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Abstract: Machine learning is concerned with enabling computer programs automatically to
improve their performance at some tasks through experience. Manufacturing is an area where
the application of machine learning can be very fruitful. However, little has been published
about the use of machine-learning techniques in the manufacturing domain. This paper
evaluates several machine-learning techniques and examines applications in which they have
been successfully deployed. Special attention is given to inductive learning, which is among
the most mature of the machine-learning approaches currently available. Current trends and
recent developments in machine-learning research are also discussed. The paper concludes
with a summary of some of the key research issues in machine learning.
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1 INTRODUCTION

Many knowledge-based systems have been employed
to automate different operations in manufacturing.
Examples are expert systems for decision support,
intelligent-scheduling systems for concurrent produc-
tion, and fuzzy controllers. A problem is the gathering
of the required expert knowledge to implement these
knowledge-based systems. Machine-learning tech-
niques can help in automating the time-consuming
process of knowledge acquisition that is essential to
the development of a knowledge-based system.
Automation would increase the speed and reduce
the cost of development by decreasing the amount
of time needed from experts and knowledge engi-
neers. Automation could also uncover knowledge
that might otherwise be overlooked by those involved
in the knowledge-acquisition process.
The field of machine learning is concerned with

enabling computer programs automatically to
improve their performance at some tasks through
experience. The field is closely related to pattern

recognition and statistical inference. A great deal of
research inmachine learning has focused on classifica-
tion, the task of developing a model, from a set of
previously classified examples, that can correctly
categorize new examples from the same population.
Classification has a wide range of applications, includ-
ing manufacturing, telecommunications, marketing,
and scientific analysis. Many manufacturing problems
fall under the category of classification, where indus-
trial domain experts are asked to assign a class label
to an object or a situation based on the specific
values of a set of parameters.

Machine-learning approaches commonly used for
classification include inductive-learning algorithms
such as decision-tree induction [1] and rule induction
[2], instance-based learning [3, 4], neural networks
[5], genetic algorithms [6], and Bayesian-learning
algorithms [7]. Among the various machine-learning
approaches developed for classification, inductive
learning from instances may be the most commonly
used in real-world application domains. Inductive-
learning techniques are fast compared to other
techniques. Another advantage is that inductive-
learning techniques are simple and their generated
models are easy to understand. Finally, inductive-
learning classifiers obtain similar and sometimes
better accuracies compared with other classification
techniques.

395

B14004 # IMechE 2005 Proc. IMechE Vol. 219 Part B: J. Engineering Manufacture

*Corresponding author: Manufacturing Engineering Centre,

Cardiff University, Cardiff CF24 3AA, UK. email: phamdt@cf.ac.uk

 at PENNSYLVANIA STATE UNIV on September 18, 2016pib.sagepub.comDownloaded from 

http://pib.sagepub.com/


The paper is organized as follows: section 2 formally
defines the classification-learning problem and pre-
sents a framework for viewing approaches to it; section
3 describes in some detail the different techniques for
inductive learning that have been or could be applied
in the manufacturing domain; and section 4 briefly
reviews other major machine-learning approaches.
Current trends and recent developments in machine-
learning research are presented in section 5. Successful
manufacturing applications of machine-learning tech-
niques are reviewed in section 6. Section 7 concludes
the paper with a summary of some of the key research
issues in machine learning.

2 THE SUPERVISED CLASSIFICATION-LEARNING
PROBLEM

In classification learning, a learning algorithm is given
a sample of preclassified examples from the problem
domain called the training set. Each example is
described by a vector of attributes. An attribute is
either nominal or continuous. The algorithm learns
a model that is used to predict the classification of
future examples.
Learning methods can be divided into supervised

and unsupervised schemes based on whether or not
a dedicated target function for prediction has been
defined. In unsupervised methods, such a function
is not available and the goal is grouping or clustering
instances based on some similarity or distance
measure. In supervised learning, there is either a
nominal or continuous-valued target function to be
predicted. The former case is referred to as classifica-
tion and the latter as regression or continuous
prediction. In this paper, only methods for supervised
classification learning will be addressed.
Ideally, given a complete description of an example

(i.e. the values of all its attributes), its class should be
unambiguously determined. In practical tasks, how-
ever, the available attributes will often not contain all
the information necessary to do this. The training set
may contain examples with the same attribute values
but in different classes. Also, examples may appear
with erroneous class values, or with erroneous attri-
bute values, or both. These errors may stem from a
diversity of sources, including limitations ofmeasuring
instruments and human error while typing examples
into a computer. All these phenomena are referred to
collectively as noise and limit the achievable accuracy
in an induction problem. The degree of robustness of a
learning system with respect to noise is one of its most
important characteristics. It also occurs often in prac-
tice that the values of certain attributes for certain
examples are simply not available. These are called
missing values and again a practical induction
system must be able to handle them.

3 DESCRIPTION OF INDUCTIVE-LEARNING
TECHNIQUES

A classification-learning algorithm can be viewed as
having three components: representation, search,
and evaluation [8]. The representation component
is the formal language in which concepts are
described; the output of the learning algorithm is a
statement in this language. The search procedure is
the process by which the learning algorithm finds
the concept description in the space of possible
descriptions defined by the representation language.
The evaluation component takes a candidate concept
description and returns a measure of its quality. This
is used to guide the search, and possibly to decide
when to terminate it. Often, different evaluation
procedures are used for these two purposes.

Inductive-learning techniques can be divided into
two main categories, namely, decision-tree induction
and rule induction. Each of these categories will be
analysed in view of the above three components.

3.1 Decision-tree induction

There are a variety of algorithms for building decision
trees. The most popular are: CART [9], ID3, and its
descendants C4.5 and C5.0 [10–13]. These learning
systems are categorized as ‘divide-and-conquer’
inductive systems. The knowledge induced by these
systems is represented as decision trees. A decision
tree consists of internal nodes and leaf nodes. Each
internal node represents a test on an attribute and
each outgoing branch corresponds to a possible
result of this test. For a nominal attribute Ai with nAi

possible values vi1, vi2, . . . , vij , . . . , vinAi , there are nAi

different branches originating from an internal
node. For a continuous attribute Ai, a binary test is
carried out and a corresponding branch Ai 4 tij is
created, with a second branch corresponding to
Ai > tij , where tij is a threshold in the domain of Ai.
Each leaf node represents a classification to be
assigned to an example. Table 1 shows an example
data set and Fig. 1 displays a decision tree con-
structed from these data.

