting or hearing. Clearly, these two-hop

interactions can be extended to multi-hop interactions.



Example 2.3. (Circuit switching) (cf. {3], [20]). A circuit switching

transmission may typically have a structure of the form

where messages from a particular source 8, are to be transmitted along a
particular path P, to a destination D;. A transmission requires one
trunk from each trunkgroup along this path., Interference thus arises be-
cause of limited trunkgroups and messages using the same trunkgroups.
With H = {h;,...,h,} representing the different messages, N,(H) the
mumbexr of these using trunkgroup i, and M; the number of trunks in

trunkgroup i, we can use

1 if N,(Huh) <=M, for all i
A(h|H) = {

0 othexrwige .

Example 2.4. (Synchronous servicing) (cf. [6], [10], [11l]). As a typic-
al feature of digital transmissions, a transmission may use several time
slots from a limited number of M time slots. The following figure visua-

lizes that a type-i message simultaneously requires b, time slots.

[ [ |
by

With n, (H) the number of type-i messages and t(h) the message type of

node h, this is parametyized by



1 €3 by ny(H) +b, ,, =M
A(hlH) = {

0 otherwise

Remark 2.5. As in these examples, many applications will involve only
the function-A(.].) while the other functions can be set equal to 1. The
inclusion of the function Q(.]) may naturally arise to model a state
dependent speed for tramsmitting, translating or processing a message at
a node., The functions D(.I.) and @(.].) do not complicate the analysis
at all, They make the model totally symmetric in idle and busy nodes
which can be handy for both analysis and modeling purposes. For
instance, delay factors such as dus to error detection (see examples 3.4
ii and 3.5 ii), service accelerations{see example 2.5-1), or message

interruptions (see example 3.6) can sco be modeled.

Remark 2.6. The assumption of a restarting think or holding time upon
blocking is common for commumication systems (cf, {6&], [10], [1l], [15],
{161, [17], {20), [27]). For an exponential think or holding time, it
coincides with interrupting this time to evolve if the idle or busy

status respectively is currently not allowed to change (cf. [17]).

Remark 2.7. Clearly we could have combined the funmctiens a(.|.), ¥(.].),
D(.].) and G(.|.). However, as they-  naturally correspond to ssparate

aystem features, we prefer not to.
3. Interference invariance condition

In this section we will impose a concrete condition upon the system
functions that will guarantee an explicit product form expression later
on. To this end, let a state (h,,...h,) denote that nodes h,,...,h, are
busy, where h;,...,h;, are given in increasing order, while the other
nodes are idle. The monotone ordering is introduced merely for
notational convenience in the condition below but does not play any role
itself. Let state @ denmote that all nodes are idle and without loss of
generality assume that there exists an irreducible set H of states
containing &, i.e. a set of states such that out of any state from this
set any other state within this set and no state outside this set can be

reached.



Condition 3.1, For any H = (h;,...,h;) € H and some value

P(H)
we have for some 2 = u:

D(hg|H-hy) B(hyin) > 0, (3.1)
while for ail i =1,...,n:

D(hy [H-h;) @(h JH) = 0

L=
A(h, [H-h,) ¥(h, [H-h,) = 0, (3.2)
and for all permutations (i;,...,i,) e_(l,...,n):
n ACh, |y ,...,hy ) W(hy |y ... by )
k 1 k-1 k 1 -
I = P(H) (3.3)
k=L D(hy |b; ,....hy ) &¢h; |h; ,...,h )
k 1 k-1 k 1 k

Condition (3.1} guarantees that the product in (3.3) has a positive
denominator for at least one permutation, while (3.2) guarantees that if
the denominator of this product is zero than alse the numerator is equal
to zere, so that the proeduct can be chosen equal te P(H). Thus effec-

tively only permutations with non-zero denominators need to be con-

sidered.

Condition (3.1) could be avoided but is included as it simplifies the
presentation while it excludes only the extreme case that none of the
current busy nodes is allowed to become idle again. Condition (3.2) is
essential and corresponds to the property of "instantaneous attention"
in the queueing literature (cf. [3], [4], (8], [9], [12]). Condition
{3.3) is related tc the well-known Kolmogorov criterxion (cf. [12]) for a
Markov chain to be reversible. Indeed, for the exponential case it will

lead to reversibility. In the non-exponential case, however, reversibi-



lity is not satisfied.

