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AbstractThe factorization method described in this series of reports requires an al-gorithm to track the motion of features in an image stream. Given thesmall inter-frame displacement made possible by the factorization approach,the best tracking method turns out to be the one proposed by Lucas andKanade in 1981.The method de�nes the measure of match between �xed-size feature windowsin the past and current frame as the sum of squared intensity di�erences overthe windows. The displacement is then de�ned as the one that minimizesthis sum. For small motions, a linearization of the image intensities leads toa Newton-Raphson style minimization.In this report, after rederiving the method in a physically intuitive way, weanswer the crucial question of how to choose the feature windows that arebest suited for tracking. Our selection criterion is based directly on thede�nition of the tracking algorithm, and expresses how well a feature can betracked. As a result, the criterion is optimal by construction.We show by experiment that the performance of both the selection and thetracking algorithm are adequate for our factorization method, and we addressthe issue of how to detect occlusions. In the conclusion, we point out speci�copen questions for future research.





PrefaceIn principle, the stream of images produced by a moving camera allows therecovery of both the shape of the objects in the �eld of view, and the motionof the camera. Traditional algorithms recover depth by triangulation, andcompute shape by taking di�erences between depth values. This process,however, is sensitive to noise for distant scenes.To overcome this problem, we have developed a factorization methodto decompose an image stream directly into object shape and camera mo-tion, without computing depth as an intermediate step. To explore this newmethod, we designed a series of eleven technical reports, as shown in �gure1, going from basic theory to implementation.The �rst two report, already published as CMU-CS-90-166 and CMU-CS-91-105, explore the idea in the case of planar motion, in which images aresingle scanlines, and then for unrestricted, 3D motion and complete images.The method used to select and track points from frame to frame is de-scribed in detail in the present report, number 3.As to the future reports, number 4 and 5 address shape and motion recon-struction and tracking for line features, rather than points. Reports number6 and 7 deal with perspective e�ects and degenerate motion. Occlusion canbe handled by our method, as shown in report number 8, while number 9examines how to detect cases of spurious, that is, non-rigid, motion. Thefactorization algorithm in report number 2 deals with the whole stream ofimages at once; report number 10, in contrast, proposes an implementationthat can work with an inde�nitely long stream of images.Report number 11 considers a more radical departure from the assump-tion of a static scene than spurious motion, that of several bodies movingindependently in the �eld of view.
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Chapter 1IntroductionThe factorization method introduced in reports 1 and 2 of this series [Tomasiand Kanade, 1990] [Tomasi and Kanade, 1991] requires selecting and trackingof features in an image stream. In this report we address the issues involved,and present our algorithm.In general, two basic questions must be answered: how to select thefeatures, and how to track them from frame to frame. We base our solutionto the tracking problem on a previous result by Lucas and Kanade [Lucasand Kanade, 1981], who proposed a method for registering two images forstereo matching.Their approach is to minimize the sum of squared intensity di�erencesbetween a past and a current window. Because of the small inter-framemotion, the current window can be approximated by a translation of the oldone. Furthermore, for the same reason, the image intensities in the translatedwindow can be written as those in the original window plus a residue termthat depends almost linearly on the translation vector. As a result of theseapproximations, one can write a linear 2 � 2 system whose unknown is thedisplacement vector between the two windows.In practice, these approximations introduce errors, but a few iterations ofthe basic solution step su�ce to converge. The result is a simple, fast, andaccurate registration method.The �rst question posed above, however, was left unanswered in [Lucasand Kanade, 1981]: how to select the windows that are suitable for accu-rate tracking. In the literature, several de�nitions of a "good feature" havebeen proposed, based on an a priori notion of what constitutes an "inter-1



