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AbstractThis paper addresses three major issues associated with conventional partitionalclustering, namely, sensitivity to initialization, di�culty in determining the numberof clusters, and sensitivity to noise and outliers. The proposed Robust CompetitiveAgglomeration (RCA) algorithm starts with a large number of clusters to reduce thesensitivity to initialization, and determines the actual number of clusters by a processof competitive agglomeration. Noise immunity is achieved by incorporating conceptsfrom robust statistics into the algorithm. RCA assigns two di�erent sets of weights foreach data point: the �rst set of constrained weights represents degrees of sharing, andis used to create a competitive environment and to generate a fuzzy partition of thedata set. The second set corresponds to robust weights, and is used to obtain robustestimates of the cluster prototypes. By choosing an appropriate distance measure inthe objective function, RCA can be used to �nd an unknown number of clusters ofvarious shapes in noisy data sets, as well as to �t an unknown number of parametricmodels simultaneously. Several examples, such as clustering/mixture decomposition,line/plane �tting, segmentation of range images, and estimation of motion parametersof multiple objects, are shown.
Index Terms: Robust clustering, fuzzy clustering, competitive clustering, robuststatistics, optimal number of clusters, linear regression, range image segmentation,motion estimation.

1



1 IntroductionTraditional clustering algorithms can be classi�ed into two main categories [1]: hierarchicaland partitional. In hierarchical clustering, the number of clusters need not be speci�ed apriori, and problems due to initialization and local minima do not arise. However, sincehierarchical methods consider only local neighbors in each step, they cannot incorporatea priori knowledge about the global shape or size of clusters. As a result, they cannotalways separate overlapping clusters. Moreover, hierarchical clustering is static, and pointscommitted to a given cluster in the early stages cannot move to a di�erent cluster.Prototype-based partitional clustering algorithms can be divided into two classes: crisp(or hard) clustering where each data point belongs to only one cluster, and fuzzy clusteringwhere every data point belongs to every cluster to a certain degree. Fuzzy clustering algo-rithms can deal with overlapping cluster boundaries. Partitional algorithms are dynamic,and points can move from one cluster to another. They can incorporate knowledge aboutthe shape or size of clusters by using appropriate prototypes and distance measures. Thesealgorithms have been extended to detect lines, planes, circles, ellipses, curves and surfaces[2, 3, 4, 5]. Most partitional approaches use the alternating optimization technique, whoseiterative nature makes them sensitive to initialization and susceptible to local minima. Twoother major drawbacks of the partitional approach are the di�culty in determining thenumber of clusters, and the sensitivity to noise and outliers.In this paper, we describe a new approach called Robust Competitive Agglomeration(RCA), which combines the advantages of hierarchical and partitional clustering techniques[6]. RCA determines the \optimum" number of clusters via a process of competitive ag-glomeration [7], while knowledge about the global shape of clusters is incorporated via theuse of prototypes. To overcome the sensitivity to outliers, we incorporate concepts fromrobust statistics. Overlapping clusters are handled by the use of fuzzy memberships. Thealgorithm starts by partitioning the data set into a large number of small clusters whichreduces its sensitivity to initialization. As the algorithm progresses, adjacent clusters com-2



pete for points, and clusters that lose the competition gradually vanish. However, unlike intraditional hierarchical clustering, points can move from one cluster to another. RCA usestwo di�erent sets of weights (or memberships) for each data point: the �rst one is a set ofprobabilistically constrained memberships that represent degrees of sharing among the clus-ters. The constraint generates a good partition and introduces competition among clusters.The second set of memberships is unconstrained or possibilistic [8, 9, 10], and representsdegrees of \typicality" of the points with respect to the clusters. These memberships areused to obtain robust estimates of the cluster prototypes.The organization of the rest of the paper is as follows. In section 2, we brie
y reviewother related approaches. In section 3, we present the RCA algorithm. In section 4, weillustrate the power and 
exibility of RCA to incorporate various distance measures. Insection 5, we describe the application of RCA to segmentation of range images. In section 6,we formulate a multiple model general linear regression algorithm based on RCA and applyit to simultaneous estimation of motion parameters of multiple objects. Finally, section 7contains the conclusions.2 Related WorkMost prototype-based partitional clustering algorithms such as K-Means and Fuzzy C-Means(FCM) [2] assume that the number of clusters, C, is known. Moreoever, since they use aleast squares criterion, they break down easily (i. e., the prototype parameter estimatescan be arbitrarily wrong [11]) in the presence of noise. The goal of clustering is to identifyclusters in the data set. This implicitly assumes that we have a de�nition for a valid cluster.Thus, the idea of break down [11] can be extended to the clustering domain via the useof validity [12]. When the number of clusters, C, is known, the ideal cluster breaks downonly when the outliers form a valid cluster with a cardinality higher than the cardinality,Nmin, of the smallest good cluster. This gives us the theoretical breakdown point of Nmin=N ,where N is the number of points in the data set. Recent solutions to robust clustering when3



