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Abstract. Database support of time-varying phenomena typically assumes that
entities change in a linear fashion. Many phenomena, however, change
cyclically over time. Examples include monsoons, tides, and travel to the
workplace. In such cases, entities may appear and disappear on a regular basis
or their attributes or location may change with periodic regularity. This paper
introduces an approach for modeling cycles based on cyclic intervals. Intervals
are an important abstraction of time, and the consideration of cyclic intervals
reveals characteristics about these intervals that are unique from the linear case.
This work examines binary cyclic relations, distinguishing sixteen cyclic
interval relations. We identify their conceptual neighborhood graph, showing
which relations are most similar and demonstrating that this set of sixteen
relations is complete. The results of this investigation provide the basis for
extended data models and query languages that address cyclically varying
phenomena.

1 Introduction

The development of conceptual models that convey how objects change over space
and time demands continued attention from software engineers and database system
designers. Theoretical advances in the design of data models for geographic
information systems (GISs), for example, have focused on increasing support for
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temporality [1-5] and spatial processes [6], including objects that experience identity
changes [7] and objects that move [8]. At the same time, there has been an increased
awareness of the necessity for a stronger cognitive element in software design [9].
Particular aspects of change, however, still remain beyond the scope of current data
models. How do these models convey, for instance, spatio-temporal change associated
with cycles of beach erosion and accretion due to tidal fluctuations and storms, or the
planting cycles and crop rotations that are followed by farmers on a regular basis, or
the cycles of monsoon rains in India? Queries based on any of these example
scenarios must incorporate the cyclic nature of the phenomenon being studied. This
paper develops a formal model for cycles based on cyclic intervals. Although we use
examples of cycles drawn from geographic contexts of particular interest for spatio-
temporal data modeling, this approach is also more generally useful for other
applications that involve cyclic phenomena.

1.1 Linear vs. Cyclic Phenomena

Discussions within the database community on modeling time-varying phenomena
have resulted in many models reflecting different views of the semantics associated
with time [10]. Numerous approaches exist for modeling time, although time is most
often discussed with respect to two key structural models: linear and branching
models of time. The most general model of time in a temporal logic represents time as
an arbitrary, partially-ordered set [11, 12]. The addition of axioms result in more
refined models of time [11]. In the linear model, an axiom imposes total order on
time, resulting in the linear advancement of time from the past, through the present,
and to the future. The branching model, also known as the “possible futures” model,
describes time as being linear from the past to the present, where it then divides into
several time-lines, each representing a potential sequence of events.

Few of these models, however, explicitly treat cycles. Although current
information systems are useful for producing a snapshot of a phenomenon at any one
time, cyclically-varying phenomena require new solutions. The measurement
scales—nominal, ordinal, interval, and ratio—frequently applied to geographic
phenomena have been shown to provide less than complete coverage leaving out
those measurements that are bounded within some range and repeat in a cyclic
manner [13]. There are also cases of non-temporal cyclic change. Angles may at first
seem to fit a ratio scale of measurement as there is a zero and the units are arbitrary
(degrees, radians); however, an important characteristic of angles is that they repeat in
a cyclic fashion [14]. Other examples of non-temporal cycles are color wheels and
certain mathematical functions, such as the graphs of sine and cosine functions. The
special nature of cycles has also been noted by cartographers exploring the role of
cartographic animation as a technique for visualizing spatio-temporal change.
Research on temporal legends that orient the user to a particular temporal framework
[15] utilizes, for example, a time wheel designed to support querying of phenomena
that exhibit cyclic variations. These efforts, however, are less common than the usual
linear treatment of change.



1.2 Temporal Intervals

Temporal data models are commonly based on the primitive elements of either time
points or time intervals. Time points typically describe a precise time when an event
occurred. A linear model based on time points assumes a set of time points that are
totally ordered [12]. When precise information on time is unavailable, time intervals
become useful constructs. Reasoning about temporal intervals addresses the problem
that much of our temporal knowledge is relative and methods are needed that allow
for significant imprecision in reasoning [16]. This view does not require that all
events occur in a known fixed order and it allows for disjunctive knowledge (e.g.,
event A occurred either before or after event B). Discussions about temporal points
and intervals relate to conceptualizations of time that are discrete. Time, however, can
be viewed as either discrete or continuous. The cycle of temperature change over the
years, for instance, is a continuous phenomenon. The partitioning into
seasons—winter, spring, summer, fall—forms discrete temporal concepts. Each
season, modeled as an interval, forms a discrete temporal entity that becomes subject
to cyclic reasoning. These discussions relate to those on spatial object and field
models in the GIS domain [17, 18]. As people shift from a conceptualization based on
continuous phenomena to discrete or vice versa as the task demands, they similarly
switch from a view based on continuous time to time that is discrete.

