A Resource Allocation Model for Denial of Service

Jonathan K. Millen
The MITRE Corporation
Bedford, MA

Abstract

A denial-of-service protection base is characterized as a resource
monitor closely related to a TCB, supporting a waiting-time policy
for benign processes. Resource monitor algorithms and policies can be
stated in the context of a state- transition model.

1 Introduction

1.1 Background

The three traditional concerns of computer security are confidentiality, in-
tegrity, and denial of service. Confidentiality and integrity have been ad-
dressed with fair success by designing operating systems that enforce various
access-control models. It seems reasonable to expect that an operating sys-
tem could also help to prevent denial of service, and that an important step
in achieving that goal is to propose a denial-of-service model. The model
proposed in this paper is the successor to a model presented in [Mill’92].
The present model is simpler.

A computer security model usually consists of a system model, often an
abstract state-transition machine, plus a security policy stated in the context
of that sort of machine. The policy is driven partly by considerations of
realism in the system model, and partly by higher-level requirements. The
model to be given below is meant to support a family of related policies
rather than one specific policy, but even so it represents a narrow slice of
the spectrum of conceivable denial-of-service policies.

1.1.1 Availability Requirements

There have been a number of attempts to formulate denial-of-service pro-
tection requirements. The term “availability” is sometimes used for require-
ments aimed at denial-of-service protection.

Universally applicable requirements might not be possible. At the 1985
DOD Workshop on Network Security [DoDNW], the working group on denial
of service concluded that: “No generic denial of service conditions could be
identified which were independent of mission objectives.”

The workshop did, however, suggest “detection, recovery, and resistance”
as the major categories of requirements.

The mere presence of access control, for confidentiality and integrity
protection, is a kind of denial of service. Any availability policy must be
qualified by the constraints of the access control policy. Dobson [Dobs’91]
views the tradeoff between confidentiality and access to information in terms
of a negotiation, possessing some rather subtle aspects, and leading to a
contract for a combined policy.

The European “Harmonized Criteria” [ITSEC] went beyond TCSEC
[TCSEC] requirements by including a functionality class F7 with a terse
“continuity-of-service” requirement:

Irrespective of its load at any time, the system shall be able to guarantee a
maximum response time for certain specified actions. In addition, for certain
specified actions, it shall be guaranteed that the system will not be subject
to deadlock.

A workshop was held in Canada in 1990 to crystallize the issues and
guide development of effective requirements [CTCPEC]. One of the rec-
ommendations of this workshop was to focus on denial of service, which
was defined as the loss of availability due to accidental or malicious user ac-
tions, as opposed to random failures that impact functionality, which are the
concern of reliability engineering. Another recommendation was to develop
a model. Two rudimentary models were suggested; a general availability
model that added a “Services” layer around a TCB to control access time,
and a state-transition model that showed detection and recovery transitions
between initial, failed, and partially recovered states.

A more detailed conceptual model was given by Bacic and Kuchta [BaKu’91].

Their paper recognized that the central problem of denial-of-service protec-
tion was resource allocation, and that a “resource allocation monitor” had
to have the reference monitor characteristics of being tamper-proof, always
invoked, and subject to analysis and testing. That paper also reviewed the
literature for prior models, among them the Yu-Gligor model.

1.1.2 The Yu-Gligor Model

Gligor had characterized the denial-of-service problem in 1983 as how to pro-
vide a shared service with a specified maximum waiting time, despite com-
petition between groups of users [Glig’83]. The paper contains a number of
detailed, instructive examples of denial-of-service situations. Subsequently,
joint work by Yu and Gligor [YuGI'90] resulted in a deeply developed ap-
proach which introduced the following ideas:

A ‘finite waiting time’ policy expressed as a liveness condition

The notion of user agreement

Fairness and simultaneity policies

e Service specifications

A general resource allocator model.

The finite-waiting-time policy says that whenever service has been re-
quested, it will eventually be provided. In the context of a service specifica-
tion, which is a general framework for organizing the description of a service
interface, a finite-waiting-time policy is implemented through a combina-
tion of user agreements, fairness, and simultaneity policies. The resource
allocator model is an example of a service specification. It has Acquire and
Release operations, and the required properties and policies are stated with
temporal logic formulas.

1.1.3 User Agreements

User agreements are constraints on the behavior of service users; they must
be obeyed in order to prevent denial of service. If one views a service as
an abstract machine with inputs and outputs, user agreements are input

constraints. They exclude certain inputs in certain states, or disallow input
sequences, that are otherwise legal. An example mentioned by Yu and Gligor
is an “ordered resource acquisition” constraint for preventing deadlock.

In a denial-of-service protection context, user agreements must be en-
forced or supplemented by trusted code, since some users may be malicious.
Yu and Gligor suggest compile-time checks on user code or a layer of code
to filter requests.