Remark 3.1. (Decomposed A(.|.) and Q(.I.) conditions). As mentioned in
remark 2.4, in various applications the functioms D(.].) and ¥(.|.) are
equal to 1. Clearly, conditien (3.3} is then guarantesd if for certain
functions P, (H) and P, (H):

1
I aA(hy |hy ,...,h ) = P, (H) . (3.4)
k=1 k 1 k-1
I o(h, |k h, ) =P, (H) (3.5)
k=1 A PRI | 2 '
for all permutatioms (i,,...,3%,) for which these products are positive.

These c¢onditions are satisfied for example, if for certain functions
g(n) and h(n):

aAthihy, ... b)) = g(m
(3.6)
@(hy [hy, ..., ) = hin)

Remark 3.2. (Coordinate convex interferences). An important subclass of
interferences with only 0 and 1 values (i.e., no randomized blocking)

satisfying (3.4) is obtained by

1 if {(h,hy,...,hy} € C
Ath|hy,...,hy) = {0 (3.7)

otherwise,

where C is some set of states such that for all j

(hy,...,hy) € C = (hy,...,h4.;,byuy,...,y) €C (3.8)

In words that 1is, departures from C are prohibited where € satisfies
{(3.8). In correspondence with [6] and [11l], such interferences are call-
ed "coordinate convex". Note that the corresponding Ffunction P, (H) is

equal to 1 for all H € C.



Below we will present several examples satisfying (3.4) and (3.5),
The coordinate convex examples 3.3 have been individually studied in the
literature {(cf. [6], [10], [11]). The examples 3.4-3.6 have not been

reported. Herein, all functions not specified are identical to 1.

Examples 3.3 (Coordinate convex interferences). One easily verifies that

the examples 2.1-2.4 are "coordinate convex” with

(i) C = (H | H has no neighbors} in example 2.1
(ii) ¢
(iii) ¢ | ¥, (H) <M, for all trunkgroups i} in example 2.3
(iv) € = {H | Z,b;n; (1) < M} in example 2.4.

1
£

| H has no one or two-step neighbors) in example 2.2

0
£

Examples 3.4 (Randomization). In some examples the fumections A(.].) ox

D(.|.) include randomization and thus have values other than 0 or 1.

(1) (Random grading). The following extension of the classical "Engset
ideal grading" satisfies (3.4). There are different types of nodes. A
type-1 node transmits type-i messages. All messages share the same group
of output channels. Type-i messages, however, can only be transmitted

through M; inputchanmels.

]

When 2 node of type i wishes to transmit a4 message, it randomly hunts

|l

iilly

over b, from the M, input chamnels to find a free chammel. Further, a
transmission simultaneously requires an input and output channel. With
n; [H] the number of type-i messages, n the total number of messages and

t, the type of node h, this is modeled by
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JHL, M-
ACh|H) = 1(n < M) {1 - [n l////[ ]}, (i=t,).
by b

The invariance condition (3.4) holds as a special example, since it

holds with arbitrary functions g(.) and g, (.) for

A(|H) = g(n) g (ny [H]), (1 = t,), with

n o, [H]
P(H) =T g(k-1) T { 0 g, (k-1)}.
k=1 i k-l

(1i) (Exrror detection). Consider a number of sources that share a common
multi-channel transmission cable. During a transmission an error in the
message may arise depending upon the current load of the cable. An error
is not detected (e.g. by acknowledgements) before completion of the

transmission and requires the complete message to be retransmitted, Let

D(h|H)

bhe the probability of an error in a message from source h if the sources

H= (hy,...,h) are currently transmitting. Then (3.3) is satisfied if
condition (3.4) holds with A(.]|.) replaced by D(.|.).

For example, consider the following circuit switching structure with
four source types and let nm; be the number of busy type-i sources (i.e.

currently sending a message from 5, to D).
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As a message uses a trunk from each trunkgroup (edge) along its trajec-

tory, the following error probabilities can be involved:

P, (n; ) Q;{n;+n;) Qy(ny+n,+1,4n, ), (tp=ie(l,2))
D(h|H) = {

P, (n;) Qpingin, ) Qi (n;+n,+ny+n, ), (gp=ie(3,4))

where P; and Q; are arbitrary functions with values between O and 1. The

invariance condition (3.4) or rather (3.3) is easily verified with

ny n; +1, Ty +T1, 1, +n, +1, 0,
PH)"! =1 { I P,(k)} @ Q, (k) H Q, (k) n Q, (k).
i k=1l k=1 k=1 k=1

Example 3.5. (Delay/acceleration factors)

{i) (Acceleration factors). As a simple acceleration example, assume
that the transmission speeds are doubled upon threspassing a threshold M

on the total number of transmissions. Then (3.5) is guaranteed by

1, n < M,
#(h|H) ...{
2, nezM,
+
P, () = 2P M7

In analogy with example 3.4 (i), the above example. is extendable to
type-dependent thresholds M;. More wprecisely, (3.5) is satisfied by
substituting @(.].) for A(.].) and P, (.) for P,(.) in example 3.4(i).

