
A Resour
e Allo
ation Model for Denial of Servi
eJonathan K. MillenThe MITRE CorporationBedford, MAAbstra
tA denial-of-servi
e prote
tion base is
hara
terized as a resour
emonitor
losely related to a TCB, supporting a waiting-time poli
yfor benign pro
esses. Resour
e monitor algorithms and poli
ies
an bestated in the
ontext of a state- transition model.1 Introdu
tion1.1 Ba
kgroundThe three traditional
on
erns of
omputer se
urity are
on�dentiality, in-tegrity, and denial of servi
e. Con�dentiality and integrity have been ad-dressed with fair su

ess by designing operating systems that enfor
e variousa

ess-
ontrol models. It seems reasonable to expe
t that an operating sys-tem
ould also help to prevent denial of servi
e, and that an important stepin a
hieving that goal is to propose a denial-of-servi
e model. The modelproposed in this paper is the su

essor to a model presented in [Mill'92℄.The present model is simpler.A
omputer se
urity model usually
onsists of a system model, often anabstra
t state-transition ma
hine, plus a se
urity poli
y stated in the
ontextof that sort of ma
hine. The poli
y is driven partly by
onsiderations ofrealism in the system model, and partly by higher-level requirements. Themodel to be given below is meant to support a family of related poli
iesrather than one spe
i�
 poli
y, but even so it represents a narrow sli
e ofthe spe
trum of
on
eivable denial-of-servi
e poli
ies.1

1.1.1 Availability RequirementsThere have been a number of attempts to formulate denial-of-servi
e pro-te
tion requirements. The term \availability" is sometimes used for require-ments aimed at denial-of-servi
e prote
tion.Universally appli
able requirements might not be possible. At the 1985DODWorkshop on Network Se
urity [DoDNW℄, the working group on denialof servi
e
on
luded that: \No generi
 denial of servi
e
onditions
ould beidenti�ed whi
h were independent of mission obje
tives."The workshop did, however, suggest \dete
tion, re
overy, and resistan
e"as the major
ategories of requirements.The mere presen
e of a

ess
ontrol, for
on�dentiality and integrityprote
tion, is a kind of denial of servi
e. Any availability poli
y must bequali�ed by the
onstraints of the a

ess
ontrol poli
y. Dobson [Dobs'91℄views the tradeo� between
on�dentiality and a

ess to information in termsof a negotiation, possessing some rather subtle aspe
ts, and leading to a
ontra
t for a
ombined poli
y.The European \Harmonized Criteria" [ITSEC℄ went beyond TCSEC[TCSEC℄ requirements by in
luding a fun
tionality
lass F7 with a terse\
ontinuity-of-servi
e" requirement:Irrespe
tive of its load at any time, the system shall be able to guarantee amaximum response time for
ertain spe
i�ed a
tions. In addition, for
ertainspe
i�ed a
tions, it shall be guaranteed that the system will not be subje
tto deadlo
k.A workshop was held in Canada in 1990 to
rystallize the issues andguide development of e�e
tive requirements [CTCPEC℄. One of the re
-ommendations of this workshop was to fo
us on denial of servi
e, whi
hwas de�ned as the loss of availability due to a

idental or mali
ious user a
-tions, as opposed to random failures that impa
t fun
tionality, whi
h are the
on
ern of reliability engineering. Another re
ommendation was to developa model. Two rudimentary models were suggested; a general availabilitymodel that added a \Servi
es" layer around a TCB to
ontrol a

ess time,and a state-transition model that showed dete
tion and re
overy transitionsbetween initial, failed, and partially re
overed states.A more detailed
on
eptual model was given by Ba
i
 and Ku
hta [BaKu'91℄.2

Their paper re
ognized that the
entral problem of denial-of-servi
e prote
-tion was resour
e allo
ation, and that a \resour
e allo
ation monitor" hadto have the referen
e monitor
hara
teristi
s of being tamper-proof, alwaysinvoked, and subje
t to analysis and testing. That paper also reviewed theliterature for prior models, among them the Yu-Gligor model.1.1.2 The Yu-Gligor ModelGligor had
hara
terized the denial-of-servi
e problem in 1983 as how to pro-vide a shared servi
e with a spe
i�ed maximum waiting time, despite
om-petition between groups of users [Glig'83℄. The paper
ontains a number ofdetailed, instru
tive examples of denial-of-servi
e situations. Subsequently,joint work by Yu and Gligor [YuGl'90℄ resulted in a deeply developed ap-proa
h whi
h introdu
ed the following ideas:� A `�nite waiting time' poli
y expressed as a liveness
ondition� The notion of user agreement� Fairness and simultaneity poli
ies� Servi
e spe
i�
ations� A general resour
e allo
ator model.The �nite-waiting-time poli
y says that whenever servi
e has been re-quested, it will eventually be provided. In the
ontext of a servi
e spe
i�
a-tion, whi
h is a general framework for organizing the des
ription of a servi
einterfa
e, a �nite-waiting-time poli
y is implemented through a
ombina-tion of user agreements, fairness, and simultaneity poli
ies. The resour
eallo
ator model is an example of a servi
e spe
i�
ation. It has A
quire andRelease operations, and the required properties and poli
ies are stated withtemporal logi
 formulas.1.1.3 User AgreementsUser agreements are
onstraints on the behavior of servi
e users; they mustbe obeyed in order to prevent denial of servi
e. If one views a servi
e asan abstra
t ma
hine with inputs and outputs, user agreements are input3