C is known can be divided into two categories. In the �rst category are algorithms thatare derived by modifying the objective function of FCM [13, 14, 10]. These algorithms arestill sensitive to initialization and other parameters [12]. The algorithms in second categoryincorporate techniques from robust statistics explicitly into their objective functions. Anotable non-fuzzy clustering algorithms in this category is the K-Medoids algorithm [15].Bobrowski and Bezdek [16] proposed an L1-norm-based fuzzy clustering algorithm whichalso falls into this category. However, there is no mention of robustness in this paper. Avariation of this algorithm that is motivated by robustness can be found in [17]. Anotherearly fuzzy clustering algorithm (on which RCA is based) is the Robust C-Prototypes (RCP)algorithm [18], which uses the M-estimator [19]. The Fuzzy Trimmed C Prototypes (FTCP)algorithm [20] uses the least trimmed squares estimator [21], the Robust Fuzzy C Means(RFCM) algorithm [22] again uses the M-estimator in a di�erent way, and the Fuzzy CLeast Median of Squares (FCLMS) algorithm [23] uses the least median of squares estimator[21]. FTCP and FCLMS can achieve the theoretical breakdown point of Nmin=N with atrivial modi�cation to their objective functions. However, in theory, they both require anexhaustive search. To reduce the computational complexty, a heuristic search is used in[20]and a genetic search is used in [23].When C is unknown, one way to state the clustering problem is: �nd all the valid clustersin the data set (see [12] for a more precise de�nition). In this case, the ideal algorithm willnot break down because it will identify all the "good" clusters correctly (say by exhaustivesearch), in addtion to some spurious ones. An alternative way to state the problem is:identify only all the valid clusters formed by the good data. In this case, the ideal algorithmwill break down when the outliers form a valid cluster, giving us the breakdown point ofNminval=N , where Nminval is the minimum number of points required to form a valid cluster.Note that a given clustering algorithm may not achieve these theoretical breakdown points.The traditional approach to determining C is to evaluate a certain global validity measureof the C-partition for a range of C values, and then pick the value of C that optimizes4



the validity measure [25, 1, 26, 27]. An alternative is to perform progressive clustering[28, 27, 5], where clustering is initially performed with an overspeci�ed number of clusters.After convergence, spurious clusters are eliminated, compatible clusters are merged, and\good" clusters are identi�ed. Another variation of progressive clustering extracts one clusterat a time [29, 30]. These approaches are either computationally expensive, or rely on validitymeasures (global or individual) which can be di�cult to devise. Robust approaches toclustering when C is unknown treat the data as a mixture of components, and use a robustestimator to estimate the parameters of each component. The Generalized MVE (GMVE)[29] which is based on the Minimum Volume Ellipsoid estimator [21], the Model Fitting (MF)algorithm [31], and the Possibilistic Gaussian Mixture Decomposition (PGMD) algorithm[30] are some examples. In the above approaches, the data set is classi�ed into a set of\inliers", i.e., points belonging to a cluster, and a set of \outliers". Since the set of outliersincludes points from other clusters, the proportion of outliers can be very high. Therefore,even the use of a robust estimaor with the theoretical-best breakdown point of 50% is notsu�cient to make these algorithms highly robust. To overcome this problem, these algorithmsconsider the \validity" of the cluster formed by the inliers, and try to extract every validcluster in the data set. In order to guarantee a good solution, the GMVE and PGMD usemany random initializations. Cooperative Robust Estimation (CRE) [32] and MINPRAN[33] are two other robust model-�tting approaches that fall into this category. The CREalgorithm attempts to overcome the low breakdown point of M-estimators by initializing alarge number of hypotheses and then selecting a subset of the initial hypotheses based on theMinimum Description Length (MDL) criterion. The CRE technique assumes that the scale(� in [32]) is known. MINPRAN assumes that the outliers are randomly distributed withinthe dynamic range of the sensor, and the noise (outlier) distribution is known. Because ofthese assumptions, CRE and MINPRAN do not easily extend to the clustering domain. Ifthe data is expected to have multiple curves, MINPRAN seeks one curve/surface at a time.In [12] the relation between the above progressive approaches and other robust clustering5



algorithms are explored.When the clusters overlap, the idea of extracting them in a serial fashion will not work.Removing one cluster may partially destroy the structure of other clusters, or we might get\bridging �ts" [33]. Fig. 2(a) shows one such noisy data set with two crossing clusters.The algorithm we propose is designed to overcome this drawback. Moreover, all the currentalgorithms use hard �nite rejection [34], i.e., points within an inlier bound are given aweight of 1, and points outside the bound are given a weight of zero. This means that thesealgorithms do not handle the \region of doubt" [21] very well. To overcome this problem,we use smooth [34, 21] or fuzzy rejection, where the weight function drops to zero gradually.3 The Robust Competitive Agglomeration (RCA) al-gorithm3.1 Algorithm DevelopmentLet X = fxj j j = 1; : : : ; Ng be a set of N vectors in an n-dimensional feature space withcoordinate axis labels (x1; � � � ; xn). Let B = (�1; : : : ;�C) represent a C-tuple of prototypeseach of which characterizes one of the C clusters. Each �i consists of a set of parameters.The Fuzzy C-Means algorithm [2] minimizes:Jm(B;U;X ) = CXi=1 NXj=1(uij)md2ij (1)subject to CXi=1 uij = 1; for 1 � j � N: (2)In (1), d2ij represents the distance of feature vector xj from prototype �i, uij represents thedegree to which xj belongs to cluster i, U = [uij] is a C�N matrix called the constrainedfuzzy C-partition matrix, and m 2 [0;1) is known as the fuzzi�er. Jm, which is essentiallythe sum of (fuzzy) intra-cluster distances, has a monotonic tendency, and has the minimumvalue of zero when C=N . Therefore, it is not useful for the automatic determination of C.To overcome this drawback, we add a second regularization term to prevent over�tting the6