In spite of this duality existing for many common geographic phenomena, a
discrete model of time typically underlies most temporal database models. The
reasons for such common usage are [11]: measures of time are inherently imprecise
where even instantaneous events can only at best be measured as having occurred
during a chronon, the highest resolution time unit; the discrete model is compatible
with most natural language references to time; and any implementation of a data
model with a temporal dimension will of necessity have to have some discrete
encoding for time. Temporal database models also impose axioms that treat the
boundedness of time. A finite encoding implies bounding from the left (i.e., the
existence of a time origin) and from the right. Cycles, however, require a different
treatment.

1.3 Structure of Paper

This paper focuses on modeling cyclic change. Frank [19] gives examples of nine
cyclic interval relations, however, we show through a formalization of cyclic intervals
and the relations between these intervals that there are more than nine relations. These
relations are fundamental to reasoning about scenarios involving cyclic change. The
remainder of the paper is organized as follows: Section 2 reviews and discusses the
nature of cycles. An approach to modeling cycles based on cyclic intervals is
introduced in Section 3. The model formalizes binary relations between cyclic
intervals, distinguishing sixteen cyclic interval relations and their conceptual
neighbors. An example scenario based on reasoning with cyclic intervals is presented
in Section 4. Conclusions and future work are discussed in Section 5.



2 Cyclic Change

The linear or branching models of time do not treat the fact that certain events or
phenomena may be recurring. The term cycle is used to capture the notion of
recurring events. Conceptually, we talk about life cycles, work cycles, cycles of
poems or songs, and the seasonal cycle, which is perhaps the most common example
of a cycle (Figure 1).

Cycles may affect the existence of an object [7], the properties of an object, and the
location of an object. In certain cases, a phenomenon, such as high tide, is existent for
a period of time, becomes non-existent, and then it reappears again This cycle is
repeated over time. Similarly, at regular (or irregular) intervals, a water body, such as
a pond or stream, may dry up and become non-existent before rains or high water
levels bring it back into existence.
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Fig. 1. Seasonal activity cycle of 17th century Native peoples in Rupert’s Land, Canada (after
[20])

Cycles can also be described from the perspective of cyclic changes to properties
of an object. Examples of properties that vary cyclically include the size, shape, and
value of an object. The population of a small college town in the US, for instance, can
increase or decrease according to whether the University is in session (students are
resident in town) or not. During the summer, when the University is not in full
session, the student population is often much smaller and the town’s population is
reduced. An understanding of the cyclic variation in population size is important in
town planning, traffic planning, availability of accommodation, business decisions,
etc.

An object’s location can also vary in a cyclic pattern over time. People travel to
their jobs each working day, for example, and then return to their homes in the
evening, some people visit a grocery store on a regular basis, planning their excursion
at approximately the same time every week, and trains, planes, and buses move in
space according to schedules that are cyclic.

A formal approach to modeling cycles based on cyclic intervals is introduced in the
next section.



3 Modeling Cyclic Intervals

The embedding space for a cycle C  is a connected subset of the real numbers, IR1 .
The period n ZÎ  describes the length of the full cycle Cn , such that IR1 mod n
captures all points that are part of the full cycle. A cyclic interval I  is then a non-
empty, connected, true1 subset of Cn  (i.e., I ¹ Æ  and I CnÌ ). If I CnÌ , then C In \

is I 's complement, denoted by I -(Figure 2).
Given I CnÌ , the interior of I , denoted by I° , is defined to be the union of all

open sets that are contained in Cn . In this paper, we assume that the interior of a

cyclic interval is non-empty ( I° ¹ Æ ). The closure of I , denoted by I , is the
intersection of all closed sets that contain Cn . The boundary of I , denoted by ¶I , is
the intersection of the closure of I  and the closure of the complement of I  (i.e.,

I IÇ - ).

Fig. 2. Cyclic interval A  with start ( ¶ s A), interior ( A°), end ( ¶ e A ), and complement ( A- )

The boundary of I CnÌ  is disconnected, i.e., there are two distinct subsets of ¶I ,
called start ( ¶ s I ) and end (¶e I ), satisfying the following three conditions:

• ¶ s I ¹ Æ  and ¶e I ¹ Æ;

• ¶ ¶ ¶s eI I IÈ = ; and

• ¶ ¶s eI IÇ = Æ .
Based on these conditions, a cyclic interval is closed. It includes neither

separations, nor a single point, nor an entire cycle.
The order of the underlying IR1  implies an orientation for the sequence of the two

parts of the boundary and the interior such that ¶ ¶s eI I I< ° < . The ordering of Cn ,
however, does not establish an order relation, because when applied to a cyclic space
such as Cn , the order relation £  (“before or equal”) is not necessarily transitive (i.e.,
for elements a b c Cn, , Î , a b£  and b c£  does not necessarily imply that a c£ ).