onstraints. They ex
lude
ertain inputs in
ertain states, or disallow inputsequen
es, that are otherwise legal. An example mentioned by Yu and Gligoris an \ordered resour
e a
quisition"
onstraint for preventing deadlo
k.In a denial-of-servi
e prote
tion
ontext, user agreements must be en-for
ed or supplemented by trusted
ode, sin
e some users may be mali
ious.Yu and Gligor suggest
ompile-time
he
ks on user
ode or a layer of
odeto �lter requests.1.2 Approa
hThe model presented in this paper resembles the Yu-Gligor resour
e allo-
ator. The prin
ipal di�eren
e is that it represents the passage of timeexpli
itly. By doing so, a maximum-waiting-time poli
y
an be expressed aseasily as a �nite-waiting-time poli
y, and it
an also support other poli
iesof a probabilisti
 nature. Poli
ies and user agreements are expressed moreexpli
itly, without temporal logi
.1.2.1 Atta
ksThere is an important di�eren
e between a system that enfor
es a denialof servi
e poli
y and one that does not: the system guarantees to maintain
ertain spe
i�ed servi
e in the fa
e of deliberate atta
k.We will have to
ir
ums
ribe the kinds of atta
k that are addressed,be
ause there is no hope of addressing them all within a single
on
eptualand te
hni
al framework. Maintaining network
onne
tivity despite physi
aldestru
tion of swit
hing nodes, for example, is a very di�erent problem frommaintaining servi
e despite attempts to inje
t false
ontrol messages. In a
omputer se
urity
ontext, it makes sense to fo
us on atta
ks that
an be
arried out by untrusted programs.1.2.2 Denial-of-Servi
e Prote
tion BaseThe s
ope of prote
tion is also limited by the means employed to enfor
eit. In a
omputer se
urity
ontext, denial-of- servi
e prote
tion is a

om-plished through trusted hardware and software. Our approa
h here is totry a variation of the referen
e monitor
on
ept. Let us de�ne a Denial-of-4

servi
e Prote
tion Base (DPB) as a hardware/software me
hanism with thefollowing three properties:1. It is tamperproof.2. It
annot be prevented from operating.3. It guarantees (authorized) a

ess to resour
es under its
ontrol.If a DPB is possible at all, it
an exist in a
omputer system that doesnot have a Trusted Computing Base (TCB; see [TCSEC℄) for se
re
y andintegrity prote
tion. On the other hand, if there is a TCB for a parti
ularsystem, a DPB
ould be
ombined with it, to take advantage of the TCB'sme
hanism for prote
ting itself and other data from unauthorized modi�-
ation. A DPB is also subje
t to a

ess
ontrols imposed by a TCB. TheDPB
annot and need not provide unauthorized a

ess.If there is both a TCB and a DPB on the same system, it is natural toask what the stru
tural relationship is between them. Are they
o-extensive,is one a subset of the other,
an one be implemented as a layer on top of theother, et
. One
on
lusion follows from the fa
t that the TCB maintainsultimate
ontrol over a

ess to most, if not all, essential system resour
es.A DPB
annot guarantee a

ess to those resour
es without the
ooperationof the TCB. Any guarantee of servi
e by the DPB is made not only on itsown behalf but also on behalf of the TCB. In that sense, the TCB must beregarded as part of the DPB. The TCB might have to be reexamined andeven redesigned in order to ensure that it supports servi
e guarantees.The s
ope of DPB prote
tion is alluded to in property (3), \resour
esunder its
ontrol." It is obvious that the only servi
es whose availability
anbe guaranteed by a DPB are those provided by the DPB itself. Hen
e theDPB must o�er those servi
es whose loss would be viewed as a denial-of-servi
e problem.1.2.3 Resour
e Allo
ationThe relationship between \servi
es" and \resour
es" is, for our purposes,that a servi
e furnishes a

ess to a resour
e. The s
heduler in an operatingsystem, for example, is a servi
e furnishing a

ess to the CPU resour
e. Thea

ess
ontrol me
hanism is a servi
e furnishing a

ess to a data resour
esu
h as a �le or segment. 5

It is agreed by all authors who have addressed denial of servi
e that longdelays in servi
e
onstitute denial, and absolute denial
an be viewed as anin�nite delay. Hen
e, one ne
essary aspe
t of denial-of-servi
e prote
tion isthe ability to limit waiting times for a

ess to resour
es. This implies, inparti
ular, that a pro
ess
annot be allowed to maintain ex
lusive a

essto a resour
e forever, if another pro
ess has requested it. The DPB musttherefore be able to revoke a

ess to a resour
e.One
an distinguish between shared and private resour
es. It is reason-able to permit pro
esses to hold some quota of
ertain resour
es forever, ifthere is enough to go around. More generally, one
an set up a maximumholding time poli
y that is an arbitrary fun
tion of the
urrent resour
e al-lo
ations. The maximum holding time for the last few remaining units of aresour
e might, for example, be mu
h less than for the �rst few. Similarly,there are time- sli
ing algorithms that lengthen time sli
es when the systemload is low and shorten them when the load is high.1.2.4 Resour
e Destru
tionWhen studying a resour
e allo
ation model for denial of servi
e, there is animpli
it assumption that resour
es
an be denied to one pro
ess only dueto allo
ation of that resour
e to another pro
ess. But there are examples ofdenial of servi
e whereby a mali
ious pro
ess makes a resour
e unavailableby removing it from the pool, without a
quiring the resour
e itself. Gligor[Glig'83℄ gives an example due to Saltzer in whi
h
ertain dire
tory pages
ould be rendered ina

essible. Thus, we must distinguish between two kindsof denial of servi
e:1. denial through resour
e allo
ation2. denial through resour
e destru
tion.Resour
e destru
tion depends on the existen
e of some design or implemen-tation mistake in the DPB, sin
e there is no legitimate ex
use to allow userprograms to destroy resour
es that are presumably under DPB
ontrol.This paper fo
usses on resour
e allo
ation and does not attempt to modelor suggest
ountermeasures for resour
e destru
tion problems.6