(ii) {Delay factors). A standard delay example is a processor sharing
service mechanism in which each job to be served (e.g. program to be run

by a central processor unit) gets an equal share of the total capacity

as prescribed by

g(h|H) = 1/n.
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This can be extended to more detailed delay interferences. For example,
the circuit switching example of 3.4 (ii) can be reresad verbatim with

D(.l.) replaced by Q(.l.) representing a delay factor,

Example 3.6 {(Priority messages). Various transmission systems are sub-
jeet to "priority" (e.g. emergency) messages that have priority over
regular messages in a preemptive manner. TFor example, consider a
transmission device which can handle only one message at a time. Upon
arrival of a "priority" message a regular transmission is interrupted
and temporarily held up. Upon completion of the "priority" transmission,

the regular transmission is continued.

R —b——

\/
P —

Under exponential transmission times one easily argues that the sta-

tionary behaviour of the above system is the same under the following
protocol. Once started, a regular transmission is continued until com-
pletion without interruptions by priority messages. The device can
transmit one regular and one priority message simultaneously but, as
before, a regular transmission can be started only when the device is
idle while otherwise it is lost. Moreover, a regular message is to be

retransmitted if upon completion of its transmission a priority message

is currently transmitted,

let R and P dencte the sets of nodes that geuerate "ragular".and
"priority" messages respectively. Then the latter system, and thus also
the original priority system under exponential transmission times,
satisfies (3.3) with
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H = {h; |i=1,...,M} U {(h; ,h;)|h;eR and h,eF},
A(h;|H) =0 for h; € R and H = &,
A(h, |h,) =0 for hy € P and hy € P,
D(h, |h;) = 0 for h; €R and h; € P,

A(.].) = D(.|.) =1 otherwise,

B(.) = 1.

4., Product form

This section contains the main result of the paper. Without loss of
generality assume that the think and holding time service functions T,
and H;, have continuous density functions £, (.) and q,(.) with means o

and r, respectively. Let the state
(5,T) = ({51.,t1),...,(85,t4))

denote that node i is idle when s, = 1 and busy when s, = 2 with a
residual time t; up to completion of the current think time (s = 1) or
holding time (s; = 2) respectively, i=1,...,H. For a given node
specification 8 = (s;,...,8,) let H be the corresponding set of busy
nodes. Let #((8,T)) and a(H#) be the steady state distributions. The next
two theorems will then be proven. The first, of which the proof is given
at the end of this section, is the kaey theorem. The secend is the more
practical consequence showing that the distributional forms of the think

and holding times do not play a role,

Theorem 4.1. Under condition 2.1 with P(H) given by (3.3) and ¢ a norma-

lizing constant, we have for all (§,T) with H € H:

f((S$,T)) = c P(H) T [1-Ty(ty)] T [L1-H,(ty)]. (&.1)
h:s,=1 his,=2
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As an immediate consequence, by noting that

[1-T,(t)]dt = o, and

O 8§

Oty 8

[1-H,(t)ldt = r, ,

we obtain by integratiom over all possible residual times t; and substi-

tuting & = e{o1){(gz)...(oy):

Theorem 4.2. Under condition 3.1 with P(H) given by (3.3) and & a nor-
malizing constant, we have for all H € H:
n{H) = & P(H)

th [ry/on ] (4.2)

Remarks 4.3,

1., HNote that expression (4.2) is determined by only mean think and

helding times as well as P(H) calculated by (3.2) in terms of concrete
systems functions,

2. In principle the verification of condition 3.1 and the calculation
of P(H) can be computationally complex. However, in most practical si-
tuations ome elther easily finds a counterexample with 0 and 1 values or
one can recursively caleulate P(H) as based upon "basie"™ paths or

cycles, (Related results along this line can be found in [7], [8] and
(12]).

3. Similarly to [24], the above results can be extended to allow dif-
ferent levels of think and holding times for a node. These levels can be
"averaged out” leading to expression (4.2) with ¢, and r, representing
"averaged" means. Multi levels may reflect for instance different inter-

rupted phases of a transmission.
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4. Similarly to [253}, also the "arrival theorem" can be shown to held
which here would read as: "The steady state distribution as seen by a
node upon think time completion is given by (4.2) for the system without
that node"., The well-known mean wvalue algorithm (cf£. [19]) to e£fi-
ciently compute performance measures can thus be applied. A computa-
tional approach to compute the normalizing constant based upon a statis-

tical mechanics technique can be found in [18].

