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Abstract—Instrumenting the physical world through large networks
of wireless sensor nodes, particularly for applications like environmen-
tal monitoring of water and soil, requires that these nodes be very small,
light, untethered and unobtrusive. The problem of localization, i.e., de-
termining where a given node is physically located in a network is a
challenging one, and yet extremely crucial for many of these applica-
tions. Practical considerations such as the small size, form factor, cost
and power constraints of nodes preclude the reliance on GPS (Global
Positioning System) on all nodes in these networks. In this paper, we
review localization techniques and evaluate the effectiveness of a very
simple connectivity-metric method for localization in outdoor environ-
ments that makes use of the inherent radio-frequency (RF) communi-
cations capabilities of these devices. A fixed number of reference points
in the network with overlapping regions of coverage transmit periodic
beacon signals. Nodes use a simple connectivity metric, that is more ro-
bust to environmental vagaries, to infer proximity to a given subset of
these reference points. Nodes localize themselves to the centroid of their
proximate reference points. The accuracy of localization is then depen-
dent on the separation distance between two adjacent reference points
and the transmission range of these reference points. Initial experimen-
tal results show that the accuracy for 90% of our data points is within
one-third of the separation distance. However future work is needed to
extend the technique to more cluttered environments.
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I. INTRODUCTION

Wireless networks of sensors greatly extend our ability to
monitor and control the physical world. The availability of
microsensors and low power wireless communications en-
ables the deployment of densely distributed sensor/actuator
networks for a wide range of biological and environmental
monitoringapplications, from marine to soil and atmospheric
contexts. Networked sensors can collaborate and aggregate
the huge amount of sensed data to provide continuous and
spatially dense observation of biological, environmental and
artificial systems. Applications include environmental mon-
itoring in the water and soil, tagging small animals unobtru-
sively, or tagging small and light objects in a factory or hospi-
tal setting. Instrumenting the physical world, particularly for
such applications, requires that the devices we use as sensor
nodes be small, light, unobtrusive and un-tethered. This im-
poses substantial restrictions on the amount of hardware that
can be placed on these devices.

In these large sensor network systems, we need nodes to
be able to locate themselves in various environments, and
on different distance scales. This problem, which we refer

This research is supported by the SCOWR project through NSF grantANI-
9979457.

to as localization1, is a challenging one, and yet extremely
crucial for many applications of very large networks of de-
vices. For example, localization opens up new ways of re-
ducing power consumed in multihop wireless networks. In
context-aware applications, localization enables the intelli-
gent selection of appropriate devices, and may support use-
ful coordination among devices. The desired granularity of
localization is itself application dependent.

GPS [1] solves the problem of localization in outdoor en-
vironments for PC class nodes. However, for large networks
of very small, cheap and low power devices, practical consid-
erations such as size, form factor, cost and power constraints
of the nodes preclude the use of GPS on all nodes. In this pa-
per, we address the problem of localization for such devices,
with the following design goals.� RF-based: We focus on small nodes which have some kind
of short-range radio frequency (RF) transceiver. Our primary
goal is to leverage this radio for localization, thereby elim-
inating the cost, power and size requirements of a GPS re-
ceiver.� Receiver based: In order to scale well to large distributed
networks, the responsibility for localization must lie with the
receiver node that needs to be localized and not with the ref-
erence points.� Ad hoc: In order to ease deployment, we desire a solution
that does not require pre-planning or extensive infrastructure.� Responsiveness: We need to be able to localize within a
fairly low response time.� Low Energy: Small, un-tethered nodes have modest pro-
cessing capabilities, and limited energy resources. If a device
uses all of its energy localizing itself, it will have none left to
perform its task. Therefore, we desire to minimize computa-
tion and message costs to reduce power consumption.� Adaptive Fidelity: In addition, we want the accuracy of our
localization algorithms to be adaptive to the granularity of
available reference points.