1.2.5 Progress, Simultaneity and Deadlo
kDeadlo
k is often brought up in dis
ussions about denial of servi
e. Deadlo
kis de�ned to be a
ondition in whi
h two or more pro
esses have a
quired
ertain resour
es, but ea
h one needs a

ess to at least one additional re-sour
e (without giving up a

ess to the resour
e it has) in order to makeprogress. Deadlo
k o

urs when ea
h of the additional resour
es needed hasalready been a
quired by some other pro
ess.Deadlo
k, as su
h, is somewhat o�-
enter as an aim for denial-of-servi
eprote
tion, be
ause none of the pro
esses involved is ne
essarily mali
ious.If a pro
ess is mali
ious, it need not be deadlo
ked itself; it
an blo
k otherpro
esses simply by a
quiring resour
es they need. Consideration of dead-lo
k, however, reminds us of the fa
t that pro
esses may fail to make progressbe
ause they need simultaneous a

ess to two or more resour
es. The DPBpoli
y should ensure that a pro
ess will eventually gain simultaneous a

essto all resour
es it needs simultaneously. If this design obje
tive is satis�ed,deadlo
k will, perfor
e, be prevented.For many purposes, a pro
ess needs to maintain ex
lusive a

ess { a lo
k{ on some resour
e over a number of su

essive time sli
es, until some logi-
ally unitary task is
ompleted. A DPB should respe
t a request to maintainex
lusive a

ess to a resour
e, as long as it is for a reasonable length of time.A permanent lo
k would, of
ourse, defeat shared a

ess and deny servi
e.1.2.6 Waiting Time Poli
iesThe early work of Gligor suggested a Maximum Waiting Time (MWT) pol-i
y, in whi
h a requested servi
e is provided within some �xed time bound.The Yu-Gligor paper introdu
ed the weaker Finite Waiting Time (FWT)poli
y, in whi
h the servi
e will eventually be provided, but there is no �xedupper bound to the amount of time the pro
ess might have to wait.Another
ategory of poli
ies should be
onsidered: Probabilisti
 WaitingTime (PWT) poli
ies. There are many kinds of probabilisti
 poli
ies: e.g.,one that spe
i�es an mean waiting time for servi
e, or one that says onlythat servi
e will eventually be provided with probability one. Both of thesepoli
ies are, in some sense, weaker than the FWT poli
y, sin
e it is possiblethat some individual servi
e request will never be satis�ed. On the otherhand, the FWT poli
y does not guarantee any bound on average servi
e7

time, and a probability-one servi
e is it almost as good as FWT servi
e.Performan
e requirements often spe
ify a mean waiting time for ser-vi
e, or other statisti
al
onstraints on waiting time. The di�eren
e be-tween denial-of-servi
e poli
ies and performan
e requirements is just thatperforman
e requirements may assume some probabilisti
 load model, whiledenial-of-servi
e prote
tion must
onsider worst-
ase stress due to mali
iouspro
esses.A real-world example of a poli
y with probability-one servi
e without aFWT guarantee is CSMA/CD (
arrier-sense multiple-a

ess with
ollisiondete
tion) on a lo
al-area network. An attempt by two pro
essors to pla
ea message on the bus at the same time results in a random \ba
k-o�" waitand a retry by both. It is possible, though only with probability zero, thatevery retry results in another
ollision, forever. Yet the usual performan
eis satisfa
tory for reasonable loads.The random element in a probabilisti
 poli
y would be part of the DPBitself, and not due to user behavior. For example, a DPB might randomlysele
t the next pro
ess to run or the next resour
e to revoke.With a probabilisti
 poli
y, the best that
an be said is that there issome designated probability su
h that a request will be satis�ed within a
ertain time. This is still mu
h better than a system in whi
h mali
iouspro
esses
ould repeatedly for
e an arbitrarily long delay in request satis-fa
tion. Be
ause the random element is not under the
ontrol of mali
iouspro
esses, ea
h pro
ess
an expe
t
onsistent, if not good, servi
e, on theaverage, despite mali
ious interferen
e.A mali
ious pro
ess
an defeat any waiting time poli
y for itself, byattempting to hold a resour
e forever (i.e., insisting on an in�nite servi
etime). If some other pro
ess requests that resour
e, it will eventually be
omene
essary for the DPB to revoke the resour
e from the mali
ious pro
ess.Sin
e that pro
ess has not
ompleted its requested servi
e, the mali
iouspro
ess has been denied servi
e. However, it is reasonable not to extendservi
e guarantees to mali
ious pro
esses.Finally, we should remark that the most viable poli
ies might not besimple, but perhaps a
ombination of di�erent types. Furthermore, di�erent
lasses of pro
esses might have di�erent priorities, resulting in di�erent timebounds or other poli
y parameters. 8

2 Resour
e Monitor Model2.1 Introdu
tionThe following model is based on a task-resour
e model given in Co�man andDenning [CoDe'73℄, used to study deadlo
k. The new aspe
t of our model,needed to address denial of servi
e, is the introdu
tion of time. We will alsode�ne denial-of- servi
e prote
tion in the
ontext of this model.2.1.1 Basi
 Sets and ParametersA resour
e monitor (RM) is built on a set of pro
esses P and a set of resour
etypes R: The number of resour
e types is �nite. Ea
h resour
e type r 2 Rhas a
apa
ity
(r), representing the number of (inter
hangeable) units ofthat resour
e in the system.Note that the resour
es re
e
ted in R are shared resour
es. Ea
h pro
essmight also have some private resour
es that it is allowed to hold as long asit likes. We assume that those resour
es are not subje
t to denial.A pro
ess is in one of two states: running or asleep. It is running whenit has been allo
ated a resour
e of the parti
ular type rCPU . The RM maypermit more than one pro
ess to be running at a time; this would be the
ase with a multipro
essor or network. Sin
e ea
h pro
ess (by de�nition)
an o

upy only one CPU, the
apa
ity of the CPU resour
e is always oneunit, even though there may be several CPUs in the system. The limitationof one CPU per pro
ess does not prevent pro
esses from
ooperating in somehigher-level organization su
h as a pro
ess family or distributed transa
tion.2.2 State Stru
tureThe
urrent state of the monitor is represented by a 4-tuple (A; T; SQ;TQ),where A is the allo
ation matrix, T is the time ve
tor, SQ is a spa
e require-ment matrix, and TQ is a time requirement matrix. Their
hara
teristi
s arespe
i�ed below.We will write (A; T; SQ;TQ)! (A0; T 0; SQ0;TQ0)9