To classify a new example, a path from the root of
the decision tree to a leaf node is identified based

Table 1 An example of a data set

Vibration Pressure Temperature Fault type

Present 30 65 A
Absent 23 15 B
Absent 40 75 B
Present 55 40 A
Absent 55 100 B
Present 45 60 A
Present 25 55 A
Absent 24 20 B
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on values of the attributes of the example. The class at
the leaf node represents the predicted class for that
example.
Decision trees are generated from training data in a

top–down, general-to-specific direction. The initial
state of a decision tree is the root node that is
assigned all the examples from the training set. If it
is the case that all examples belong to the same
class, then no further decisions need to be made to
partition the examples and the solution is complete.
If examples at this node belong to two or more
classes, then a test is made at the node that will
result in a split. The process is recursively repeated
for each of the new intermediate nodes until a com-
pletely discriminating tree is obtained.
CART is a binary decision-tree algorithm that is

extensively used. The evaluation function used for
splitting in CART is the Gini index. Given a labelled
data set S with k classes, let k classes be
C1‚C2‚ . . . ‚Ck and let PðCj ‚SÞ be the proportion of
instances in S which are in class Cj. Then the index
is defined as

GiniðSÞ ¼ 1�
Xk
j¼1

PðCj ‚SÞ2 ð1Þ

For each candidate split, the ‘impurity’ (as defined by
the Gini index) of all the subpartitions is summed and
the split that causes the maximum reduction in
impurity is chosen.
ID3 is a well-known decision-tree system. It utilizes

the information gain criterion for splitting nodes. The
information gain is computed from the entropy
measure that characterizes the impurity in a collec-
tion of training instances as explained below. For a
given data set S, the entropy is defined as

EntropyðSÞ ¼ �
Xk
j¼1

PðCj ‚SÞ log2 PðCj‚SÞ ð2Þ

Let a test T with b outcomes partition the data set S
into S1‚S2‚ . . . ‚Sb. Then, the total entropy of the

partitioned data set is defined as the weighted sum
of the entropy of the subsets as described below

EntropyðS‚TÞ ¼
Xb
i¼1

jSij
jSj EntropyðSiÞ ð3Þ

where jSij and jSj are the numbers of instances in Si

and S respectively.
The information gained by partitioning in accor-

dance with the test T is measured by

GainðS‚TÞ ¼ EntropyðSÞ � EntropyðS‚TÞ ð4Þ
GainðS‚TÞ is therefore the expected reduction in
entropy as a result of partitioning the data set into
mutually exclusive subsets based on test T . The
gain criterion selects a test to maximize this infor-
mation.

C4.5, a variant and extension of ID3, is another
popular decision-tree algorithm. It employs the
gain-ratio criterion [1], because the information-
gain criterion has a strong bias in favour of attribute
tests with many values. To reduce the bias of the
information-gain criterion, the split-information
measure as defined by the following equation is
employed

Split InformationðS‚TÞ ¼ �
Xb
i¼1

Sij j
Sj j � log2

�jSij
jSj

�

ð5Þ
The split-information measure can be regarded as the
cost of selecting a given attribute as a test. Notice that
it discourages the selection of attributes with many
values.

The gain ratio is then given by

Gain RatioðTÞ ¼ GainðS‚TÞ
Split InformationðS‚TÞ ð6Þ

The gain-ratio computation for a nominal attribute
test is relatively straightforward. For continuous
attributes, the d possible values appearing in the
subset associated with an internal node are sorted.
Then, all d � 1 possible splits on this continuous
attribute are examined. The one that maximizes the
gain-ratio criterion is selected as a threshold.

A decision tree generated as described above is
potentially an overfitted solution, i.e. it may have
components that are too specific to noise and outliers
that may be present in the training data. To relax this
overfitting, C4.5 uses a tree-pruning method that tries
to simplify the tree by eliminating subtrees that seem
too specific. Pruning is done by examining each
subtree and replacing it with one of its branches or
leaf nodes, if such a replacement does not degrade
the accuracy of the subtree.

Fig. 1 A decision tree constructed from the data in Table 1
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The C4.5 inductive-learning system can also trans-
form the generated decision tree to a set of IF–THEN
rules. For the transformation to a rule set, every path
from the root of the unpruned tree to a leaf gives one
initial rule, in which the left-hand side is the conjunc-
tion of all attribute-based tests established by the
path and the right-hand side specifies the class
predicted at the leaf. If the path to each leaf node is
transformed into a production rule, the resulting
collection of rules would classify examples exactly as
the tree and, as a consequence of their tree origin,
the rules would be mutually exclusive and hence
their order would not matter. After producing a rule
set from an unpruned tree, C4.5 implements a very
complicated multiphase rule-pruning procedure.
First, each rule is simplified by deleting some con-
ditions based on the pessimistic-error estimate as
adopted in tree pruning. Second, the set of rules is
partitioned into several groups according to the rule
consequent, with one group corresponding to one
class. All possible subsets of rules from each group
are then examined and the best subset based on
the minimum description length (MDL) principle is
selected. In the third stage, all the rule subsets are
ordered, based on their classification error on the
training data set. A default rule is then chosen
whose consequent is the class that contains the
largest number of training instances not covered by
any rule. The pruning procedure then attempts to
reduce the size of the rule set further by eliminating
rules, the removal of which does not cause a
deterioration in the accuracy of training-data classifi-
cation.