                                                            
1 We exclude here intervals that would extend through the entire cycle, since we are interested

in modeling the prototypical cyclic relations. Our approach, however, is extendible to
intervals that span the entire cycle.



Therefore, no information about the relative order of ¶ s I  and ¶e I  can be derived
from ¶ ¶s eI I I< ° < .

Subsequently, we consider only cycles that have consistently the same orientation.
We select a clockwise orientation, although the same results would apply for a
consistent choice of a counterclockwise orientation.

3.1 Binary Relations Between Cyclic Intervals

Let A  and B be a pair of cyclic intervals of the same cycle Cn  (Figure 3a).
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Fig. 3. (a) Cyclic intervals A  and B  and (b) the intersection matrix based on whether the
intersections of start, interior, and end are empty or non-empty

The relation between A  and B is described by the corresponding values of the set
intersections of the intervals’ boundaries and interiors. Since each cyclic interval has
three distinct, mutually-exclusive parts ( ¶ s A , A°, ¶e A , and ¶ s B , B° , ¶e B ), there are
a total of nine set intersections. They are concisely represented by a 3x3 matrix
(Equation 1).
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Figure 3b shows an example of a cyclic interval relation and the corresponding
matrix of empty (0) and non-empty (1) set intersections.

From among the 29=512 possible combinations of empty and non-empty, a set of
sixteen cyclic interval relations are realized (Figure 4). These relations are qualitative
in nature as they do not capture any information, for example, about the cycle’s
periods, the lengths of the intervals, or the amount of overlap. We discuss the
completeness of this set in section 3.3.

The matrices capture valuable information about the comparison of the relations.
First, matrices that are mirror images along the main diagonal identify symmetric
relations. This holds true for relations disjoint, meets_twice, equals, and
overlaps_twice. Second, pairs of matrices that are identical if one matrix is transposed
along the main diagonal identify converse relations. Among the sixteen relations,
there are six pairs of converse relations: meets and  met_by; overlaps and



overlapped_by; passes and passed_by; starts and started_by; finishes and finished_by;
and contains and contained_by.
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disjoint contained_by finishes met_by meets starts overlapped_by meets_twice

overlaps equals started_by passed_by passes finished_by overlaps_twice contains

Fig. 4. The sixteen cyclic interval relations with their corresponding intersection matrices.
Orientation is clockwise

3.2 Conceptual Neighborhoods

The sixteen cyclic interval relations can be grouped according to their conceptual
neighborhoods. Conceptual neighborhoods capture the similarities among the sixteen
relations by linking those relations that are connected by an atomic change [21, 22].
Such a change is a single movement of one interval’s start or end point from the other
interval’s boundary into its interior or exterior, or vice versa, moving the start or end
point from the interior or exterior onto the boundary. Based on a computational model
similar to that for topological line-region relations [23], the full set of all possible
movements has been determined. It leads to a graph that corresponds to a lattice
(Figure 5).

This regular figure is an indication that no relations located in the interior were
missed. Further examination of the borders along the top and the bottom of the
neighborhood graph (Section 3.3) demonstrate that the set of sixteen cyclic interval
relations is actually complete, provided A and B are a true subset of IR1  and none of
their interiors are empty.

The conceptual neighborhood graph exposes some interesting properties.
Beginning with the case where two cyclic intervals are separate (disjoint), all diagonal
rows of relations that run from the top left to the bottom right of a diagonal (e.g., from
disjoint to contains) are formed by moving the end of the outer cyclic interval in a
clockwise direction. Diagonal rows of relations that run the opposite way—from the
top right to bottom left of a diagonal (e.g., from disjoint to overlapped_by)—are
formed by moving the start of the outer cyclic interval counterclockwise. Taken
together, these relations form a double-diamond shape. Overlapped_by is drawn twice
to demonstrate the regularity of the structure. Based on this grouping, each relation is



at least the conceptual neighbor of two relations (cases disjoint, contained_by,
overlaps_twice, and contains) and at most four other relations (cases overlapped_by,
meets_twice, overlaps, and equals).

disjoint contained_by

finishesmet_by meets starts

overlapped_by overlapped_bymeets_twice overlaps equals

started_bypasses finished_bypassed_by

overlaps_twice contains

Fig 5. Planar projection of the conceptual neighborhood graph, with relation overlapped_by
drawn twice to demonstrate the regularity

3.3 Completeness of Set of Sixteen Cyclic Interval Relations

The analysis of the conceptual neighborhood graph already illustrated the underlying
regularities along the diagonals. We use this pattern to demonstrate that any relations
located along the fringes of the graph require cases of the intervals, which would
violate at least one of the properties of a cyclic interval.