esting" window. For example, Moravec and Thorpe propose to use win-dows with high standard deviations in the spatial intensity pro�le [Moravec,1980], [Thorpe, 1984], Marr, Poggio, and Ullman prefer zero crossings of theLaplacian of the image intensity [Marr et al., 1979], and Kitchen, Rosen-feld, Dreschler, and Nagel de�ne corner features based on �rst and secondderivatives of the image intensity function [Kitchen and Rosenfeld, 1980],[Dreschler and Nagel, 1981].In contrast with these selection criteria, which are de�ned independentlyof the registration algorithm, we show in this report that a criterion can bederived that explicitly optimizes the tracking performance. In other words,we de�ne a feature to be good if it can be tracked well.In this report, we �rst pose the problem (chapter 2), and rederive theequations of Lucas and Kanade in a physically intuitive way (chapter 3).Chapter 4 introduces the selection criterion. We then show by experiment(chapter 5) that the performance of both selector and tracker is satisfactoryin a wide variety of situations, and discuss the problem of detecting featureocclusion. Finally, in chapter 6, we close with a discussion of the suitabilityof this approach to our factorization method for the computation of shapeand motion, and point out directions for further research.
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Chapter 2Feature TrackingAs the camera moves, the patterns of image intensities change in a complexway. In general, any function of three variables I(x; y; t), where the spacevariables x and y as well as the time variable t are discrete and suitablybounded, can represent an image sequence. However, images taken at neartime instants are usually strongly related to each other, because they referto the same scene taken from only slightly di�erent viewpoints.We usually express this correlation by saying that there are patterns thatmove in an image stream. Formally, this means that the function I(x; y; t)is not arbitrary, but satis�es the following property:I(x; y; t+ � ) = I(x� �; y � �; t) ; (2:1)in plain English, a later image taken at time t+� can be obtained by movingevery point in the current image, taken at time t, by a suitable amount.The amount of motion d = (�; �) is called the displacement of the point atx = (x; y) between time instants t and t+ � , and is in general a function ofx, y, t, and � .Even in a static environment under a constant lighting, the propertydescribed by equation (2.1) is violated in many situations. For instance, atoccluding boundaries, points do not just move within the image, but appearand disappear. Furthermore, the photometric appearance of a region on avisible surface changes when reectivity is a function of the viewpoint.However, the invariant (2.1) is by and large satis�ed at surface markings,and away from occluding contours. At locations where the image intensity3



changes abruptly with x and y, the point of change remains well de�ned evenin spite of small variations of overall brightness around it.Surface markings abound in natural scenes, and are not infrequent inman-made environments. In our experiments, we found that markings areoften su�cient to obtain both good motion estimates and relatively denseshape results. As a consequence, this report is essentially concerned withsurface markings.The ApproachAn important problem in �nding the displacement d of a point from oneframe to the next is that a single pixel cannot be tracked, unless it has avery distinctive brightness with respect to all of its neighbors. In fact, thevalue of the pixel can both change due to noise, and be confused with adjacentpixels. As a consequence, it is often hard or impossible to determine wherethe pixel went in the subsequent frame, based only on local information.Because of these problems, we do not track single pixels, but windows ofpixels, and we look for windows that contain su�cient texture. In chapter 4,we give a de�nition of what su�cient texture is for reliable feature tracking.Unfortunately, di�erent points within a window may behave di�erently.The corresponding three-dimensional surface may be very slanted, and theintensity pattern in it can become warped from one frame to the next. Orthe window may be along an occluding boundary, so that points move atdi�erent velocities, and may even disappear or appear anew.This is a problem in two ways. First, how do we know that we arefollowing the same window, if its contents change over time? Second, if wemeasure "the" displacement of the window, how are the di�erent velocitiescombined to give the one resulting vector? Our solution to the �rst problemis residue monitoring: we keep checking that the appearance of a window hasnot changed too much. If it has, we discard the window.The second problem could in principle be solved as follows: rather thandescribing window changes as simple translations, we can model the changesas a more complex transformation, such as an a�ne map. In this way, dif-ferent velocities can be associated to di�erent points of the window.This approach was proposed already in [Lucas and Kanade, 1981], andwas recently explored in a more general setting in [Rehg and Witkin, 1991].4