to denote a possible state transition. In formal axioms below, primed state
omponents will always refer to a state that may (dire
tly) follow the statereferred to by unprimed
omponents.2.2.1 Allo
ation MatrixThe allo
ation matrix, A, is a fun
tion on P �R into N, where N is the setof non-negative integers. This fun
tion
an be represented as a matrix if one
hooses some �xed ordering of the pro
esses and resour
es, as was done byCo�man and Denning. (Although we have not assumed that the number ofpro
esses is �nite, in a
tual systems the number that are a
tive at a giventime will be manageable.)The value of the allo
ation matrix A(p; r) is the number of units ofresour
e type r that are
urrently allo
ated to pro
ess p. The allo
ationve
tor Ap for a pro
ess p is one row of the matrix, de�ned byAp(r) = A(p; r):The CPU resour
e is allo
ated with an amount of one ea
h time a pro
essbegins running, i.e., is a
tivated, and is deallo
ated to zero ea
h time it goesto sleep, i.e., is dea
tivated. In fa
t, the amount of CPU allo
ation is whatdetermines whether the pro
ess is running or asleep. Let us de�nerunning(p) if Ap(rCPU) = 1in the
ontext of a parti
ular state, andasleep(p) if Ap(rCPU) = 0:The next-state notation also applies to running0(p) and asleep0(p), refer-ring to the state of p after a transition.There is a feasibility
onstraint on spa
e allo
ation. If we regard
 asa ve
tor, the
onstraints on ea
h resour
e are expressible all at on
e as ave
tor inequality: Xp2P Ap �
 (R1)The total amount of
urrently allo
ated units of any resour
e must not ex
eedthe system
apa
ity for it. 10

2.2.2 Time Ve
torThe time ve
tor T is a fun
tion on P into N. Its value T (p) represents thesystem real time at the last time pro
ess p was a
tivated or dea
tivated. Itwill be needed to help spe
ify waiting-time poli
ies.Time is measured in the number of \ti
ks" of some suÆ
iently �ne-grained time unit relative to an arbitrary origin (e.g., we
ould
hoose timezero to be when the system was initialized).Time passes while running pro
esses are using their time sli
es, and alsowhile the resour
e monitor is performing its reallo
ation fun
tions. Thesea
tivities o

ur while the system is in some state, and state transitions areviewed as instantaneous events o

urring at the end of the a
tivity.The time ve
tor is an abstra
tion of the real-time
lo
k of the CPUon whi
h the pro
ess is running. Clo
ks on di�erent CPUs might not besyn
hronized, so we
annot, in general, assume that new
lo
k readings aregreater than prior values obtained by a di�erent pro
ess. Su

essive readingsby di�erent pro
esses on the same CPU will in
rease, but the model doesnot keep a history of whi
h CPU was used by whi
h pro
ess. We must be
autious about interpreting pro
ess virtual time and its relation to real timein large asyn
hronous systems.We will require that an a
tivation or dea
tivation event time is (at leastone ti
k) greater than the previous event time for the same pro
ess. Thus,if Ap(rCPU) 6= A0p(rCPU) then T 0(p) > T (p): (R2)2.2.3 Requirement Matri
esThe spa
e and time requirement matri
es indi
ate the resour
es needed bya pro
ess to
omplete its
urrent task.Both matri
es serve as a means of
ommuni
ating requests from pro-
esses to the system. They are regarded as inputs to the state ma
hine, andare never modi�ed by the resour
e monitor (this is di�erent from the modelin [Mill'92℄). Consequently, there are no
onstraints (other than value-type)on them imposed by the resour
e monitor. User pro
esses may voluntar-ily observe
onstraints su
h as user agreements, however. These will bedis
ussed later. 11

2.2.4 The Spa
e Requirement MatrixThe spa
e requirement matrix SQ is a fun
tion on P �R into N. The valueSQ(p; r) is a non-negative integer representing resour
e units of resour
e rrequired by pro
ess p for its
urrent task.Ea
h row of the matrix, for a pro
ess p, is a spa
e requirement ve
torSQp. It is the fun
tion on R into N de�ned bySQp(r) = SQ(p; r):In
identally, we do not insist that a pro
ess have requirements for morethan one resour
e at a time, or, when several resour
es are needed, that apro
ess request them all together. In many systems, a pro
ess may only beable to request one resour
e at a time. However, in other systems, what ap-pears as a single request at the system
all interfa
e is in reality a request to
laim several resour
es, so the
exibility for multiple simultaneous requestsshould be available in the model. Also, even when only one resour
e is re-quested at a time, and previously requested resour
es have not been released,the spa
e requirement matrix will show the a

umulated resour
es.There is no separate matrix (as there is in [CoDe'73℄) for release requests;instead, the fa
t that a spa
e requirement has be
ome less than the
urrentlyallo
ated amount is an indi
ation that the pro
ess no longer needs thoseresour
es.2.2.5 The Time Requirement MatrixThe time requirement matrix TQ is a fun
tion on P �R into N. The valueTQ(p; r) is a non-negative integer showing how long, or how mu
h longer,the pro
ess p wants ex
lusive a

ess to ea
h resour
e r. Time is measured ina number of \ti
ks", and it represents virtual time, i.e., it should be
reditedonly while the pro
ess is running.For ea
h pro
ess p, the
orresponding row of the matrix is a time re-quirement ve
tor, TQp, de�ned byTQp(r) = TQ(p; r):It is not usual in operating systems for pro
esses to have to announ
ehow long they want a resour
e. Nor is it
ommon for the operating system12

to keep tra
k of how long a pro
ess has had a resour
e, with the ex
ep-tion of the CPU, although this has been done for purposes of performan
emonitoring. More expli
it attention needs to be paid to this aspe
t of re-sour
e management in a system that provides denial-of-servi
e prote
tion.If it is
onsidered burdensome for a pro
ess to make expli
it resour
e timerequests, one
ould provide them impli
itly instead, by assuming that ea
hresour
e is requested for some default amount of virtual time that is �xedas a parameter of the system or of the parti
ular resour
e.2.2.6 Sharing and Lo
kingThe model assumes that individual units of a resour
e
annot be shared. Yet�les
an be shared for read a