3.2 Rule induction

As with decision-tree learning, there are many rule-
induction algorithms. AQ [14–16], CN2 [2, 17],
RIPPER [18], SLIPPER [19], and RULES [20–22] are
examples. These learning systems are categorized as
‘separate-and-conquer’ inductive systems.
In contrast to decision-tree learning, rule induction

directly generates IF–THEN rules. Each rule can be
represented in the following form: Cond1 ^ . . .^
Condi ^ . . . ^ Condnc ! Cj , where the antecedent
consists of a conjunction of conditions Condi. Each
condition takes the form ½Ai ¼ vij� or ½ti1 < Ai 4 ti2�
depending on the property of the attribute Ai. If Ai

is a nominal attribute, vij is a valid nominal value
that Ai can take. If Ai is a continuous attribute, ti1
and ti2 are two thresholds in the domain of attribute
Ai. The consequent is the class to which instances
satisfying the antecedent can be assigned. Figure 2
displays a rule set generated from the data set given
in Table 1.
Rule-induction systems produce either an un-

ordered set of IF–THEN rules or an ordered set of

IF–THEN rules, also known as decision lists [23],
both including a default rule. To classify an instance
in the case of ordered rules, the ordered list of rules
is examined to find the first whose antecedent is
satisfied by the instance. The predicted class is then
the one nominated by this rule. If no rule antecedent
is satisfied, the instance is predicted to belong to the
default class. In the case of unordered rules, it is
possible for some instances to be covered by more
than one rule. To classify a new instance in this
case, some conflict resolution approach must be
employed.

The general operation of rule-induction algorithms
is the same. They induce the rule ‘set one rule at a
time’. After a rule is generated, the instances covered
by it are removed from the training data set and the
same induction procedure is applied to the remaining
data set until all the instances are covered by at least
one rule in the rule set.

AQ15 is a well-known inductive-learning system. It
is based on the AQ algorithm as originally described
in [14] and implements the STARmethod of inductive
learning [24]. In AQ15, decision rules are represented
as expressions in the variable-valued logic system 1
(VL1). VL1 is a multiple-valued extension to proposi-
tional logic. In VL1, a selector relates an attribute to
an attribute value or disjunct of values using one of
the relational operators <, 4, ¼, !¼, 5, or >. A
selector or a conjunction of selectors forms a com-
plex. A cover is a disjunction of complexes describing
all positive instances and none of the negative
instances of the concept. A cover defines the condi-
tion part of a corresponding decision rule. AQ15 is
able to implement a form of constructive induction
as well. An example of a decision rule with an internal
disjunct is

½Outlook ¼ sunny _ cloudy� ^ ½Temperature > 60�
_ ½Wind ¼ true� ^ ½Temperature > 70�
! class½Nice�

When building a complex, AQ15 performs the general-
to-specific beam-search technique to find the best
complex. The algorithm considers specializations
that exclude some particular covered negative
instances from the complex, while ensuring some
particular ‘seed’ positive instances remain covered,

Fig. 2 A set of rules derived from the data in Table 1
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iterating until all negative instances are excluded. As a
result, AQ searches only the space of complexes that
are completely consistent with the data. Seeds are
selected at random and negative examples are
chosen according to their distance from the seed (the
nearest ones are picked first, where distance is the
number of attributes with different values in the seed
and negative instances).
The AQ15 system can generate unordered and

ordered rules. In the case of unordered rules, a new
instance is classified by finding which of the induced
rules have their complexes satisfied by the instance. If
the instance satisfies only one rule, then the class
predicted by that rule is assigned to the instance. If
the instance satisfies more than one rule, a heuristic
called estimate of probability (EP) is used to predict
its class. With this method, each rule is weighted by
the proportion of learning instances covered by it.
The weights of rules of the same class are probabilis-
tically combined to form a weight for the entire class
and the class with the highest weight is taken as the
predicted class of the test example. If the instance is
not covered by any rule, a heuristic called measure
of fit (MF) is used. In this case the instance belongs
to a part of the decision space that is not covered by
any decision rule. The measure of best fit of a class
can be interpreted as a combination of ‘closeness’ of
the instances to a class and an estimate of the prior
probability of the class.
The AQ15 algorithm uses a post-pruning technique

to remove redundant conditions from the body of
a rule and to remove unnecessary rules from the
rule set. Simplification generally leads to smaller,
more accurate rule sets. This framework was
later generalized in the POSEIDON system [25].
POSEIDON can simplify a complete and consistent
concept description, which has been induced by the
AQ15 algorithm, by removing conditions and rules,
and by contracting and extending intervals and
internal disjunctions. POSEIDON successively applies
the operator that results in the highest coverage gain
as long as the resulting rule set increases some quality
criteria.
CN2 is a rule-induction algorithm that incorporates

ideas from both ID3 and AQ. The representation of
decision rules in CN2 is very similar to that of AQ15
and can be viewed as a subset of VL1. The induc-
tive-learning system CN2 was developed by Clark
and Niblett [2, 26] and later modified by Clark and
Boswell [17]. The objective behind the design of
CN2 was to modify the AQ algorithm by retaining its
beam search through the space of complexes, but
removing its dependency on specific training
instances during search. While the AQ algorithm
searches only the space of complexes that are com-
pletely consistent with the training data, CN2 extends
its search space to rules that do not perform perfectly

on the training data by broadening the specialization
process to examine all specializations of a complex, in
much the sameway as ID3 considers all attribute tests
when growing a node in a tree. A cut-off method
similar to decision-tree pruning is applied to halt
specialization when no further specializations are
statistically significant. The modified version of CN2
produces either an ordered set of IF–THEN rules
like the original CN2 version or an unordered set of
IF–THEN rules.

The CN2 algorithm consists of two main pro-
cedures: a search algorithm performing a beam
search for a good rule and a control algorithm for
repeatedly executing the search. The control pro-
cedure of the CN2 algorithm for ordered rules itera-
tively calls the beam search procedure to find the
best complex, until no better complexes are found.
It then appends a rule to the rule set with this best
complex as the condition and the most common
class among the instances covered by this complex
as the prediction. The instances covered by a rule
are removed from the training set. The last rule in
the rule list is a default rule predicting the most
common class among the training examples not
covered. The beam search procedure to find the
best complex corresponds to the STAR procedure of
the AQ algorithm. The pruned general-to-specific
search retains a size-limited set or star of ‘best
complexes found so far’. The system examines only
specializations of this set, carrying out a beam
search for the space of complexes. A complex is
specialized by either adding a new selector to the
conjunction or by removing a disjunctive element in
one of its selectors.

The CN2 algorithm can be easily modified to
generate an unordered rule set by changing only the
control procedure, leaving the beam search pro-
cedure unaltered (apart from the evaluation function,
described below). The main modification to the
algorithm is to iterate the search for each class in
turn, removing only covered instances of the current
class where a rule has been found. Unlike the case
for ordered rules, the negative instances remain
because now each rule must independently stand
against all negatives. The covered positives must be
removed to stop CN2 from repeatedly finding the
same rule.

The CN2 algorithm employs two types of heuristics
in the search for the best complexes, goodness and
significance. Goodness is a measure of the quality of
the complex that is used for ordering complexes
that are candidates for inclusion in the final cover.
Like ID3, the original CN2 version used the informa-
tion-theoretic entropy measure to evaluate the
quality of the complex (the lower the entropy, the
better the complex). This function prefers complexes
covering a large number of instances of a single class
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and few examples of other classes, but it tends to
select very specific rules covering only a few training
instances. The modified version of CN2 employs the
Laplacian error estimate instead. The expected
accuracy, one minus the expected Laplacian error
estimate, is given by

Laplace Accuracyðnclass‚ ncovered‚ kÞ ¼
nclass þ 1

ncovered þ k

ð7Þ
where k is the number of classes, nclass is the number
of positive instances covered by the rule, and ncovered
is the number of instances covered by the rule.
This formula is a special case of the m-probability-
estimate developed in [27]. This estimate avoids the
downward bias of the entropy measure of favouring
very specific complexes in the general-to-specific
search operation.
The second evaluation function tests whether a

complex is statistically significant, i.e. whether it
locates a regularity that is unlikely to have occurred
by chance and thus reflects a genuine correlation
between attribute values and classes in the training
data. To test significance, CN2 uses the likelihood
ratio statistic [28]. This is given by

Likelihood RatioðF ‚EÞ ¼ 2 �
Xn
i¼1

fi � log
fi
ei

ð8Þ

where the distribution F ¼ ð f1‚ f2‚ . . . . . . ‚ fnÞ is the
observed frequency distribution of instances among
classes satisfying a given complex and E ¼
ðe1‚ e2‚ . . . . . . ‚ enÞ is the expected frequency distribu-
tion of the same number of instances under the
assumption that the complex selects instances
randomly from the training set. Thus the two func-
tions, the Laplacian error estimate and statistical
significance serve to determine whether complexes
found during the search are both ‘good’ (have high
accuracy when predicting the majority class covered)
and ‘reliable’ (the high accuracy on the training data
is not just due to chance).
CN2 performs another check that can be viewed as

a form of pre-pruning. It checks whether the Laplace
estimate of the best complex is greater than that of
the default rule predicting the class for all instances.
If this is not the case, then the new complex does
not contribute any new information and the
generation of complexes for the current class is
terminated.
To apply unordered rules to classify a new instance,

all rules are tried and those whose conditions are all
satisfied are collected. If a clash occurs, i.e. more
than one class is predicted by the collected rules, a
probabilistic method is employed to resolve the
clash. Each rule is tagged with the distribution of

covered instances among classes and these distribu-
tions are summed to find the most probable class.

RULES (RULe Extraction System) is a set of
inductive-learning algorithms that follow a similar
approach to the AQ family. The first three algorithms
in the RULES family of algorithms (RULES-1, 2, and 3)
were developed by Pham and Aksoy [20, 29, 30]. Later,
Pham and Dimov [21] introduced a new algorithm
called RULES-3 Plus. Compared to its immediate
predecessor RULES-3, RULES-3 Plus has two new
strong features. First, it employs a more efficient
search procedure instead of the exhaustive search
conducted in RULES-3. Second, it incorporates a
simple metric for selecting and sorting candidate
rules according to their generality and accuracy.
RULES-3 does not employ any measure for assessing
the information content of rules. The first incremen-
tal-learning algorithm in the RULES family was
RULES-4 [31]. It allows the stored knowledge to be
updated and refined rapidly when new examples
are available. RULES-4 employs a short term
memory (STM) to store training examples when
they become available. The STM has a user-specified
size. When the STM is full, the RULES-3 Plus algo-
rithm is used to generate rules. In order to increase
the efficiency of the RULES family of algorithms,
Pham et al. [32] used a simple clustering technique
to select a good set of training examples that are
representative of the overall data set. The method
was tested on different problems. The results
showed that when the algorithm was applied to
clustered data sets, the execution time was reduced,
as well as the size of the generated rule sets. Pham
et al. [22] described a new algorithm, called RULES-
5, which overcomes some of the deficiencies of the
RULES family. In particular, RULES-5 employs a new
method for handling continuous attributes and uses
a simple and more efficient search method. The test
results obtained with RULES-5 showed that the rule
sets extracted were more accurate and compact
than those obtained using its immediate predecessor
RULES-3 Plus. One of the main weaknesses of the
RULES-5 algorithm is its inability to handle noisy
data. Pham et al. [33] proposed a new pruning tech-
nique that improved significantly the performance
of the RULES-5 algorithm on data sets containing
noisy examples.

4 OTHER MACHINE-LEARNING APPROACHES
TO CLASSIFICATION LEARNING

Besides decision trees and rule induction, several other
approaches to classification learning exist, as shown in
Fig. 3. This section will briefly review those alternative
approaches: instance-based learning, neural networks,
genetic algorithms, and Bayesian methods.
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4.1 Instance-based learning

Instance-based learning is based upon the idea of
letting the examples themselves form an implicit
representation of the target concept [3, 4]. In contrast
to learning methods that construct a general, explicit
description of the target concept when training
instances are provided, instance-based learning
methods, such as those using nearest-neighbour
methods, simply store the training instances. Gener-
alizing beyond these instances is postponed until a
new instance must be classified. Because of this,
instance-based methods are sometimes referred to
as ‘lazy’ learning methods. A test instance is classified
by finding the nearest stored instance according to
some similarity function and assigning the class of
the latter to the former. Advantages of instance-
based methods include the ability to model complex
target concepts and the fact that information present
in the training instances is never lost (because the
instances themselves are stored explicitly). One dis-
advantage of the instance-based approaches is that
the cost of classifying new instances can be high.
This is because nearly all the computation takes
place at classification time rather than when the
training instances are first encountered. Therefore,
techniques for efficiently indexing training instances
are a significant practical issue in reducing the
computation required at classification time. A
second disadvantage of many instance-based
approaches, especially nearest-neighbour methods,
is that they typically consider all attributes of the
instances when attempting to retrieve similar training
instances from the memory. If the target concept
depends on only a few of the many available attri-
butes, then the instances that are really most ‘similar’
may be a long distance apart.
Domingos [34, 35] presented a new approach to

inductive learning that combines the best features
of instance-based learning and rule induction. The
approach is implemented in the RISE system, which
stands for ‘Rule Induction from a Set of Exemplars’.

4.2 Neural networks

Neural networks provide a general practical method
for learning real-valued and discrete-valued target
concepts in a way that is robust to noise in the
training data [36–38]. Neural-network learning is
well-suited to problems in which the training data
correspond to noisy, complex sensor data, such as
inputs from cameras and microphones. Neural net-
works can be classified according to their mode of
learning, namely, supervised, unsupervised, and rein-
forcement learning. The latter can be regarded as a
special form of supervised learning. Instead of using
a teacher to provide target outputs, a reinforcement
learning algorithm employs a critic only to evaluate
the goodness of the neural network output corre-
sponding to a given input. The backpropagation
algorithm is a common supervised learning method
adopted for multilayer perceptrons, the most popular
type of neural networks. The algorithm has been
successfully applied to a variety of learning tasks,
such as interpreting visual scenes, speech recogni-
tion, handwriting recognition, and robot control.
One of the chief advantages of neural networks is
their wide applicability; however, they also have two
particular drawbacks. The first is the difficulty in
understanding the models they produce. The
second is the often time-consuming training. Recent
years have seen much research in developing new
neural-network methods that effectively address
these comprehensibility and speed issues [39–42].

4.3 Genetic algorithms

Genetic algorithms are stochastic search techniques,
which have been inspired by the process of biological
evolution [43–45]. Several genetic algorithm-based
systems for learning classification rules have been
developed [46–55]. In these systems, rules are repre-
sented by bit strings whose particular interpretation
depends on the application. The search for an appro-
priate rule begins with a population, or collection, of

Fig. 3 A classification of the main machine-learning techniques
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initial rules. Members of the current population give
rise to the next-generation population by means of
operations such as random mutation and crossover.
At each step, the rules in the current population are
evaluated relative to a given measure of fitness, with
the fittest rules selected probabilistically as seeds for
producing the next generation. The process performs
generate-and-test beam search of the rules, in which
variants of the best current rules are most likely to be
considered next. Genetic algorithms have been
applied successfully to a variety of learning tasks
and to other optimization problems. For example,
they have been used to learn collections of rules for
robot control, to optimize the topology and learning
parameters for neural networks, and to solve job-
shop scheduling problems. Genetic algorithms have
a potentially greater ability to avoid local minima
than is possible with the simple greedy search
employed by most learning techniques. On the
other hand, they have a high computational cost.

4.4 Bayesian approaches

Bayesian approaches employ probabilistic concept
representations and range from a simple Bayesian
classifier [56] to Bayesian networks, which learn the
full joint probability distributions of the attributes
and class, as opposed to just the class description
[57]. Bayesian networks provide a natural platform
for combining domain knowledge and empirical
learning. However, inference in Bayesian networks
can have a high time complexity and as tools for
classification learning they are not yet as mature or
well tested as other approaches. More generally, as
Buntine [58] notes, the Bayesian paradigm extends
beyond any single representation and forms a frame-
work in which many learning tasks can be usefully
studied.

5 CURRENT TRENDS IN MACHINE-LEARNING
RESEARCH

Machine-learning research has been making signifi-
cant progress in many directions. This section exam-
ines two of the most important directions and
discusses some current problems. The two directions
are scaling up of machine-learning algorithms and
learning multiple models.

5.1 Scaling up machine-learning algorithms

Inmodernmanufacturing environments vast amounts
of data are being collected in database management
systems and data warehouses from areas such as
product and process design, production planning
and control, assembly, scheduling, and maintenance.

The first major research area concerns techniques for
scaling up machine-learning algorithms so that they
can process very large data sets efficiently, while build-
ing from them the best possible models. The recent
emergence of data mining as a major application of
machine-learning algorithms has underlined the
need for algorithms to be able to handle large data
sets that are currently beyond their scope. In data-
mining applications, data sets with millions of training
examples, thousands of attributes and hundreds of
classes are common. Fayyad et al. [8] cited several
representative examples of databases containing
many gigabytes (even terabytes) of data. Designing
learning algorithms appropriate for such applications
has thus become an important research problem.

Many approaches have been proposed and imple-
mented for scaling up machine-learning algorithms
[59–65]. The most straightforward approach is to
produce more efficient algorithms or increase the
efficiency of the existing algorithms. This approach
includes a wide variety of algorithm design tech-
niques for optimizing the search and representation,
for finding approximate instead of exact solutions,
or for taking advantage of the inherent parallelism
of the task. A second approach is to partition the
data, avoiding the need to run algorithms on very
large data sets. This approach involves breaking the
data set up into subsets, learning from one or more
of the subsets, and possibly combining the results.
Data partitioning is useful to avoid memory manage-
ment problems that occur when algorithms try to
process huge data sets in the main memory. An
approach orthogonal to the selection of example
subsets is to select subsets of relevant features on
which to focus attention.

In order to provide focus and specific details, the
application of inductive learning techniques to very
large data sets is now reviewed; the issues and tech-
niques discussed generalize to other types of machine
learning.

Decision-tree algorithms have been improved to
handle large data sets efficiently and several new
algorithms have been proposed. Catlett [66, 67]
proposed two methods for improving the time taken
to develop a classifier. The first method used data
sampling at each node of the decision tree and the
second method discretized continuous attributes.
These methods decrease classification time signifi-
cantly but also reduce the classification accuracy.
Moreover, Catlett only considered data sets that
could fit in main computer memory.

Methods for partitioning the data set such that
each subset fits in main memory are considered in
[68–70]. Although these methods enable classifica-
tion of large data sets, their studies show that the
quality of the resulting decision tree is worse than
that of a classifier that was constructed by using the

402 D T Pham and A A Afify

Proc. IMechE Vol. 219 Part B: J. Engineering Manufacture B14004 # IMechE 2005

 at PENNSYLVANIA STATE UNIV on September 18, 2016pib.sagepub.comDownloaded from 

http://pib.sagepub.com/


complete data set at once. Incremental-learning
methods, where the data are classified in batches,
have also been studied [71]. However, the cumulative
cost of classifying data incrementally can sometimes
exceed the cost of classifying the entire training set
once.
The decision-tree classifier in [72], called SLIQ,

utilized the novel techniques of pre-sorting,
breadth-first growth, and MDL-based pruning to
improve learning time for the classifier without loss
of accuracy. At the same time, these techniques
allowed classification to be performed on large
amounts of disk-resident training data. However,
due to the use of a memory-resident data structure
that scales with the size of the training set, SLIQ has
an upper limit on the number of examples it can
process. Shafer et al. [73] presented a classification
algorithm called SPRINT that removes all memory
restrictions that limit existing decision-tree algo-
rithms and yet exhibits the same excellent behaviour
as SLIQ. SPRINT efficiently allows classification of
virtually any sized data set; also, the algorithm can
be easily and efficiently parallelized. However,
SPRINT has been criticized for several reasons. For
example, it utilizes data structures called attribute
lists that can be costly to maintain, including a
potential tripling of the size of the data set and an
associated significant increase in scan cost [74]. Like
C4.5, both SLIQ and SPRINTare two-stage algorithms
that include building and pruning phases. Generating
the decision tree in two distinct phases could result in
a substantial amount of wasted effort since an entire
subtree constructed in the first phase may later be
pruned in the next phase. PUBLIC [75] is a deci-
sion-tree classifier that tightly integrates the pruning
phase into the building phase instead of performing
them one after the other. Its tree-growing phase is
the same as that of SPRINTexcept that it uses entropy
instead of the Gini index. However, when a leaf node
is generated, PUBLIC can immediately decide
whether there is a need to split it further by estimat-
ing a lower bound on the cost of coding the subtree
rooted at this leaf node. The integrated approach of
PUBLIC can result in substantial performance
improvements compared to traditional classifiers
such as SPRINT.
In recent work, Gehrke et al. [76] proposed Rain-

forest, a framework for developing fast and effective
algorithms for constructing decision trees that grace-
fully adapt to the amount of main memory available.
Finally, Morimoto et al. [77] developed algorithms for
decision-tree construction for categorical attributes
with large domains. The emphasis of this work is to
improve the quality of the resulting tree.
As with decision-tree learning, there are a number

of rule-induction algorithms that can scale up to
large data sets. IREP [78] is a rule-learning algorithm

that can efficiently handle large sets of noisy data. The
main reason for its efficiency is the use of a technique
called incremental reduced error pruning, which
prunes each rule immediately after it has been
induced, rather than after all rules have been gener-
ated. This speeds up the induction process as the
pruned rules allow larger subsets of the remaining
positive instances to be removed at each iteration
compared to the non-pruned rules. Unfortunately,
the accuracy of the class descriptions learned by
IREP is often lower than the accuracy of those learned
with the C4.5 rules algorithm [1], a rule-inducing
variant of C4.5. Cohen [18] detailed several modifica-
tions to improve the accuracy of IREP, including a
different rule-evaluation criterion, a different stop-
ping criterion, and a post-processing optimization
operation, producing an algorithm called RIPPER.
He showed that RIPPER is competitive with C4.5
rules in terms of error rates and that it maintains
the efficiency of IREP. RIPPER supports missing attri-
butes, continuous variables, and multiple classes.
This makes it applicable to a wider range of bench-
mark problems.

5.2 Learning multiple models

The second active research area concerns a particular
method for improving accuracy in supervised learn-
ing. The term multiple models or ensemble of
classifiers is used to identify a set of classifiers
whose individual decisions are combined in some
way (typically by voting) to classify new examples
[79]. Ensembles have been found to bemore accurate
than the individual classifiers that make them up [80–
83], and also have substantial theoretical foundations
[84–86]. An ensemble can be more accurate than any
of its component classifiers only if the individual
classifiers are ‘accurate’ and ‘diverse’ [87]. An accurate
classifier is one that performs at least better than
random guessing. Two classifiers are diverse if they
make different errors on new data points. The
reason why ensembles improve performance can be
intuitively explained in that taking a majority vote of
several hypotheses reduces the random variability
of individual hypotheses.

Several methods have been proposed for generat-
ing multiple classifiers using the same learning
algorithm. Most of them manipulate the training set
to generate multiple hypotheses. The learning algo-
rithm runs several times, each time using a different
distribution of the training instances. This technique
works especially well for unstable learning algorithms
– algorithms whose output classifier undergoes major
changes in response to small changes in the training
data.

Breiman [88] described a technique called bagging
that manipulates the training data to generate
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different classifiers. Bagging produces a replication of
the training set by sampling with replacement from
the training instances. Each replication of the training
set has the same size as the original data. Some
examples do not appear at all while others may
appear more than once. Such a training set is called
a bootstrap replicate of the original training set and
the technique is called bootstrap aggregating (from
which the term bagging is derived). From each repli-
cation of the training set a classifier is generated. All
classifiers are used to classify each instance in the
test set, usually using a uniform voting scheme
where each component classifier has the same vote.
Bagging methods require that the learning system
should be unstable, so that small changes to the train-
ing set should lead to different classifiers. Although
Breiman also notes that poor predictors can be trans-
formed into worse ones by bagging, it is a simple and
easy way to improve an existing learning method. All
that is required is the addition of a preprocessor that
selects the bootstrap sample and sends it to the learn-
ing algorithm and a postprocessor that does the
aggregation of votes. What is lost, in comparison
with decision trees and rule sets, is a simple and
interpretable structure. What is gained is increased
accuracy.
Freund and Schapire [80, 89] presented another

method for manipulating the training set called
boosting. Instead of drawing a succession of indepen-
dent bootstrap samples from the original instances,
boosting maintains a weight for each instance in the
training set that reflects its importance – the higher
the weight the more the instance influences the
learned classifier. During each iteration, the weights
are adjusted in accordance with the performance of
the corresponding classifier, with the result that the
weight of misclassified instances is increased. Adjust-
ing the weights causes the learner to focus on
different instances, leading to different classifiers.
The final classifier is constructed from the learned
classifiers by a weighted voting scheme where each
component classifier contributes to the final classifi-
cation with a different strength based on its accuracy
on the training instances that it was trained with. Like
bagging, boosting depends on instability of the
boosted learning system. However, it does not pre-
clude poor predictors, provided that their error on
the given distribution of instances can be kept
below 50 per cent.
A third technique for constructing a good ensemble

of classifiers is to manipulate the set of classes that
are given to the learning algorithm. Dietterich and
Bakiri [90] described a technique called Error-
Correcting Output Coding (ECOC). This method was
originally designed to handle multiclass problems
by solving multiple two-class problems. ECOC repre-
sents classes with a set of output bits, where each bit

encodes a binary classification function correspond-
ing to a unique partition of the classes. Algorithms
that use ECOC learn a function corresponding to
each bit. All functions are then combined to generate
class predictions.

Bagging, boosting, and ECOC are general combin-
ing algorithms that significantly improve classifiers
such as decision trees, rule learners, or neural
networks. Quinlan [82] conducted experiments with
boosting and bagging over a diverse collection of
data sets. His experiments confirmed that boosted
and bagged versions of C4.5 produced noticeably
more accurate classifiers than the standard version.
The results also showed that boosting seemed to be
more effective than bagging when applied to C4.5,
although the performance of the bagged C4.5 was
less variable than that of its boosted counterpart.
Freund and Schapire [80] also applied boosting and
bagging to C4.5 on 27 data sets. Their results con-
firmed that the error rates of boosted and bagged
classifiers were significantly lower than those of
single classifiers. However, they found bagging
much more competitive than boosting. Bauer and
Kohavi [83] presented an empirical comparison
between boosting and bagging, and argued that
both techniques, when applied to decision trees,
were able to reduce the error rate at the cost of
increased tree size. They also observed that boosting
was not robust when dealing with noise. This is
expected, because noisy examples tend to be mis-
classified and their weight will consequently increase.
Dietterich and Bakiri [90] reported that ECOC
improved the performance of both the C4.5 and
backpropagation algorithms on a variety of different
classification problems. Schapire [91] showed how
boosting can be combined with ECOC to yield an
excellent ensemble-classification method that was
superior to the ECOC method.

In addition to these methods for generating
ensembles using a single-learning algorithm, there
are other methods that produce an ensemble by com-
bining classifiers constructed with different-learning
algorithms. When classifiers from different-learning
algorithms are combined, as in stacked generalization
[92], diversity is implied. Therefore, they only need to
be checked (e.g. by cross-validation) for accuracy,
with some form of weighted combination employed.
This approach of generating ensembles has been
shown to be effective in some applications [93–95].

6 APPLICATIONS OF MACHINE-LEARNING
TECHNIQUES IN MANUFACTURING

This section discusses some applications of machine-
learning techniques in manufacturing with special
emphasis on inductive learning. The focus is on
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inductive learning because detailed surveys concern-
ing the other techniques can be found elsewhere (see,
for example [96, 97]).
Machine-learning techniques can be useful tools

for discovering valuable patterns in data. As there
are no universally applicable methods, it is important
to have a clear understanding of the requirements of
a particular problem and to choose the technique
that best fits those requirements. In general, to be
useful in a manufacturing application, a machine-
learning system should have the following abilities:

(a) dealing with different types of data (numerical,
nominal, text, and images);

(b) handling noise, outliers, and fuzzy data;
(c) real-time processing;
(d) dealing with large data sets and data of high

dimensions;
(e) producing results that are easy to understand;
(f) being simple to implement.

Machine-learning algorithms are domain indepen-
dent. In principle, they can be a very useful tool for
the construction of knowledge-based systems. Efforts
to apply machine-learning methods follow a standard
pattern. The main stages of the process are: formulat-
ing the problem, determining the representation,
collecting the training data, evaluating the learned
knowledge, and fielding the knowledge base [98–100].
There is a wide range of manufacturing domains to

which machine learning has been successfully
applied. Lu and Chen [101] proposed an inductive-
learning approach and used it to build a qualitative
knowledge base utilizing results of a simulation
experiment. Given a class (defined by the values of
class objective parameters), inductive learning was
used to derive a generalized description over the
values of the control parameters. By this means the
generated knowledge base could be used for deduc-
tive reasoning for control of the process.
Stirling and Buntime [102] employed inductive

learning to investigate process-planning decision-
making problems. They adopted a combination of
induction and interviews with experts to acquire
knowledge about processing routes through a steel
mill. Although the experts were reasonably articulate,
considerable time and effort was saved by using rule
induction as a tool to assist the experts in formalizing
and structuring their knowledge.
Inductive-learning methods have helped engineers

summarize large amounts of data to support decision
making. An inductive-learning algorithm was used to
analyse turning-process simulation data in support
of machine operation planning in manufacturing
[103].
Lu et al. [104] reported a knowledge-processing

methodology that combines the power of simulation
and optimization from engineering with inductive

learning. The inductive-learning approach was
integrated with multi-objective optimization to form
a system that provides flexible support to engineers
during both the model formation and utilization
phases.

In production-operations management, it is
increasingly important to develop automated sche-
duling systems as the production stages become
more complicated. Learning-based scheduling,
which involves automatic acquisition of dispatching
rules, is one of the practical methods used to solve
this problem. There have been various attempts to
use learning in scheduling problems [105–109]. Pro-
posed methods for acquisition of scheduling rules
by using inductive-learning techniques were applied
to flow-shop scheduling problems [110–115], job-
shop scheduling problems [116–121], and flexible
manufacturing systems scheduling problems [122–
129]. Experimental results indicated that effective
scheduling can be achieved by applying the proposed
methods.

El Attar and Hamery [130] designed an inductive-
learning system using the ID3 algorithm that enabled
knowledge to be integrated automatically into an
expert system to guide the repair of helicopter blades.

Machine-learning techniques have been applied to
just-in-time (JIT) production systems. First, neural
networks and decision trees were used to set the
number of kanbans in a dynamic JIT factory [131–
134]. The number of kanbans is important to the
effective operation of a JIT production system. Results
showed that neural networks and decision trees
represent two practical approaches with special
capabilities for dynamically adjusting the number of
kanbans. Second, an approach based on inductive
learning was used to predict JIT factory performance
from past data that includes both good and poor
factory performance [135]. In particular, the CART
decision-tree classifier was employed to generate
rules automatically in a JIT manufacturing environ-
ment. The rules obtained can accurately classify and
predict factory performance based on shop factors
and can identify the important relationships between
the shop factors that determine factory performance.
Results indicated that inductive learning is a feasible
technique for predicting JIT factory performance
from dynamic shop-floor data.

Reich [136, 137] addressed the critical role of
machine-learning modelling in engineering design.
He showed that quality engineering designs can be
achieved through the information modelling capabil-
ities of machine-learning programs.

Chatterjee et al. [138] discussed the application of
machine-learning techniques to the problem of
metal etching. They used three different techniques
to analyse, classify, and predict the quality of metal
etchings. The techniques adopted were neural
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networks, inductive learning, and case-based reason-
ing, a form of instance-based learning. The authors
concluded that machine-learning techniques with
their ability to analyse and automate the analysis of
large amounts of complex data in various aspects of
manufacturing help to reduce cycle time and scrap,
and improve resource utilization.
Operating and maintaining modern sensor-

equipped systems, such as aircraft, generate vast
amounts of numeric and symbolic data. Létourneau
et al. [139] developed an approach that uses these
data to build models for predicting when to replace
various aircraft components before they fail. Three
different machine-learning techniques were used to
infer the desired models: inductive learning,
instance-based learning, and Bayesian learning.
Semiconductor manufacturing is a complex opera-

tion that involves monitoring a large number of
parameters from the early stages of production to
the packaging of the end product. Improving the
quality of the manufacturing process requires a
great deal of data analysis work and is still accom-
plished by human engineers. The transaction
volume in a typical wafer fabrication plant is as
many as one million wafers a day [140]. The amounts
of data involved make the data analysis task
extremely time-consuming and difficult. Several
authors proposed procedures for using machine-
learning techniques in semiconductor manufacturing
[141–147]. Research results showed that machine-
learning techniques can be powerful tools for contin-
uous quality improvement in a large and complex
process such as semiconductor manufacturing.
Zhou et al. [148] developed an intelligent data-

mining system and applied it to drop-testing analysis
of portable electronic products to discover useful
design knowledge. The rule-induction method
adopted is based on the C4.5 algorithm. Studies
with the proposed system indicated that its approach
is flexible and can be applied to a number of other
design and manufacturing processes to reduce costs
and improve productivity.
Aksoy et al. [149] presented an industrial visual

inspection system that can be used to carry out
quality control for mass production. The system
employs the RULES-3 inductive-learning algorithm.
Peng [150] developed a fuzzy inductive-learning-

based intelligent-monitoring system for improving
the reliability of manufacturing processes. The
method was successfully applied to diagnosing the
conditions of tapping processes to ensure the quality
of products.
Pham et al. [151] described an application of data

mining and machine-learning techniques in a steel
bar manufacturing company. The application covered
five areas, namely, make-to-order (MTO) versus make-
to-stock (MTS) analysis, product sale profile analysis,

rogue order determination, overdue order analysis,
and product combination analysis. The results
demonstrated that the techniques employed can
extract information to help intelligent decision
making in industry.

Other applications include generating decision
rules for the conceptual design of steel members
under bending [152], diagnosing engine faults [153],
detecting defects in disk drive manufacturing [154],
diagnosing motor pumps [155], analysing non-
destructive testing of spotweld quality [156], managing
and controlling the procurement of raw materials
[157], accelerating rotogravure printing [158, 159],
optimizing processes in electrochemical machining
[160], selecting appropriate cutting tools in grinding
[161], determining suitable cutting conditions in
operation planning [162, 163], re-formulating and
generalizing themachining knowledge from amachin-
ing database [164], choosing sheet metal working
conditions [165], discovering the laws governing
metallic behaviour [166], modelling job complexity in
clothing production systems [167], acquiring and
refining operational knowledge in industrial processes
[168, 169], and identifying arbitrary geometric and
manufacturing categories in CAD databases [170].

From the above-mentioned problems, features of
successful applications of machine learning in manu-
facturing can be summarized as follows:

(a) the problem is of a sufficient degree of complexity;
(b) the problem can be formulated to match existing

learning algorithms;
(c) ample training data are available in an appropriate

format;
(d) the training data are representative;
(e) the data are free from noise or can be cleansed

cost effectively;
(f) methods for learning and evaluating perfor-

mance are suitable for the application under
consideration.

7 CONCLUSIONS AND FUTURE WORK

Machine-learning algorithms are demonstrably of
significant value in a variety of real-world manufac-
turing applications. Dozens of companies around
the world now provide commercial implementations
of these algorithms (see www.kdnuggets.com), along
with efficient links to commercial databases and
well-designed user interfaces [171]. However, these
algorithms also have some limitations. With the
techniques described here, data sets having tens of
thousands of training instances can be mined in
relatively short times. However, many important
data sets are significantly larger. To provide efficient
machine-learning methods for such large data sets
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requires additional research. Another problem is that
most machine-learning techniques to date handle
only data with continuous and nominal values. A
topic of considerable research interest is the develop-
ment of algorithms that can learn regularities in other
data types, such as text and images. Most of the
existing machine-learning methods for generating
multiple models can improve significantly on the
accuracy of single models, but at the expense of
comprehensibility. An important line of research,
therefore, is to find ways to obtain ensemble classi-
fiers that are easy to interpret. Examples of work in
this area can be found in [19, 172]. Finally, although
machine-learning techniques can overcome a wide
range of problems in manufacturing, they are still
not applied on a large scale. Given these challenges,
further developments in machine-learning research
can be expected in the future.
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APPENDIX

Notation

Ai the ith attribute in an example
b the number of partitions resulting from the

test T
Cj the jth class
Condi the ith condition in a given rule
d the number of distinct values for a

continuous attribute Ai

E the expected frequency distribution of
instances

ECOC Error-Correcting Output Coding
EP Estimate of Probability
F the observed frequency distribution of

instances among classes satisfying a given
complex

JIT just-in-time
k the number of classes in a data set
MDL Minimum Description Length
MF Measure of Fit
MTO make-to-order
MTS make-to-stock
nAi

the number of possible values for a
nominal attribute Ai

nc the number of conditions in a rule
nclass the number of positive instances covered

by a given rule
ncovered the total number of instances covered by a

given rule
PðCj ‚SÞ the proportion of instances in S which are

in class Cj

S a set of instances
jSj the number of instances in S
Si the ith partitions of the data set S
STM Short Term Memory
tij the jth threshold value (cutting point) in

the domain of a continuous attribute Ai

T a test for partitioning S at a decision-tree
node

vij the jth value for a nominal attribute Ai
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