We feel, however, that in cases where the world is known to be rigid the dan-ger of over-parametrizing the system outweighs the advantages of a richermodel. More parameters to estimate require the use of larger windows toconstrain the parameters su�ciently. On the other hand, using small win-dows implies that only few parameters can be estimated reliably, but alsoalleviates the problems mentioned above.We therefore choose to estimate only two parameters (the displacementvector) for small windows. Any discrepancy between successive windowsthat cannot be explained by a translation is considered to be error, and thedisplacement vector is chosen so as to minimize this residue error.Formally, if we rede�ne J(x) = I(x; y; t+ � ), and I(x�d) = I(x� �; y��; t), where the time variable has been dropped for brevity, our local imagemodel is J(x) = I(x� d) + n(x) ; (2:2)where n is noise.The displacement vector d is then chosen so as to minimize the residueerror de�ned by the following double integral over the given window W:� = ZW [I(x� d)� J(x)]2w dx : (2:3)In this expression, w is a weighting function. In the simplest case, wcould be set to 1. Alternatively, w could be a Gaussian-like function, toemphasize the central area of the window. The weighting function w couldalso depend on the image intensity pattern: the relation (3.3) holds for planarpatches, and w could be chosen, as suggested in [Lucas and Kanade, 1981],to de-emphasize regions of high curvature.Several ways have been proposed in the literature to minimize this residue(see [Anandan, 1989] for a survey). When the displacement d is much smallerthan the window size, the linearization method presented in [Lucas andKanade, 1981] is the most e�cient way to proceed.In the next chapter, we rederive this method, and explain it in a physicallyintuitive way. Then, in chapter 4, we show that the registration idea canbe extended also to selecting good features to track. As a consequence,feature selection is no longer based on an arbitrary criterion for decidingwhat constitutes a feature. Rather, a good feature is de�ned as one that canbe tracked well, in a precise mathematical sense.5



Chapter 3Solving for the ImageDisplacementIn the previous chapter, we justi�ed our local model of image changes as asimple translation, plus some noise (equation (2.2)), and we posed the regis-tration problem as the minimization of the error residue de�ned by equation(2.3). In this chapter, we show that if the inter-frame displacement is su�-ciently small with respect to the texture uctuations within the window, thedisplacement vector itself can be written approximately as the solution to a2� 2 linear system of equations.When the displacement vector is small, the intensity function can beapproximated by its Taylor series truncated to the linear term:I(x� d) = I(x)� g � d ;and we can write the residue de�ned in equation (2.3) as� = ZW[I(x)� g � d� J(x)]2w dx = ZW(h� g � d)2w dx ; (3:1)where h = I(x)� J(x).This residue is a quadratic function of the displacement d. As a conse-quence, the minimization can be done in closed form. Di�erentiating the lastexpression of the residue � in equation 3.1 with respect to d and setting theresult equal to zero yields the following vector equation:ZW(h� g � d)gwdA = 0 :6



Since (g � d)g = (ggT )d, and d is assumed to be constant within W, wehave �ZW ggT wdA�d = ZW hgwdA :This is a system of two scalar equations in two unknowns. It can berewritten as Gd = e ; (3:2)where the coe�cient matrix is the symmetric, 2� 2 matrixG = ZW ggT wdA ;and the right-hand side is the two-dimensional vectore = ZW(I � J)gwdA :In the last expression, we wrote h explicitly as the di�erence between thetwo frames I and J .Equation (3.2) is the basic step of the tracking procedure. For everypair of adjacent frames, the matrix G can be computed from one frame, byestimating gradients and computing their second order moments. The vectore, on the other hand, can be computed from the di�erence between the twoframes, along with the gradient computed above. The displacement d is thenthe solution of system (3.2).Physical InterpretationTo understand the meaning of this solution, we rederive the expression (3.1)of the residue � in a physically more intuitive way.Consider the intensity function within the window W. Figure 3.1 showsan example. Make a second copy of it, and superimpose it on the �rst. Thereis no space between the two intensity surfaces. If you now move the copy bya small horizontal displacement, a gap forms between the two surfaces.The width of the gap, measured horizontally, is a function of the displace-ment between the two intensity patches. When measured vertically, on theother hand, the width of the gap is just the di�erence between the values ofthe two intensity pro�les. 7