5. In wvarious standard ways (e.g. by letting N-ow as in [l] or by in-
cluding a “dummmy node" as in [8]), similar results can be provided to

model "infinlte or open® transmission systems with Poissonian inputs.
Proof of theorem 4.1.

We need to verify the global balance or forward Kolmogorov equations
assuming without loss of generality that these have a unique solution.

To this end, for a given state (S5,T) and node i, let
(5,T) ‘(Si:ti) + (-éj_ ,%j_)j.

denote the same state with the node 1 specification changed from (s;,t;)
in (%;,%;). Purther, we use the symbol 0* to indicate the right hand
limit at 0. Then, for a fixed state (5,T) with H representing its busy

sources, the global balance equations become:
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) {%— *(($,T)) ¥(h|H) +
his,=1 h

7((S,T) - (1,t) + (2,0"),) oh|B+h) D(hiH) q, (&)

m((S,T) - (1,ty)y + (1,0%)y) w(h[H)[L-ACh|H)] qy(ty) } +

% {—Q- x((S,T)) @ (h[H) +
higy=2 o

a((8,T) - (2,ty)y + (1,0M)y) m(h]n-h) A(hiH-h) £ (%)
n(($,T) - (2,ty)n + (2,0%)y) @Ch]H) [1-D¢h[H)] £, (e } - 0.
ga.3)
Assume that (4.3) has a unique probability density solution =(.). It
thus suffices to verify (4.3) with (4.1) substituted for a(.}. First

conclude from (3.2) that for h with s, = 1 and w(h|H) = 0 or for h with

Sy = 2 and @(h{H) = 0 all three terms within braces {...} corresponding

to that node are equal te 0,

From (4.1), the permutation invariant expression (3.3) for P{.),
noting that T,(0%") = H,(0") =0 and xecalling that T,(.) has a

derivative q, (.), we conclude for a node h with s, = 1:

Fem TS, DK = -qy (5)

7((S,T) — (1,t4)y + (1,0%)y) (4.4)

7((S,T) - (Lity)y + (2,07)y) = AhIH) ¥Ch|H)
D(h[H) @(h[H+h)

w((S,T) - (L,t,)y + (1,07)y), (4.5)

provided D¢h|H) @(hlH + h) > 0. However, D(h|H) @(h|H+h) = 0 would imply
that A(h|H) ¥(h|H) = 0 by virtue of (3.2). Hence, by also assuming
¥(h|{H) > 0 as argued above.we then have A(h|H) = 0. As a consequence, in
either case and by substituting (4.4) and (4.5) the term within (...} in
(4.3) for h with s,=1 is equal to
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n((8,T) - (1,ty)y + (1,0%")) «x
Gy (ty) Th|E) (-1 + ACh[H) + [1-A¢h|B)]} = 0. (4.6)

One similarly argues that for h with s, = 2 the term within {...} in
{4.3) equals

w({(8,T) - (2,80, + (2’0+)h) X
£, (t,) S(h|H) (-1 + D(hiH) + {1-D(h[H)]} = O, 4.7

regardless of whether ¥(h]H-h) A(h|H-h) > 0 or not. We have thus veri-
fied (4.3), which completes the proof of the theorem.

5. Multihop-CSMA protocols

As illustrated in section 4, the framework of section 2 beth unifies
and extends standard product form communication examples. In this
section we will show that also the multihop-CSMA protocols from [16] and

[2] are included and generalized within this framework.
5.1 Extended rude CSMA (cf. [16])

As an extension of example 2.2, consider a set of nodes representing
transmitters. Let N(h) be the set of all neighbors of node h, i.e. all
nodes that it can hear, where it is assumed that if node i can hear node
j than also node j can hear node i. As yet, in contrast with example
2.2, we do not exclude that neighbors can transmit at the same time, For
a given set of busy (i.e. transmitting) nodes H = (h,,...h,), let By [H]
be the number of pairs of neighors that are both not transmitting and
let By [H] the number of pairs of neighbors that are both transmitting.
Consider arbitrary funtions gg(n) and g, (n) and assume that for all

reachable states H € H: g, (B, [H])g; (B, {H]) > 0 and for all h ¢ H:
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g6 (Bo [H + R]) g, (B, [H + h])
A(h|H) = (5.1)
go(Bg[H]) g, (B, [{H])

which by scaling of the functionms g (.) and g (.) can be assumed to be
less than or equal to 1. Further, for simplicity assume that the other

functions Q(.l.), @(.|.) and D(.|.) are identical to 1. Setting

P(H) = gn(Bu[H]) 51(31[H]): (5.2)

we have for all H, H + h € H:
P(H+h) = P(H) A(h|H), (5.3)

which is to be seen as the detailed balance equation for reversibility
{cf. [12], p.22) of a continucus time Markov chain with rates q(H -+ H +
h) = A(h{H) and q(H + h + H) = 1. The invariance condition (3.3) is then
a direct consequence of the Kolmogorov criterion (cf., [12], p.23) for

reversibility.

