
Revisiting Deterministic Multithreading Strategies∗

Jörg Domaschka, Andreas I. Schmied, Hans P. Reiser, Franz J. Hauck

Ulm University
Institute of Distributed Systems

James-Franck-Ring O-27, 89069 Ulm, Germany
{joerg.domaschka, andreas.schmied, hans.reiser, franz.hauck}@uni-ulm.de

Abstract

Deterministic behaviour is a prerequisite for most ap-
proaches to object replication. In order to avoid the non-
determinism of multithreading, many object replication sys-
tems are limited to using sequential method execution. In
this paper, we survey existing application-level scheduling
algorithms that enable deterministic concurrent execution
of object methods. Multithreading leads to a more efficient
execution on multiple CPUs and multi-core CPUs, and it
enables the object programmer to use condition variables
for coordination between multiple invocations. In existing
algorithms, a thread may only start or resume if there are
no potentially nondeterministic conflicts with other running
threads. A decision only based on past actions, without
knowledge of future behaviour, must use a pessimistic strat-
egy that can cause unnecessary restrictions to concurrency.
Using a priori knowledge about future actions of a thread
allows increasing the concurrency. We propose static code
analysis as a way for predicting the lock acquisitions of ob-
ject methods.

1 Motivation

Remote method invocation has become a standard ap-
proach for software that is both object oriented and dis-
tributed. The distributed object paradigm is an integral part
of popular middleware systems such as CORBA, Java RMI,
and .NET Remoting. Fault-tolerance extensions to these
middleware systems support groups of replicated objects in
addition to single remote objects [4, 5, 7, 8]. The replication
infrastructure has the task to ensure that all replicas have an

∗This work has been partially supported by the FP6 Integrated Project
XtreemOS funded by the European Commission (Contract IST2006-
0033576)

1-4244-0910-1/07/$20.00 c©2007 IEEE.

identical state at the same logical points of time. For ob-
ject replication it is common to distinguish between active
replication and passive replication. Passive replication uses
a primary-backup scheme, in which a single primary replica
executes all requests and updates the state of the backup
replicas. In active replication, each replica executes all re-
quests, and the execution must have a deterministic effect in
order to ensure replica consistency. If multithreading shall
be used, a scheduling algorithm that ensures determinism
is mandatory. In passive replication, many systems update
the state of backup replicas only after multiple modifica-
tions. State modifications not yet propagated to the backup
replicas can be applied to them by re-executing method in-
vocations from a request log. Such re-executions are con-
sistent to the state of a failed primary only if a deterministic
scheduling strategy is used. Because of this, deterministic
scheduling is relevant for multithreading in both replication
styles.

Most object replication systems execute all methods se-
quentially in total order. This strategy eliminates any non-
determinism that concurrent updates of the object state can
cause. This approach, however, does not make use of mod-
ern multi-cpu or multi-core machines and thus results in an
unnecessarily inefficient execution without parallelism. In
addition this execution model is deadlock prone, e.g. when
a remote object A while executing a method mA1 calls an-
other remote object that in turn calls A again.

Optimistic update strategies, as widely used in database
replication, are less convenient for distributed objects be-
cause of two main reasons. First, optimism only works well
for large data sets in combination with transactions that ac-
cess only small subsets thereof. This access pattern is in
general not true for distributed objects. Second, optimism
requires a rollback mechanism to undo wrong updates. This
is hard to realise in typical environments for distributed ob-
jects without changing the compiler, the execution environ-
ment, or the application.

In previous work [11] we have surveyed programming

models and algorithms that allow parallelism while keeping
the determinism. The conclusion is that multithreading is
the most flexible and powerful solution. Yet, multithread-
ing bears the risk of non-determinism and makes necessary
a sophisticated scheduling algorithm. Multiple determinis-
tic scheduling algorithms [1, 2, 3, 11] have been proposed in
the past. We included all of them in FTflex [12] the replica-
tion framework for our Java-based and CORBA-compatible
Aspectix middleware. In the first part of this paper we give a
survey on existing algorithms. All of them have in common
that a thread may only start or resume if there are no poten-
tially nondeterministic conflicts with other running threads.