Figure 3.1: Example of image intensity function within a small window.
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In the following, we show that for small displacements the horizontal andthe vertical width of the gap at a given point in the image are related to eachother through the image gradient at that point. As a consequence, we canwrite the in�nitesimal volume of the gap in a neighborhood of a given pointin two di�erent ways. One is a function of the displacement, the other is not.We then look for the displacement that makes the di�erence between thetwo expressions as small as possible in the Least Squared Error sense and overthe entire window W. This yields, by a di�erent route, the last expressiongiven in equation (3.1) for the residue �.Figure 3.2 shows a small patch of the intensity function I(x) and thecorresponding translated patch behind it. The same �gure shows also a crosssection of the two patches along the direction of the image gradient.The displacement vector d is in general in a di�erent direction than theimage gradient g = ( @I@x ; @I@y ). If the gradient is expressed asg = gu ;where g is the magnitude of g and u is a unit vector, then the displacement� measured along the gradient direction is the projection of d along u:� = d � u :From the right part of �gure 3.2, we see that the vertical gap widthh = I � J is h = �tan� ;where � is the maximum slope of the patch. Since the tangent of � is equalto the magnitude g of the gradient, we can writeh = � g = d � u g = d � g :By equating the �rst and last term, we obtain the following equation relat-ing the image gradient g, the inter-frame displacement d, and the di�erenceh between image intensities: g � d = h : (3:3)This is a scalar equation in the two-dimensional unknown d. The imagegradient g can be estimated from one image, while the di�erence h is easilycomputed from both. 9
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The fact that the number of unknowns in equation (3.3) exceeds the num-ber of constraints is called the aperture problem in the literature [Hildreth,1983], [Horn and Schunck, 1981]: if we just look at that patch (as if througha small aperture), we cannot determine the displacement d, but at most onecomponent of it.If we now consider the whole window W, however, di�erent patches mayallow us to compute di�erent components of the displacement vector, as-sumed to be constant within W. To combine these measurements, we ob-serve that if the displacement d is assigned a wrong value, there will be adi�erence between the left and the right-hand side of equation (3.3). Thebest value for d can be chosen as the one that minimizes the square of thatdi�erence, integrated over the entire window. In other words, we minimizethe weighted residue ZW(h � g � d)2wdAwith respect to d. By comparing with equation (3.1), we see that the ex-pression above is equal to the residue �, as desired.Equation (3.3) holds exactly either when the displacementd approaches zero,or when the image intensities are linear functions of the image coordinatesx and y. In fact, this equation assumes that the patches in �gure 3.2 beplanar. For �nite displacements, the approximation will cause some error ond especially at high-curvature points in the image intensity function.As a consequence, the solution d to equation (3.2) will usually containsome error. However, the images can be approximately registered by usingthis solution, and the basic step (3.2) can be repeated. At every iterationstep, images are resampled by bilinear interpolation to achieve subpixel ac-curacy. The closer we are to the solution, the better the approximationsunderlying equation (3.2). In practice, we found that very few iterationsusually su�ce for convergence. We discuss some experiments in chapter 5.Not all parts of an image lend themselves equally well to this trackingmethod. For instance, when the intensity pattern I is constant, the matrixGis null, and the displacement d is unde�ned. In the next chapter, we addressthe problem of how to select good windows to track.11



Chapter 4Feature SelectionRegardless of the method used for tracking, not all parts of an image containmotion information. Similarly, along a straight edge, we can only determinethe motion component orthogonal to the edge.In general terms, the strategy for overcoming these di�culties is to useonly regions with a rich enough texture. In this spirit, researchers haveproposed to track corners, or windows with a high spatial frequency content,or regions where some mix of second-order derivatives was su�ciently high.All these de�nitions usually yield trackable features. However, these "in-terest operators" are often based on a preconceived and sometimes arbitraryidea of what a good window looks like. In other words, they are based on theassumption that good features can be de�ned independently of the methodused for tracking them. The resulting features may be intuitive, but comewith no guarantee of being the best for the tracking algorithm to producegood results.Instead, we propose a more principled approach. Rather than de�ningour notion of a good window a priori, we base our de�nition on the methodwe use for tracking. A good window is one that can be tracked well. Withthis approach, we know that a window is omitted only if it is not good enoughfor the purpose: the selection criterion is optimal by construction.With the formulation of tracking introduced in the previous section, thisconcept is easy to formalize. In fact, we can track a window from frameto frame if the system (3.2) represents good measurements, and if it can besolved reliably.This means that the 2 � 2 coe�cient matrix G of the system must be12