If one extends the diagonals beyond the border of the conceptual neighborhood
graph, one provides 20 opportunities for additional relations (labeled A through T in
Figure 6). If there was another cyclic interval relation, then it would have to be
connected to the graph and would have to be located within the 20 slots. Four of these
links point to existing cyclic relations (H to met_by, I to passed_by, R to started_by,
and S to finishes); therefore, they can be discarded. From the regularity along the
disjoint-contains diagonal—moving the end of the outer cyclic interval in a clockwise
direction—it follows that K would be the relation in which a full cycle encompasses a
cyclic interval (Figure 7a). Corresponding relations can be realized for the cases O, J,
and N (Figures 7b-d). Along the same diagonals the cases A, E, D, and T can be
evaluated with the reverse information—from bottom right to top left, moving the end
of the outer cyclic interval in a counterclockwise direction. This sequence implies for
the four slots that the outer interval must collapse to a single point either in the
outside of the inner interval (slot A, Figure 7e), in the inside (slot E, Figure 7f), or on
the two boundaries (slot D, Figure 7g; and slot T, Figure 7h).



The corresponding analysis can be performed along the diagonals from top right to
bottom left. It reveals that cases L, M, P, and Q would be occupied by relations with
complete outer cycles, while cases B, C, F, and G would require the outer cycle to
collapse to a single point. Since none of the twenty cases are occupied by a new
interval relation, the set of sixteen (Figure 4) covers all possible cyclic interval
relations.
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disjoint contained_by

finishesmet_by meets starts

overlapped_by overlapped_bymeets_twice overlaps equals

started_bypasses finished_bypassed_by

overlaps_twice contains

Fig. 6. Set of cyclic interval relations plus cases where interval has been collapsed to a point or
extended to a full cycle. Orientation is clockwise

(a) (b) (c)

(e) (f) (g) (h)

(d)

K O J N

A E D T

Fig. 7. Additional cases of relations where the outer cyclic interval is extended to a full cycle
with a start or end coinciding with (a) the outside of the inner interval, (b) the inside of the
inner interval, (c) the start, and (d) the end, or the outer interval is collapsed to a single point (e)
in the outside of the inner interval, (f) in the inside, (g) on the start boundary, and (h) on the end
boundary



4 An Example

Cyclic relations are useful for reasoning about scenarios of change, for example, land
use changes (Figure 8). Four different uses of land (timbering, fishing, hunting, and
fruit gathering) vary cyclically over time with each cycle being one year in length.
The orientation of the cycle of land use change is clockwise. The intervals
representing the different land uses can be compared to one another (Figure 9). The
interval for hunting, for instance, meets the interval for fishing at one end while
overlapping at the other end. Both the ends of the interval for fishing overlap with the
ends of the timbering interval.

Land use for timbering

Land use for hunting

Land use for fruit gathering

Fishing

Fig 8. Changes in land use: Land use includes timbering (October through mid-April), fishing
(March through November), hunting (October through March), and fruit gathering (July
through August).

Timbering

Fishing

Hunting

Fruit Gathering

Fishing Fruit GatheringHuntingTimbering

equals

equals

equals

equals

disjoint

disjoint

disjoint disjoint

overlaps_twice

overlaps_twice

started_by

contained_by

starts passed_by

passes contains

Fig. 9. Comparison matrix for cyclic land use change.



5 Conclusions and Future Work

Many phenomena, such as tides, beach erosion, and monsoons, change in a cyclic
fashion. The semantics associated with cycles, however, have yet to be incorporated
in conceptual data models. Current spatio-temporal data models are based on a linear
model of time assuming total ordering and do not offer explicit support for cycles. If
users know a priori that their data vary cyclically, this information needs to be
captured in a database and needs support for queries on cyclic-based intervals, such
that any cyclic variation is explicitly returned.

A formalism of cycles based on cyclic intervals and the relations between these
intervals distinguishes a set of sixteen cyclic interval relations, not including cases of
full or empty cycles. This systematic derivation shows that there are more than the
nine relations identified in Frank [19]. Analysis of the conceptual neighborhood graph
demonstrates that these sixteen relations are complete, such that no relation exists
between the nodes of the graph.

Study of the complete set of cyclic relations including the cases of empty and full
cycles is underway. This work will include analysis of the conceptual neighborhoods
associated with the complete set of cyclic relations. To enable more comprehensive
cyclic reasoning it is necessary to establish the composition of the sixteen cyclic
relations (e.g., A meets_twice B and B contained_by C implies A overlaps_twice C).
Based on a method used for determining the composition of topological relations in
IR2  [24], we will derive all 256 compositions for the cyclic relations. Of particular
interest will be the crispness of these compositions as compared to the crispness of the
compositions for linear intervals [18]. Further extensions to the model are also
possible, for example, future work will include extending the model to accommodate
cycles with different period lengths.
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