A decision exclusively based on past actions, without
knowledge of future behaviour, must use a pessimistic strat-
egy that can cause unnecessary restrictions to concurrency.
Using a priori knowledge about future actions of a thread
allows increasing the concurrency. We propose static code
analysis as a way for predicting the lock acquisitions of ob-
ject methods. In the second part of this paper we present
which information can be obtained by static code analysis
and how it can help the algorithms to become more effi-
ciently.

The rest of this paper is structured as follows. The next
section gives an overview of the system model we use.
In Section 3 we present all multithreading algorithms our
replication framework contains. This is followed by a dis-
cussion on what information code analysis can generate and
how the information can be provided to algorithms. Finally,
we will conclude with a discussion on future work.

2 System Model

We assume that objects are replicated with a Java-based
object middleware. This middleware shall be executed us-
ing a standard operating system and standard JVM. No
internal modifications are made to these standard compo-
nents. This means that the concurrent execution of multiple
threads cannot be made deterministic by low-level means.
Instead, we aim at deterministic scheduling at the applica-
tion level, supported by the middleware infrastructure.

Such an approach requires that a high-level scheduling
model be able to control the scheduling of threads. Thus, all
relevant actions have to be intercepted by the application-
level scheduler. We assume that the synchronisation uses
binary, reentrant mutexes and condition variables for inter-
action between threads.

Even an entirely deterministic scheduler cannot guar-
antee determinism when the programmer uses non-
deterministic functions or methods in the object implemen-
tation to be replicated. Such sources of non-determinism
are often related to time or random numbers. In the case
of Java, calls to a non-overwritten hashCode method are
non-deterministic, too.

In a remote method invocation set-up, a request can only
trigger the execution of a limited number of methods repre-
senting the remote object’s public interface. We will refer
to these methods as start methods.

As a prototype, we use our FTflex replication infras-
tructure of the CORBA-based Aspectix middleware. This
replication infrastructure supports multithreading with the
strategies described in the next section. In Java synchronisa-
tion there is a 1 : 1 relationship between mutexes and condi-
tion variables. A condition variable can only be used when
it has already been locked by a synchronized statement.
Thus, in the following the terms mutex and condition vari-
ables only point out the different operations on the same ob-
ject. That is lock/unlock in the first and wait/notify
in the second case.

For intercepting synchronisation operations in the replica
implementations, this infrastructure uses source-code trans-
formations. All synchronized statements and all oper-
ations on condition variables are replaced with invocations
at a scheduling module of FTflex. Synchronized is re-
placed with explicit lock and unlock calls. Because of
that, referring to lock and unlock throughout the text
is equivalent to referring to the beginning and the ending
of a synchronized block. The mutex to be locked in
a synchronized block is referred to as synchronisation
parameter.

FTflex uses a group communication system [10] to guar-
antee that each replica receives all messages in a total order.
Additional replication logic that is transparent to the client
ensures a unique message identifier for each client request
enabling replicas to ignore duplicated requests.

Finally, we assume that all access to shared object state
is properly synchronised with native Java mechanisms. This
holds for both critical read and write operations. Currently,
our prototype only supports the standard synchronisation
models, which uses synchronized methods and blocks.
The extended synchronisation features of JDK 5, as pro-
vided in the java.util.concurrent package, are cur-
rently not supported. Our code transformation tool could,
however, be extended to cover these extensions as well.

Throughout the text the term nested invocation occurs.
That is the remote object calls an external service during
the execution of a remote method. Nested invocations are
non-trivial to handle, if the calling object is replicated, be-
cause each replica uses the same implementation and con-
sequently will call the service. Because different return val-
ues of those calls are a potential source of non-determinism,
we allow only one replica to do the call. The same replica
spreads the reply to all other replicas.