1.2 Approach

The model presented in this paper resembles the Yu-Gligor resource allo-
cator. The principal difference is that it represents the passage of time
explicitly. By doing so, a maximum-waiting-time policy can be expressed as
easily as a finite-waiting-time policy, and it can also support other policies
of a probabilistic nature. Policies and user agreements are expressed more
explicitly, without temporal logic.

1.2.1 Attacks

There is an important difference between a system that enforces a denial
of service policy and one that does not: the system guarantees to maintain
certain specified service in the face of deliberate attack.

We will have to circumscribe the kinds of attack that are addressed,
because there is no hope of addressing them all within a single conceptual
and technical framework. Maintaining network connectivity despite physical
destruction of switching nodes, for example, is a very different problem from
maintaining service despite attempts to inject false control messages. In a
computer security context, it makes sense to focus on attacks that can be
carried out by untrusted programs.

1.2.2 Denial-of-Service Protection Base

The scope of protection is also limited by the means employed to enforce
it. In a computer security context, denial-of- service protection is accom-
plished through trusted hardware and software. Our approach here is to
try a variation of the reference monitor concept. Let us define a Denial-of-

service Protection Base (DPB) as a hardware/software mechanism with the
following three properties:

1. It is tamperproof.
2. It cannot be prevented from operating.

3. It guarantees (authorized) access to resources under its control.

If a DPB is possible at all, it can exist in a computer system that does
not have a Trusted Computing Base (TCB; see [TCSEC]) for secrecy and
integrity protection. On the other hand, if there is a TCB for a particular
system, a DPB could be combined with it, to take advantage of the TCB’s
mechanism for protecting itself and other data from unauthorized modifi-
cation. A DPB is also subject to access controls imposed by a TCB. The
DPB cannot and need not provide unauthorized access.

If there is both a TCB and a DPB on the same system, it is natural to
ask what the structural relationship is between them. Are they co-extensive,
is one a subset of the other, can one be implemented as a layer on top of the
other, etc. One conclusion follows from the fact that the TCB maintains
ultimate control over access to most, if not all, essential system resources.
A DPB cannot guarantee access to those resources without the cooperation
of the TCB. Any guarantee of service by the DPB is made not only on its
own behalf but also on behalf of the TCB. In that sense, the TCB must be
regarded as part of the DPB. The TCB might have to be reexamined and
even redesigned in order to ensure that it supports service guarantees.

The scope of DPB protection is alluded to in property (3), “resources
under its control.” It is obvious that the only services whose availability can
be guaranteed by a DPB are those provided by the DPB itself. Hence the
DPB must offer those services whose loss would be viewed as a denial-of-
service problem.

1.2.3 Resource Allocation

The relationship between “services” and “resources” is, for our purposes,
that a service furnishes access to a resource. The scheduler in an operating
system, for example, is a service furnishing access to the CPU resource. The
access control mechanism is a service furnishing access to a data resource
such as a file or segment.

It is agreed by all authors who have addressed denial of service that long
delays in service constitute denial, and absolute denial can be viewed as an
infinite delay. Hence, one necessary aspect of denial-of-service protection is
the ability to limit waiting times for access to resources. This implies, in
particular, that a process cannot be allowed to maintain exclusive access
to a resource forever, if another process has requested it. The DPB must
therefore be able to revoke access to a resource.

One can distinguish between shared and private resources. It is reason-
able to permit processes to hold some quota of certain resources forever, if
there is enough to go around. More generally, one can set up a maximum
holding time policy that is an arbitrary function of the current resource al-
locations. The maximum holding time for the last few remaining units of a
resource might, for example, be much less than for the first few. Similarly,
there are time- slicing algorithms that lengthen time slices when the system
load is low and shorten them when the load is high.

1.2.4 Resource Destruction

When studying a resource allocation model for denial of service, there is an
implicit assumption that resources can be denied to one process only due
to allocation of that resource to another process. But there are examples of
denial of service whereby a malicious process makes a resource unavailable
by removing it from the pool, without acquiring the resource itself. Gligor
[Glig’83] gives an example due to Saltzer in which certain directory pages
could be rendered inaccessible. Thus, we must distinguish between two kinds
of denial of service:

1. denial through resource allocation
2. denial through resource destruction.
Resource destruction depends on the existence of some design or implemen-

tation mistake in the DPB, since there is no legitimate excuse to allow user
programs to destroy resources that are presumably under DPB control.

This paper focusses on resource allocation and does not attempt to model
or suggest countermeasures for resource destruction problems.

1.2.5 Progress, Simultaneity and Deadlock

Deadlock is often brought up in discussions about denial of service. Deadlock
is defined to be a condition in which two or more processes have acquired
certain resources, but each one needs access to at least one additional re-
source (without giving up access to the resource it has) in order to make
progress. Deadlock occurs when each of the additional resources needed has
already been acquired by some other process.