data set with too many prototypes. The resulting objective function JA is:JA(B;U;X ) = CXi=1 NXj=1(uij)2d2ij � � CXi=1 � NXj=1uij�2; (3)which is minimized subject to the constraint in (2). In (3), the second term is the negativeof the sum of the squares of the cardinalities of the clusters, and is minimized when thecardinality of one of the clusters is N and the rest of the clusters are empty. With a properchoice of �, we can balance the two terms to �nd a solution for C. JA is still not robust,since the �rst term is a Least Squares objective function. Therefore, we robustify JA to yieldthe objective function for the proposed RCA algorithm as follows:JR(B;U;X ) = CXi=1 NXj=1(uij)2�i(d2ij) � � CXi=1 � NXj=1wijuij�2 (4)In (4), �i() is a robust loss function associated with cluster i, andwij = wi(d2ij) = @�i(d2ij)=@d2ijrepresents the \typicality" of point xj with respect to cluster i. The function �i() correspondsto the loss function used in M-estimators of robust statistics and wi() represents the weightfunction of an equivalent W-estimator (see, [11], for example). This particular choice forrobusti�cation is motivated by the need to keep the computational complexity low. The lossfunction reduces the e�ect of outliers on the �rst term, and the weight function discountsoutliers while computing the cardinalities. By selecting dij and the � prudently, JR can beused to �nd compact clusters of various types while partitioning the data set into a minimalnumber of clusters.To minimize JR with respect to the prototype parameters, we �x U and set the derivativeof JR with respect to �i to zero, i.e.,NXj=1(uij)mwij @d2ij@�i = 0: (5)Further simpli�cation of (5) depends on �i() and dij. Since the distance measure is applica-tion dependent, we will return to this issue in Section 4. To minimize (4) with respect to Usubject to (2), we apply Lagrange multipliers and obtainJ(B;U;X ) = CXi=1 NXj=1(uij)2�i(d2ij) � � CXi=1 � NXj=1wijuij�2 � NXj=1�j� CXi=1 uij � 1�: (6)7



We then �x B and solve@J@ust = 2ust�s(d2st) � 2� NXj=1wsjusj � �t = 0 for 1 � s � C; and 1 � t � N: (7)Equations (7) and (2) represent a set of of N�C+N linear equations with N�C+N un-knowns (ust, and �t). A computationally simple solution can be obtained by computing theterm PNj=1wsjusj in (7) using the memberships from the previous iteration. This yields:ust = 2�� (PNj=1wsjusj) + �t2�s(d2st) : (8)Solving for �t using (8) and (2), and substituting in (8), we obtain the following updateequation for the membership ust of feature point xt in cluster �s:ust = 1/�s(d2st)PCk=1 1/�k(d2kt) + ��s(d2st)(Ns �N t) = uRRst + uBiasst ; (9)where uRRst is the degree to which cluster s shares xt (computed using robust distances), anduBiasst is a signed bias term which depends on the di�erence between the robust cardinality,Ns = PNj=1wsjusj, of the cluster of interest and the weighted average of cardinalitiesN t = CXk=1 1�k(d2kt)Nk. CXk=1 1=�k(d2kt):The bias term, uBiasst , is positive(negative) for clusters with cardinality higher(lower) thanaverage, and hence the membership of xt in such clusters will appreciate(depreciate). Whena feature point xj is close to only one cluster (say cluster i), and far from other clusters,we have Ni � N j, or uBiasij � 0, implying no competition. On the other hand, if a pointis roughly equidistant from several clusters, these clusters will compete for this point basedon cardinality. When the cardinality of a cluster drops below a threshold, we discard thecluster, and update the number of clusters.It is possible for uij to become negative if Ni is very small and point xj is close to otherdense clusters. In this case, it is safe to set uij to zero. It is also possible for uij to becomelarger than 1 if Ni is very large and feature point xj is close to other low cardinality clusters.In this case it is clipped to 1. This practice is customary in optimization theory.8



The process of agglomeration, controlled by �, should be slow in the beginning to en-courage the formation of small clusters. Then it should be increased gradually to promoteagglomeration. After a few iterations, when the number of clusters becomes close to the\optimum", the value of � should again decay slowly to allow the algorithm to converge.Therefore an appropriate choice of � in iteration k is.�(k) = �(k)PCi=1PNj=1(u(k�1)ij )2�i(d2ij)(k�1)PCi=1 hPNj=1w(k�1)ij u(k�1)ij i2 : (10)In (10), � and � are functions of the iteration number k, and the superscript (k� 1) is usedon uij, d2ij, and wij to denote their values in iteration k � 1. A good choice for � is�(k) = ( �0 e�jk0�kj=� if k > 00 if k = 0 (11)where �0 is the initial value, � is the time constant, and k0 is the iteration number at which� starts to decrease. In all examples presented in this paper (except in section 5 wherethese parameters were �ne-tuned for best performance), we choose �0 = 1, k0 = 5, and� = 10. With proper initialization, these values are reasonable regardless of the application.Initialization issues are discussed in section 7.3.2 Choice of the weight functionIn curve/surface �tting or linear regression, it is reasonable to assume that the residualshave a symmetric distribution about zero. Therefore, we choose Tukey's biweight function[11] given by �i((r�ij)2) = ( 13 [1� (1� (r�ij)2)3] if jr�ijj � 1,13 if jr�ijj > 1 (12)wi((r�ij)2) = ( [1� (1� (r�ij)2)2] if jr�ijj � 1,0 if jr�ijj > 1 (13)where r�ij stands for the normalized residual de�ned as:r�ij = rij �Medic�MADi : (14)In (12)-(14), rij is the residual of the jth point with respect to the ith cluster, Medi is themedian of the residuals of the ith cluster, and MAD is the median of absolute deviations [11]9