both above the image noise level and well-conditioned. In turn, the noiserequirement implies that both eigenvalues of G must be large, while theconditioning requirement means that they cannot di�er by several orders ofmagnitude.Two small eigenvalues mean a roughly constant intensity pro�le within awindow. A large and a small eigenvalue correspond to a unidirectional pat-tern. Two large eigenvalues can represent corners, salt-and-pepper textures,or any other pattern that can be tracked reliably.In practice, when the smaller eigenvalue is su�ciently large to meet thenoise criterion, the matrix G is usually also well conditioned. This is dueto the fact that the intensity variations in a window are bounded by themaximum allowable pixel value, so that the greater eigenvalue cannot bearbitrarily large.As a consequence, if the two eigenvalues of G are �1 and �2, we accept awindow if min(�1; �2) > � ; (4:1)where � is a prede�ned threshold.To determine �, we �rst measure the eigenvalues for images of a region ofapproximately uniform brightness, taken with the camera to be used duringtracking. This gives us a lower bound for �. We then select a set of varioustypes of features, such as corners and highly textured regions, to obtain anupper bound for �. In practice, we have found that the two bounds arecomfortably separate, and the value of �, chosen halfway in-between, is notcritical.
13



Chapter 5ExperimentsIn this chapter, we evaluate the performance of both feature selection andtracking on real images. To this end, we use a stream of 100 frames, showingsurfaces of several di�erent types: a furry puppet, a cylindrical and glossymug with strong surface markings, an artichoke, a at model street sign.Figures 5.1 and 5.2 show the �rst and the last frame of the stream, respec-tively. Between frames, the camera was translated to the right, producing adisplacement of about one pixel per frame.5.1 Feature SelectionFigure 5.3 shows an intensity encoding of the value of the smaller of the twoeigenvalues of the tracking matrix G (see equation 3.2) for all the squarewindows of size 15 in the �rst frame. We call this the minor eigenvalue.Figure 5.4 shows a histogram of the eigenvalues displayed in �gure 5.3.For feature detection, we choose a threshold somewhere in the large gapbetween the near-zero and the higher cluster. Because of the size of thatgap, the threshold value is not critical. We select a value of 10.The feature selection algorithm sorts the minor eigenvalues in decreasingorder, and picks feature coordinates from the top of the sorted list. Everytime a coordinate pair is selected, it is assigned a new feature number. Toobtain non-overlapping features, all the features in the list that overlap thewindow centered at the selected pair are deleted. Figure 5.5 shows the featurewindows computed from the frame in �gure 5.1. If desired, the requirement14



Figure 5.1: The �rst frame of the stream used in the experiments.15



Figure 5.2: The last frame of the stream. The total image displacement from�rst to last frame is about 100 pixels (one pixel per frame).16



of zero overlap can be relaxed by enforcing a minimum distance betweenwindow centers smaller than the window size.From �gure 5.5, we see that the eigenvalue criterion selects the corners onthe mug as well as fuzzier features on the puppet, both along the edges of thespots, and elsewhere. Also, a considerable number of features is found on theartichoke, where the intensity patterns are very irregular. The background,as well as the relatively uniform areas on the pedestrian sign and on the mug,contain no features. It is doubtful that any useful motion information canbe extracted from those areas.No features are found along the straight edges on the mug. These edgesare characterized by a nearly-zero minor eigenvalue, and are good examples ofregions su�ering from the so-called "aperture problem" discussed in chapter3. Figures 5.6 and 5.7 show four sample feature windows. Each pair ofillustrations shows the grey values within a window, and its isometric plot.All feature windows have substantial variations of intensity, but can hardlybe classi�ed as "corners".An interesting phenomenon can be noticed in �gure 5.5 concerning fea-tures at the corners on the mug: these windows are almost invariably posi-tioned so that the corner in each of them is at the very edge of the window,which is �lled by the brighter side of the corner (see for instance featurenumber 1).This phenomenon is due to the fact that the intensity variations in thebright regions, albeit very small, are larger than those in the dark regions.The odd placement of the corner windows, then, indeed maximizes the in-tensity variations within the windows.Although this phenomenon presented no di�culty in our experiments, itis possible that with noisier images the "interesting" part of the feature is lostfrom one frame to the next because it is too close to the window boundary.We leave the exploration of this conjecture to future work.5.2 TrackingFigure 5.8 shows the last of the 100 frames in the sequence, with the superim-posed features, as tracked by the algorithm. Each feature required typicallyfewer than �ve iterations of the basic tracking step (see equation 3.2) to17



Figure 5.3: The minor eigenvalue of G (see equation (3.2)) for the �rst framein the stream (�gure (5.1)). Brighter areas correspond to higher values.The intensities in this display were compressed logarithmically. The squarepatterns reect the shape of the 15 � 15 window used by the detector (andthe tracker). 18
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Figure 5.5: The non-overlapping features produced by thresholding the eigen-values of �gure 5.3 with a value of 10. Some features are numbered forreference in the text. 20



