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Abstract—I nstrumenting the physical worId through lar ge networ ks
of wireless sensor nodes, particularly for applicationslike environmen-
tal monitoring of water and soil, requiresthat these nodesbe very small,
light, untethered and unobtrusive. The problem of localization, i.e., de-
termining where a given node is physically located in a network is a
challenging one, and yet extremely crucial for many of these applica-
tions. Practical considerations such as the small size, form factor, cost
and power constraints of nodes preclude the reliance on GPS (Global
Positioning System) on all nodes in these networks. In this paper, we
review localization techniques and evaluate the effectiveness of a very
simple connectivity-metric method for localization in outdoor environ-
ments that makes use of the inherent radio-frequency (RF) communi-
cations capabilities of these devices. A fixed number of reference points
in the network with overlapping regions of coveragetransmit periodic
beacon signals. Nodes use a simple connectivity metric, that ismorero-
bust to environmental vagaries, to infer proximity to a given subset of
thesereference points. Nodeslocalizethemselvestothe centroid of their
proximatereference points. The accuracy of localization isthen depen-
dent on the separation distance between two adjacent reference points
and thetransmission rangeof thesereference points. I nitial experimen-
tal results show that the accuracy for 90% of our data pointsiswithin
one-third of the separation distance. However future work isneeded to
extend the technique to more cluttered environments.
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|. INTRODUCTION

Wireless networks of sensors greatly extend our ability to
monitor and control the physical world. The availability of
microsensors and low power wireless communications en-
ables the deployment of densely distributed sensor/actuator
networks for a wide range of biological and environmental
monitoring applications, from marineto soil and atmospheric
contexts. Networked sensors can collaborate and aggregate
the huge amount of sensed data to provide continuous and
spatially dense observation of biological, environmental and
artificial systems. Applicationsinclude environmental mon-
itoring in the water and soil, tagging small animals unobtru-
sively, or tagging small and light objectsinafactory or hospi-
tal setting. Instrumenting the physical world, particularly for
such applications, requires that the devices we use as sensor
nodes be small, light, unobtrusive and un-tethered. Thisim-
poses substantial restrictions on the amount of hardware that
can be placed on these devices.

In these large sensor network systems, we need nodes to
be able to locate themselves in various environments, and
on different distance scales. This problem, which we refer
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to as localization', is a challenging one, and yet extremely
crucia for many applications of very large networks of de-
vices. For example, localization opens up new ways of re-
ducing power consumed in multihop wireless networks. In
context-aware applications, localization enables the intelli-
gent selection of appropriate devices, and may support use-
ful coordination among devices. The desired granularity of
localization isitself application dependent.

GPS [1] solvesthe problem of localization in outdoor en-
vironmentsfor PC class nodes. However, for large networks
of very small, cheap and low power devices, practica consid-
erations such as size, form factor, cost and power constraints
of the nodes precludethe use of GPS on al nodes. Inthispa
per, we address the problem of localization for such devices,
with the following design goals.

+ RF-based: Wefocuson small nodeswhich have somekind
of short-rangeradio frequency (RF) transceiver. Our primary
goal isto leverage this radio for localization, thereby elim-
inating the cost, power and size requirements of a GPS re-
ceiver.

o+ Receiver based: In order to scae well to large distributed
networks, the responsibility for localization must liewith the
receiver node that needs to be localized and not with the ref-
erence points.

« Ad hoc: In order to ease deployment, we desire a solution
that does not require pre-planning or extensiveinfrastructure.
» Responsiveness: We need to be able to localize within a
fairly low response time.

+ Low Energy: Small, un-tethered nodes have modest pro-
cessing capabilities, and limited energy resources. If adevice
usesdl of itsenergy localizing itself, it will have noneleft to
performitstask. Therefore, we desire to minimize computa
tion and message costs to reduce power consumption.

« AdaptiveFidelity: Inaddition, wewant theaccuracy of our
localization agorithms to be adaptive to the granularity of
available reference points.