of the ith cluster. In other words, in each iteration, the data set X is crisply partitioned intoC components Xi, for i = 1; � � � ; C, and Medi and MADi are estimated for each cluster.When distances (rather than residuals) are used, the symmetric distribution assumptiondoes not hold. We suggest a monotonically non-increasing weight function wi(d2) : R+ ![0; 1] such that wi(d2) = 0 for d2 > Ti + cSi; where c is a constant, and Ti and Si are givenby Ti = Medi (d2ij) and Si = MADi (d2ij) for i = 1; � � � ; C: (15)Choosing wi(0) = 1, wi(Ti) = 0:5, and wi0(0) = 0, results in the following weight function:wi(d2) = 8>>><>>>: 1� d42T 2i if d2 2 [0; Ti],[d2�(Ti+cSi)]22c2S2i if d2 2 (Ti; Ti + cSi],0 if d2 > Ti + cSi. (16)The corresponding loss function can be shown to be�i(d2) = 8>>><>>>: d2 � d66T 2i if d2 2 [0; Ti],[d2�(Ti+cSi)]36c2S2i + 5Ti+cSi6 if d2 2 (Ti; Ti + cSi],5Ti+cSi6 +Ki if d2 > Ti + cSi. (17)In (17) Ki is an integration constant used to make all �i() reach the same maximum value.Ki = max1�j�C n5Tj + cSj6 o� 5Ti + cSi6 for i = 1; � � � ; C:This choice ensures that all noise points will have the same membership value in all clusters.Fig 1 shows the plot of the weight function and the corresponding loss function.In (14), (16), and (17), c is a tuning constant [11] which is normally chosen to be between4 and 12. When c is large, many outliers will have small nonzero weights, thus a�ecting theparameter estimates. On the other hand, if c is small, only a subset of the data points willbe visible to the estimation process, making convergence to a local minimum more likely. Asa compromise, we start the estimation process with a large value of c, and then decrease itgradually as function of the iteration number (k), i.e.,ck = max(cmin; ck�1 ��c) (18)10



with c0=12, cmin=4, and �c=1.The RCA algorithm is summarized below.Fix the maximum number of clusters C = Cmax;Initialize the prototype parameters, and set k = 0 ;Set wij=1 8 i; j;RepeatCompute d2ij for 1 � i � C and 1 � j � N ;Estimate Ti and Si by using (15);Update the weights wij by using (13) or (16);Update �(k) by using (10);Update the partition matrix U(k) by using (9);Compute the robust cardinality Ni;If (Ni < �1) discard cluster �i;Update the number of clusters C;k = k + 1 ;Update the tuning factor c by using (18);Update the prototype parameters;Until � prototype parameters stabilize �;4 Examples of Distance MeasuresAs mentioned in section 3.1, RCA can be used with a variety of distance measures dependingon the nature of the application. In this section, we discuss distance measures suitable forellipsoidal clusters and hyperplanes.4.1 Detection of Ellipsoidal ClustersTo detect ellipsoidal clusters in a data set, we use the following distance measure [35, 36].d2Cij = jCij1=n(xj � ci)TC�1i (xj � ci): (19)In (19), ci is the center of cluster �i, and Ci is its covariance matrix. (See [37] for aninterpretation of d2Cij.) Using (5), it can be shown that the update equations for the centersci and the covariance matrices Ci areci = PNj=1(uij)2wijxjPNj=1(uij)2wij ; (20)11



Ci = PNj=1(uij)2wij(xj � ci)(xj � ci)TPNj=1(uij)2wij : (21)If we assume Ci = �2In, then (19) reduces to the Euclidean distance. This simpli�ed versioncan be used when the clusters are expected to be spherical.Fig. 3 illustrates RCA using d2Cij. Fig. 3(a) shows a synthetic Gaussian mixture consist-ing of 4 clusters of various sizes and orientations. Uniformly distributed noise constituting40% of the total points was added to the data set. Fig. 3(b) shows the initial 20 prototypessuperimposed on the data set, where \+" signs indicate the cluster centers, and the ellipsesenclose points with a Mahalanobis distance less than 9. These prototypes were obtained byrunning the G-K algorithm [36] for 5 iterations. After 2 iterations of RCA, 9 empty clustersare discarded (see Fig. 3(c)). The number of clusters is reduced to 6 after 3 iterations, andto 4 after 4 iterations. The �nal result after a total of 10 iterations is shown in Fig. 3(d).To illustrate the ability of RCA to handle non-uniform noise, Fig. 4 shows the result ofRCA on a data set containing Gaussian clusters with roughly 25% noise. To illustrate theability of the RCA algorithm to detect overlapping clusters, in Fig. 2(b) we show the resultof RCA on the data set in Fig. 2(a). The algorithm converged in 10 iterations.4.2 Detection of Linear ClustersTo detect clusters that resemble lines or planes, we use a generalization of the distancemeasure proposed in [3, 2]. This distance is given byd2Lij = nXk=1 �ik((xj � ci) � eik)2; (22)where eik is the kth unit eigenvector of the covariance matrix Ci. The eigenvectors areassumed to be arranged in ascending order of the corresponding eigenvalues. The value of�ik in (22) is chosen dynamically in every iteration to be �ik = �in=�ik; where �ik is the ktheigenvalue of Ci. It can be shown that for the distance measure in (22), the update equationsfor ci and Ci are given by (20) and (21) respectively.Fig. 5(a) shows an image consisting of 10 line segments in a noisy background. Fig. 5(b)12