Figure 5.6: Two sample feature windows: the head of the man on the pedes-trian sign (feature 2), and a corner on the mug (feature 28).21



Figure 5.7: Two more sample feature windows: a detail of the artichoke(feature 48), and a spot on the puppet (feature 211).22



stabilize the displacement estimate to within one hundredth of a pixel.217 of the 226 features selected in the �rst frame survive tracking through-out the stream. No gross errors are made for any of the surviving features.Of the nine missing features at the end of the stream, six disappear o� theright image boundary. Of the other three, two (201 and 207, on the fur ofthe puppet) are too weak to be tracked.The ninth missing feature, number 79, on the right side of the mug in�gure 5.5, is lost because in frame 40 the tracker did not converge withinten iterations. It would have taken 14 iterations for complete convergence,that is, to bring the change in displacement due to a new iteration below onehundredth of a pixel. The reason for the large number of iterations is thatfeature 79 is on top of a glossy surface viewed at a substantial slant angle.This causes the feature window to change its appearance substantially fromframe to frame.During tracking, a cumulative residue is computed for each feature win-dow. This residue is de�ned as the root-mean-squared intensity di�erencebetween the �rst and the current window. The cumulative residue is plot-ted in �gure 5.9 as a function of the frame number. Notice that most ofthe residue curves grow at the rate of about one intensity level per pixelevery one-hundred frames. As discussed below, a larger residue may indicateocclusion.Window Size and OcclusionAs discussed in chapter 3, smaller windows are more sensitive to noise. How-ever, they are also less likely to straddle surface discontinuities, or to bea�ected by distortions due to changes of viewpoint. To illustrate this point,we compared tracking of feature number 2 with square windows 15 and 31pixels wide. Feature number 2 is the head of the pedestrian on the sign (see�gure 5.6). In �gure 5.10, the tracks left by feature number 2 are shown forthe two window sizes.At the end of the tracking process, there is a di�erence between theresults: the discrepancy is of about 3 pixels horizontally, and about 0.8 pixelsvertically. One of the two �nal coordinate pairs must be wrong. The reasonfor the discrepancy can be seen from �gure 5.11, which shows the �rst andlast windows in the stream with the 31-pixel windows. Halfway through thestream, the edge of the artichoke appeared in the window, causing the error23



Figure 5.8: The features surviving through the 100 frames. Of the 226 start-ing features, only nine disappear, six of them o� the right image boundary.24
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in the displacement values.Small windows minimize these occlusion problems. On the other hand,they will occur no matter what the size of the window. The dashed line in�gure 5.9 suggests a threshold on the cumulative residue for the detectionof occlusions. Of the features above the threshold, those numbered 7, 8, 12,16, 17, and 97 are occlusions. The other features, numbered 1, 4, 30, arein an area of the mug that receives strong reections from the light source.As a result, the overall intensity pattern changes substantially from the �rstto the last frame, increasing the value of the residue even if the features aretracked well (compare �gure 5.5 with the last frame, �gure 5.8).This simple occlusion detection method would identify most occlusions,at least for the sequence used for this experiment. It is possible that modelingwindow changes as a�ne transformations, rather than simple translations,increases the separation between good and bad residues, thus yielding a morereliable detection.False FeaturesOther occlusion phenomena produce problems that are more di�cult to de-tect. For instance, feature number 45 starts at the intersection of the rightboundary of the artichoke with the upper left edge of the tra�c sign (see �g-ure 5.5). As the camera moves, the local appearance of that intersection doesnot change, but its position in space slides along both edges. The trackercannot notice the problem, but the feature would create a bad measurementfor any motion and shape method that assumes that features correspond tostatic points in the environment. However, this problem can be detected inthree dimensions, after the motion and shape algorithm has been applied.
26



Figure 5.10: Results of tracking feature 2 (the man's head on the sign) withtwo di�erent window sizes (square windows of 15 and 31 pixels). The distancebetween the right endpoints is about 3 pixels horizontally and 0.8 pixelsvertically.