This paper uses an idealized radio model and proposes a
simple connectivity based localization method for such de-
vices in unconstrained outdoor environments. It leverages
the inherent radio-frequency (RF) communications capabil-
ities of these devices. A fixed number of nodes in the net-
work with overlapping regions of coverage serve as reference1We borrow the term localization from robotics, where it refers to the prob-
lem of determining the position of a mobile robot in some coordinate system.
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points and transmit periodic beacon signals. Nodes use a sim-
ple connectivity metric to infer proximity to a given subset
of these reference points and then localize themselves to the
centroid of the selected (proximate) reference points.

The paper makes the following contributions.� It presents a detailed exploration and classification of the
design space and work done in the area of localization.� It proposes a method for coarse-grained localization based
on an idealized radio model and demonstrates its validity and
applicability in outdoor unconstrained environments.� It describes a simple implementation of the model and
presents initial results.

II. RELATED WORK

Localization approaches typically rely on some form of
communication between reference points with known po-
sitions and the receiver node that needs to be localized.
We classify the various localization approaches into two
broad categories based on the granularity of information in-
ferred during this communication. Approaches that infer fine
grained information such as the distance to a reference point
based on signal strength or timing measurements fall into the
category of fine grained localization methods and those that
infer coarse grained information such as proximity to a given
reference point are categorized as coarse grained localiza-
tion methods.

A. Fine-grained localization

Fine-grained localization methods can be further classi-
fied into range-finding and directionality based methods, de-
pending on whether ranges or angles relative to reference
points are being inferred. Additionally, signal pattern match-
ing methods are also included as fine grained localization
methods.

In range-finding methods, the ranges of the receiver node
to several reference points are determined by one of several
timing or signal strength based techniques. The position of
the node can then be computed using multilateration (e.g.,
see [2]). We discuss timing based and signal strength based
range-finding methods separately.

A.1 Timing

The distance between the receiver node and a reference
point can be inferred from the time-of-flight of the commu-
nication signal.

The time-of-flight may be calculated using the timing ad-
vance technique which measures the amount that the timing
of the measuring unit has to be advanced in order for the re-
ceived signal to fit into the correct time slot. This technique
is used in GPS [1] and Pinpoint’s Local Positioning System
(LPS) [3]. GPS measures one-way flight time whereas LPS
measures round-trip-time (thereby eliminating the need for
time synchronization).

GPS [1] is a wide-area radio positioning system. In GPS
each satellite transmits a unique code, a copy of which is cre-
ated in real time in the user-set receiver by the internal elec-

tronics. The receiver then gradually time shifts its internal
clock till it corresponds to the received code: an event called
lock-on. Once locked-on to satellite, the receiver can deter-
mine the exact timing of the received signal in reference to its
own internal clock. If that clock were perfectly synchronized
with the satellite’s atomic clocks, the distance to each satel-
lite could be determined by subtracting a known transmission
time from the calculated receive time. In real GPS receivers,
the internal clock is not quite accurate enough. An inaccu-
racy of a mere microsecond corresponds to a 300-meter error.

Pinpoint’s3D-iD system [3] is a Local PositioningSystem
(LPS) that covers an entire three-dimensional indoor space
and is capable of determining the 3-D location of items within
that space. The LPS subdivides the interior of the building
into cell areas that vary in size with the desired level of cov-
erage. The cells are each handled by a cell controller which is
attached by a coaxial cable to up to 16 antennas. It provides
an accuracy of 10 meters for most indoorapplications, though
some may require accuracy of 2 meters. The main drawback
of this system is that it is centralized, and requires significant
infrastructural set up.