shows the 20 initial prototypes obtained by running the AFC algorithm [3] for 5 iterations.After 2 iterations of RCA, the number of clusters drops to 15 as shown in Fig. 5(c). After9 iterations, the number of clusters reduces to the \optimal" number and the algorithmconverges after a total of 12 iterations. The �nal result is shown in Fig. 5(d).5 Application to Range Image Segmentation5.1 Planar Range Image SegmentationSince planar surface patches can be modeled by 
at ellipsoids, the distance measure d2Cijin (19) can also be used to �nd the optimal number of planar patches. To avoid missingtiny surfaces, we start by dividing the image into non-overlapping windows of sizes Ws�Ws.Then, we apply RCA in each window with C = Cmax to estimate the optimal number ofplanar patches within the window. Finally, we pool the resulting (say M) prototypes toinitialize the RCA algorithm with C=M . Because of the nature of d2Cij, planar surfaceswith non-convex shapes may be approximated by several planar patches, or several spatiallydisconnected planar patches may be approximated by a single cluster. Therefore, after RCAconverges, we merge compatible clusters [27] that are adjacent. We then perform connectedcomponent labeling on each cluster, and assign di�erent labels to disjoint regions.The above RCA-based algorithm was tested on two standard data sets, ABW data setand perceptron data set, that were created for bench-marking range image segmentationalgorithms [38]. Each set contains 40 images of size 512�512, and has been randomly dividedinto a 10-image training set and a 30-image testing set. We use the performance measuresdeveloped by Hoover et al. [38] to evaluate the performance of RCA. These measures relyon comparing the Machine Segmented (MS) image and the Ground Truth (GT) image, andclassify the regions into one of the 5 categories: correct detection, over-segmentation, under-segmentation, missed, and noise. The accuracy of the segmentation is quati�ed by computingthe average and standard deviation of the di�erences between the angles made by all pairsof adjacent regions that are instances of correct detection in the MS and GT images. The13



above data sets and performance measures have been used in [38] to compare the Universityof South Florida (USF), University of Edinburgh (UE), Washington State University (WSU),and University of Bern (UB) segmentation algorithms. Here, we will reproduce the same setof experiments and include the RCA algorithm in the comparison.In the training phase, we �ne-tuned the parameters of RCA as follows: window size usedin the initialization Ws = 128; initial number of prototypes in each window Cmax = 15;(�0; �) = (2; 20) (see (10)). These parameters are optimal for both ABW and Perceptrondata sets. Since the Perceptron data is more noisy, we use cmin = 4, and for the ABWdata, cmin = 8. Also, to reduce computations, all images were subsampled in the x and ydirections by a factor of 3. These parameters are all then �xed in the testing phase.Fig 6(a) shows the intensity image of one of the ABW test images. The segmented rangeimage is shown in Fig 6(b). The shaded gray regions correspond to background points thatare ignored during segmentation. Fig. 7 shows an example from the Perceptron data set.As in [38], we compute the performance metrics of the �ve segmentation algorithms whilevarying the compare tool tolerance from 51% to 95%. Due to space limitation, we only showplots of the correct detection measure (Fig 8). The performance measures using an 80%compare tolerance for all �ve segmenters are listed in Table 1 for the ABW data and Table2 for the Perceptron data. RCA compares very well with the best segmenters.Among the 5 planar surface segmenters in the comparison, UE, WSU, and RCA have thecapability to segment curved surfaces. RCA has the additional advantage that it can handleirregularly spaced sparse data as well (e.g. range data computed from stereo methods).5.2 Quadric Range Image SegmentationLet the ith prototype �i, represented by the parameter vector pi, de�ne the equation of aquadric surface as pTi q = 0, where pTi = [pi1; pi2; : : : ; pi10], qT = [x2; y2; z2; xy; xz; yz; x; y; z; 1],and x = (x; y; z) is a 3-D point. Since the exact distance from a point xj to a quadric surface
14



�i has no closed-form expression, we use the approximate distance [39, 40] given bydAij = pTi qjjrpTi qjj = pTi qqpTi D(qj)D(qj)Tpi ; (23)where D(qj) is the Jacobian of q evaluated at xj. To avoid the all-zero trivial solution forpi, the following constraint may be chosen [39]pTi h NXj=1(uij)2wij[D(qj)D(qj)T ]ipi = NXj=1(uij)2wij;Starting from (5), it can be shown that the use of dAij leads to a solution of pi based on thefollowing generalized eigenvector problem: Fipi = �iGipi; where Fi = PNj=1(uij)2wijqjqTj ,and Gi = PNj=1(uij)2wij[D(qj)D(qj)T ]:To obtain a reliable initialization, we divide the image into small non-overlapping win-dows, and apply RCA in each window with C=1. Finally, we pool the resulting prototypeparameters to initialize the RCA algorithm. Initially, there might be several initial proto-types corresponding to the same surface. However, due to competition, only one of thesesurfaces will survive.The examples used in this section consist of some 240�240 real and some synthetic rangeimages1. A sampling rate of 3 in the x and y directions was used to reduce computations.30�30 windows were used to estimate the initial prototypes. Fig. 9(a) shows a syntheticrange image of a plastic pipe. Fig. 9(b) shows the initial 36 surface patches. These patcheswere generated after assigning each point to the nearest prototype. Fig. 9(c) shows the �nalresults, where each each surface is displayed with a di�erent gray value, and the boundariesare shown in black. Fig. 10(a) shows a real range image of three plastic pipes of di�erentsizes and orientations. The �nal results of the RCA algorithm consisting of the correctlyidenti�ed surfaces are shown in Fig. 10(b).To test the robustness of RCA, Gaussian noise (with �=4) was added to the image inFig. 9(a), and about 10% of the data points were randomly altered to become outliers. The1These images were obtained from Michigan State University and Washington State University via anony-mous ftp. 15