This paper uses an idealized radio model and proposes a
simple connectivity based localization method for such de-
vices in unconstrained outdoor environments. |t leverages
the inherent radio-frequency (RF) communications capabil -
ities of these devices. A fixed number of nodes in the net-
work with overlapping regionsof coverage serve as reference

T'We borrow thetermlocalization from robotics, whereit refersto the prob-
lem of determining the position of amobile robotin somecoordinatesystem.



pointsand transmit periodicbeacon signals. Nodesuseasim-
ple connectivity metric to infer proximity to a given subset
of these reference points and then localize themselves to the
centroid of the selected (proximate) reference points.

The paper makes the following contributions.
o It presents a detailed exploration and classification of the
design space and work done in the area of localization.
« It proposes amethod for coarse-grained localization based
on an idealized radio model and demonstratesitsvalidity and
applicability in outdoor unconstrai ned environments.
o It describes a simple implementation of the modd and
presentsinitial results.

Il. RELATED WORK

Localization approaches typicaly rely on some form of
communication between reference points with known po-
sitions and the receiver node that needs to be localized.
We classify the various localization approaches into two
broad categories based on the granularity of information in-
ferred during thiscommunication. Approachesthat infer fine
grained information such as the distance to a reference point
based on signal strength or timing measurements fal into the
category of fine grained localization methods and those that
infer coarse grained information such as proximity to agiven
reference point are categorized as coarse grained localiza-
tion methods.

A. Fine-grained localization

Fine-grained locdlization methods can be further classi-
fied into range-finding and directionality based methods, de-
pending on whether ranges or angles relative to reference
pointsare being inferred. Additionally, signal pattern match-
ing methods are also included as fine grained localization
methods.

In range-finding methods, the ranges of the receiver node
to severa reference points are determined by one of several
timing or signal strength based techniques. The position of
the node can then be computed using multilateration (e.g.,
see [2]). We discuss timing based and signal strength based
range-finding methods separately.

A.1 Timing

The distance between the receiver node and a reference
point can be inferred from the time-of-flight of the commu-
nication signal.

The time-of-flight may be calculated using the timing ad-
vance technique which measures the amount that the timing
of the measuring unit has to be advanced in order for there-
ceived signd to fit into the correct time dot. Thistechnique
isused in GPS [1] and Pinpoint’sLocal Positioning System
(LPS) [3]. GPS measures one-way flight time whereas LPS
measures round-trip-time (thereby eliminating the need for
time synchronization).

GPS[1] isawide-arearadio positioning system. In GPS
each satellitetransmitsaunique code, acopy of whichiscre-
ated in real timein the user-set receiver by theinternal elec-

tronics. The receiver then gradually time shifts its internal
clock till it corresponds to the received code: an event called
lock-on. Once locked-on to satellite, the receiver can deter-
minetheexact timing of thereceived signal inreferencetoits
owninternal clock. If that clock were perfectly synchronized
with the satellite’s atomic clocks, the distance to each satel-
litecould be determined by subtractingaknown transmission
timefrom the cal culated receive time. Inreal GPS receivers,
the interna clock is not quite accurate enough. An inaccu-
racy of amere microsecond correspondsto a300-meter error.

Pinpoint’s3D-iD system [3] isalLocal Positioning System
(LPS) that covers an entire three-dimensiona indoor space
and iscapabl e of determining the 3-D location of itemswithin
that space. The LPS subdividesthe interior of the building
into cell aress that vary in size with the desired level of cov-
erage. Thecelsareeach handled by acell controllerwhichis
attached by a coaxia cable to up to 16 antennas. It provides
an accuracy of 10 metersfor most indoor applications, though
some may require accuracy of 2 meters. The main drawback
of thissystemisthat it iscentralized, and requires signifi cant
infrastructural set up.

Alternately, the time of flight can be calculated by mak-
ing explicit time-of-arrival measurements based on two dis-
tinct modalities of communication, ultrasound and radio, as
intheActiveBat [2] and morerecently in[4]. Thesetwo dif-
ferent modalitiestravel at vastly different speeds (350 ms~*
and 3 x 1078 ms~1! respectively), enabling the radio signa
to be used for synchronization between the transmitter and
thereceiver, and the ultrasound signal to be used for ranging.
TheActiveBat system however relieson significant effort for
deployment indoors. Ultrasound systems may not work very
well outdoors because they al use a singletransmission fre-
guency (40 k H z) and hence there isa high probability of in-
terference from other ultrasound sources.