ess. One way to represent this in the model isto arti�
ially view a �le as a resour
e type with a very large
apa
ity, largerthan the number of pro
esses that might
on
urrently want read a

ess.Ea
h pro
ess requesting read a

ess asks for only one unit of the resour
e.Ordinarily, write a

esses are ex
lusive; they are not shared with anyother pro
ess, regardless of whi
h mode of a

ess the other pro
ess wants.This
an be handled by treating a request for write a

ess as a requirementfor the entire
apa
ity of the resour
e.Another way to handle this, slightly more elegant but still arti�
ial, is to
onsider a �le as a resour
e with only one unit. A request for read a

ess isinterpreted as a requirement, not by the pro
ess requesting the a

ess, butby an imaginary global system daemon, the same one regardless of whi
hpro
ess made the request. Subsequent read a

esses by other pro
esses areno problem be
ause the daemon already has the resour
e. A write a

essrequest would require transferring the resour
e from the daemon to therequesting pro
ess, possible only when all read a

esses are released.2.2.7 Progress and SimultaneitySin
e the spa
e requirements requested by a pro
ess are simultaneous re-quirements, there is no point in exe
uting a pro
ess until all its spa
e re-quirements have been satis�ed, i.e., when its spa
e requirement ve
tor is met(or ex
eeded) by its allo
ation ve
tor. Otherwise it
annot make progresson its
urrent task. This will be re
e
ted as a
onstraint on a
tivationtransitions. 13

With this assumption, it is fair to view a pro
ess as making progresswhenever it runs. This does not mean that the pro
ess will �nish its task,merely that it has not been permanently blo
ked. The fa
t that a pro
ess hasmade progress should show up as some
hange in its time or spa
e require-ment ve
tor. This
hange represents the result of a pro
ess redeterminingits needs during its exe
ution.As a pro
ess exe
utes, it may make arbitrary
hanges in its requirementve
tors. Time requirements do not always go down, sin
e pro
essing timemay be data dependent and therefore not fully predi
table when a resour
e is�rst requested. But if a pro
ess
an run for a time sli
e and have the samespa
e and time requirements at the end of it, it
ould do the same thingrepeatedly and hog its resour
es forever. It is important, then, to have auser agreement to show some progress after ea
h time sli
e. Of
ourse, ifthe only progress made is to in
rease a time requirement, the pro
ess maytry to hold a resour
e forever;
learly some additional user agreement wouldalso be required.When time requirements are impli
it and maintained by the resour
emonitor rather than the user pro
esses, there
ould be a
onvention thatif there is no
hange in spa
e requirements, the time requirements will beassumed to be redu
ed automati
ally by the size of the time sli
e when thepro
ess is dea
tivated. This is an example of how the system
an help tosupport one kind of user agreement.Theoreti
ally, there might be a
on
ern that a pro
ess
ould run anin�nite number of times, with
onverging time sli
es, so that it progressedonly a �nite amount of virtual time, whi
h might be less than it neededto �nish a task. That
annot happen, however, when time is allo
ated indis
rete ti
ks, sin
e the time sli
es
annot approa
h zero.2.3 Constraints on TransitionsRe
all that a transition is a dea
tivate transition for p when pro
ess p hasjust surrendered the CPU; i.e., running(p) and asleep0(p). Also, a transitionthat allo
ates the CPU, i.e., a transition su
h that asleep(p) and running0(p),is an a
tivate transition for p. Transitions whi
h modify Ap, but are neitherdea
tivate nor a
tivate transitions for p, are
alled reallo
ation transitionsfor p.Note that when we refer to a transition as a \dea
tivate transition" or14

a \reallo
ation transition" the
hara
terization is relative to some pro
essp. The same transition may be a dea
tivate transition for one pro
ess, ana
tivate transition for another, and a reallo
ation transition for a third,while still other pro
esses are una�e
ted.We also refer to a state as an a
tivation state for a pro
ess if it is theout
ome of an a
tivate transition for that pro
ess. As remarked earlier,The allo
ation ve
tor must meet or ex
eed the spa
e requirement ve
torin the a
tivation state.if asleep(p) and running0(p) then A0p � SQ0p: (R3)It seems reasonable to assume that a resour
e monitor does not allo
ateor deallo
ate a pro
ess's resour
es while it is running. Hen
e, we requirethat:No reallo
ation a�e
ts a pro
ess that remains running:if running(p) and running0(p) then A0p = Ap (R4)Furthermore, the requirement matri
es are under the
ontrol of runningpro
esses, and
annot be
hanged by the resour
e monitor. Changes
ausedby a running pro
ess in its requirements are not visible to the resour
emonitor until the pro
ess dea
tivates. Hen
e,Requirement
hanges are seen only on dea
tivation.if asleep(p) or running0(p) thenSQp = SQ0p and TQp = TQ0p: (R5)Pro
ess dea
tivation, in
identally, does not ne
essarily result in swappingout the pro
ess. Whenever the system is running its own
ode, as opposed tothat of the appli
ation, the time taken may be regarded as system overheadrather than progress, so the pro
ess is
onsidered to be asleep during thattime. This also implies that a pro
ess may voluntarily dea
tivate itselfsimply by requesting any operating system servi
e, su
h as an I/O operation.2.3.1 IllustrationThe �gure illustrates a su

ession of possible transitions for one pro
ess andresour
e. It shows CPU allo
ation (time and spa
e requests for the CPU15

CPUA (r)p

A (r)p

Q (r)T
p

Q (r)p
S

T(p)