Figure 5.11: A large window is more likely to change dramatically duringcamera motion. Here, the boundary of the artichoke appears within thelarge 31 � 31 window of feature 2 (the head of the pedestrian on the sign)somewhere between frame 1 (top) and 100 (bottom), causing the error in�gure 5.10. The smaller, 15�15, window (outlined in white) is less susceptibleto the problem. 27



Chapter 6ConclusionThe main focus of our research on visual motion is the reconstruction ofthree-dimensional shape and motion from the motion of features in an im-age sequence, as outlined in the �rst two reports of this series [Tomasi andKanade, 1990], [Tomasi and Kanade, 1991]. Many algorithms proposed inthe literature for similar purposes assume that feature points are availablefrom some unspeci�ed "previous processing".Of course, the validity of these algorithms, including ours, depends crit-ically on whether this preliminary processing can actually be done. In thistechnical report, we have shown that it is possible to go from an image streamto a collection of image features, tracked from frame to frame.We chose to use the window-based technique proposed in [Lucas andKanade, 1981], because it is simple, fast, and gives accurate results if windowsare selected appropriately.The need for a careful choice of the windows to track is crucial, andwe proposed a direct and e�ective solution to this problem. The proposedcriterion, based on the size of the smaller eigenvalue of the tracking matrixG, is well justi�ed by the nature of the tracking method. Furthermore, itsubsumes previous feature selection criteria, in that it detects corners equallywell as regions with high spatial frequency content, or with high second-orderderivatives, or high values of intensity variance.The experiments outlined in chapter 5, as well as those described in otherreports in this series, show that the overall performance is good.Of course, this method does not settle the issue of motion detection inimage sequences. Window tracking requires good surface markings, can give28



rise to false measurements from windows along occluding boundaries, andyields relatively sparse results.However, false measurements should probably be detected at a higherlevel in the processing chain, when measurements are combined into three-dimensional motion and shape estimates.Also, results from surface markings are very accurate, typically to withinone tenth of a pixel or better, and are therefore well suited for motion andshape estimation.As to sparsity, if rich shape results are the goal, the shape and motionmethod will have to be complemented with other techniques for a denserreconstruction of surfaces. However, the number of features obtained intypical scenarios [Tomasi and Kanade, 1991] is more than su�cient to obtainaccurate motion results, and to initialize a dense shape map, to be used byother modules for a more detailed reconstruction of the visible surfaces.Future WorkAs an agenda for future work on the detection and tracking of features in astream of images, we now summarize the issues we left open in this report.Two parameters need to be speci�ed for detection and tracking: the sizeof the window and the detection threshold. We have argued that windowsshould be as small as possible, compatibly with good noise rejection. How-ever, it has been shown [Okutomi and Kanade, 1990] that a careful choice ofthe window size can improve performance considerably. It would be interest-ing to develop an inexpensive and automatic window size selection algorithm.The feature detection threshold was chosen in this report based on ahistogram of the minor eigenvalues for the entire image (�gure 5.4). Alsothis parameter should, in the future, be selected automatically.In chapter 2, we argued that for small windows a pure translation modelof image changes gives more reliable results than a model with more param-eters. On the other hand, in chapter 5, we also conjectured that an a�netransformation model would improve the discrimination power of the occlu-sion detector. This suggests a combined strategy: the translation model ismore adequate for the registration of adjacent frames, while a more sophis-ticated transformation model is probably required when comparing distantframes (in the �rst and the current image), as done for the detection of29



occlusions. How far the occlusion detector can be improved by the a�netransformation model is an interesting open question.In the discussion of �gure 5.5, we pointed out the asymmetric behavior ofthe feature selector for corner-like regions: the corner almost always appearsalong the boundary of the window. It would be interesting to explore thisphenomenon. First of all, it should be determined whether this is at all aproblem, that is, if it can cause features to be lost when images are verynoisy. If so, it should be possible to add a feature stability criterion to themaximization of min(�1; �2): choose features so as to maximize the minoreigenvalue and the spatial stability of the feature in the presence of imagenoise. The exact formalization of this stability criterion, as well as the recipefor combining it with the eigenvalue maximization rule, are open researchquestions.Finally, a complete investigation of the detection and tracking methodspresented in this report requires a more thorough performance evaluation.First, the methods should be compared experimentally with those previouslyproposed in the literature. Second, performance should be measured for alarge number of sequences in a more diverse set of situations.
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