A.2 Signa Strength

An important characteristic of radio propagationisthein-
creased attenuation of the radio signa as the distance be-
tween the transmitter and receiver increases. Radio propaga-
tion models [5] in various environments have been well re-
searched and have traditional ly focused on predicting the av-
erage received signa strength at a given distance from the
transmitter (large scale propagation models), as well as the
variability of thesignal strength in close spatial proximity to
alocation (small scaleor fadingmodels). IntheRADAR sys-
tem[6], Bahl et.al., suggest estimating distance based on sig-
nal strength in indoor environments. They compute distance
from measured signal strength by applying a Wall Attenua-
tion Factor (WAF) based signd propagation model. The dis-
tance information isthen used to located a user by triangula-
tion. This approach, however, yielded lower accuracies than
RF mapping of signal strengths corresponding to various |o-
cations for their system. Their RF mapping based approach
isquite effective indoors, unlike ours, but requires extensive
infrastructural effort, making it unsuitablefor rapid or ad hoc
deployment.



A.3 Signal Pattern Matching

Another fine grained localization technique is the propri-
etary Location Pattern Matching technology, usedin the U.S
Wireless Corporation’s RadioCamera system [7]. Instead of
exploiting signal timing or signd strength, it relieson signal
structure characteristics. It turns the multipath phenomenon
to surprisingly good use: by combining the multipath pattern
with other signal characteristics, it creates asignature unique
toagivenlocation. The RadioCamera systemincludesasig-
nal signature database for alocation grid, for a specific ser-
vicearea. To generate thisdatabase, avehicle drivesthrough
the coverage area transmitting signals to a monitoring site.
The system anayzestheincoming signal's, compilesaunique
signature for each square in the location grid, and storesit in
the database. Neighboring grid points are spaced about 30
meters apart. To determinethe position of amobile transmit-
ter, the RadioCamera system matches the transmitter’ssignal
signatureto an entry inthe database. The system can usedata
from only asinglepoint to determinelocation. Movingtraffic
and changes in foliage or westher do not affect the system’s
capabilities. The magjor drawback of thistechnique, as with
RADAR [6] isthe substantial effort needed for generation of
the signal signature database. Consequently it is not suited
for ad hoc deployment scenarios that we are interested in.

A.4 Directionality

Another way of estimating locationisto computetheangle
of each of thereference pointswith respect to themobilenode
insomereference frame. The position of the mobilenode can
then be computed using triangul ation methods.

An important example of directionality based systems are
the VOR/VORTAC stations [8], which were used for long
distance aviation navigation prior to GPS. The VOR station
transmits a unique omnidirectional signd that allows an air-
craft aoft to determine its bearing relative to the VOR sta
tion. The VOR signd is electrically phased so that the re-
ceived signa is different in various parts of the 360 degree
circle. By determining which of the 360 different radias it
isreceiving, the aircraft can determine the direction of each
VOR tation relative to its current position.

Small aperture direction finding is yet another directiona -
ity based technique, that is used in cellular networks. It re-
quires a complex antenna array at each of the cell site loca
tions. The antenna arrays can in principle work together to
determine the angle (relative to the cell site) from which the
cellular signd originated. When several cell sites can deter-
mine their respective angles of arrival, the cell phone loca-
tion can be estimated by triangulation. There are two draw-
backs of thisapproach, which make it inapplicableto our ap-
plication domain. The cost of the complex antennaarray im-
pliesthat it can be placed only at the cell sites. Secondly the
cell sites are responsible for determining the location of the
mobile node which will not scale well when we have alarge
number of such nodes, and desire areceiver based approach.

Directionality based methods are not very effectiveinin-
door environments, because of multipath effects.

B. Coarse Grained Localization

Thework we describeinthispaper, isperhapsmost similar
to earlier work donein coarse-grained localization for indoor
environments using Infra Red (IR) technology.