results are shown in Fig. 11, where noise points (i.e. points with zero weight (wij) in allclusters) are shown in black.6 Estimation of Multiple Motion Groups and Segmen-tationIn this section, we show how RCA can be used to perform multiple model linear regression,and apply it to estimation of the motion parameters of multiple motion groups.6.1 General Linear RegressionThe General Linear Regression (GLR) [41] for solving a set of homogeneous equations formotion parameters can be written as: X� = r, where XT = (x1j � � � jxN) is the designmatrix with xi = (1; xi1; � � � ; xip)T , � = [�0; �1; � � � ; �p]T is the parameter vector, and r =[r0; r1; � � � ; rp]T is the residual vector. Since the system is homogeneous, we can �x �0 = �1,and reformulate the GLR model as: �1 + X��� = r, where 1 denotes a N -dimensionalvector with every component equal to 1, X = [1jX�], and �T = [�1;��T ]. GLR can besolved by the least squares minimization: min�� Pi r2i = min�� krk2, with the solution:�� = (X�TXT )�1X�T1: However, least squares is very sensitive to noise. An alternative isthe weighted least squares: min��Piwir2i ; with the solution: �� = (X�TWXT )�1X�TW1;where W = diag(w1; � � � ; wN).If a data set contains multiple models, the GLR model must be applied repetetively toextract one model at a time. This approach is computationally expensive, requires models tobe well separated, needs a high breakdown estimator (since while extracting the ith model, allother models are considered as outliers), and is sensitive to initialization. To deal with theseproblems, we propose the Multiple-Model General Linear Regression (MMGLR) method,which allows the simultaneous estimation of an unknown number of models.
16



6.2 Multiple-Model General Linear RegressionLet the ith model with the parameter vector �i = [�i0; �i1; � � � ; �ip]T , be represented by�i0 + �i1xj1 + �i2xj2 + � � �+ �ipxjp = rij; for 1 � j � N;where rij is the residual corresponding to the jth data vector in the ith model. MMGRLminimizes (4) (where d2ij is replaced by r2ij) subject to the constraint in (2). Solving (5)corresponding to this situation leads to @@�i 


UiW1=2i ( � 1 + X���i )


2 = 0, where Ui =diag(ui1; � � � ; uiN), and W1=2i = diag(w1=2i1 ; � � � ; w1=2iN ). The resulting update equation for theparameters is: ��i = (X�TU2iWiXT )�1X�TU2iWi1: (24)In linear regression, it is customary to use the studentized residuals r�j = rj/q1� hjj,where hjj is the jth diagonal element of the hat matrix H = X(XTX)�1XT . Huang et al.[41] showed that the corresponding hat matrix for GLR is H� = X�(X�TX�)�1X�T . Toextend this principle to the MMGLR, we compute C hat matrices (i. e., one per model), asH�i =WiU2iX��W2iU4iX�TX���1WiU2iX�T : (25)The residuals can be normalized as r�ij = rij/q1� h�(i)jj . However, this normalization intro-duces a bias towards noise points (wij � 0) or points belonging to other models (uij � 0). Inthis case h�(i)jj � 0, and hence no normalization takes place. Also, residuals will be in
atedfor points which are typical of the ith model since they are divided by a factor smaller thanone. Therefore, we modify the normalization process as follows:r�ij = 8><>: rijq1�h�(i)jj if uijwij > �,rijp1�h�max otherwise (26)where h�max = maxi;j h�(i)jj : In other words, points which are known to be atypical of theithmodel, are forced to receive the maximum possible in
ation factor.MMGLR can be used to estimate the motion parameters of multiple objects in the samescene. The instantaneous velocity _p(t) of a point p = (x; y; z)T located on the surface of17



a translating object rotating with an instantaneous angular velocity !(t) = (!1; !2; !3)T ,is characterized by _p(t) = !(t) � p(t) + k(t), where k(t) = (k1; k2; k3)T is a vector in-volving translation. Let (X(t); Y (t)) be the 2-D prespective projection of p(t) onto theimage plane at Z=1, and let (u(t); v(t)) denote its projective instantaneous velocity. Mo-tion estimation consists of solving for ! and k using a set of N observations (Xj; Yj)T andtheir corresponding (uj; vj)T for j = 1 � � �N . This can be done by solving Ah = 0, whereA = [aT1 ; aT2 ; � � � ; aTN ]; aj = [1; X2j ; Y 2j ; 2XjYj; 2Xj; 2Yj;�vj; uj; vjXj � ujYj]T , andh = [h0; h1; h2; h3; h4; h5; h6; h7; h8]T . Once h has been determined, the motion parameters! and k can be easily obtained [42]. Since h is 9-dimensional and Ah = 0 represents a setof homogeneous equations, we need only 8 observations to solve for the optical 
ow [42].When a scene consists of C independently moving objects, the motion of each object canbe characterized by a di�erent vector hi. In this situation, we need to solve Ahi = 0 for i =1; � � � ; C. MMGLR solves this set of equations where X and �i correspond to A and hirespectively. It �nds C automatically.MMGLR requires an overspeci�ed number (C) of initial parameter estimates. We obtaineach one of these estimates by solving Ah = 0 on a randomly selected subset of 8 observa-tions. These C estimates are then pooled together to initialize the MMGLR algorithm. Toensure a reliable result, the initial number of models C needs to be high. However, since C de-creases drastically in the subsequent iterations, this method is still e�cient. Since MMGLRallows points to move from one model to another, and since fuzzy rejection allows points tochange from inliers to outliers and vice versa smoothly, we can a�ord to use a smaller numberof initializations than algorithms based on hard rejection. In both experiments described inthis subsection, we use C=50.Fig. 12(a) shows a synthetic 3-D scene consisting of 4 touching rigid objects, each un-dergoing a motion with di�erent rotational and translational velocities. Fig. 12(a) displaysthe subsampled and scaled true optic 
ow �eld. We contaminated this optic 
ow �eld withGaussian noise (SNR=70), and additionally altered 20% of the observations randomly to18