As a special case the rude-CSMA protocol from [l6] is obtained by

g0 (Bo [H]) = x Do [HI

(5.4)
g, (B, [H]) = YB1(H]

A(h|H) - KNE(H) yH?(H) (5.5)

where NB(H) and N{(H) are the numbers of idle (not transmitting) and

busy (transmitting) neighbors from h in state H and where x and y are
given system parameters. For instance x=1, y=l corresponds to the ALOHA-
protocol (no collisions), x=l, y=0 models the standard CSMA protocol of
example 2.1 and other values of x and y may reflect for instance that
sensing of channels is not always reliable (cf. [16]). As the framework
allows node dependent transmission times and packet lengths the exten-

sion of [5] is hereby covered.
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5.2 Link selective multihop CSMA (cf. [2])

Again consider a set of nodes representing transmitters. Now, how-
ever, we allow that a node may transmit different messages to different
sets of neighbors. For instance, a different transmission rate may be
scheduled for each different neighbor or link. Say, node i can transmit
a message type J to meighbors N;(i) for j=1,...,m(i), where the sets
N; (1) are not required to be disjoint. Also, it is not excluded that a
node transmits more than one message at the same time. The transmission
scheduling times and message lengths are all assumed to be independent.

For example, a node i can transmit 2 message types to disjoint sets
N, (i) and N, (i).

N/
VAN

N; (1) N, (1)

Such a system can be transformed into the framework of section 2 as
follows. Consider a new multi-node system in which esach node corresponds
to a different message type of a node. For example, as illustrated
below, a node with two message types to two disjoint sets of neighbors
will lead to separate nodegs i, and i,. These nodes i; and i, will be
connected depending on whether or not the original node can or can not
transmit both messages at the same time. Also each of the original
neighbors is to be splitted in as many neighbors as it has message
types, such as 2 for the lower and upper and 3 for the middle original

neighbors.
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Ny (1) N, (1)

The original system is thus modified in the standard multihop-CSMA model
from example 2.2, which satisfies the coordinate convex condition (3.7)

and (3.8) (see example 3.3{(ii)) and thus the invariance condition (3.3)
with P(.) = 1.

Now let B, o} be the mean message length and transmission time

respectively of message type m from transmitter h and denote by
(H,M) = {(h, M(h)); h € H)

the state in which nodes h € H are transmitting and where node h cur-
rently transmits messages of types M(h) = {my,...,m ., ,} for some x(h).
Let (H,M) be the corresponding state space of admissible states. Then by
virtue of the above transformation of the original system into the stan-

dard multihop-CSMA system of example 2.2, we obtain from theorem 4 2:

#((H,M)) =¢c I I (rB/c2] ,  (H,M) € (H,M) (5.6)
hed meM(h)

as steady state distribution with € a normalizing constant. In partic-
ular, assuming that a nede can transmit only one message at a time, so

that M(h) is always a singleton, and aggregating over the message types

we obtain:



n(H) =& O p*, HeH, (5.7)

m(h)
P =3 Bt
i=1

Thus »" is the averaged transmission intensity for node h. The result
from [2] is hereby included setting 1/¢2 = g (the packet lengths or
transmission times are the same for all 1links) and 1/00% = Bm
{representing a scheduled transmission rate for link m of node h), so

that p® = g, /i, with g, = %,8,, the total transmission rate of mode h.

Evaluation. A framework is presented by which the peossibility of product
form results for various telecommunication packet or circuit switching
random access schemes can be investigated. Expomentiality assumptions
are avoided. A condition Is provided, in terms of concrete system proto-
cols, that guarantees an explicit product form expression depending upon
only mean transmission times and packet lengths. This condition unifies
and extends standard product form telecommunication examples, but also
leads to a number of new product form examples for ecircuit or packet
switching and resource sharing random access schemes. For instance, syn-
chronization, random grading, error detection, delays or acceleratiouns
and priority messages can be involved. Particularly, generalizations are
given of recently reported product form results for multihop-CSMA
protocols, Extensions of this framework such as to include multi-stage

or ordered transmissions seem possible.
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