The Active Badge [9] system was one of theearliest indoor
localization systems. Each person or object istagged with an
ActiveBadge. The badge transmitsauniquelR signal every
10 seconds, whichisreceived by sensors placed at fixed posi-
tions within a building, and relayed to the location manager
software. The location manager software is able to provide
information about the person’slocation to the requesting ser-
vices and applications.

Another system that isbased on IR technol ogy isdescribed
in [10]. Thissystem requires|R transmittersto be located at
fixed positionsinside the ceiling of the building. An optical
sensor sitting on a head mounted unit senses the IR beacons
and system software determines the position of the person.

Both these IR based solutionsperform quitewell inindoor
environments, because IR range is fairly small, and can be
limited to the logica boundaries of a region, such as aroom
(by walls). On the other hand, the same technique cannot be
applied using RF inindoor environments, because RF propa:
gation in indoor environments suffers from severe multipath
effects, that make it impossible to limit the RF range to be
exactly within aroom. The short range of IR, which facili-
tates location, isaso amgor drawback of these systems be-
cause the building has to be wired with a significant number
of sensors. In the few places where such systems have been
deployed, sensors have been physically wired in every room
of the building. Such a system scales poorly, and incurs sig-
nificant installation, configuration and maintenance cost. IR
also tendsto perform poorly in the presence of direct sunlight
and hence cannot be used outdoors.

I1l. IDEALIZED RADIO MODEL AND LOCALIZATION
ALGORITHM

We considered two approachesto engineer an RF-based | o-
calization system, based on measurements of received signal
strength and connectivity respectively. The signa strength
based approach did not work very well, while the connectiv-
ity based approach proved quite effective outdoors.

A. Sgnal Srength Approaches

One approach for RF-based localization is to use mea-
sured signal strength of received beacon signals to estimate
distance, as in the RADAR system [6], with an outdoor ra
dio signal propagation model. We discarded this approach
for severa reasons relating to our short-range (10m) radios.
First, signa strength at short ranges is subject to unpre-
dictablevariation dueto fading, multipath, and interferences.
It does not therefore correlate directly with distance. More-
over, short range does not allow much gain in density of
reference points when considering signd strength. Finally,
our COTS radios did not provide software-accessible sig-
nal strength readings. These reasons caused us to focus on
connectivity-based | ocalization described next.



B. Idealized Radio Model

We havefound an idealized radio model useful for predict-
ing bounds on the quality of connectivity based localization.
We chose this model because it was simple and easy to rea
son about mathematically. This section presents this ideal -
ized model. To our surprise, thismodel compares quite well
to outdoor radio propagation in uncluttered environments as
we explore in the next section.

We make two assumptionsin our ideslized model:

« Perfect sphericd radio propagation.
o ldentical transmission range (power) for al radios.

C. Localization Algorithm

Multiplenodesin the network with overlapping regions of
coverage serve as reference points(labelled R, to R,,). They
are situated a known positions, (X1, Y1) to (X,,Y,), that
formaregular mesh and transmit peri odic beacon signal s (pe-
riod = ") containing their respective positions. We assume
that nei ghboring reference pointscan be synchronized so that
their beacon signal transmissionsdo not overlap intime. Fur-
thermore, in any timeinterval ", each of the reference points
would have transmitted exactly one beacon signdl.

First, we define afew terms.

d Separation distance between adjacent reference points

R Transmission range of the reference point

T Time interval between two successive beacon signals
transmitted by a reference point

t Receiver sampling or data collection time

Nsent(i,t) Number of beaconsthat havebeen sent by R; in
timet

Nreev(i, t) Number of beacons sent by R; that have been
received intimet

C'M; Connectivity metric for R;

S Samplesizefor connectivity metric for reference point R;
C Mthresh Threshold for C'M

(Xest, Yest) Estimated Location of the receiver

(X4,Y,) Actud Location of the receiver

Each mobile nodelistensfor afixed time period ¢ and col-
lects al the beacon signals that it receives from various ref-
erence points. We characterize the information per reference
point R; by aconnectivity metric (C'M,), defined as