3 Existing Approaches without Prediction

To the best of our knowledge, four algorithms for de-
terministic multithreading have been published so far. In
our FTflex replication infrastructure, we implemented an
adapted version of each algorithm as a basis for compar-
ative evaluation. In addition to that, the infrastructure can
be configured for sequential request execution. In the fol-
lowing, we describe the four algorithms called SAT, LSA,
PDS, and MAT.

3.1 SAT

The SAT (single active thread) algorithm was first pro-
posed by Jiménez-Peris et al. [6] for a conversational in-
teraction with transactional replicas. Zhao et al. [13] have
adapted the algorithm for object replication in the Eternal
system. The FTflex variant of SAT [3] adds support for con-
dition variables. The SAT algorithm does not use multi-
threading in the sense of concurrency. It allows a new thread
to start or resume if a previously executing thread suspends,
instead of waiting until final thread termination. A thread
can either suspend by calling wait on a condition variable,
or by starting a nested invocation. In both cases, another
thread becomes active. If the reason for the suspension is
not valid anymore (i.e., the nested invocation returns, or the
wait operation is notified or times out), the thread is in-
serted in a queue. The thread at the head of the queue is
removed from the queue and resumed only after the previ-
ously active thread suspends or terminates.

The SAT algorithm improves the sequential execution
model, as it uses the idle time during nested invocations for
executing new requests. It avoids potential deadlocks that
arise if chains of nested invocations loop back to an object
that waits for the nested invocation reply. In addition, our
SAT variant allows using standard Java synchronisation and
condition variables. Nevertheless, it does not make use of
multiple physical CPUs as there is only one running thread
at a time.

3.2 LSA

The LSA (loose synchronisation algorithm) was origi-
nally published by Basile et al. [2] and uses a simple leader-
follower scheme. It is the only algorithm that depends on
frequent inter-replica communication. A single replica acts
as the leader and has no restrictions regarding the execution
order. All other replicas are bound to the decision that the
first one makes. This algorithm was published without sup-
port for condition variables. As the leader replica may take
any arbitrary decision and condition variables have to be
locked before they can be used, inserting support for them

in the in FTflex version of the algorithm did not raise major
problems.

3.3 PDS

In the PDS (preemptive deterministic schedul-
ing)algorithm [1] a pool with a fixed number of threads
is used. For each request arriving at the system a thread
starts running. It may run until it requests its first lock.
The lock is granted only when a sufficient number of other
threads have also requested their first lock. At this point
it is possible to determine if conflicts occur and to solve
them. After all threads have processed the critical section
all of them are allowed to run to their next lock request.
In an optimised version each thread is allowed to request
two locks. Yet, this does not dispose the weaknesses of the
PDS algorithm. Lock acquisition does not start before a
significant number of requests have arrived and requested
a lock and the algorithm expects all requests to trigger
method calls with similar profile

As the algorithm as described so far allows starvation of
threads, the FTflex implementation generates dummy mes-
sages to fill the request queue. Additional messages guaran-
tee that all requests are eventually processed, even if no new
external messages arrive. The price to pay is higher com-
munication overhead, as all dummy messages must pass the
group communication system. Adding support for condi-
tion variables turned out to be even more complicated due
to the fact that the algorithm is not prepared for a thread
blocking in a wait operation and only waking up by inter-
vention of a thread that maybe has not even arrived yet.

3.4 MAT

The MAT (multiple active threads) algorithm [11] is an
extension to the SAT algorithm that supports multiple, con-
currently running threads (active threads) at a time. Active
threads comprise one primary active thread and multiple
secondary active threads. Besides these, there is a queue
with blocked threads. Primary and secondary threads differ
in the operations they are allowed to execute. The primary
thread may request locks, secondary threads may not. If a
secondary thread requests a lock, it is blocked and is contin-
ued only after it has become primary. The oldest secondary
thread becomes primary when the current primary blocks,
finishes, or issues a nested invocation and no blocked pri-
mary can continue running.