make them outliers. The resulting optic 
ow �eld is shown in Fig. 12(b). MMGLR succeedsin determining the correct number of motion groups in the scene. It also estimates their mo-tion parameters accurately, as shown in Table 3. Fig. 12(c) shows the segmented optic 
ow�eld where each motion group is represented by a di�erent symbol. The correctly identi�edoutliers (points having zero weight wij in all models) are shown as black dots in Fig. 12(c).The recovered optic 
ow �eld is shown in Fig. 12(d).Figs. 13(a) and 13(b) show two 512�512 subimages of the 13th and 14th frames ina motion sequence [43] containing a moving truck. In this experiment, the backgroundmotion (due to camera panning) is treated as another motion group to create a multiplemotion scenario. We selected 30 target points on the vehicle, and another 30 points fromthe background. The matches of these 60 points were computed using a robust matchingalgorithm [44] and veri�ed manually. To illustrate the robustness of MMGLR, we addedanother 10 target points with erroneous matches. All 70 points are marked `+' in Figs. 13(a)and 13(b). The target points and their matches were �rst converted from pixel coordinatesto image coordinates, and then calibrated [43]. Finally, all target points were integratedto form the mixture data set f(Xi; Yi); (ui; vi)g; i = 1; � � � ; 70, where (Xi; Yi) is the imagecoordinates of the ith target point in the 13th frame, and (ui; vi) is its displacement vector.The \ground truth" for the vehicle motion is unknown. Also, since the rotation angleof the truck is too small (about 5o), it could not be estimated reliably using two-view pointcorrespondence and three-view line correspondence algorithms [45]. Since we are testing therobustness of MMGLR and its ability to detect multiple models, and not the performance ofthe linear optic 
ow algorithm, we compare our results with those obtained when the linearoptic 
ow algorithm is supplied with the correct data subset for each motion (see Table 4).MMGLR was �rst run with only the 60 good target points, and then with the added outliers.In both cases, the algorithm was able to detect the correct number of motion groups (=2)and estimate their parameters correctly. Fig. 14 shows the partition of the optic 
ow �eldwhere the two motion groups and the detected outliers are denoted by di�erent symbols.19



7 Discussion and Conclusions7.1 General CommentsRCA is an attempt at addressing the three main issues of partitional clustering algorithms(the di�culty in determining the number of clusters, sensitivity to initialization, and sen-sitivity to outliers), without sacri�cing computational e�ciency. RCA minimizes a fuzzyobjective function in order to handle overlapping clusters. Constrained fuzzy membershipsare used to create a competitive environment that promotes the growth of \good" clusters.Possibilistic memberships [10]are used to obtain robust estimates of the prototype parame-ters. Concepts from robust statistics have been incorporated into RCA to make it insensitiveto outliers. To handle the region of doubt, and to reduce the sensitivity to initialization,RCA uses soft �nite rejection. The agglomerative property makes it relatively insensitive toinitialization and local minima e�ects. By using suitable distance measures, we can applythis algorithm to solve many computer vision problems. The choice of � in (10) is quitecritical to the algorithm. However, � can be chosen by trial and error to produce stable re-sults for a given application. The variety of examples presented in this paper show that thisis possible, and that RCA can provide robust estimates of the prototype parameters evenwhen the clusters vary signi�cantly in size and shape, and the data set is contaminated.7.2 Computational ComplexityThe RCA algorithm has a computational complexity similar to that of FCM [2], which isO(NC) in each iteration. Here, N is the number of data points, and C is the number ofclusters. However, additional time is required to estimate the weight function w(d2) whichrequires us to compute the median of the squared distances twice (�rst to compute themedian, then to compute the MAD). The median of a data set can be computed iterativelyusing xmed = PNj=1 xjjxj�xmedjPNj=1 1jxj�xmedj :20



This procedure converges in O(logN) passes through the data set. Since the distribution ofthe squared distances does not change signi�cantly in one iteration, this procedure convergeseven faster when the median of the previous iteration is used to initialize the computationof the median of the current iteration. Thus, the overall complexity can be estimated asO(N logN +NC) per iteration, or O(NK(logN +C)), where K is the number of iterations.It is to be noted that the value of C varies from Cmax to Cfinal. Except for the applicationto motion analysis, in all other cases we use a standard algorithm such as FCM to initializeRCA. Therefore, the initialization overhead is O(NkCmax), where k is a small (� 5) integer.7.3 Breakdown IssuesAs discussed in section 2, when C is known, the breakdown point is Nmin=N , and when Cis unknown, the breakdown is either unde�ned or Nminval=N . These results were derivedby the use of validity, and an ideal clustering algorithm would use a validity measure andan expensive exhaustive search to achieve this level of robustness [12]. However, validitymeasures are hard to de�ne in practice unless the distribution of the good points is known.Moreover, deviations from the assumed distribution can occur with widely varying degreesin real applications, and it is hard to choose thresholds when their optimal values can varywidely among di�erent data sets, and even among clusters in the same data set.RCA is a general purpose algorithm that attempts to achieve robustness with reasonablecomputational complexity. This is the rationale behind the choice of the M-estimator torobustify RCA. This choice limits the breakdown point of RCA to 1p+1 , where p is the di-mensionality of the parameter vector to be estimated. However, since RCA starts with a largember of initial prototypes, it is possible to increase its robustness under certain conditions.RCA uses the initial prototypes to generate a partition. The algorithm consists of updatingthe weight function for each component of the partition, then updating the memberships,and then �nally updating the prototypes. This process is repeated until convergence. Sincethe weight function uses the median and MAD, it can tolerate up to 50% noise points (within21



the component) provided it starts with a good initialization.Let there be C actual clusters. Let the good points from the kth actual cluster be given thelabel \k", k = 1; 2; � � � ; C, and let the noise points be labeled \0". Let the (hard) partitioncorresponding to the Cmax initial prototypes be labeled as follows. If a given componenthas only noise points, it is labeled \0", otherwise it is labeled \i", where i is the label ofthe majority of good points in the component. Let Pmaxi denote the largest component withthe label i. For the RCA algorithm to give robust results, we require an initialization thatsatis�es the following conditions. (i) There exists at least one component that has the label i,for all i = 1; � � � ; C. (ii) The prototype corresponding to Pmaxi is a good point of the ith actualcluster. (iii) The largest component labeled "0" is smaller than Pmaxi , i = 1; � � � ; C. (iv) Pmaxicontains more than 50% of points labeled "i". Since the cluster region by de�nition is denserthan the noise region, by using a su�ciently large number of prototypes, it is usually possibleto achieve an initialization to meet these conditions in practice. Initial prototypes placed inthe cluster region will naturally have larger cardinalities and those in the noise region willhave smaller ones. Conditions (i)-(iv) need to be satis�ed in the following iterations as well,to guarantee that the algorithm will converge to a correct result. However, since cardinalitiesare replaced by robust cardinalities in the subsequent iterations, it becomes easier to satisfythese conditions. When the components coalesce and form the �nal result, each noise pointwill be crisply assigned to one of the components while computing the weight function. In theworst case, all noise points can be assigned to the smallest cluster. Therefore, conditions (iii)and (iv) above translate to the requirement that the number of noise points be smaller thanthe cardinality of the smallest cluster. Thus, when (i)-(iv) are satis�ed, RCA can achieve thetheoretical breakdown point. A similar discussion applies to non-point prototypes as well,with minor modi�cations. In this case, each initial prototype can be generated with n datapoints, where n is the number of parameters in the prototype.
22



7.4 Initialization IssuesFrom the above discussion, it is clear that initialization plays a very important role in theRCA algorithm. The initialization procedure necessarily varies with the type of prototypesused, the distance measure used, the type of data, and �nally the application. We nowoutline some guidelines for initialization.We can compute a theoretical value for the initial number of clusters, Cmax, as follows.Let there be Cexp number of actual clusters expected in the data set, let Ni denote thecardinality of cluster i, and let n be the number of points required to generate a prototype.If we randomly pick n points to generate a prototype, then the probability p that we pickCexp good prototypes, one from each cluster, is given by p = QCexpi=1 nC(Ni;n)C(N;n) o. If this selectionis repeated K times, the probability that one of these selections generates good prototypesfor all Cexp clusters is given by Pg = 1� (1� p)K. For a given value of Pg, we can computethe value of K as, K = d log (1�Pg)log (1�p) e, and Cmax can be estimated as Cmax = K�Cexp. Thisvalue of Cmax grows exponentially with Cexp and n, and therefore is unrealistic.In practice, an existing clustering algorithm (such as FCM [2], GK [36], AFC [3]) can beused for initialization. At the end of such an initialization, although not all Cmax prototypesare expected to be good, we can assume that each of the Cexp clusters has a fairly highprobability, P initi , of being represented by one of the Cmax initial prototypes. For example,consider the case of �nding lines in a 2-D data set, i.e. n = 2. If there are N total points,there are N(N +1)=2 possible ways to pick a pair of points, and hence N(N +1)=2 possiblerandom initializations for a line. However, most of these initializations involve points that arefar away from each other and constitute poor initializations. On the other hand, an algorithmsuch as AFC will use only nearby points, and the probability that two nearby points belongto the same line is high. If the data set is an image, then by dividing the image into smallwindows and applying a conventional clustering algorithm with a suitable number of clustersin each window can dramatically increase the value of P init. The probability that all Cexpclusters are represented by the initialization is given by p = �Cexpi=1 P initi . In this case, a much23
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LIST OF FIGURESFigure 1: Plots of the weight and loss functions.Figure 2: (a) original data set noisy data set with 2 overlapping clusters, (b) result of RCA.Figure 3: Results on a noisy data set with ellipsoidal clusters. (a) Original image, (b) initialprototypes, (c) results after 2 iterations, (d) results after 10 iterations (convergence).Figure 4: Clustering 6 ellipsoidal clusters with non-uniform noise. (a) Original data set,(b) result of RCA.Figure 5: Results on a noisy data set with linear clusters. (a) Original image, (b) initialprototype, (c) results after 2 iterations, (d) results after 12 iterations (convergence).Figure 6: Segmentation of an ABW testing image. (a) Intensity image, (b) result of RCA.Figure 7: Segmentation of a Perceptron testing image. (a) Intensity image, (b) result ofRCA.Figure 8: Performance Measures on 30 test images. (a) ABW data, (b) Perceptron data.Figure 9: Segmentation of a synthetic range image. (a) