
A Resoure Alloation Model for Denial of ServieJonathan K. MillenThe MITRE CorporationBedford, MAAbstratA denial-of-servie protetion base is haraterized as a resouremonitor losely related to a TCB, supporting a waiting-time poliyfor benign proesses. Resoure monitor algorithms and poliies an bestated in the ontext of a state- transition model.1 Introdution1.1 BakgroundThe three traditional onerns of omputer seurity are on�dentiality, in-tegrity, and denial of servie. Con�dentiality and integrity have been ad-dressed with fair suess by designing operating systems that enfore variousaess-ontrol models. It seems reasonable to expet that an operating sys-tem ould also help to prevent denial of servie, and that an important stepin ahieving that goal is to propose a denial-of-servie model. The modelproposed in this paper is the suessor to a model presented in [Mill'92℄.The present model is simpler.A omputer seurity model usually onsists of a system model, often anabstrat state-transition mahine, plus a seurity poliy stated in the ontextof that sort of mahine. The poliy is driven partly by onsiderations ofrealism in the system model, and partly by higher-level requirements. Themodel to be given below is meant to support a family of related poliiesrather than one spei� poliy, but even so it represents a narrow slie ofthe spetrum of oneivable denial-of-servie poliies.1

1.1.1 Availability RequirementsThere have been a number of attempts to formulate denial-of-servie pro-tetion requirements. The term \availability" is sometimes used for require-ments aimed at denial-of-servie protetion.Universally appliable requirements might not be possible. At the 1985DODWorkshop on Network Seurity [DoDNW℄, the working group on denialof servie onluded that: \No generi denial of servie onditions ould beidenti�ed whih were independent of mission objetives."The workshop did, however, suggest \detetion, reovery, and resistane"as the major ategories of requirements.The mere presene of aess ontrol, for on�dentiality and integrityprotetion, is a kind of denial of servie. Any availability poliy must bequali�ed by the onstraints of the aess ontrol poliy. Dobson [Dobs'91℄views the tradeo� between on�dentiality and aess to information in termsof a negotiation, possessing some rather subtle aspets, and leading to aontrat for a ombined poliy.The European \Harmonized Criteria" [ITSEC℄ went beyond TCSEC[TCSEC℄ requirements by inluding a funtionality lass F7 with a terse\ontinuity-of-servie" requirement:Irrespetive of its load at any time, the system shall be able to guarantee amaximum response time for ertain spei�ed ations. In addition, for ertainspei�ed ations, it shall be guaranteed that the system will not be subjetto deadlok.A workshop was held in Canada in 1990 to rystallize the issues andguide development of e�etive requirements [CTCPEC℄. One of the re-ommendations of this workshop was to fous on denial of servie, whihwas de�ned as the loss of availability due to aidental or maliious user a-tions, as opposed to random failures that impat funtionality, whih are theonern of reliability engineering. Another reommendation was to developa model. Two rudimentary models were suggested; a general availabilitymodel that added a \Servies" layer around a TCB to ontrol aess time,and a state-transition model that showed detetion and reovery transitionsbetween initial, failed, and partially reovered states.A more detailed oneptual model was given by Bai and Kuhta [BaKu'91℄.2

Their paper reognized that the entral problem of denial-of-servie prote-tion was resoure alloation, and that a \resoure alloation monitor" hadto have the referene monitor harateristis of being tamper-proof, alwaysinvoked, and subjet to analysis and testing. That paper also reviewed theliterature for prior models, among them the Yu-Gligor model.1.1.2 The Yu-Gligor ModelGligor had haraterized the denial-of-servie problem in 1983 as how to pro-vide a shared servie with a spei�ed maximum waiting time, despite om-petition between groups of users [Glig'83℄. The paper ontains a number ofdetailed, instrutive examples of denial-of-servie situations. Subsequently,joint work by Yu and Gligor [YuGl'90℄ resulted in a deeply developed ap-proah whih introdued the following ideas:� A `�nite waiting time' poliy expressed as a liveness ondition� The notion of user agreement� Fairness and simultaneity poliies� Servie spei�ations� A general resoure alloator model.The �nite-waiting-time poliy says that whenever servie has been re-quested, it will eventually be provided. In the ontext of a servie spei�a-tion, whih is a general framework for organizing the desription of a servieinterfae, a �nite-waiting-time poliy is implemented through a ombina-tion of user agreements, fairness, and simultaneity poliies. The resourealloator model is an example of a servie spei�ation. It has Aquire andRelease operations, and the required properties and poliies are stated withtemporal logi formulas.1.1.3 User AgreementsUser agreements are onstraints on the behavior of servie users; they mustbe obeyed in order to prevent denial of servie. If one views a servie asan abstrat mahine with inputs and outputs, user agreements are input3

onstraints. They exlude ertain inputs in ertain states, or disallow inputsequenes, that are otherwise legal. An example mentioned by Yu and Gligoris an \ordered resoure aquisition" onstraint for preventing deadlok.In a denial-of-servie protetion ontext, user agreements must be en-fored or supplemented by trusted ode, sine some users may be maliious.Yu and Gligor suggest ompile-time heks on user ode or a layer of odeto �lter requests.1.2 ApproahThe model presented in this paper resembles the Yu-Gligor resoure allo-ator. The prinipal di�erene is that it represents the passage of timeexpliitly. By doing so, a maximum-waiting-time poliy an be expressed aseasily as a �nite-waiting-time poliy, and it an also support other poliiesof a probabilisti nature. Poliies and user agreements are expressed moreexpliitly, without temporal logi.1.2.1 AttaksThere is an important di�erene between a system that enfores a denialof servie poliy and one that does not: the system guarantees to maintainertain spei�ed servie in the fae of deliberate attak.We will have to irumsribe the kinds of attak that are addressed,beause there is no hope of addressing them all within a single oneptualand tehnial framework. Maintaining network onnetivity despite physialdestrution of swithing nodes, for example, is a very di�erent problem frommaintaining servie despite attempts to injet false ontrol messages. In aomputer seurity ontext, it makes sense to fous on attaks that an bearried out by untrusted programs.1.2.2 Denial-of-Servie Protetion BaseThe sope of protetion is also limited by the means employed to enforeit. In a omputer seurity ontext, denial-of- servie protetion is aom-plished through trusted hardware and software. Our approah here is totry a variation of the referene monitor onept. Let us de�ne a Denial-of-4

servie Protetion Base (DPB) as a hardware/software mehanism with thefollowing three properties:1. It is tamperproof.2. It annot be prevented from operating.3. It guarantees (authorized) aess to resoures under its ontrol.If a DPB is possible at all, it an exist in a omputer system that doesnot have a Trusted Computing Base (TCB; see [TCSEC℄) for serey andintegrity protetion. On the other hand, if there is a TCB for a partiularsystem, a DPB ould be ombined with it, to take advantage of the TCB'smehanism for proteting itself and other data from unauthorized modi�-ation. A DPB is also subjet to aess ontrols imposed by a TCB. TheDPB annot and need not provide unauthorized aess.If there is both a TCB and a DPB on the same system, it is natural toask what the strutural relationship is between them. Are they o-extensive,is one a subset of the other, an one be implemented as a layer on top of theother, et. One onlusion follows from the fat that the TCB maintainsultimate ontrol over aess to most, if not all, essential system resoures.A DPB annot guarantee aess to those resoures without the ooperationof the TCB. Any guarantee of servie by the DPB is made not only on itsown behalf but also on behalf of the TCB. In that sense, the TCB must beregarded as part of the DPB. The TCB might have to be reexamined andeven redesigned in order to ensure that it supports servie guarantees.The sope of DPB protetion is alluded to in property (3), \resouresunder its ontrol." It is obvious that the only servies whose availability anbe guaranteed by a DPB are those provided by the DPB itself. Hene theDPB must o�er those servies whose loss would be viewed as a denial-of-servie problem.1.2.3 Resoure AlloationThe relationship between \servies" and \resoures" is, for our purposes,that a servie furnishes aess to a resoure. The sheduler in an operatingsystem, for example, is a servie furnishing aess to the CPU resoure. Theaess ontrol mehanism is a servie furnishing aess to a data resouresuh as a �le or segment. 5

It is agreed by all authors who have addressed denial of servie that longdelays in servie onstitute denial, and absolute denial an be viewed as anin�nite delay. Hene, one neessary aspet of denial-of-servie protetion isthe ability to limit waiting times for aess to resoures. This implies, inpartiular, that a proess annot be allowed to maintain exlusive aessto a resoure forever, if another proess has requested it. The DPB musttherefore be able to revoke aess to a resoure.One an distinguish between shared and private resoures. It is reason-able to permit proesses to hold some quota of ertain resoures forever, ifthere is enough to go around. More generally, one an set up a maximumholding time poliy that is an arbitrary funtion of the urrent resoure al-loations. The maximum holding time for the last few remaining units of aresoure might, for example, be muh less than for the �rst few. Similarly,there are time- sliing algorithms that lengthen time slies when the systemload is low and shorten them when the load is high.1.2.4 Resoure DestrutionWhen studying a resoure alloation model for denial of servie, there is animpliit assumption that resoures an be denied to one proess only dueto alloation of that resoure to another proess. But there are examples ofdenial of servie whereby a maliious proess makes a resoure unavailableby removing it from the pool, without aquiring the resoure itself. Gligor[Glig'83℄ gives an example due to Saltzer in whih ertain diretory pagesould be rendered inaessible. Thus, we must distinguish between two kindsof denial of servie:1. denial through resoure alloation2. denial through resoure destrution.Resoure destrution depends on the existene of some design or implemen-tation mistake in the DPB, sine there is no legitimate exuse to allow userprograms to destroy resoures that are presumably under DPB ontrol.This paper fousses on resoure alloation and does not attempt to modelor suggest ountermeasures for resoure destrution problems.6

1.2.5 Progress, Simultaneity and DeadlokDeadlok is often brought up in disussions about denial of servie. Deadlokis de�ned to be a ondition in whih two or more proesses have aquiredertain resoures, but eah one needs aess to at least one additional re-soure (without giving up aess to the resoure it has) in order to makeprogress. Deadlok ours when eah of the additional resoures needed hasalready been aquired by some other proess.Deadlok, as suh, is somewhat o�-enter as an aim for denial-of-servieprotetion, beause none of the proesses involved is neessarily maliious.If a proess is maliious, it need not be deadloked itself; it an blok otherproesses simply by aquiring resoures they need. Consideration of dead-lok, however, reminds us of the fat that proesses may fail to make progressbeause they need simultaneous aess to two or more resoures. The DPBpoliy should ensure that a proess will eventually gain simultaneous aessto all resoures it needs simultaneously. If this design objetive is satis�ed,deadlok will, perfore, be prevented.For many purposes, a proess needs to maintain exlusive aess { a lok{ on some resoure over a number of suessive time slies, until some logi-ally unitary task is ompleted. A DPB should respet a request to maintainexlusive aess to a resoure, as long as it is for a reasonable length of time.A permanent lok would, of ourse, defeat shared aess and deny servie.1.2.6 Waiting Time PoliiesThe early work of Gligor suggested a Maximum Waiting Time (MWT) pol-iy, in whih a requested servie is provided within some �xed time bound.The Yu-Gligor paper introdued the weaker Finite Waiting Time (FWT)poliy, in whih the servie will eventually be provided, but there is no �xedupper bound to the amount of time the proess might have to wait.Another ategory of poliies should be onsidered: Probabilisti WaitingTime (PWT) poliies. There are many kinds of probabilisti poliies: e.g.,one that spei�es an mean waiting time for servie, or one that says onlythat servie will eventually be provided with probability one. Both of thesepoliies are, in some sense, weaker than the FWT poliy, sine it is possiblethat some individual servie request will never be satis�ed. On the otherhand, the FWT poliy does not guarantee any bound on average servie7

time, and a probability-one servie is it almost as good as FWT servie.Performane requirements often speify a mean waiting time for ser-vie, or other statistial onstraints on waiting time. The di�erene be-tween denial-of-servie poliies and performane requirements is just thatperformane requirements may assume some probabilisti load model, whiledenial-of-servie protetion must onsider worst-ase stress due to maliiousproesses.A real-world example of a poliy with probability-one servie without aFWT guarantee is CSMA/CD (arrier-sense multiple-aess with ollisiondetetion) on a loal-area network. An attempt by two proessors to plaea message on the bus at the same time results in a random \bak-o�" waitand a retry by both. It is possible, though only with probability zero, thatevery retry results in another ollision, forever. Yet the usual performaneis satisfatory for reasonable loads.The random element in a probabilisti poliy would be part of the DPBitself, and not due to user behavior. For example, a DPB might randomlyselet the next proess to run or the next resoure to revoke.With a probabilisti poliy, the best that an be said is that there issome designated probability suh that a request will be satis�ed within aertain time. This is still muh better than a system in whih maliiousproesses ould repeatedly fore an arbitrarily long delay in request satis-fation. Beause the random element is not under the ontrol of maliiousproesses, eah proess an expet onsistent, if not good, servie, on theaverage, despite maliious interferene.A maliious proess an defeat any waiting time poliy for itself, byattempting to hold a resoure forever (i.e., insisting on an in�nite servietime). If some other proess requests that resoure, it will eventually beomeneessary for the DPB to revoke the resoure from the maliious proess.Sine that proess has not ompleted its requested servie, the maliiousproess has been denied servie. However, it is reasonable not to extendservie guarantees to maliious proesses.Finally, we should remark that the most viable poliies might not besimple, but perhaps a ombination of di�erent types. Furthermore, di�erentlasses of proesses might have di�erent priorities, resulting in di�erent timebounds or other poliy parameters. 8

2 Resoure Monitor Model2.1 IntrodutionThe following model is based on a task-resoure model given in Co�man andDenning [CoDe'73℄, used to study deadlok. The new aspet of our model,needed to address denial of servie, is the introdution of time. We will alsode�ne denial-of- servie protetion in the ontext of this model.2.1.1 Basi Sets and ParametersA resoure monitor (RM) is built on a set of proesses P and a set of resouretypes R: The number of resoure types is �nite. Eah resoure type r 2 Rhas a apaity (r), representing the number of (interhangeable) units ofthat resoure in the system.Note that the resoures reeted in R are shared resoures. Eah proessmight also have some private resoures that it is allowed to hold as long asit likes. We assume that those resoures are not subjet to denial.A proess is in one of two states: running or asleep. It is running whenit has been alloated a resoure of the partiular type rCPU . The RM maypermit more than one proess to be running at a time; this would be thease with a multiproessor or network. Sine eah proess (by de�nition)an oupy only one CPU, the apaity of the CPU resoure is always oneunit, even though there may be several CPUs in the system. The limitationof one CPU per proess does not prevent proesses from ooperating in somehigher-level organization suh as a proess family or distributed transation.2.2 State StrutureThe urrent state of the monitor is represented by a 4-tuple (A; T; SQ;TQ),where A is the alloation matrix, T is the time vetor, SQ is a spae require-ment matrix, and TQ is a time requirement matrix. Their harateristis arespei�ed below.We will write (A; T; SQ;TQ)! (A0; T 0; SQ0;TQ0)9

to denote a possible state transition. In formal axioms below, primed stateomponents will always refer to a state that may (diretly) follow the statereferred to by unprimed omponents.2.2.1 Alloation MatrixThe alloation matrix, A, is a funtion on P �R into N, where N is the setof non-negative integers. This funtion an be represented as a matrix if onehooses some �xed ordering of the proesses and resoures, as was done byCo�man and Denning. (Although we have not assumed that the number ofproesses is �nite, in atual systems the number that are ative at a giventime will be manageable.)The value of the alloation matrix A(p; r) is the number of units ofresoure type r that are urrently alloated to proess p. The alloationvetor Ap for a proess p is one row of the matrix, de�ned byAp(r) = A(p; r):The CPU resoure is alloated with an amount of one eah time a proessbegins running, i.e., is ativated, and is dealloated to zero eah time it goesto sleep, i.e., is deativated. In fat, the amount of CPU alloation is whatdetermines whether the proess is running or asleep. Let us de�nerunning(p) if Ap(rCPU) = 1in the ontext of a partiular state, andasleep(p) if Ap(rCPU) = 0:The next-state notation also applies to running0(p) and asleep0(p), refer-ring to the state of p after a transition.There is a feasibility onstraint on spae alloation. If we regard asa vetor, the onstraints on eah resoure are expressible all at one as avetor inequality: Xp2P Ap � (R1)The total amount of urrently alloated units of any resoure must not exeedthe system apaity for it. 10

2.2.2 Time VetorThe time vetor T is a funtion on P into N. Its value T (p) represents thesystem real time at the last time proess p was ativated or deativated. Itwill be needed to help speify waiting-time poliies.Time is measured in the number of \tiks" of some suÆiently �ne-grained time unit relative to an arbitrary origin (e.g., we ould hoose timezero to be when the system was initialized).Time passes while running proesses are using their time slies, and alsowhile the resoure monitor is performing its realloation funtions. Theseativities our while the system is in some state, and state transitions areviewed as instantaneous events ourring at the end of the ativity.The time vetor is an abstration of the real-time lok of the CPUon whih the proess is running. Cloks on di�erent CPUs might not besynhronized, so we annot, in general, assume that new lok readings aregreater than prior values obtained by a di�erent proess. Suessive readingsby di�erent proesses on the same CPU will inrease, but the model doesnot keep a history of whih CPU was used by whih proess. We must beautious about interpreting proess virtual time and its relation to real timein large asynhronous systems.We will require that an ativation or deativation event time is (at leastone tik) greater than the previous event time for the same proess. Thus,if Ap(rCPU) 6= A0p(rCPU) then T 0(p) > T (p): (R2)2.2.3 Requirement MatriesThe spae and time requirement matries indiate the resoures needed bya proess to omplete its urrent task.Both matries serve as a means of ommuniating requests from pro-esses to the system. They are regarded as inputs to the state mahine, andare never modi�ed by the resoure monitor (this is di�erent from the modelin [Mill'92℄). Consequently, there are no onstraints (other than value-type)on them imposed by the resoure monitor. User proesses may voluntar-ily observe onstraints suh as user agreements, however. These will bedisussed later. 11

2.2.4 The Spae Requirement MatrixThe spae requirement matrix SQ is a funtion on P �R into N. The valueSQ(p; r) is a non-negative integer representing resoure units of resoure rrequired by proess p for its urrent task.Eah row of the matrix, for a proess p, is a spae requirement vetorSQp. It is the funtion on R into N de�ned bySQp(r) = SQ(p; r):Inidentally, we do not insist that a proess have requirements for morethan one resoure at a time, or, when several resoures are needed, that aproess request them all together. In many systems, a proess may only beable to request one resoure at a time. However, in other systems, what ap-pears as a single request at the system all interfae is in reality a request tolaim several resoures, so the exibility for multiple simultaneous requestsshould be available in the model. Also, even when only one resoure is re-quested at a time, and previously requested resoures have not been released,the spae requirement matrix will show the aumulated resoures.There is no separate matrix (as there is in [CoDe'73℄) for release requests;instead, the fat that a spae requirement has beome less than the urrentlyalloated amount is an indiation that the proess no longer needs thoseresoures.2.2.5 The Time Requirement MatrixThe time requirement matrix TQ is a funtion on P �R into N. The valueTQ(p; r) is a non-negative integer showing how long, or how muh longer,the proess p wants exlusive aess to eah resoure r. Time is measured ina number of \tiks", and it represents virtual time, i.e., it should be reditedonly while the proess is running.For eah proess p, the orresponding row of the matrix is a time re-quirement vetor, TQp, de�ned byTQp(r) = TQ(p; r):It is not usual in operating systems for proesses to have to announehow long they want a resoure. Nor is it ommon for the operating system12

to keep trak of how long a proess has had a resoure, with the exep-tion of the CPU, although this has been done for purposes of performanemonitoring. More expliit attention needs to be paid to this aspet of re-soure management in a system that provides denial-of-servie protetion.If it is onsidered burdensome for a proess to make expliit resoure timerequests, one ould provide them impliitly instead, by assuming that eahresoure is requested for some default amount of virtual time that is �xedas a parameter of the system or of the partiular resoure.2.2.6 Sharing and LokingThe model assumes that individual units of a resoure annot be shared. Yet�les an be shared for read aess. One way to represent this in the model isto arti�ially view a �le as a resoure type with a very large apaity, largerthan the number of proesses that might onurrently want read aess.Eah proess requesting read aess asks for only one unit of the resoure.Ordinarily, write aesses are exlusive; they are not shared with anyother proess, regardless of whih mode of aess the other proess wants.This an be handled by treating a request for write aess as a requirementfor the entire apaity of the resoure.Another way to handle this, slightly more elegant but still arti�ial, is toonsider a �le as a resoure with only one unit. A request for read aess isinterpreted as a requirement, not by the proess requesting the aess, butby an imaginary global system daemon, the same one regardless of whihproess made the request. Subsequent read aesses by other proesses areno problem beause the daemon already has the resoure. A write aessrequest would require transferring the resoure from the daemon to therequesting proess, possible only when all read aesses are released.2.2.7 Progress and SimultaneitySine the spae requirements requested by a proess are simultaneous re-quirements, there is no point in exeuting a proess until all its spae re-quirements have been satis�ed, i.e., when its spae requirement vetor is met(or exeeded) by its alloation vetor. Otherwise it annot make progresson its urrent task. This will be reeted as a onstraint on ativationtransitions. 13

With this assumption, it is fair to view a proess as making progresswhenever it runs. This does not mean that the proess will �nish its task,merely that it has not been permanently bloked. The fat that a proess hasmade progress should show up as some hange in its time or spae require-ment vetor. This hange represents the result of a proess redeterminingits needs during its exeution.As a proess exeutes, it may make arbitrary hanges in its requirementvetors. Time requirements do not always go down, sine proessing timemay be data dependent and therefore not fully preditable when a resoure is�rst requested. But if a proess an run for a time slie and have the samespae and time requirements at the end of it, it ould do the same thingrepeatedly and hog its resoures forever. It is important, then, to have auser agreement to show some progress after eah time slie. Of ourse, ifthe only progress made is to inrease a time requirement, the proess maytry to hold a resoure forever; learly some additional user agreement wouldalso be required.When time requirements are impliit and maintained by the resouremonitor rather than the user proesses, there ould be a onvention thatif there is no hange in spae requirements, the time requirements will beassumed to be redued automatially by the size of the time slie when theproess is deativated. This is an example of how the system an help tosupport one kind of user agreement.Theoretially, there might be a onern that a proess ould run anin�nite number of times, with onverging time slies, so that it progressedonly a �nite amount of virtual time, whih might be less than it neededto �nish a task. That annot happen, however, when time is alloated indisrete tiks, sine the time slies annot approah zero.2.3 Constraints on TransitionsReall that a transition is a deativate transition for p when proess p hasjust surrendered the CPU; i.e., running(p) and asleep0(p). Also, a transitionthat alloates the CPU, i.e., a transition suh that asleep(p) and running0(p),is an ativate transition for p. Transitions whih modify Ap, but are neitherdeativate nor ativate transitions for p, are alled realloation transitionsfor p.Note that when we refer to a transition as a \deativate transition" or14

a \realloation transition" the haraterization is relative to some proessp. The same transition may be a deativate transition for one proess, anativate transition for another, and a realloation transition for a third,while still other proesses are una�eted.We also refer to a state as an ativation state for a proess if it is theoutome of an ativate transition for that proess. As remarked earlier,The alloation vetor must meet or exeed the spae requirement vetorin the ativation state.if asleep(p) and running0(p) then A0p � SQ0p: (R3)It seems reasonable to assume that a resoure monitor does not alloateor dealloate a proess's resoures while it is running. Hene, we requirethat:No realloation a�ets a proess that remains running:if running(p) and running0(p) then A0p = Ap (R4)Furthermore, the requirement matries are under the ontrol of runningproesses, and annot be hanged by the resoure monitor. Changes ausedby a running proess in its requirements are not visible to the resouremonitor until the proess deativates. Hene,Requirement hanges are seen only on deativation.if asleep(p) or running0(p) thenSQp = SQ0p and TQp = TQ0p: (R5)Proess deativation, inidentally, does not neessarily result in swappingout the proess. Whenever the system is running its own ode, as opposed tothat of the appliation, the time taken may be regarded as system overheadrather than progress, so the proess is onsidered to be asleep during thattime. This also implies that a proess may voluntarily deativate itselfsimply by requesting any operating system servie, suh as an I/O operation.2.3.1 IllustrationThe �gure illustrates a suession of possible transitions for one proess andresoure. It shows CPU alloation (time and spae requests for the CPU15

CPUA (r)p

A (r)p

Q (r)T
p

Q (r)p
S

T(p)

0
1

0
1

0

0 1 2 4 5

0
1

0
1

0 12Figure 1: Sample Transitions, One Proess and Resoureare assumed but not shown), the time, a resoure request, alloation of aresoure r, and derementing of the time requirement for r on the nextdeativate transition. (Time slies are only one tik long in this example,for simpliity, but they would normally be longer.)2.4 SummaryA resoure monitor has been de�ned as an abstrat mahine whose urrentstate is of the form (A; T; SQ;TQ), subjet to (R1), and whose state transi-tions are governed by (R2) - (R5). The next setion disusses what else isneessary to reate a denial-of-servie protetion base.3 Denial-of-servie ProtetionThe de�nition of resoure monitor in Setion 2 just identi�es a family ofabstrat mahines. It does not say whih members of the family providedenial-of-servie protetion. In order to speify a denial-of-servie protetionbase (DPB), it is neessary to onstrain the states and transitions further,by imposing onditions expressing the denial-of-servie poliy.Our present objetive is, �rst, to introdue the additional onepts neededto de�ne denial-of-servie protetion preisely in the ontext of our model,16

and then to give an example of the proess of showing that a resoure mon-itor algorithm provides denial-of-servie protetion.3.1 DPB De�nition3.1.1 The Resoure Alloation AlgorithmIn the general de�nition of a resoure monitor, many di�erent state hangesare possible from a given state. The time at whih a state hange mayour, and hanges in the alloation set, are under the ontrol of the resouremonitor. If one supposes that the resoure monitor ats aording to sometime-driven algorithm, one an regard the system as a deterministi mahinewhose inputs are the requirements vetors spei�ed by the proesses ondeativate transitions. Another possibility is that the resoure monitor hasa probabilisti algorithm, with a stohasti element in its deisions. Theresult is a probabilisti mahine.From a denial-of-servie protetion point of view, some resoure alloa-tion algorithms are better than others. In order to do its job, a resouremonitor must also expet some ooperation from user proesses. For exam-ple, it might insist that user requirements be feasible.3.1.2 Feasible RequirementsA spae requirement vetor SQp is feasible if its spae requirements do notexeed the system apaity, i.e.,SQp is feasible if SQp � (F1)Beause requirement vetors are settable by proesses that may be ma-liious, they are not neessarily feasible. Non- maliious proesses may beonstrained to feasible requirement vetors by user agreements.3.1.3 User Agreements and Benign ProessesGenerating infeasible requirements is an example of how a proess may makeit impossible for the resoure monitor to guarantee progress for it, sine the17

proess will never be ativated. Although the feasibility onstraint just men-tioned would apply to any system, there may also be additional onstraintsthat are spei� to a partiular resoure monitor algorithm. Examples willbe given below.In general, it is legitimate for a resoure monitor algorithm to be a-ompanied by additional onstraints on requirement vetor hanges duringdeativate transitions. These onstraints are alled user agreements. If theyare respeted by a proess, the proess is alled benign.3.1.4 Waiting-Time PoliiesThe various types of waiting-time poliies, MWT, FWT, or PWT, an beformalized using the model. These poliies are expressed in terms of twostates,S = (A; T; SQ;TQ) and a later state S00 = (A00; T 00; SQ00;TQ00) that arenot neessarily onseutive. The MWT and FWT poliies are shown below.Probabilisti poliies are not shown beause they need additional apparatusto exhibit probability distributions, and are beyond the sope of this paper.Maximum Waiting Time Poliy:9B : 8p; S;9S00 : running00(p) and 0 < T 00(p)� T (p) � BFinite Waiting Time Poliy:8p; S;9S00 : running00(p) and T 00(p) � T (p)These poliies state that a proess will be ativated within a �xed or �nitetime. Stritly speaking, they do not guarantee progress, but only provideopportunities for progress. We an expet that a benign proess will alwaysbe able to make some progress when given an opportunity, however, sinetime slies have a minimum size. Whether the minimum time slie is enoughin a pratial sense is an implementation question.3.1.5 Time-BoundednessAlthough any requirements hange implies progress for the proess thatmakes the hange, user agreements are also needed to ensure that a pro-ess eventually releases resoures needed by other proesses. One type ofagreement that will help serve that purpose is time-boundedness.18

A resoure is time-bounded for a proess if the time requirement for thatresoure is bounded by a quantity that is (1) set at a �xed amount whenthe resoure is �rst requested and (2) thereafter dereases by eah slie ofrunning time. Formally, we attah a matrixM(p; r) to the state representingthe time left for p to hold r. Also, we speify a maximum holding time h(r)for eah resoure, suh that: TQp(r) �M(p; r) (B1)if Ap(r) = 0 then M(p; r) = h(r) (B2)if running(p) and asleep0(p) and Ap(r) > 0 thenM 0(p; r) =MaxfM(p; r)� (T 0(p)� T (p)); 0g: (B3)That is, (B1) the urrent time requirement is bounded by the time left,(B2) the time left is equal to the maximum holding time if the resoure isnot alloated, and (B3) the time left dereases by the amount of eah timeslie.Note that a proess may ask for less than the maximum initially, in whihase the time requirements on some resoures may inrease. However, thebound on the time requirement always dereases by the time slie on eahdeativation, until the time requirement beomes zero. On a subsequentdeativation, the time requirement may go up again, whether the resourewas revoked or not.Time-boundedness is not usually appropriate for the CPU, sine a pro-ess will typially request another time slie every time it is deativated(until it �nally, voluntarily, terminates), and in time-sharing systems it isnot unusual for some proesses to exist inde�nitely. (Although bath jobsmay very well have a CPU time limit.)There is still the question of how long a proess may run before dea-tivation. If a proess is never deativated, it an hold any resoure it hasforever, sine realloations our only on or after deativation. But, if weassume that time slies are bounded above, it follows that any alloatedresoure an eventually be realloated.19

Another problem is that before a proess releases one resoure, it anrequest another, so that a ompeting proess that wishes both resoures willbe bloked. This kind of situation an lead to deadlok, but it an be dealtwith by various tatis suh as ordered aquisition agreements, revoation,et.3.1.6 The Denial-of-Servie Protetion BaseA DPB is haraterized by:� a resoure monitor,� a waiting time poliy (e.g., MWT, FWT, or PWT), and� user agreements.It must satisfy the following onditions:(Progress) Eah benign proess will make progress in aordane with thewaiting time poliy.(Patiene) No non-CPU resoure is revoked from a benign proess untilits time requirement is zero.Formally,if r 6= rCPU and Ap(r) 6= 0 and A0p(r) = 0 then TQp(r) = 0:Note that a DPB may insist on some outrageous user agreement { forexample, that the requirement vetors must always be all-zero. Suh a DPBis easy to implement but will not garner a large market share.3.2 A DPB ExampleWe will give a simple abstrat example of a DPB that provides denial-of-servie protetion with a MWT poliy. The purpose of the example isto illustrate the proess for proving that a DPB's poliy is satis�ed, and20

not to reommend the partiular resoure alloation algorithm used. Theresoure monitor is unonstrained exept that we will assume it has only oneCPU, and it employs the alloation algorithm given below. For this DPB,a proess is benign if it satis�es the following user agreements on deativatetransitions:1. Its spae requirement vetors are feasible.2. For eah proess, there is a �xed time-bounded resoure type, whihwe will all its sentinel, whose time requirement is always the largest.The resoure monitor (RM) alloation algorithm is as follows.� In the initial state, no resoures are alloated to any proess.� In eah state, the RM has a urrently favored proess, whih willremain favored until the time requirement for its sentinel resourebeomes zero or the RM has determined that it is maliious. The RMwill then selet another favored proess. All proesses will beomefavored in a round-robin fashion.� Just before the RM selets a favored proess, it will always be in astate where no resoures are alloated. Hene, the next benign fa-vored proess an be given all its spae requirements. (A proess withinfeasible requirements is maliious and will be passed over.) The pro-ess is ativated and runs for a maximum time slie alled the quantumand denoted q, or until a voluntary deativation ours.� The RM maintains a register H that is initialized to the maximumholding time H0 of the sentinel resoure when a proess beomes fa-vored. At the onlusion of eah time slie, H is deremented by onetik. If, on any deativation, any time requirement exeeds H, theproess is identi�ed as maliious, and its resoures are revoked.� At the onlusion of the time slie, the RM returns the favored proessto running status and gives it another time slie. The same proessis run repeatedly until its time requirement vetor beomes zero, atwhih time all its resoures are revoked, or until the RM determinesthat it is maliious. 21

Clearly, no resoure is revoked from a benign proess until its time require-ment is zero. We will show that there is a maximum time for eah yle;that will prove denial-of- servie protetion.We laim that on eah yle, the entire time requirement vetor of theurrently favored proess will reah zero within a bounded time, beauseof time-boundedness on the sentinel, and a further assumption that RMativity is bounded.By user agreement (2), the register H serves as an upper bound forall elements of the time requirement vetor. By (B2) and (R2), eah timeslie redues the maximum time requirement by at least 1. Hene, the timerequirement vetor is redued to zero within a total running time of H0 (orthe proess is seen to be maliious).Now, let K be the time needed by the RM from the beginning of theyle to the time it �rst ativates the favored proess. This is the timeduring whih the RM alloates all the requested resoures and updates thespae requirement vetor. Sine there is a �xed �nite limit to the systemresoures, this ativity takes a bounded amount of time.For eah time slie, the running time is between 1 and q; the worst-asetotal arises from assuming 1, sine this maximizes the system overhead.This represents the ase in whih the proess is hanging its requirementsand voluntarily deativating as often as possible. Between suessive timeslies, the RM takes a bounded time, say D. When the time requirementvetor reahes all-zero, the RM an revoke all resoures from the favoredproess. The time for this is bounded by, say, L.The total time taken to redue the favored proess's time requirementsto zero is therefore at mostK +H0(D + 1) + L:After this, the RM will proeed to the next favored proess. If the totalnumber of proesses is N , the whole yle will take at most:N(K +H0(D + 1) + L):This will do as a very onservative waiting time bound.22

3.3 Appliation to NetworksDenial of servie is an important problem in networks. Some real examplesin this ategory are given in [Glig'86℄. While our approah to denial-of-servie modelling is designed to handle onurreny and multiproessingsystems, more e�ort is needed to extend it in ways suitable for networkingobjetives. For example, the waiting time poliies given here measure thetime between events of a single proess. The prinipal servie provided by anetwork, however, is a ommuniations servie between di�erent proessesrunning (typially) on di�erent CPUs. The waiting time we need to measurefor a ommuniations servie might be, for example, the time from a \send"request by one proess to the time at whih a \reeive" request by thedestination proess will yield the message that was sent.We ould still use this model if we interpret it di�erently. We need totake a more abstrat view of what a \proess" is. Here is a sketh of how thismight be aomplished. We ould de�ne a \transport proess" as a seriesof transient tasks joined by links. A link is a DPB funtion that performsinterproess ommuniation, either loally or aross a network link. As aDPB funtion, a link transmits the ontents of a bu�er from one proess toanother over a medium that is no less reliable than the hardware involved.(Keep in mind that we are onerned here only with software attaks.)Suessive tasks of the same transport proess pass messages, one to thenext. A loal task proess ould leave a message in a bu�er and deativateitself with a request for a link. Its new spae requirement will be for abu�er aessible to the destination proess (perhaps in a di�erent CPU).The newly reated destination proess is viewed as the next inarnation ofthe same transport proess. Meanwhile, the sending task has terminated.All tasks oupy the same \proess" row in the model.Some experiene in applying this proposal would be neessary to estab-lish its pratiability. This approah was presented only to make the pointthat the more obvious loal interpretation of the model is not neessarilythe only one, and that there may be ways of dealing with network objetivesthat take advantage of this model.
23

4 ConlusionBy foussing on maliious attaks by untrusted software on a servie thatalloates shared resoures, we have arrived at a model that takes advan-tage of, and further de�nes, several onepts that have been suggested inprior work on denial of servie, suh as user agreements. A denial-of-servieprotetion base (DPB) has been haraterized as a resoure monitor loselyrelated to a TCB, supporting a waiting-time poliy for benign proesses.Resoure monitor algorithms and poliies an be stated in the ontext of astate-transition model. The possibility of probabilisti waiting-time poliieshave been suggested in addition to the �nite- and maximum-waiting-timepoliies. The model supports onurreny and multi-proessing.The separation between requirement matries, for requests from user pro-esses to the resoure monitor, and the time vetor and alloation matries,as a reord of how the resoure monitor has made alloations, is needed tohandle potentially unooperative behavior by maliious proesses. The par-tiular struture of the time vetor, showing events per proess rather thana single global state time, is onvenient for stating waiting-time poliies.The simple example of a DPB was given only as an illustration, permit-ting a feasiblity and onsisteny hek on the de�nitions. The example ofa DPB illustrates the form of argument that an be made to show denial-of-servie protetion. However, the algorithm given is essentially a bath-proessing algorithm. It would be unsatisfatory in a real-time or interativeenvironment, beause it does not adapt to give any proess more frequenttime slies.In pratie, the job of proving DPB properties is muh more diÆult.There are a number of ompliations that arise. In our example, we impli-itly assumed that the referene monitor annot be interrupted exept by theend of a time slie or a voluntary deativation request. In a real system, thatassumption may be diÆult to show or simply not true. The example wasalso a single-proessor system; it does not investigate the impat of parallelproesses, suh as the possibility of multiple staked interrupts.Future work should inlude examples of probabilisti waiting-time poli-ies and investigation of more realisti referene monitor algorithms withsome general results about them, both in single-proessor and multiproes-sor or network arhitetures. 24

5 ReferenesReferenes[DoDNW℄ (no author) Proeedings of the Department of Defense ComputerSeurity Center Invitational Workshop on Network Seurity NewOrleans, LA, Marh 19-22 1985[ITSEC℄ (no author) Information Tehnology Seurity Evaluation Criteria(DRAFT) der Bundesminister der Innern, Bonn, May 1990[TCSEC℄ (no author) Department of Defense Trusted Computer SystemEvaluation Criteria DOD 5200.28-STD, Deember 1985[CTCPEC℄ (no author) Proeedings of The 1990 CTCPEC AvailabilityWorkshop February 6-7 1990 Communiations Seurity Estab-lishment, Government of Canada[BaKu'91℄ E. M. Bai and M. Kuhta Considerations in the Preparation ofa Set of Availability Criteria Third Annual Canadian ComputerSeurity Symposium Ottawa, Canada, 15-17 May 1991 pp. 283-292[Glig'83℄ V. Gligor A Note on the Denial-of-Servie Problem Pro. 1983Symposium on Seurity and Privay IEEE Computer Soiety pp.139-149 1983[Glig'86℄ V. Gligor On Denial of Servie in Computer Networks Pro.International Conf. on Data Engineering Los Angeles, CA, IEEEpp. 608-617 1986[YuGl'90℄ C-F. Yu, V. D. Gligor A Spei�ation and Veri�ation Methodfor Preventing Denial of Servie IEEE Trans. on Software Engi-neering, Vol. 16, No. 6, June 1990 pp. 581-592[CoDe'73℄ E. G. Co�man, Jr., P. J. Denning Operating Systems TheoryPrentie-Hall 1973[Dobs'91℄ J. Dobson Information and Denial of Servie Database SeurityV, IFIP Transations A-6 IFIP, North- Holland 1991 pp. 21-46
25

[Mill'92℄ J. K. Millen A Resoure Alloation Model for Denial of ServiePro. 1992 IEEE Computer Soiety Symposium on Researh inSeurity and Privay IEEE Computer Soiety, May 1992 pp.137-147

26