The MAT algorithm allows real multithreading with
multiple active threads. This is especially useful for threads
that never request any locks, because they can run without
interruption; but also for threads that issue computations be-
fore changing the object state. Nevertheless, a secondary
thread that requests a lock is blocked until it is primary, no

Figure 1. Benchmark for multiple determinis-
tic scheduling algorithms

matter whether the lock that itself and the current primary
will request conflict or not. Even worse, the algorithm does
not recognise when a thread has requested and released all
of its locks and will never request one again. Such a thread
cannot profit from being primary and delays the execution
of secondary threads waiting for a lock.

3.5 Comparison of SAT, LSA, PDS, and
MAT

All of the algorithms presented above were subject to ex-
tensive benchmarking [9] leading to the result is that there
is no single best algorithm, but for all of them exist scenar-
ios in which they outperform all others. Figure 1 presents
the results for one of the benchmarks. It shows the aver-
age time it takes to process a remote method invocation as
a function of the number of clients in a set-up with three
replicas for all four algorithms and an additional SEQ algo-
rithm using sequential request processing. Both clients and
replicas were located in the same local area network. All
clients called the same method. The implementation of that
method in the remote object does ten iterations of a loop.
Each iteration performs the following operations:

• with probability 0.2, simulate a nested invocation (du-
ration approx. 12 ms)

• with probability 0.2, simulate a local computation (du-
ration 10 . . . 20 ms)

• execute a sequence of lock, state update, unlock, using
a mutex chosen by random from a set of 100 mutexes.

The random selection of the nested invocation and the local
computation was used to simulate different kinds of object

behaviour. The rather big number of mutexes is to simu-
late fine-grained locking of the object state. To guarantee
deterministic behaviour the clients were responsible for all
random decisions and passed them as method parameters.

As it might have been expected, the SEQ algorithm
scales worst, as it does not make use of the idle time dur-
ing nested invocations. PDS and LSA scale far better than
SEQ, but also far worse than MAT. LSA scales best, but this
is mainly caused by the fact that the leader may decide with-
out restrictions and the client only waits for the first reply.
Thus, the response is directly sent to the client without wait-
ing for other replicas. Nevertheless, this algorithm poses a
high load on the network caused by the need for frequent
broadcast communication and thus may behave worse in
WAN setups. Furthermore, it depends on the leader replica
to make decisions. In case of a failure this might lead to
a high take-over time that does not exist for MAT and the
other algorithms, as they treat all replicas equally.

4 Code Analysis

The pessimism all algorithms use is very restrictive when
very fine grained locking is used, i.e. there are many mu-
texes and there are methods that use disjunctive mutex sets.
In order for the algorithms to be able to decrease the pes-
simism in their decisions they must have information about
each thread’s future locks. For gathering this information
we propose static code analysis.

For our environment we take the assumptions already
presented in Section 2. Furthermore, we will use additional,
very restrictive assumptions that we try to relax later on:

• There are no synchronized statements within
loops; that is for, while and do . . . while.

• All methods that are called are final.

• There is no recursion, so there is only a limited number
of paths the execution may take for each start method.

The FTflex deployment includes a code transformation
process, just before the final compilation, which replaces
synchronized statements with calls to the scheduler.
The transformation is done by our Transformation Process
Language (TPL). TPL is our toolbox language for detailed
transformations on multi-language source code models. So
called processes conduct queries and transformation steps
at the syntax tree backend of the model elements. Based
on a traverser interface, which is common to all supported
languages, the processes navigate on syntactical and seman-
tical relationships between elements. Complex transforma-
tions are composed of path-structured model queries, list-
based iterative expressions, and calls to operators and fur-
ther processes. New structures can be created manually, el-
ement by element, or by passing annotated text fragments

(a) MAT (b) Ideal

Figure 2. Locking pattern after releasing the
last lock

to the parser of the respective target model. A LISP-style
concrete syntax reflects the hierarchical structure of the tar-
get models and allows us to form complex multi-valued ex-
pressions. In addition to code transformation the TPL also
supports adding new code; code injection.