0
1

0
1

0

0 1 2 4 5

0
1

0
1

0 12Figure 1: Sample Transitions, One Pro
ess and Resour
eare assumed but not shown), the time, a resour
e request, allo
ation of aresour
e r, and de
rementing of the time requirement for r on the nextdea
tivate transition. (Time sli
es are only one ti
k long in this example,for simpli
ity, but they would normally be longer.)2.4 SummaryA resour
e monitor has been de�ned as an abstra
t ma
hine whose
urrentstate is of the form (A; T; SQ;TQ), subje
t to (R1), and whose state transi-tions are governed by (R2) - (R5). The next se
tion dis
usses what else isne
essary to
reate a denial-of-servi
e prote
tion base.3 Denial-of-servi
e Prote
tionThe de�nition of resour
e monitor in Se
tion 2 just identi�es a family ofabstra
t ma
hines. It does not say whi
h members of the family providedenial-of-servi
e prote
tion. In order to spe
ify a denial-of-servi
e prote
tionbase (DPB), it is ne
essary to
onstrain the states and transitions further,by imposing
onditions expressing the denial-of-servi
e poli
y.Our present obje
tive is, �rst, to introdu
e the additional
on
epts neededto de�ne denial-of-servi
e prote
tion pre
isely in the
ontext of our model,16

and then to give an example of the pro
ess of showing that a resour
e mon-itor algorithm provides denial-of-servi
e prote
tion.3.1 DPB De�nition3.1.1 The Resour
e Allo
ation AlgorithmIn the general de�nition of a resour
e monitor, many di�erent state
hangesare possible from a given state. The time at whi
h a state
hange mayo

ur, and
hanges in the allo
ation set, are under the
ontrol of the resour
emonitor. If one supposes that the resour
e monitor a
ts a

ording to sometime-driven algorithm, one
an regard the system as a deterministi
 ma
hinewhose inputs are the requirements ve
tors spe
i�ed by the pro
esses ondea
tivate transitions. Another possibility is that the resour
e monitor hasa probabilisti
 algorithm, with a sto
hasti
 element in its de
isions. Theresult is a probabilisti
 ma
hine.From a denial-of-servi
e prote
tion point of view, some resour
e allo
a-tion algorithms are better than others. In order to do its job, a resour
emonitor must also expe
t some
ooperation from user pro
esses. For exam-ple, it might insist that user requirements be feasible.3.1.2 Feasible RequirementsA spa
e requirement ve
tor SQp is feasible if its spa
e requirements do notex
eed the system
apa
ity, i.e.,SQp is feasible if SQp �
 (F1)Be
ause requirement ve
tors are settable by pro
esses that may be ma-li
ious, they are not ne
essarily feasible. Non- mali
ious pro
esses may be
onstrained to feasible requirement ve
tors by user agreements.3.1.3 User Agreements and Benign Pro
essesGenerating infeasible requirements is an example of how a pro
ess may makeit impossible for the resour
e monitor to guarantee progress for it, sin
e the17

pro
ess will never be a
tivated. Although the feasibility
onstraint just men-tioned would apply to any system, there may also be additional
onstraintsthat are spe
i�
 to a parti
ular resour
e monitor algorithm. Examples willbe given below.In general, it is legitimate for a resour
e monitor algorithm to be a
-
ompanied by additional
onstraints on requirement ve
tor
hanges duringdea
tivate transitions. These
onstraints are
alled user agreements. If theyare respe
ted by a pro
ess, the pro
ess is
alled benign.3.1.4 Waiting-Time Poli
iesThe various types of waiting-time poli
ies, MWT, FWT, or PWT,
an beformalized using the model. These poli
ies are expressed in terms of twostates,S = (A; T; SQ;TQ) and a later state S00 = (A00; T 00; SQ00;TQ00) that arenot ne
essarily
onse
utive. The MWT and FWT poli
ies are shown below.Probabilisti
 poli
ies are not shown be
ause they need additional apparatusto exhibit probability distributions, and are beyond the s
ope of this paper.Maximum Waiting Time Poli
y:9B : 8p; S;9S00 : running00(p) and 0 < T 00(p)� T (p) � BFinite Waiting Time Poli
y:8p; S;9S00 : running00(p) and T 00(p) � T (p)These poli
ies state that a pro
ess will be a
tivated within a �xed or �nitetime. Stri
tly speaking, they do not guarantee progress, but only provideopportunities for progress. We
an expe
t that a benign pro
ess will alwaysbe able to make some progress when given an opportunity, however, sin
etime sli
es have a minimum size. Whether the minimum time sli
e is enoughin a pra
ti
al sense is an implementation question.3.1.5 Time-BoundednessAlthough any requirements
hange implies progress for the pro
ess thatmakes the
hange, user agreements are also needed to ensure that a pro-
ess eventually releases resour
es needed by other pro
esses. One type ofagreement that will help serve that purpose is time-boundedness.18

A resour
e is time-bounded for a pro
ess if the time requirement for thatresour
e is bounded by a quantity that is (1) set at a �xed amount whenthe resour
e is �rst requested and (2) thereafter de
reases by ea
h sli
e ofrunning time. Formally, we atta
h a matrixM(p; r) to the state representingthe time left for p to hold r. Also, we spe
ify a maximum holding time h(r)for ea
h resour
e, su
h that: TQp(r) �M(p; r) (B1)if Ap(r) = 0 then M(p; r) = h(r) (B2)if running(p) and asleep0(p) and Ap(r) > 0 thenM 0(p; r) =MaxfM(p; r)� (T 0(p)� T (p)); 0g: (B3)That is, (B1) the
urrent time requirement is bounded by the time left,(B2) the time left is equal to the maximum holding time if the resour
e isnot allo
ated, and (B3) the time left de
reases by the amount of ea
h timesli
e.Note that a pro
ess may ask for less than the maximum initially, in whi
h
ase the time requirements on some resour
es may in
rease. However, thebound on the time requirement always de
reases by the time sli
e on ea
hdea
tivation, until the time requirement be
omes zero. On a subsequentdea
tivation, the time requirement may go up again, whether the resour
ewas revoked or not.Time-boundedness is not usually appropriate for the CPU, sin
e a pro-
ess will typi
ally request another time sli
e every time it is dea
tivated(until it �nally, voluntarily, terminates), and in time-sharing systems it isnot unusual for some pro
esses to exist inde�nitely. (Although bat
h jobsmay very well have a CPU time limit.)There is still the question of how long a pro
ess may run before dea
-tivation. If a pro
ess is never dea
tivated, it
an hold any resour
e it hasforever, sin
e reallo
ations o

ur only on or after dea
tivation. But, if weassume that time sli
es are bounded above, it follows that any allo
atedresour
e
an eventually be reallo
ated.19