Alternately, the time of flight can be calculated by mak-
ing explicit time-of-arrival measurements based on two dis-
tinct modalities of communication, ultrasound and radio, as
in the Active Bat [2] and more recently in [4]. These two dif-
ferent modalities travel at vastly different speeds (350ms�1
and 3� 10�8 ms�1 respectively), enabling the radio signal
to be used for synchronization between the transmitter and
the receiver, and the ultrasound signal to be used for ranging.
The Active Bat system however relies on significant effort for
deployment indoors. Ultrasound systems may not work very
well outdoors because they all use a single transmission fre-
quency (40 kHz) and hence there is a high probability of in-
terference from other ultrasound sources.

A.2 Signal Strength

An important characteristic of radio propagation is the in-
creased attenuation of the radio signal as the distance be-
tween the transmitter and receiver increases. Radio propaga-
tion models [5] in various environments have been well re-
searched and have traditionally focused on predicting the av-
erage received signal strength at a given distance from the
transmitter (large scale propagation models), as well as the
variability of the signal strength in close spatial proximity to
a location (small scale or fading models). In the RADAR sys-
tem [6], Bahl et.al., suggest estimating distance based on sig-
nal strength in indoor environments. They compute distance
from measured signal strength by applying a Wall Attenua-
tion Factor (WAF) based signal propagation model. The dis-
tance information is then used to located a user by triangula-
tion. This approach, however, yielded lower accuracies than
RF mapping of signal strengths corresponding to various lo-
cations for their system. Their RF mapping based approach
is quite effective indoors, unlike ours, but requires extensive
infrastructural effort, making it unsuitable for rapid or ad hoc
deployment.



3

A.3 Signal Pattern Matching

Another fine grained localization technique is the propri-
etary Location Pattern Matching technology, used in the U.S
Wireless Corporation’s RadioCamera system [7]. Instead of
exploiting signal timing or signal strength, it relies on signal
structure characteristics. It turns the multipath phenomenon
to surprisingly good use: by combining the multipath pattern
with other signal characteristics, it creates a signature unique
to a given location. The RadioCamera system includes a sig-
nal signature database for a location grid, for a specific ser-
vice area. To generate this database, a vehicle drives through
the coverage area transmitting signals to a monitoring site.
The system analyzes the incoming signals, compiles a unique
signature for each square in the location grid, and stores it in
the database. Neighboring grid points are spaced about 30
meters apart. To determine the position of a mobile transmit-
ter, the RadioCamera system matches the transmitter’s signal
signature to an entry in the database. The system can use data
from only a single point to determine location. Moving traffic
and changes in foliage or weather do not affect the system’s
capabilities. The major drawback of this technique, as with
RADAR [6] is the substantial effort needed for generation of
the signal signature database. Consequently it is not suited
for ad hoc deployment scenarios that we are interested in.

A.4 Directionality

Another way of estimating location is to compute the angle
of each of the reference points with respect to the mobile node
in some reference frame. The positionof the mobile node can
then be computed using triangulation methods.

An important example of directionality based systems are
the VOR/VORTAC stations [8], which were used for long
distance aviation navigation prior to GPS. The VOR station
transmits a unique omnidirectional signal that allows an air-
craft aloft to determine its bearing relative to the VOR sta-
tion. The VOR signal is electrically phased so that the re-
ceived signal is different in various parts of the 360 degree
circle. By determining which of the 360 different radials it
is receiving, the aircraft can determine the direction of each
VOR station relative to its current position.

Small aperture direction finding is yet another directional-
ity based technique, that is used in cellular networks. It re-
quires a complex antenna array at each of the cell site loca-
tions. The antenna arrays can in principle work together to
determine the angle (relative to the cell site) from which the
cellular signal originated. When several cell sites can deter-
mine their respective angles of arrival, the cell phone loca-
tion can be estimated by triangulation. There are two draw-
backs of this approach, which make it inapplicable to our ap-
plication domain. The cost of the complex antenna array im-
plies that it can be placed only at the cell sites. Secondly the
cell sites are responsible for determining the location of the
mobile node which will not scale well when we have a large
number of such nodes, and desire a receiver based approach.

Directionality based methods are not very effective in in-
door environments, because of multipath effects.

B. Coarse Grained Localization

The work we describe in this paper, is perhaps most similar
to earlier work done in coarse-grained localization for indoor
environments using Infra Red (IR) technology.

The Active Badge [9] system was one of the earliest indoor
localization systems. Each person or object is tagged with an
Active Badge. The badge transmits a unique IR signal every
10 seconds, which is received by sensors placed at fixed posi-
tions within a building, and relayed to the location manager
software. The location manager software is able to provide
information about the person’s location to the requesting ser-
vices and applications.

Another system that is based on IR technology is described
in [10]. This system requires IR transmitters to be located at
fixed positions inside the ceiling of the building. An optical
sensor sitting on a head mounted unit senses the IR beacons
and system software determines the position of the person.

Both these IR based solutions perform quite well in indoor
environments, because IR range is fairly small, and can be
limited to the logical boundaries of a region, such as a room
(by walls). On the other hand, the same technique cannot be
applied using RF in indoor environments, because RF propa-
gation in indoor environments suffers from severe multipath
effects, that make it impossible to limit the RF range to be
exactly within a room. The short range of IR, which facili-
tates location, is also a major drawback of these systems be-
cause the building has to be wired with a significant number
of sensors. In the few places where such systems have been
deployed, sensors have been physically wired in every room
of the building. Such a system scales poorly, and incurs sig-
nificant installation, configuration and maintenance cost. IR
also tends to perform poorly in the presence of direct sunlight
and hence cannot be used outdoors.

III. IDEALIZED RADIO MODEL AND LOCALIZATION

ALGORITHM

We considered two approaches to engineer an RF-based lo-
calization system, based on measurements of received signal
strength and connectivity respectively. The signal strength
based approach did not work very well, while the connectiv-
ity based approach proved quite effective outdoors.

A. Signal Strength Approaches

One approach for RF-based localization is to use mea-
sured signal strength of received beacon signals to estimate
distance, as in the RADAR system [6], with an outdoor ra-
dio signal propagation model. We discarded this approach
for several reasons relating to our short-range (10m) radios.
First, signal strength at short ranges is subject to unpre-
dictable variation due to fading, multipath, and interferences.
It does not therefore correlate directly with distance. More-
over, short range does not allow much gain in density of
reference points when considering signal strength. Finally,
our COTS radios did not provide software-accessible sig-
nal strength readings. These reasons caused us to focus on
connectivity-based localization described next.
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B. Idealized Radio Model

We have found an idealized radio model useful for predict-
ing bounds on the quality of connectivity based localization.
We chose this model because it was simple and easy to rea-
son about mathematically. This section presents this ideal-
ized model. To our surprise, this model compares quite well
to outdoor radio propagation in uncluttered environments as
we explore in the next section.

We make two assumptions in our idealized model:� Perfect spherical radio propagation.� Identical transmission range (power) for all radios.

C. Localization Algorithm

Multiple nodes in the network with overlapping regions of
coverage serve as reference points (labelled R1 toRn). They
are situated at known positions, (X1; Y1) to (Xn; Yn), that
form a regular mesh and transmit periodic beacon signals (pe-
riod = T ) containing their respective positions. We assume
that neighboring reference points can be synchronized so that
their beacon signal transmissions do not overlap in time. Fur-
thermore, in any time interval T , each of the reference points
would have transmitted exactly one beacon signal.

First, we define a few terms.d Separation distance between adjacent reference pointsR Transmission range of the reference pointT Time interval between two successive beacon signals
transmitted by a reference pointt Receiver sampling or data collection timeNsent(i; t) Number of beacons that have been sent byRi in
time tNrecv(i; t) Number of beacons sent by Ri that have been
received in time tCMi Connectivity metric for RiS Sample size for connectivity metric for reference point RiCMthresh Threshold for CM(Xest; Yest) Estimated Location of the receiver(Xa; Ya) Actual Location of the receiver

Each mobile node listens for a fixed time period t and col-
lects all the beacon signals that it receives from various ref-
erence points. We characterize the information per reference
point Ri by a connectivity metric (CMi), defined asCMi = Nrecv(i; t)Nsent(i; t) � 100

In order to improve the reliability of our connectivity met-
ric in the presence of various radio propagation vagaries, we
would like to base our metric on a sample of at least S pack-
ets, where S is the sample size, a tunable parameter of our
method ( i.e., Nsent(i; t) = S). Since we know T to be the
time period between two successive beacon signal transmis-
sions, we can set t, the receiver’s sampling time as:t = (S + 1� �)T (0 < �� 1)

2 * 2 GRID OF REFERENCE POINTS
FEWER AND LARGER LOCALIZATION REGIONS

3 * 3 GRID OF REERENCE POINTS
MORE AND SMALLER LOCALIZATION REGIONS

THE SHADED AREA REFLECTS ONE LOCALIZATION REGION

Fig. 1. Granularity of Localization Regions vs. Range Overlap

From the beacon signals that it receives, the receiver node
infers proximity to a collection of reference points for which
the respective connectivity metrics exceed a certain thresh-
old,CMthresh (say 90%). We denote the collection of ref-
erence points byRi1; Ri2; : : : ; Rik. The receiver localizes it-
self to the region which coincides to the intersection of the
connectivity regions of this set of reference points, which is
defined by the centroid of these reference points.(Xest; Yest) = (Xi1 + � � �+Xikk ; Yi1 + � � �+ Yikk )

We characterize the accuracy of the estimate by the local-
ization error LE defined as,LE = q(Xest �Xa)2 + (Yest � Ya)2

By increasing the range overlap of the reference points
that populate the grid i.e., increasing the ratio Rd , the gran-
ularity of the localization regions becomes finer, and hence
the accuracy of the location estimate improves. This is illus-
trated in figure 1.

IV. VALIDATION

Since our localization model depends on the spherical ra-
dio propagation assumption, described in the previous sec-
tion; we checked the validity of our assumption in both out-
door and indoor environments.

In outdoorenvironments, we evaluated the effectiveness of
our idealized radio model by comparing its accuracy to exper-
imental measurements. We evaluated propagation between
two Radiometrix radio packet controllers (model RPC-418)
operating at 418 MHz. A node periodically sent 27 byte bea-
con signals; we define a 90% packet reception rate as con-
nected and empirically measured an 8.94m spherical range
for our simple model.

To evaluate how well our simple model compares to a real-
world scenario, we placed a radio in the corner of an empty
parking lot (i.e., at the origin (0; 0)) and then measured con-
nectivity at 1m intervals over a 10m square quadrant.

Figure 2 compares these measurements with connectivity
as predicted by the model. Among the 78 points measured,
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Fig. 2. 90% connectivity ranges for the reference point (0,0)

the simple spherical model matches correctly at 68 points (an
87% correlation) and mismatches at 10, all at the edge of the
range. Error was never more than 2m. No dead spots were
observed.

As expected, our simple, idealized radio model approxi-
mation is not appropriate for indoor environments where re-
flection and occlusion are common. Our indoor measure-
ments of propagation range varied widely from 4:6m to22:3m, depending on walls and exact node locations and ori-
entations. Furthermore, these measurements were not time
invariant. We found that connectivity could vary from 0 to
even 100% for the same transmitter receiver positions, at dif-
ferent times of the day.

Hence the idealized radio model may be considered valid
for outdoor unconstrained environments only.

V. EXPERIMENTAL RESULTS

A. Experimental Testbed

Our experimental testbed [11] consisted of 5 Radiometrix
RPC 418 (radio packet controller) modules connected to a
Toshiba Libretto running RedHat Linux 6.0. One of these
modules is used as a receiver and the rest are used as refer-
ence points. A 3 inch antenna is used for the experimental
purposes.

The software for the Radiometrix RPC-418 modules con-
sists of two components.� Beacon: The reference point periodically transmits a
packet (every 2 seconds in our experiment) containing its
unique ID and position.� Receiver: The receiver obtains its current measured posi-
tion based on an input from the user. For each measured posi-
tion, it samples for a time period t determined by the sample
size S, and logs the set of reference points it hears from and
its current localization estimate.

For our experiment, we placed the 4 reference points at the
four corners of a 10m � 10m square, in an outdoor park-
ing lot. This square was further subdivided into 100 smaller1m�1m grids and we collected data at each of the 121 small
grid intersection points.
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B. Outdoor Results

In this section, we discuss the results obtained from our
outdoor experiments. Our experimental parameters wereT = 2 seconds, S=20, t=41.9 seconds.2

Figure 3 shows the areas of connectivity of the 4 reference
points in the grid. We see several distinct regions in the grid,
based on the areas of overlap. Each distinct region constitutes
an equivalence class, defined by the centroid of the reference
points in the region. These can be contrasted with the theo-
retically predicted overlap regions, also seen in figure 3.

The location estimate at each grid point is the centroid. We
use the localization error metric defined previously to char-
acterize the performance.

In figure 4, the localization error obtained from experi-
ment is plotted as a function of the position. The localization
error is lowest at the the position corresponding to the cen-
troid of the region and increases towards the edges of the re-
gion. The average localization error was 1:83m and the stan-
dard deviation was 1:07m. The minimum error was 0m and
the maximum error was 4:12m across 121 grid points.

Figure 5 shows the cumulative localization error distribu-
tion across all the grid points, from both the theoretical model
and the experiment. They track each other closely, including
plateaus in the error levels, although the spherical model is
consistently more optimistic. In our experimental results, for2Although our experimental parameter values for T , and hence t are high,
we can substantially scale them down without violating the integrity of the
experiment.
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over 90% of the data points, the localization error falls within
3.0 meters i.e within 30% of the separation-distance between
two adjacent reference points. This result is based on 4 ref-
erence points only. Since we observed a high correlation be-
tween our model and experiment, improved granularity can
be expected with a higher overlap of reference points.

Based on our validated outdoor model, we performed nu-
merical simulations to predict how the granularity of local-
ization could be expected to vary using our scheme when the
overlap of reference points is increased.

In our simulation, we assume an infinite two-dimensional
mesh of reference points, with any two adjacent reference
points spaced a distance d apart and transmission range R.
Our coordinate system is centered at one such reference
point, which is assumed to be at (0; 0).

The localization estimate of any point (X;Y ) in the mesh
can be obtained in two steps.
Step 1: Determine all the reference points which are within
rangeR of (X;Y ), by considering all the reference points be-
tween (X �R; Y �R) and (X + R; Y + R).
Step 2: Localize (X;Y ) to the centroid of the selected refer-
ence points and compute the corresponding localization error.

For a given d, we increase the overlap R=d from 1 to 4.
We consider the average and maximum localization errors of
the localization estimates for 10201 uniformly spaced points
within one grid in the mesh, for each R=d value. Figure 6
presents the simulation based scaling result of the localiza-
tion error behavior. Although the maximum and average er-
ror do not decrease monotonically, non-trivial increments toR=d, (for instance, an increment of 1) lead to lower maxi-
mum and average localization errors on the whole. In partic-
ular, the maximum localization error experiences a substan-
tial drop (from 0:5d to 0:25d) when the overlap R=d is in-
creased from 1 to 4.

VI. DISCUSSION AND FUTURE WORK

In this section, we discuss some general problems that arise
in deploying our localization method and present some of our
ideas on solving them.

Collision Avoidance: For our method to work well, neigh-
boring reference points need to synchronize their beacon sig-
nal transmissions so as to avoid collisions. To achieve this,
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Fig. 6. Localization Error vs. Overlap, R/d. (Simulations)

we propose the following randomized scheme. Each time in-
terval T is subdivided into several smaller slots. Each refer-
ence point then chooses a slot randomly with a uniform dis-
tribution to transmit its beacon signal. We need to study this
further, although randomized schemes have proven to be ex-
tremely effective in designing various network protocols to
avoid contentions.

Tuning for Energy Conservation: The parameters T , the
time period for beacon transmissions, and S, the sample size
must be tuned so as to avoid collisions and ensure the con-
sistency of the connectivity metric while reducing power
consumption. Since we use the connectivity metric as a
coarse-grained measure, our experiences with our experi-
mental testbed proved that a small value of S (for e.g., 10)
would suffice to establish connectivity. The value of T can
be determined based on the reference point overlap R=d and
the efficacy of the collision avoidance scheme.

Non-Uniform Reference Point Placement: Our localiza-
tion method assumes that the reference points are placed in
a regular mesh structure. We controlled the placement, to
bound the quality of localization. In practice, it may not al-
ways be feasible to achieve a strictly uniform placement of
reference points. To understand the effect of non-uniform
placement, we simulated several scenarios with reference
points placed randomly in a uniform distribution in a square
grid. Uniform placement consistently yields superior quality
of localization across the grid compared to a random place-
ment of an equal number of reference points. However, only
a small fraction of grid points (less than 15%), experience sig-
nificantly worse localization due to non-uniform placement.
The tradeoff here is to use a random, but slightly more dense
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distributionof reference points to achieve the same quality of
localization as uniform placement.

Reference Point Configuration: We have left open the is-
sue of how the reference point coordinates are configured and
how they are deployed. This could be achieved through lim-
ited human intervention. The reference points themselves
can determine their positions through the use of GPS, or other
fine grained localization methods since they do not have sim-
ilar constraints as other nodes. Initially the reference points
may be deployed manually or scattered randomly across the
terrain. We are working on automated algorithms to select
good places to deploy additional nodes as reference points.

Robustness: Since the success of our localization method
depends on the node reliably inferring connectivity, and
hence proximity to its neighboring reference points, it must
be tolerant to reference point failures (and also to non-
uniform reference point placement). Reference points should
monitor themselves and fail-stop when their battery power
drops down. Some amount of redundancy (additional nodes
that can serve as reference points, if need be) should be incor-
porated into the system to tolerate reference point failures.

Adaptation to Noisy Environments: Our simple localiza-
tion method is very effective in restricted domains, with ide-
alized radio conditions. Idealized radio conditions do not
hold in noisy environments that are characterized by severe
multipath phenomenon, fading, obstructions, dead spots etc.
In order to generalize our scheme to noisy environments, we
are currently investigating techniques for empirical adapta-
tion of reference point placement.

VII. CONCLUSION

This paper addressed localization in unconstrained, out-
door environments for very small, low cost devices which do
not have GPS. We characterized existing localization tech-
niques and explored an RF-based localization method in
which the receiver localizes itself with high confidence (un-
der an idealized radio model) to the centroid of a set of prox-
imate reference points using a connectivity metric. Although
our approach uses a very simple radio model, in outdoorenvi-
ronments, our model correlated very well with reality (87%).

Our approach is simple, entirely RF-based, receiver based
and adaptive to the granularity of reference points available.
Additionally, it requires no coordination amongst reference
points or sensor nodes. It is therefore potentially scalable to
very large, distributed networks of devices.

Initial experiments have shown promising results, with our
simple scheme, for a small number of reference points. Our
simulation results suggest that the granularity of localiza-
tion can be further improved by increasing the overlap of
reference points. While our approach is essentially coarse-
grained, it is nevertheless useful for several applications with
less stringent accuracy requirements.

We also outlined some general problems which need to be
tackled for large scale deployment. In particular, our future
work includes adapting our localization method to noisy en-
vironments.
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