Code analysis is an important step towards increased
concurrency, but not the final one. A further step is to give
the scheduler access to the information from the analysis.
We solve this in a twofold manner. First, the analysis gener-
ates static information that is used to initialise the scheduler.
Second, we insert additional code in the object implemen-
tation telling the scheduler at runtime how to manage the
static information on a per thread basis.

The optimisations a scheduler can make in comparison to
pessimistic schedulers depend on the scheduling algorithm
and the information provided by the code analysis. In the
following we first describe which information is mandatory
for that the scheduler recognises when a thread’s last lock
has been requested and show how the current MAT algo-
rithm has to be changed to make use of this information.
Then, we show how to predict a thread’s future locks. We
sketch in short how the current architecture may be changed
so that both information aware and information unaware al-
gorithms are supported. We also sketch how the MAT algo-
rithm can be chaged to support lock prediction. However,
we do not present a totally worked out and proven version
of this algorithm, as it is still work in progress and subject
to future investigations. Finally, we propose how to relax
above restrictions.

4.1 Last Lock Analysis

In the MAT algorithm a secondary becomes primary
only after the current primary has terminated or suspended
(Figure 2(a)). Usually, the last unlock is followed by a fi-
nal computation. In the case of FTflex the thread builds the
reply message that is sent back to the client. The final com-
putation has no influence on the determinism of mutex lock-
ing. Providing the scheduler with information about when

(a) With Last Lock Analysis (b) Ideal

Figure 3. Locking pattern for non-conflicting
mutexes

a thread’s last lock has been released enables to change the
primary even before thread termination (Figure 2(b)).

One approach to finding the last lock is to provide a list in
the scheduler containing the locks that will be requested by
one thread. To be able to provide the scheduler with the in-
formation of locks, a list of all of synchronized blocks
the programme flow can pass is necessary. Each of them
gets a globally unique syncID. Now, by code analysis, we
can figure out all execution paths for all start methods and
the syncIDs of the synchronized blocks on the paths.
Thus, we get a list of syncIDs for each start method and
with it all the static information the scheduler needs.

The scheduler is initialised with that information at
start-up. For each thread that is started, a local copy
of the static information concerning the thread’s start
method is made and attached to the thread descrip-
tor in the scheduler. Changing the scheduler interface
to scheduler.lock(syncID, mutex) allows the
scheduler to correlate lock requests for mutexes with the
syncID table and manipulate the latter accordingly (book-
keeping).

The scheduler’s bookkeeping does only work correctly,
when it gets all information available. That is information
about syncIDs locks are requested and released for, but also
on syncIDs, that are ignored, because a path is used they are
not on. Injecting scheduler.ignore(syncID) on all
paths without a lock call for syncID provides the necessary
information to the scheduler.

4.2 Lock Parameter Analysis

Finding the last lock provides information for tuning the
algorithm for requests that issue their last lock before a fi-
nal computation. However, concurrently processed requests
that have non-overlapping future lock requests do not ben-
efit from this information as much as they could. Figure
3(a) shows an example for such a situation. The primary
thread requests and releases a lock on mutex x and finishes
afterwards. The first secondary thread requests a lock for

mutex y, but has to wait until the primary has released x.
In an ideal case the scheduler, like in Figure 3(b), would
recognise that x is the primary’s last lock, that there is no
relationship between x and y, and would grant the lock to
the secondary.

For enabling more concurrency while still keeping deter-
minism, the algorithm must be able to check, if both threads
overlap for the current lock request and for all future lock
requests. This means - assuming an order on the threads -
a thread will be allowed to acquire the lock only if it can
be granted that all threads that are better with respect to the
ordering will not request a lock on the same mutex in the
future. Thus, we aim at gathering information about future
locks; the sooner all of them are known the more concur-
rency may be achieved.

In order to determine which objects will be locked during
method execution, we need to inspect the synchronized
parameter and find out when this parameter is assigned the
last time. This is straight forward, if the parameter is this,
a method parameter, or an object that is local to the method.
In the first case the parameter is final, in the latter ones we
can find out about the last assignment by code analysis. It
is impossible to determine the last assignment for other pa-
rameters, like an instance variable, a globally accessible ob-
ject, or the return value of a method call. We will refer
to those as spontaneous parameters, because the parame-
ter is unknown until the locking happens. There is no need
to generate additional static information for lock parameter
analysis compared to last lock analysis. However, injecting
additional code is not preventable.

For that the scheduler is able to benefit from
the analysis, we insert the following call to
the scheduler, right after the last assignment
scheduler.lockInfo(syncID, mutex). It
marks the appropriate entry in the thread’s list of syncID.
In the following, we say a thread is predicted, if all entries
in the list are marked.

In case of spontaneous parameters, we do not insert any
additional instructions. Locking such a mutex is treated like
a call to lockInfo followed by a call to lock. Threads
executing methods containing locks with spontaneous pa-
rameters get only predicted when all of them have been
passed.

The left side of Figure 4 shows a method of a class imple-
mentation that is subject to code analysis and code transfor-
mation. The right side shows the outcome of this process
omitting error handling code. The changes to traditional
FTflex code transformation are highlighted. The method
shown has two paths with one synchronized statement
in each of them. The first one has a non-spontaneous param-
eter passed as method parameter that is not changed while
processing the method, i.e. it is announced right after the
method start. The second one has a spontaneous parameter

that cannot be announced. The example contains all cases
of code injection presented so far.

4.3 Extending the FTflex Architecture and
the MAT Algorithm

The code analysis, source code injection, and bookkeep-
ing described in the last two subsections are orthogonal to
any scheduler implementation, as the goal is to provide in-
formation to the scheduler, but not to lay down the way the
scheduler has to use them. Thus, in a future architecture
we envisage the scheduler to be built up of two modules;
a bookkeeping module and a decision module. The book-
keeping module contains all static and thread-wise informa-
tion, reflecting the knowledge about the threads’ current and
future lock acquisitions. Calls from the object implementa-
tion always reach the bookkeeping module first, triggering
changes to the syncID tables. Then, they are passed on to
the decision module.

The bookkeeping module also offers an interface to the
decision module the scheduler implementation may use to
find out about conflicting locks. The decision module may
use the bookkeeping module, but does not have to. This
enables the re-use of existing scheduler implementations as
decision modules and the implementation of new schedulers
without having to re-implement the bookkeeping module
for each scheduling algorithm.

As a starting point for a new scheduler implementation
we use the MAT algorithm, as we consider it to be the
most flexible one. Instead of only using one active primary
thread, we aim at a queue of active threads that are in prin-
ciple equal. A thread t only gets a lock when all threads
preceding it in the queue are already predicted and none of
them conflicts with the lock requested by t. Otherwise t is
suspended. The algorithm must check suspended threads
when certain events happen.

When t is waiting for a predicted thread these events are:

• A thread conflicting with t releases the mutex t is wait-
ing for,

• A thread conflicting with t is removed from the list,

Let tu be the first thread in the list that is not predicted
and t be a successor of tu, then the events are

• tu is removed from the list.

• tu becomes predicted.

A completely worked out extension to the MAT algo-
rithm is still subject to further investigations, we have not
been able to figure out yet how the algorithm should pro-
ceed when a thread calls wait or does a nested invocation.

private Object myO;

public void foo(Object o){

if (myO.equals(o))
synchronized(o) { }

else
synchronized(myO){ }

}

=⇒

private Object myO;

public void foo(Object o){
scheduler.lockInfo(1, o);

if (myO.equals(o)){
scheduler.ignore(2);

scheduler . lock(1, o);
scheduler .unlock(1, o);

}
else {

scheduler.ignore(1);

scheduler . lock(2, myO);
scheduler .unlock(2, myO);

}
}

Figure 4. Code transformation and injection by the code analysis process

4.4 Relaxing Previous Assumptions

The code analysis presented so far is restricted by the
assumptions from the beginning of this section. As they
limit the possibilities a programmer has, weakening them
seems desirable for us. Thus, we will sketch how this may
be done.

Up to now, we assumed that no synchronized state-
ments are used within loops. We distinguish loops and gen-
eral recursion, because loops can be handled more easily:
They are local to a method, easy to detect and less powerful
than arbitrary recursion. Without locking within loops, it is
sufficient for the scheduler to maintain a list of syncIDs.

Locking within loops destroys knowledge about the
locking quantity. So far, an element in the syncID list could
only be requested once or not at all. Loops introduce an
uncertainity, because not only the quantity is unknown, but
also the mutex might change for each loop, so we do not
know a priori how many different mutexes will be requested
at all.

The occurrence of locks within loops has no influence on
a new scheduling algorithm. It does however, influence the
static information to be generated and also the bookkeeping
module.

Our approach to handling locking within loops is to dis-
tinguish two different kinds of loops: The first kind locks

the same mutex in each loop. It exists, when the lock pa-
rameter is not spontaneous, is assigned before the loop, and
is not assigned within the loop. Otherwise, the mutex can
change in each loop. So, for the first kind, the announce-
ment process for future locks does not change. However,
the mutex must be respected as long as the loop has not been
finished and not until the unlock. In the second case, in
general, we can neither tell how often the loop is processed
nor how many mutexes will be locked nor which mutexes
this will be. That means, we cannot consider all mutexes to
be known before the loop finishes. Accordingly, the thread
will only be predicted after having passed all such loops.

Our second restriction is that all methods called have to
be final. The reason therefore is that only in this case we
can be sure that the method associated with the static type
is really the method that will be called at runtime. Giving
up this assumption will not be possible without developer
support. One possibility is that the developer must assure
that the static type is always equal to the runtime type. An-
other approach is to use a repository with a certain number
of classes and information about the locking they use. At
runtime the runtime type can be checked and the appropri-
ate information be generated from the repository. The effi-
ciency of this approach depends on how often the runtime
type changes. The risk is that bookkeeping eats up all per-
formance gained by increased concurrency.

The third restriction is that no recursion occurs. Our ap-
proaches to handle this is to either to step back to a simpler
algorithm or to build up additional path information before
each single method call. As this will probably produce high
runtime overhead, we currently favour the first approach.
All of the topics are also subject to future work.

5 Conclusion and Future Work

In this document we presented why object replica-
tion benefits from deterministic multithreading algorithms.
We gave a survey on existing deterministic multithreading
schedulers and an overview of our replication framework.
Our position is that concurrency can be increased by provid-
ing additional information about future lock acquisition to
the scheduler. Static code analysis can gather this informa-
tion. We presented two levels of granularity the information
can have; one for recognising a thread’s last lock and the
other for lock prediction. Then, we sketched changes to our
current environment and how to change the existing MAT
algorithm for that it can handle the additional information.
Finally, we showed up how to weaken the restrictions we
made for code analysis.

For the future we are targeting the implementation and
formal verification of an extended MAT algorithm using in-
formation from static code analysis. Besides the optimisa-
tions discussed so far, we are planning other extensions to
our multithread scheduling system. First, we would like to
add support for the Java 1.5 concurrency specification. Fur-
thermore, we think of sophisticated data flow analysis that
may help to statically determine which threads will never
interfere at all. Moreover this can also help to determine
upper bounds for loops. Additionally we are planning to de-
velop a request analyser that chooses the appropriate sched-
uler at runtime depending on the client interaction patterns
and the methods’ lock pattern. Finally, we want to analyse
to what extent static information helps to optimise perfor-
mance and at which point performance decreases again due
to runtime overhead; this may be done by providing a math-
ematical model for locks, methods and client interaction.

References

[1] C. Basile, Z. Kalbarczyk, and R. Iyer. Preemptive deter-
ministic scheduling algorithm for multithreaded replicas.
In Proc. Int’l Conf. on Dependable Systems and Networks
(DSN), 2003., 2003.

[2] C. Basile, K. Whisnant, Z. Kalbarczyk, and R. Iyer. Loose
synchronization of multithreaded replicas. In SRDS ’02:
Proceedings of the 21st IEEE Symposium on Reliable Dis-
tributed Systems (SRDS’02), page 250, Washington, DC,
USA, 2002. IEEE Computer Society.

[3] J. Domaschka, F. J. Hauck, H. P. Reiser, and R. Kapitza. De-
terministic multithreading for Java-based replicated objects.

In Proc. of the 18th IASTED Int. Conf. on Parallel and Dis-
tributed Computing and Systems (PDCS’06, Dalles, Texas,
Nov 13-15, 2006), 2006.

[4] P. Felber and P. Narasimhan. Experiences, strategies, and
challenges in building fault-tolerant CORBA systems. IEEE
Trans. Comput., 53(5):497–511, 2004.

[5] R. Friedman and E. Hadad. FTS: A high-performance
CORBA fault-tolerance service. In Proceedings of the Sev-
enth International Workshop on Object-Oriented Real-Time
Dependable Systems, 2002.

[6] R. Jiménez-Peris, M. Patiño-Martı́nez, and S. Arévalo. De-
terministic scheduling for transactional multithreaded repli-
cas. In SRDS ’00: Proceedings of the 19th IEEE Sympo-
sium on Reliable Distributed Systems (SRDS’00), page 164,
Washington, DC, USA, 2000. IEEE Computer Society.

[7] S. Maffeis. Adding group communication and fault-
tolerance to CORBA. In Proceedings of the Conference
on Object-Oriented Technologies, (Monterey, CA), USENIX,
pages 135–146, 1995.

[8] N. Narasimhan, L. E. Moser, and P. M. Melliar-Smith.
Transparent consistent replication of Java RMI objects. In
DOA, pages 17–26, 2000.

[9] H. P. Reiser. Flexible and Reconfigurable Support for Fault-
Tolerant Object Replication. PhD thesis, Fakultät für Inge-
nieurwissenschaften und Informatik, Universität Ulm, 2006.

[10] H. P. Reiser, U. Bartlang, and F. J. Hauck. A reconfigurable
system architecture for consensus-based group communica-
tion. In Proc. of the 17th IASTED Int. Conf on Parallel
and Distributed Computing and Systems (Phoenix, AZ, USA,
Nov 14-16, 2005), 2005.

[11] H. P. Reiser, F. J. Hauck, J. Domaschka, R. Kapitza, and
W. Schröder-Preikschat. Consistent replication of multi-
threaded distributed objects. In SRDS ’06: Proceedings of
the 25st IEEE Symposium on Reliable Distributed Systems
(SRDS’06), 2006.

[12] H. P. Reiser, R. Kapitza, J. Domaschka, and F. J. Hauck.
Fault-tolerant replication based on fragmented objects. In
Proc. of the 6th IFIP WG 6.1 Int. Conf. on Distributed Ap-
plications and Interoperabel Systems - DAIS 2006 (Bologna,
Italy, June 14-16, 2006), LNCS 4025, pages 256–271, 2006.

[13] W. Zhao, L. E. Moser, and P. M. Melliar-Smith. Determinis-
tic scheduling for multithreaded replicas. In WORDS ’05:
Proceedings of the 10th IEEE International Workshop on
Object-Oriented Real-Time Dependable Systems, pages 74–
81, Washington, DC, USA, 2005. IEEE Computer Society.