Nrecv(i,t)
Nsent(i,t)

In order to improvethe reliability of our connectivity met-
ricinthe presence of variousradio propagation vagaries, we
would liketo base our metric on asample of at least S pack-
ets, where S is the sample size, a tunable parameter of our
method ( i.e,, Nsent(i,t) = S). Sincewe know 7" to be the
time period between two successive beacon signa transmis-
sions, we can set ¢, the receiver’s sampling time as;

CM,; = x 100

t=(S+1-T (0<e<1)

3* 3GRID OF REERENCE POINTS
MORE AND SMALLER LOCALIZATION REGIONS

2* 2 GRID OF REFERENCE POINTS
FEWER AND LARGER LOCALIZATION REGIONS

THE SHADED AREA REFLECTS ONE LOCALIZATION REGION

Fig. 1. Granularity of Localization Regionsvs. Range Overlap

From the beacon signalsthat it receives, the receiver node
infers proximity to a collection of reference pointsfor which
the respective connectivity metrics exceed a certain thresh-
old, C' Mthresh (say 90%). We denote the collection of ref-
erencepointsby R;,, Ri,, ..., R;,. Thereceiver localizesit-
self to the region which coincides to the intersection of the
connectivity regions of this set of reference points, which is
defined by the centroid of these reference points.

Xip+- 4+ X, Y+ 1Y
(Xestvi/est) :( 2 k7 3 k)

We characterize the accuracy of the estimate by the local-
izationerror L E defined as,

LE = \/(Xew — Xo)? + (Yoo — Y, )?

By increasing the range overlap of the reference points
that populate the grid i.e., increasing the ratio %, the gran-
ularity of the localization regions becomes finer, and hence
the accuracy of the location estimate improves. Thisisillus-
trated in figure 1.

IV. VALIDATION

Since our localization model depends on the spherica ra-
dio propagation assumption, described in the previous sec-
tion; we checked the vaidity of our assumption in both out-
door and indoor environments.

In outdoor environments, weeval uated theeffectiveness of
our idealized radio model by comparing itsaccuracy to exper-
imental measurements. We evauated propagation between
two Radiometrix radio packet controllers (model RPC-418)
operating at 418 MHz. A node periodically sent 27 byte bea
con signas; we define a 90% packet reception rate as con-
nected and empirically measured an 8.94m spherical range
for our smple model.

To evaluate how well our ssmplemodel comparesto areal-
world scenario, we placed a radio in the corner of an empty
parking lot (i.e., at theorigin (0, 0)) and then measured con-
nectivity at 1m intervalsover a 10m square quadrant.

Figure 2 compares these measurements with connectivity
as predicted by the model. Among the 78 points measured,
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the simple spherical model matches correctly at 68 points(an
87% correlation) and mismatches at 10, &l at the edge of the
range. Error was never more than 2/m. No dead spots were
observed.

As expected, our simple, idedlized radio model approxi-
meation is not appropriate for indoor environments where re-
flection and occlusion are common. Our indoor measure-
ments of propagation range varied widely from 4.6m to
22.3m, depending on wallsand exact nodelocationsand ori-
entations. Furthermore, these measurements were not time
invariant. We found that connectivity could vary from 0 to
even 100% for the same transmitter receiver positions, at dif-
ferent times of the day.

Hence the idealized radio model may be considered valid
for outdoor unconstrained environments only.

V. EXPERIMENTAL RESULTS
A. Experimental Testbed

Our experimental testbed [11] consisted of 5 Radiometrix
RPC 418 (radio packet controller) modules connected to a
Toshiba Libretto running RedHat Linux 6.0. One of these
modules is used as areceiver and the rest are used as refer-
ence points. A 3 inch antennais used for the experimental
purposes.

The software for the Radiometrix RPC-418 modules con-
sists of two components.

o Beacon: The reference point periodicdly transmits a
packet (every 2 seconds in our experiment) containing its
unique ID and position.

o Receiver: The receiver obtainsits current measured posi-
tion based on an input from theuser. For each measured posi-
tion, it samples for atime period ¢ determined by the sample
size S, and logs the set of reference pointsit hears from and
its current localization estimate.

For our experiment, we placed the 4 reference pointsat the
four corners of a 10m x 10m sguare, in an outdoor park-
ing lot. This sguare was further subdivided into 100 smaller
1m x 1m gridsand we collected dataat each of the 121 small
grid intersection points.

Theory (0,0)

Theory (10, 10) -
Theory (O, 10)

Expt (10, 10) x
Expt (O, 10) E

nnnnnnnnn

6| b

6l w B BB B BB B * E
s |
= X X X X *x %
> \

nnnnnnnn

Fig. 3. Experimental vs. Theoretical 90% connectivity rangesfor the 4 ref-
erence points
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Fig. 4. Localization Error vs. Position

B. Outdoor Results

In this section, we discuss the results obtained from our
outdoor experiments. Our experimental parameters were
T = 2 seconds, S=20, t=41.9 seconds.?

Figure 3 showsthe areas of connectivity of the 4 reference
pointsinthe grid. We see severa distinct regionsinthe grid,
based on theareas of overlap. Each distinct region constitutes
an equivalence class, defined by the centroid of thereference
pointsin the region. These can be contrasted with the theo-
retically predicted overlap regions, aso seen in figure 3.

Thelocation estimate at each grid pointisthecentroid. We
use the localization error metric defined previoudly to char-
acterize the performance.

In figure 4, the localization error obtained from experi-
ment isplotted as afunction of the position. Thelocalization
error is lowest at the the position corresponding to the cen-
troid of theregion and incresses towards the edges of there-
gion. Theaverage localization error was 1.83m and the stan-
dard deviation was 1.07m. The minimum error was 0m and
the maximum error was 4.12m across 121 grid points.

Figure 5 shows the cumulative localization error distribu-
tionacrossall thegrid points, from both thetheoretical model
and the experiment. They track each other closdly, including
plateaus in the error levels, athough the spherical model is
consistently more optimistic. In our experimentd results, for

2 Although our experimental parameter valuesfor T', and hencet are high,
we can substantially scale them down without violating the integrity of the
experiment.
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over 90% of the datapoints, thelocalization error fallswithin
3.0 metersi.e within 30% of the separati on-distance between
two adjacent reference points. Thisresult is based on 4 ref-
erence pointsonly. Since we observed a high correl ation be-
tween our model and experiment, improved granularity can
be expected with ahigher overlap of reference points.

Based on our validated outdoor model, we performed nu-
merical simulations to predict how the granularity of local -
ization could be expected to vary using our scheme when the
overlap of reference pointsis increased.

In our simulation, we assume an infinite two-dimensional
mesh of reference points, with any two adjacent reference
points spaced a distance d apart and transmission range R.
Our coordinate system is centered at one such reference
point, which is assumed to be at (0, 0).

Thelocalization estimate of any point (X, V') in the mesh
can be obtained in two steps.

Sep 1: Determine all the reference points which are within
range R of (X, Y), by considering all thereference pointsbe-
tween (X — R,Y — R)and (X + R, Y + R).

Step 2: Localize (X,Y) to thecentroid of the selected refer-
ence pointsand computethecorrespondinglocalization error.

For a given d, we increase the overlap R/d from 1 to 4.
We consider the average and maximum localization errors of
the localization estimates for 10201 uniformly spaced points
within one grid in the mesh, for each R/d vaue. Figure 6
presents the simulation based scaling result of the localiza-
tion error behavior. Although the maximum and average er-
ror do not decrease monotonically, non-trivia increments to
R/d, (for instance, an increment of 1) lead to lower maxi-
mum and average localization errors on thewhole. In partic-
ular, the maximum localization error experiences a substan-
tial drop (from 0.5d to 0.25d) when the overlap R/d isin-
creased from 1 to 4.

VI. DiIscussioN AND FUTURE WORK

Inthissection, wediscusssomegenera problemsthat arise
indeploying our localization method and present some of our
ideas on solving them.

Collision Avoidance: For our method to work well, neigh-
boring reference pointsneed to synchronizetheir beacon sig-
nal transmissions so as to avoid collisions. To achieve this,
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we proposethefollowing randomized scheme. Eachtimein-
terval 7" issubdivided into several smaller dots. Each refer-
ence point then chooses a slot randomly with a uniform dis-
tribution to transmit its beacon signal. We need to study this
further, athough randomized schemes have proven to be ex-
tremely effective in designing various network protocols to
avoid contentions.

Tuning for Energy Conservation: The parameters 77, the
time period for beacon transmissions, and 5, the sample size
must be tuned so as to avoid collisions and ensure the con-
sistency of the connectivity metric while reducing power
consumption. Since we use the connectivity metric as a
coarse-grained measure, our experiences with our experi-
mental testbed proved that a small value of S (for eg., 10)
would suffice to establish connectivity. The value of 7" can
be determined based on the reference point overlap R/d and
the efficacy of the collision avoidance scheme.

Non-Uniform Reference Point Placement: Our localiza-
tion method assumes that the reference points are placed in
a regular mesh structure. We controlled the placement, to
bound the quality of localization. In practice, it may not al-
ways be feasible to achieve a strictly uniform placement of
reference points. To understand the effect of non-uniform
placement, we simulated several scenarios with reference
points placed randomly in auniform distributionin a square
grid. Uniform placement consistently yields superior quality
of localization across the grid compared to a random place-
ment of an equal number of reference points. However, only
asmall fraction of grid points(lessthan 15%), experience sig-
nificantly worse localization due to non-uniform placement.
The tradeoff hereisto use arandom, but dightly more dense



distribution of reference pointsto achieve the same quality of
localization as uniform placement.

Reference Point Configuration: We have |eft open theis-
sue of how the reference point coordinates are configured and
how they are deployed. Thiscould be achieved through lim-
ited human intervention. The reference points themselves
can determinetheir positionsthroughthe use of GPS, or other
fine grained locali zation methods since they do not have sim-
ilar constraints as other nodes. Initialy the reference points
may be deployed manually or scattered randomly across the
terrain. We are working on automated algorithms to select
good places to deploy additional nodes as reference points.

Robustness: Since the success of our localization method
depends on the node reliably inferring connectivity, and
hence proximity to its neighboring reference points, it must
be tolerant to reference point failures (and also to non-
uniform reference point placement). Reference pointsshould
monitor themselves and fail-stop when their battery power
drops down. Some amount of redundancy (additional nodes
that can serve as reference points, if need be) should beincor-
porated into the system to tolerate reference point failures.

Adaptation to Noisy Environments: Our simple localiza-
tion method is very effective in restricted domains, with ide-
alized radio conditions. Idealized radio conditions do not
hold in noisy environments that are characterized by severe
multi path phenomenon, fading, obstructions, dead spots etc.
In order to generalize our scheme to noisy environments, we
are currently investigating techniques for empirical adapta-
tion of reference point placement.

VII. CONCLUSION

This paper addressed localization in unconstrained, out-
door environmentsfor very small, low cost devices which do
not have GPS. We characterized existing localization tech-
niques and explored an RF-based localization method in
which the receiver localizes itself with high confidence (un-
der an idedlized radio mode!) to the centroid of a set of prox-
imate reference pointsusing aconnectivity metric. Although
our approach usesavery simpleradio model, in outdoor envi-
ronments, our model correlated very well withreality (87%).

Our approach issimple, entirely RF-based, receiver based
and adaptive to the granularity of reference pointsavailable.
Additionally, it requires no coordination amongst reference
points or sensor nodes. It is therefore potentially scalable to
very large, distributed networks of devices.

Initial experiments have shown promising results, with our
simple scheme, for asmall number of reference points. Our
simulation results suggest that the granularity of localiza-
tion can be further improved by increasing the overlap of
reference points. While our approach is essentialy coarse-
grained, itisnevertheless useful for several applicationswith
less stringent accuracy requirements.

We also outlined some general problemswhich need to be
tackled for large scale deployment. In particular, our future
work includes adapting our localization method to noisy en-
vironments.
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