Deadlock, as such, is somewhat off-center as an aim for denial-of-service
protection, because none of the processes involved is necessarily malicious.
If a process is malicious, it need not be deadlocked itself; it can block other
processes simply by acquiring resources they need. Consideration of dead-
lock, however, reminds us of the fact that processes may fail to make progress
because they need simultaneous access to two or more resources. The DPB
policy should ensure that a process will eventually gain simultaneous access
to all resources it needs simultaneously. If this design objective is satisfied,
deadlock will, perforce, be prevented.

For many purposes, a process needs to maintain exclusive access a lock
— on some resource over a number of successive time slices, until some logi-
cally unitary task is completed. A DPB should respect a request to maintain
exclusive access to a resource, as long as it is for a reasonable length of time.
A permanent lock would, of course, defeat shared access and deny service.

1.2.6 Waiting Time Policies

The early work of Gligor suggested a Maximum Waiting Time (MWT) pol-
icy, in which a requested service is provided within some fixed time bound.
The Yu-Gligor paper introduced the weaker Finite Waiting Time (FWT)
policy, in which the service will eventually be provided, but there is no fixed
upper bound to the amount of time the process might have to wait.

Another category of policies should be considered: Probabilistic Waiting
Time (PWT) policies. There are many kinds of probabilistic policies: e.g.,
one that specifies an mean waiting time for service, or one that says only
that service will eventually be provided with probability one. Both of these
policies are, in some sense, weaker than the FW'T policy, since it is possible
that some individual service request will never be satisfied. On the other
hand, the FWT policy does not guarantee any bound on average service

time, and a probability-one service is it almost as good as FWT service.

Performance requirements often specify a mean waiting time for ser-
vice, or other statistical constraints on waiting time. The difference be-
tween denial-of-service policies and performance requirements is just that
performance requirements may assume some probabilistic load model, while
denial-of-service protection must consider worst-case stress due to malicious
processes.

A real-world example of a policy with probability-one service without a
FWT guarantee is CSMA/CD (carrier-sense multiple-access with collision
detection) on a local-area network. An attempt by two processors to place
a message on the bus at the same time results in a random “back-off” wait
and a retry by both. It is possible, though only with probability zero, that
every retry results in another collision, forever. Yet the usual performance
is satisfactory for reasonable loads.

The random element in a probabilistic policy would be part of the DPB
itself, and not due to user behavior. For example, a DPB might randomly
select the next process to run or the next resource to revoke.

With a probabilistic policy, the best that can be said is that there is
some designated probability such that a request will be satisfied within a
certain time. This is still much better than a system in which malicious
processes could repeatedly force an arbitrarily long delay in request satis-
faction. Because the random element is not under the control of malicious
processes, each process can expect consistent, if not good, service, on the
average, despite malicious interference.

A malicious process can defeat any waiting time policy for itself, by
attempting to hold a resource forever (i.e., insisting on an infinite service
time). If some other process requests that resource, it will eventually become
necessary for the DPB to revoke the resource from the malicious process.
Since that process has not completed its requested service, the malicious
process has been denied service. However, it is reasonable not to extend
service guarantees to malicious processes.

Finally, we should remark that the most viable policies might not be
simple, but perhaps a combination of different types. Furthermore, different
classes of processes might have different priorities, resulting in different time
bounds or other policy parameters.

2 Resource Monitor Model

2.1 Introduction

The following model is based on a task-resource model given in Coffman and
Denning [CoDe’73], used to study deadlock. The new aspect of our model,
needed to address denial of service, is the introduction of time. We will also
define denial-of- service protection in the context of this model.

2.1.1 Basic Sets and Parameters

A resource monitor (RM) is built on a set of processes P and a set of resource
types R. The number of resource types is finite. Each resource type r € R
has a capacity c(r), representing the number of (interchangeable) units of
that resource in the system.

Note that the resources reflected in R are shared resources. Each process
might also have some private resources that it is allowed to hold as long as
it likes. We assume that those resources are not subject to denial.

A process is in one of two states: running or asleep. It is running when
it has been allocated a resource of the particular type rcpy. The RM may
permit more than one process to be running at a time; this would be the
case with a multiprocessor or network. Since each process (by definition)
can occupy only one CPU, the capacity of the CPU resource is always one
unit, even though there may be several CPUs in the system. The limitation
of one CPU per process does not prevent processes from cooperating in some
higher-level organization such as a process family or distributed transaction.

2.2 State Structure

The current state of the monitor is represented by a 4-tuple (A4, T,5Q, T Q),
where A is the allocation matriz, T is the time vector, SQ is a space require-
ment matriz, and TQ is a time requirement matriz. Their characteristics are
specified below.

We will write

(A7 T7 SQ7 TQ) % (AI7 TI7 SQ’7 TQI)

to denote a possible state transition. In formal axioms below, primed state
components will always refer to a state that may (directly) follow the state
referred to by unprimed components.

2.2.1 Allocation Matrix

The allocation matrix, A, is a function on P x R into N, where N is the set
of non-negative integers. This function can be represented as a matrix if one
chooses some fixed ordering of the processes and resources, as was done by
Coffman and Denning. (Although we have not assumed that the number of
processes is finite, in actual systems the number that are active at a given
time will be manageable.)

The value of the allocation matrix A(p,r) is the number of units of
resource type r that are currently allocated to process p. The allocation
vector A, for a process p is one row of the matrix, defined by

AP(T) = A(pa T)'

The CPU resource is allocated with an amount of one each time a process
begins running, i.e., is activated, and is deallocated to zero each time it goes
to sleep, i.e., is deactivated. In fact, the amount of CPU allocation is what
determines whether the process is running or asleep. Let us define

running(p) if A,(rcpy) =1

in the context of a particular state, and

asleep(p) if Ay(rcpu) = 0.

The next-state notation also applies to running’(p) and asleep’(p), refer-
ring to the state of p after a transition.

There is a feasibility constraint on space allocation. If we regard c as
a vector, the constraints on each resource are expressible all at once as a
vector inequality:

Z A, <c (R1)

peEP

The total amount of currently allocated units of any resource must not exceed
the system capacity for it.

10

2.2.2 Time Vector

The time vector T is a function on P into N. Its value T'(p) represents the
system real time at the last time process p was activated or deactivated. It
will be needed to help specify waiting-time policies.

Time is measured in the number of “ticks” of some sufficiently fine-
grained time unit relative to an arbitrary origin (e.g., we could choose time
zero to be when the system was initialized).

Time passes while running processes are using their time slices, and also
while the resource monitor is performing its reallocation functions. These
activities occur while the system is in some state, and state transitions are
viewed as instantaneous events occurring at the end of the activity.

The time vector is an abstraction of the real-time clock of the CPU
on which the process is running. Clocks on different CPUs might not be
synchronized, so we cannot, in general, assume that new clock readings are
greater than prior values obtained by a different process. Successive readings
by different processes on the same CPU will increase, but the model does
not keep a history of which CPU was used by which process. We must be
cautious about interpreting process virtual time and its relation to real time
in large asynchronous systems.

We will require that an activation or deactivation event time is (at least
one tick) greater than the previous event time for the same process. Thus,

if Ay(ropu) # Ay(repy) then T (p) > T(p). (R2)

2.2.3 Requirement Matrices

The space and time requirement matrices indicate the resources needed by
a process to complete its current task.

Both matrices serve as a means of communicating requests from pro-
cesses to the system. They are regarded as inputs to the state machine, and
are never modified by the resource monitor (this is different from the model
in [Mill’92]). Consequently, there are no constraints (other than value-type)
on them imposed by the resource monitor. User processes may voluntar-
ily observe constraints such as user agreements, however. These will be
discussed later.

11

2.2.4 The Space Requirement Matrix

The space requirement matrix 5@Q is a function on P x R into N. The value
SQ(p, r) is a non-negative integer representing resource units of resource r
required by process p for its current task.

Each row of the matrix, for a process p, is a space requirement vector
SQp. It is the function on R into N defined by

“Qp(r) =°Q(p, 7).

Incidentally, we do not insist that a process have requirements for more
than one resource at a time, or, when several resources are needed, that a
process request them all together. In many systems, a process may only be
able to request one resource at a time. However, in other systems, what ap-
pears as a single request at the system call interface is in reality a request to
claim several resources, so the flexibility for multiple simultaneous requests
should be available in the model. Also, even when only one resource is re-
quested at a time, and previously requested resources have not been released,
the space requirement matrix will show the accumulated resources.

There is no separate matrix (as there is in [CoDe’73]) for release requests;
instead, the fact that a space requirement has become less than the currently
allocated amount is an indication that the process no longer needs those
resources.

2.2.5 The Time Requirement Matrix

The time requirement matrix 1) is a function on P x R into N. The value
TQ(p,r) is a non-negative integer showing how long, or how much longer,
the process p wants exclusive access to each resource r. Time is measured in
a number of “ticks”, and it represents virtual time, i.e., it should be credited
only while the process is running.

For each process p, the corresponding row of the matrix is a time re-
quirement vector, TQp, defined by

TQP(T) = TQ(pa 7")-

It is not usual in operating systems for processes to have to announce
how long they want a resource. Nor is it common for the operating system

12

to keep track of how long a process has had a resource, with the excep-
tion of the CPU, although this has been done for purposes of performance
monitoring. More explicit attention needs to be paid to this aspect of re-
source management in a system that provides denial-of-service protection.
If it is considered burdensome for a process to make explicit resource time
requests, one could provide them implicitly instead, by assuming that each
resource is requested for some default amount of virtual time that is fixed
as a parameter of the system or of the particular resource.

2.2.6 Sharing and Locking

The model assumes that individual units of a resource cannot be shared. Yet
files can be shared for read access. One way to represent this in the model is
to artificially view a file as a resource type with a very large capacity, larger
than the number of processes that might concurrently want read access.
Each process requesting read access asks for only one unit of the resource.

Ordinarily, write accesses are exclusive; they are not shared with any
other process, regardless of which mode of access the other process wants.
This can be handled by treating a request for write access as a requirement
for the entire capacity of the resource.

Another way to handle this, slightly more elegant but still artificial, is to
consider a file as a resource with only one unit. A request for read access is
interpreted as a requirement, not by the process requesting the access, but
by an imaginary global system daemon, the same one regardless of which
process made the request. Subsequent read accesses by other processes are
no problem because the daemon already has the resource. A write access
request would require transferring the resource from the daemon to the
requesting process, possible only when all read accesses are released.

2.2.7 Progress and Simultaneity

Since the space requirements requested by a process are simultaneous re-
quirements, there is no point in executing a process until all its space re-
quirements have been satisfied, i.e., when its space requirement vector is met
(or exceeded) by its allocation vector. Otherwise it cannot make progress
on its current task. This will be reflected as a constraint on activation
transitions.

13

With this assumption, it is fair to view a process as making progress
whenever it runs. This does not mean that the process will finish its task,
merely that it has not been permanently blocked. The fact that a process has
made progress should show up as some change in its time or space require-
ment vector. This change represents the result of a process redetermining
its needs during its execution.

As a process executes, it may make arbitrary changes in its requirement
vectors. Time requirements do not always go down, since processing time
may be data dependent and therefore not fully predictable when a resource is
first requested. But if a process can run for a time slice and have the same
space and time requirements at the end of it, it could do the same thing
repeatedly and hog its resources forever. It is important, then, to have a
user agreement to show some progress after each time slice. Of course, if
the only progress made is to increase a time requirement, the process may
try to hold a resource forever; clearly some additional user agreement would
also be required.

When time requirements are implicit and maintained by the resource
monitor rather than the user processes, there could be a convention that
if there is no change in space requirements, the time requirements will be
assumed to be reduced automatically by the size of the time slice when the
process is deactivated. This is an example of how the system can help to
support one kind of user agreement.

Theoretically, there might be a concern that a process could run an
infinite number of times, with converging time slices, so that it progressed
only a finite amount of virtual time, which might be less than it needed
to finish a task. That cannot happen, however, when time is allocated in
discrete ticks, since the time slices cannot approach zero.

2.3 Constraints on Transitions

Recall that a transition is a deactivate transition for p when process p has
just surrendered the CPU; i.e., running(p) and asleep’(p). Also, a transition
that allocates the CPU, i.e., a transition such that asleep(p) and running’(p),
is an activate transition for p. Transitions which modify A,, but are neither
deactivate nor activate transitions for p, are called reallocation transitions
for p.

Note that when we refer to a transition as a “deactivate transition” or

14

a “reallocation transition” the characterization is relative to some process
p. The same transition may be a deactivate transition for one process, an
activate transition for another, and a reallocation transition for a third,
while still other processes are unaffected.

We also refer to a state as an activation state for a process if it is the
outcome of an activate transition for that process. As remarked earlier,

The allocation vector must meet or exceed the space requirement vector
in the activation state.

if asleep(p) and running'(p) then A} > SQ'p. (R3)

It seems reasonable to assume that a resource monitor does not allocate
or deallocate a process’s resources while it is running. Hence, we require
that:

No reallocation affects a process that remains running:

if running(p) and running'(p) then A, = A, (R4)

Furthermore, the requirement matrices are under the control of running
processes, and cannot be changed by the resource monitor. Changes caused
by a running process in its requirements are not visible to the resource
monitor until the process deactivates. Hence,

Requirement changes are seen only on deactivation.

if asleep(p) or running’ (p) thenSQp = SQ'p and TQp = TQ;. (R5)

Process deactivation, incidentally, does not necessarily result in swapping
out the process. Whenever the system is running its own code, as opposed to
that of the application, the time taken may be regarded as system overhead
rather than progress, so the process is considered to be asleep during that
time. This also implies that a process may voluntarily deactivate itself
simply by requesting any operating system service, such as an I/O operation.

2.3.1 Illustration

The figure illustrates a succession of possible transitions for one process and
resource. It shows CPU allocation (time and space requests for the CPU

15

Ap(kpy) O ,1_|° ,1_|°

Te) lolila lals

A0 [
QM) o)
'Q,(r) -

0 2 1

Figure 1: Sample Transitions, One Process and Resource

are assumed but not shown), the time, a resource request, allocation of a
resource 7, and decrementing of the time requirement for r on the next
deactivate transition. (Time slices are only one tick long in this example,
for simplicity, but they would normally be longer.)

2.4 Summary

A resource monitor has been defined as an abstract machine whose current
state is of the form (A4, T,5Q,"Q), subject to (R1), and whose state transi-
tions are governed by (R2) - (R5). The next section discusses what else is
necessary to create a denial-of-service protection base.

3 Denial-of-service Protection

The definition of resource monitor in Section 2 just identifies a family of
abstract machines. It does not say which members of the family provide
denial-of-service protection. In order to specify a denial-of-service protection
base (DPB), it is necessary to constrain the states and transitions further,
by imposing conditions expressing the denial-of-service policy.

Our present objective is, first, to introduce the additional concepts needed
to define denial-of-service protection precisely in the context of our model,

16

and then to give an example of the process of showing that a resource mon-
itor algorithm provides denial-of-service protection.

3.1 DPB Definition
3.1.1 The Resource Allocation Algorithm

In the general definition of a resource monitor, many different state changes
are possible from a given state. The time at which a state change may
occur, and changes in the allocation set, are under the control of the resource
monitor. If one supposes that the resource monitor acts according to some
time-driven algorithm, one can regard the system as a deterministic machine
whose inputs are the requirements vectors specified by the processes on
deactivate transitions. Another possibility is that the resource monitor has
a probabilistic algorithm, with a stochastic element in its decisions. The
result is a probabilistic machine.

From a denial-of-service protection point of view, some resource alloca-
tion algorithms are better than others. In order to do its job, a resource
monitor must also expect some cooperation from user processes. For exam-
ple, it might insist that user requirements be feasible.

3.1.2 Feasible Requirements

A space requirement vector SQp is feasible if its space requirements do not
exceed the system capacity, i.e.,

5Q, is feasible if °Q, < c (F1)

Because requirement vectors are settable by processes that may be ma-
licious, they are not necessarily feasible. Non- malicious processes may be
constrained to feasible requirement vectors by user agreements.

3.1.3 User Agreements and Benign Processes

Generating infeasible requirements is an example of how a process may make
it impossible for the resource monitor to guarantee progress for it, since the

17

process will never be activated. Although the feasibility constraint just men-
tioned would apply to any system, there may also be additional constraints
that are specific to a particular resource monitor algorithm. Examples will
be given below.

In general, it is legitimate for a resource monitor algorithm to be ac-
companied by additional constraints on requirement vector changes during
deactivate transitions. These constraints are called user agreements. If they
are respected by a process, the process is called benign.

3.1.4 Waiting-Time Policies

The various types of waiting-time policies, MWT, FWT, or PWT, can be
formalized using the model. These policies are expressed in terms of two
states,S = (A4,7,5Q, T Q) and a later state S = (A", T",5Q",TQ") that are
not necessarily consecutive. The MW'T and FWT policies are shown below.
Probabilistic policies are not shown because they need additional apparatus
to exhibit probability distributions, and are beyond the scope of this paper.

Mazimum Waiting Time Policy:

AB : Vp, S,35" : running” (p) and 0 < T"(p) — T'(p) < B

Finite Waiting Time Policy:

Vp, S,35" : running” (p) and T"(p) > T(p)

These policies state that a process will be activated within a fixed or finite
time. Strictly speaking, they do not guarantee progress, but only provide
opportunities for progress. We can expect that a benign process will always
be able to make some progress when given an opportunity, however, since
time slices have a minimum size. Whether the minimum time slice is enough
in a practical sense is an implementation question.

3.1.5 Time-Boundedness

Although any requirements change implies progress for the process that
makes the change, user agreements are also needed to ensure that a pro-
cess eventually releases resources needed by other processes. One type of
agreement that will help serve that purpose is time-boundedness.

18

A resource is time-bounded for a process if the time requirement for that
resource is bounded by a quantity that is (1) set at a fixed amount when
the resource is first requested and (2) thereafter decreases by each slice of
running time. Formally, we attach a matrix M (p, r) to the state representing
the time left for p to hold r. Also, we specify a maximum holding time h(r)
for each resource, such that:

T Qp(r) < M(p,7) (B1)

if Ay(r) =0 then M(p,r) = h(r) (B2)

if running(p) and asleep’(p) and A,(r) > 0 then
M'(p,r) = Maz{M(p,r) — (T"(p) — T'(p)), 0}. (B3)

That is, (B1) the current time requirement is bounded by the time left,
(B2) the time left is equal to the maximum holding time if the resource is
not allocated, and (B3) the time left decreases by the amount of each time
slice.

Note that a process may ask for less than the maximum initially, in which
case the time requirements on some resources may increase. However, the
bound on the time requirement always decreases by the time slice on each
deactivation, until the time requirement becomes zero. On a subsequent
deactivation, the time requirement may go up again, whether the resource
was revoked or not.

Time-boundedness is not usually appropriate for the CPU, since a pro-
cess will typically request another time slice every time it is deactivated
(until it finally, voluntarily, terminates), and in time-sharing systems it is
not unusual for some processes to exist indefinitely. (Although batch jobs
may very well have a CPU time limit.)

There is still the question of how long a process may run before deac-
tivation. If a process is never deactivated, it can hold any resource it has
forever, since reallocations occur only on or after deactivation. But, if we
assume that time slices are bounded above, it follows that any allocated
resource can eventually be reallocated.

19

Another problem is that before a process releases one resource, it can
request another, so that a competing process that wishes both resources will
be blocked. This kind of situation can lead to deadlock, but it can be dealt
with by various tactics such as ordered acquisition agreements, revocation,
etc.

3.1.6 The Denial-of-Service Protection Base

A DPB is characterized by:

e a resource monitor,
e a waiting time policy (e.g., MWT, FWT, or PWT), and

e user agreements.
It must satisfy the following conditions:

Progress) Each benign process will make progress in accordance with the
g g g
waiting time policy.

(Patience) No non-CPU resource is revoked from a benign process until
its time requirement is zero.

Formally,

if r # ropy and Ay(r) # 0 and A} (r) = 0 then TQ,(r) = 0.

Note that a DPB may insist on some outrageous user agreement — for
example, that the requirement vectors must always be all-zero. Such a DPB
is easy to implement but will not garner a large market share.

3.2 A DPB Example
We will give a simple abstract example of a DPB that provides denial-

of-service protection with a MWT policy. The purpose of the example is
to illustrate the process for proving that a DPB’s policy is satisfied, and

20

not to recommend the particular resource allocation algorithm used. The
resource monitor is unconstrained except that we will assume it has only one
CPU, and it employs the allocation algorithm given below. For this DPB,
a process is benign if it satisfies the following user agreements on deactivate
transitions:

1. Its space requirement vectors are feasible.

2. For each process, there is a fixed time-bounded resource type, which
we will call its sentinel, whose time requirement is always the largest.

The resource monitor (RM) allocation algorithm is as follows.

e In the initial state, no resources are allocated to any process.

e In each state, the RM has a currently favored process, which will
remain favored until the time requirement for its sentinel resource
becomes zero or the RM has determined that it is malicious. The RM
will then select another favored process. All processes will become
favored in a round-robin fashion.

e Just before the RM selects a favored process, it will always be in a
state where no resources are allocated. Hence, the next benign fa-
vored process can be given all its space requirements. (A process with
infeasible requirements is malicious and will be passed over.) The pro-
cess is activated and runs for a maximum time slice called the quantum
and denoted ¢, or until a voluntary deactivation occurs.

e The RM maintains a register H that is initialized to the maximum
holding time Hj of the sentinel resource when a process becomes fa-
vored. At the conclusion of each time slice, H is decremented by one
tick. If, on any deactivation, any time requirement exceeds H, the
process is identified as malicious, and its resources are revoked.

e At the conclusion of the time slice, the RM returns the favored process
to running status and gives it another time slice. The same process
is run repeatedly until its time requirement vector becomes zero, at
which time all its resources are revoked, or until the RM determines
that it is malicious.

21

Clearly, no resource is revoked from a benign process until its time require-
ment is zero. We will show that there is a maximum time for each cycle;
that will prove denial-of- service protection.

We claim that on each cycle, the entire time requirement vector of the
currently favored process will reach zero within a bounded time, because
of time-boundedness on the sentinel, and a further assumption that RM
activity is bounded.

By user agreement (2), the register H serves as an upper bound for
all elements of the time requirement vector. By (B2) and (R2), each time
slice reduces the maximum time requirement by at least 1. Hence, the time
requirement vector is reduced to zero within a total running time of Hy (or
the process is seen to be malicious).

Now, let K be the time needed by the RM from the beginning of the
cycle to the time it first activates the favored process. This is the time
during which the RM allocates all the requested resources and updates the
space requirement vector. Since there is a fixed finite limit to the system
resources, this activity takes a bounded amount of time.

For each time slice, the running time is between 1 and q; the worst-case
total arises from assuming 1, since this maximizes the system overhead.
This represents the case in which the process is changing its requirements
and voluntarily deactivating as often as possible. Between successive time
slices, the RM takes a bounded time, say D. When the time requirement
vector reaches all-zero, the RM can revoke all resources from the favored
process. The time for this is bounded by, say, L.

The total time taken to reduce the favored process’s time requirements
to zero is therefore at most

K+ Hyo(D+1) + L.

After this, the RM will proceed to the next favored process. If the total
number of processes is NV, the whole cycle will take at most:

N(K + Hyo(D +1) + L).

This will do as a very conservative waiting time bound.

22

3.3 Application to Networks

Denial of service is an important problem in networks. Some real examples
in this category are given in [Glig’86]. While our approach to denial-of-
service modelling is designed to handle concurrency and multiprocessing
systems, more effort is needed to extend it in ways suitable for networking
objectives. For example, the waiting time policies given here measure the
time between events of a single process. The principal service provided by a
network, however, is a communications service between different processes
running (typically) on different CPUs. The waiting time we need to measure
for a communications service might be, for example, the time from a “send”
request by one process to the time at which a “receive” request by the
destination process will yield the message that was sent.