Another problem is that before a pro
ess releases one resour
e, it
anrequest another, so that a
ompeting pro
ess that wishes both resour
es willbe blo
ked. This kind of situation
an lead to deadlo
k, but it
an be dealtwith by various ta
ti
s su
h as ordered a
quisition agreements, revo
ation,et
.3.1.6 The Denial-of-Servi
e Prote
tion BaseA DPB is
hara
terized by:� a resour
e monitor,� a waiting time poli
y (e.g., MWT, FWT, or PWT), and� user agreements.It must satisfy the following
onditions:(Progress) Ea
h benign pro
ess will make progress in a

ordan
e with thewaiting time poli
y.(Patien
e) No non-CPU resour
e is revoked from a benign pro
ess untilits time requirement is zero.Formally,if r 6= rCPU and Ap(r) 6= 0 and A0p(r) = 0 then TQp(r) = 0:Note that a DPB may insist on some outrageous user agreement { forexample, that the requirement ve
tors must always be all-zero. Su
h a DPBis easy to implement but will not garner a large market share.3.2 A DPB ExampleWe will give a simple abstra
t example of a DPB that provides denial-of-servi
e prote
tion with a MWT poli
y. The purpose of the example isto illustrate the pro
ess for proving that a DPB's poli
y is satis�ed, and20

not to re
ommend the parti
ular resour
e allo
ation algorithm used. Theresour
e monitor is un
onstrained ex
ept that we will assume it has only oneCPU, and it employs the allo
ation algorithm given below. For this DPB,a pro
ess is benign if it satis�es the following user agreements on dea
tivatetransitions:1. Its spa
e requirement ve
tors are feasible.2. For ea
h pro
ess, there is a �xed time-bounded resour
e type, whi
hwe will
all its sentinel, whose time requirement is always the largest.The resour
e monitor (RM) allo
ation algorithm is as follows.� In the initial state, no resour
es are allo
ated to any pro
ess.� In ea
h state, the RM has a
urrently favored pro
ess, whi
h willremain favored until the time requirement for its sentinel resour
ebe
omes zero or the RM has determined that it is mali
ious. The RMwill then sele
t another favored pro
ess. All pro
esses will be
omefavored in a round-robin fashion.� Just before the RM sele
ts a favored pro
ess, it will always be in astate where no resour
es are allo
ated. Hen
e, the next benign fa-vored pro
ess
an be given all its spa
e requirements. (A pro
ess withinfeasible requirements is mali
ious and will be passed over.) The pro-
ess is a
tivated and runs for a maximum time sli
e
alled the quantumand denoted q, or until a voluntary dea
tivation o

urs.� The RM maintains a register H that is initialized to the maximumholding time H0 of the sentinel resour
e when a pro
ess be
omes fa-vored. At the
on
lusion of ea
h time sli
e, H is de
remented by oneti
k. If, on any dea
tivation, any time requirement ex
eeds H, thepro
ess is identi�ed as mali
ious, and its resour
es are revoked.� At the
on
lusion of the time sli
e, the RM returns the favored pro
essto running status and gives it another time sli
e. The same pro
essis run repeatedly until its time requirement ve
tor be
omes zero, atwhi
h time all its resour
es are revoked, or until the RM determinesthat it is mali
ious. 21

Clearly, no resour
e is revoked from a benign pro
ess until its time require-ment is zero. We will show that there is a maximum time for ea
h
y
le;that will prove denial-of- servi
e prote
tion.We
laim that on ea
h
y
le, the entire time requirement ve
tor of the
urrently favored pro
ess will rea
h zero within a bounded time, be
auseof time-boundedness on the sentinel, and a further assumption that RMa
tivity is bounded.By user agreement (2), the register H serves as an upper bound forall elements of the time requirement ve
tor. By (B2) and (R2), ea
h timesli
e redu
es the maximum time requirement by at least 1. Hen
e, the timerequirement ve
tor is redu
ed to zero within a total running time of H0 (orthe pro
ess is seen to be mali
ious).Now, let K be the time needed by the RM from the beginning of the
y
le to the time it �rst a
tivates the favored pro
ess. This is the timeduring whi
h the RM allo
ates all the requested resour
es and updates thespa
e requirement ve
tor. Sin
e there is a �xed �nite limit to the systemresour
es, this a
tivity takes a bounded amount of time.For ea
h time sli
e, the running time is between 1 and q; the worst-
asetotal arises from assuming 1, sin
e this maximizes the system overhead.This represents the
ase in whi
h the pro
ess is
hanging its requirementsand voluntarily dea
tivating as often as possible. Between su

essive timesli
es, the RM takes a bounded time, say D. When the time requirementve
tor rea
hes all-zero, the RM
an revoke all resour
es from the favoredpro
ess. The time for this is bounded by, say, L.The total time taken to redu
e the favored pro
ess's time requirementsto zero is therefore at mostK +H0(D + 1) + L:After this, the RM will pro
eed to the next favored pro
ess. If the totalnumber of pro
esses is N , the whole
y
le will take at most:N(K +H0(D + 1) + L):This will do as a very
onservative waiting time bound.22

3.3 Appli
ation to NetworksDenial of servi
e is an important problem in networks. Some real examplesin this
ategory are given in [Glig'86℄. While our approa
h to denial-of-servi
e modelling is designed to handle
on
urren
y and multipro
essingsystems, more e�ort is needed to extend it in ways suitable for networkingobje
tives. For example, the waiting time poli
ies given here measure thetime between events of a single pro
ess. The prin
ipal servi
e provided by anetwork, however, is a
ommuni
ations servi
e between di�erent pro
essesrunning (typi
ally) on di�erent CPUs. The waiting time we need to measurefor a
ommuni
ations servi
e might be, for example, the time from a \send"request by one pro
ess to the time at whi
h a \re
eive" request by thedestination pro
ess will yield the message that was sent.We
ould still use this model if we interpret it di�erently. We need totake a more abstra
t view of what a \pro
ess" is. Here is a sket
h of how thismight be a

omplished. We
ould de�ne a \transport pro
ess" as a seriesof transient tasks joined by links. A link is a DPB fun
tion that performsinterpro
ess
ommuni
ation, either lo
ally or a
ross a network link. As aDPB fun
tion, a link transmits the
ontents of a bu�er from one pro
ess toanother over a medium that is no less reliable than the hardware involved.(Keep in mind that we are
on
erned here only with software atta
ks.)Su

essive tasks of the same transport pro
ess pass messages, one to thenext. A lo
al task pro
ess
ould leave a message in a bu�er and dea
tivateitself with a request for a link. Its new spa
e requirement will be for abu�er a

essible to the destination pro
ess (perhaps in a di�erent CPU).The newly
reated destination pro
ess is viewed as the next in
arnation ofthe same transport pro
ess. Meanwhile, the sending task has terminated.All tasks o

upy the same \pro
ess" row in the model.Some experien
e in applying this proposal would be ne
essary to estab-lish its pra
ti
ability. This approa
h was presented only to make the pointthat the more obvious lo
al interpretation of the model is not ne
essarilythe only one, and that there may be ways of dealing with network obje
tivesthat take advantage of this model.
23

4 Con
lusionBy fo
ussing on mali
ious atta
ks by untrusted software on a servi
e thatallo
ates shared resour
es, we have arrived at a model that takes advan-tage of, and further de�nes, several
on
epts that have been suggested inprior work on denial of servi
e, su
h as user agreements. A denial-of-servi
eprote
tion base (DPB) has been
hara
terized as a resour
e monitor
loselyrelated to a TCB, supporting a waiting-time poli
y for benign pro
esses.Resour
e monitor algorithms and poli
ies
an be stated in the
ontext of astate-transition model. The possibility of probabilisti
 waiting-time poli
ieshave been suggested in addition to the �nite- and maximum-waiting-timepoli
ies. The model supports
on
urren
y and multi-pro
essing.The separation between requirement matri
es, for requests from user pro-
esses to the resour
e monitor, and the time ve
tor and allo
ation matri
es,as a re
ord of how the resour
e monitor has made allo
ations, is needed tohandle potentially un
ooperative behavior by mali
ious pro
esses. The par-ti
ular stru
ture of the time ve
tor, showing events per pro
ess rather thana single global state time, is
onvenient for stating waiting-time poli
ies.The simple example of a DPB was given only as an illustration, permit-ting a feasiblity and
onsisten
y
he
k on the de�nitions. The example ofa DPB illustrates the form of argument that
an be made to show denial-of-servi
e prote
tion. However, the algorithm given is essentially a bat
h-pro
essing algorithm. It would be unsatisfa
tory in a real-time or intera
tiveenvironment, be
ause it does not adapt to give any pro
ess more frequenttime sli
es.In pra
ti
e, the job of proving DPB properties is mu
h more diÆ
ult.There are a number of
ompli
ations that arise. In our example, we impli
-itly assumed that the referen
e monitor
annot be interrupted ex
ept by theend of a time sli
e or a voluntary dea
tivation request. In a real system, thatassumption may be diÆ
ult to show or simply not true. The example wasalso a single-pro
essor system; it does not investigate the impa
t of parallelpro
esses, su
h as the possibility of multiple sta
ked interrupts.Future work should in
lude examples of probabilisti
 waiting-time poli-
ies and investigation of more realisti
 referen
e monitor algorithms withsome general results about them, both in single-pro
essor and multipro
es-sor or network ar
hite
tures. 24

5 Referen
esReferen
es[DoDNW℄ (no author) Pro
eedings of the Department of Defense ComputerSe
urity Center Invitational Workshop on Network Se
urity NewOrleans, LA, Mar
h 19-22 1985[ITSEC℄ (no author) Information Te
hnology Se
urity Evaluation Criteria(DRAFT) der Bundesminister der Innern, Bonn, May 1990[TCSEC℄ (no author) Department of Defense Trusted Computer SystemEvaluation Criteria DOD 5200.28-STD, De
ember 1985[CTCPEC℄ (no author) Pro
eedings of The 1990 CTCPEC AvailabilityWorkshop February 6-7 1990 Communi
ations Se
urity Estab-lishment, Government of Canada[BaKu'91℄ E. M. Ba
i
 and M. Ku
hta Considerations in the Preparation ofa Set of Availability Criteria Third Annual Canadian ComputerSe
urity Symposium Ottawa, Canada, 15-17 May 1991 pp. 283-292[Glig'83℄ V. Gligor A Note on the Denial-of-Servi
e Problem Pro
. 1983Symposium on Se
urity and Priva
y IEEE Computer So
iety pp.139-149 1983[Glig'86℄ V. Gligor On Denial of Servi
e in Computer Networks Pro
.International Conf. on Data Engineering Los Angeles, CA, IEEEpp. 608-617 1986[YuGl'90℄ C-F. Yu, V. D. Gligor A Spe
i�
ation and Veri�
ation Methodfor Preventing Denial of Servi
e IEEE Trans. on Software Engi-neering, Vol. 16, No. 6, June 1990 pp. 581-592[CoDe'73℄ E. G. Co�man, Jr., P. J. Denning Operating Systems TheoryPrenti
e-Hall 1973[Dobs'91℄ J. Dobson Information and Denial of Servi
e Database Se
urityV, IFIP Transa
tions A-6 IFIP, North- Holland 1991 pp. 21-46
25

[Mill'92℄ J. K. Millen A Resour
e Allo
ation Model for Denial of Servi
ePro
. 1992 IEEE Computer So
iety Symposium on Resear
h inSe
urity and Priva
y IEEE Computer So
iety, May 1992 pp.137-147

26