We could still use this model if we interpret it differently. We need to
take a more abstract view of what a “process” is. Here is a sketch of how this
might be accomplished. We could define a “transport process” as a series
of transient tasks joined by links. A link is a DPB function that performs
interprocess communication, either locally or across a network link. As a
DPB function, a link transmits the contents of a buffer from one process to
another over a medium that is no less reliable than the hardware involved.
(Keep in mind that we are concerned here only with software attacks.)

Successive tasks of the same transport process pass messages, one to the
next. A local task process could leave a message in a buffer and deactivate
itself with a request for a link. Its new space requirement will be for a
buffer accessible to the destination process (perhaps in a different CPU).
The newly created destination process is viewed as the next incarnation of
the same transport process. Meanwhile, the sending task has terminated.

All tasks occupy the same “process” row in the model.

Some experience in applying this proposal would be necessary to estab-
lish its practicability. This approach was presented only to make the point
that the more obvious local interpretation of the model is not necessarily
the only one, and that there may be ways of dealing with network objectives
that take advantage of this model.

23

4 Conclusion

By focussing on malicious attacks by untrusted software on a service that
allocates shared resources, we have arrived at a model that takes advan-
tage of, and further defines, several concepts that have been suggested in
prior work on denial of service, such as user agreements. A denial-of-service
protection base (DPB) has been characterized as a resource monitor closely
related to a TCB, supporting a waiting-time policy for benign processes.
Resource monitor algorithms and policies can be stated in the context of a
state-transition model. The possibility of probabilistic waiting-time policies
have been suggested in addition to the finite- and maximum-waiting-time
policies. The model supports concurrency and multi-processing.

The separation between requirement matrices, for requests from user pro-
cesses to the resource monitor, and the time vector and allocation matrices,
as a record of how the resource monitor has made allocations, is needed to
handle potentially uncooperative behavior by malicious processes. The par-
ticular structure of the time vector, showing events per process rather than
a single global state time, is convenient for stating waiting-time policies.

The simple example of a DPB was given only as an illustration, permit-
ting a feasiblity and consistency check on the definitions. The example of
a DPB illustrates the form of argument that can be made to show denial-
of-service protection. However, the algorithm given is essentially a batch-
processing algorithm. It would be unsatisfactory in a real-time or interactive
environment, because it does not adapt to give any process more frequent
time slices.

In practice, the job of proving DPB properties is much more difficult.
There are a number of complications that arise. In our example, we implic-
itly assumed that the reference monitor cannot be interrupted except by the
end of a time slice or a voluntary deactivation request. In a real system, that
assumption may be difficult to show or simply not true. The example was
also a single-processor system; it does not investigate the impact of parallel
processes, such as the possibility of multiple stacked interrupts.

Future work should include examples of probabilistic waiting-time poli-
cies and investigation of more realistic reference monitor algorithms with
some general results about them, both in single-processor and multiproces-
sor or network architectures.

24

5 References

References

[DoDNW]

[ITSEC]

[TCSEC]

(no author) Proceedings of the Department of Defense Computer
Security Center Invitational Workshop on Network Security New
Orleans, LA, March 19-22 1985

(no author) Information Technology Security Evaluation Criteria
(DRAFT) der Bundesminister der Innern, Bonn, May 1990

(no author) Department of Defense Trusted Computer System
Evaluation Criteria DOD 5200.28-STD, December 1985

[CTCPEC] (no author) Proceedings of The 1990 CTCPEC Availability

[BaKu’91]

[Glig'83]

[Glig’86]

[YuGI'90]

[CoDe’73]

[Dobs’91]

Workshop February 6-7 1990 Communications Security Estab-
lishment, Government of Canada

E. M. Bacic and M. Kuchta Considerations in the Preparation of
a Set of Availability Criteria Third Annual Canadian Computer
Security Symposium Ottawa, Canada, 15-17 May 1991 pp. 283-
292

V. Gligor A Note on the Denial-of-Service Problem Proc. 1983
Symposium on Security and Privacy IEEE Computer Society pp.
139-149 1983

V. Gligor On Denial of Service in Computer Networks Proc.
International Conf. on Data Engineering Los Angeles, CA, IEEE
pp. 608-617 1986

C-F. Yu, V. D. Gligor A Specification and Verification Method
for Preventing Denial of Service IEEE Trans. on Software Engi-
neering, Vol. 16, No. 6, June 1990 pp. 581-592

E. G. Coffman, Jr., P. J. Denning Operating Systems Theory
Prentice-Hall 1973

J. Dobson Information and Denial of Service Database Security
V, IFIP Transactions A-6 1FIP, North- Holland 1991 pp. 21-46

25

Mill’92] J. K. Millen A Resource Allocation Model for Denial of Service
Proc. 1992 IEEE Computer Society Symposium on Research in

Security and Privacy IEEE Computer Society, May 1992 pp.
137-147

26

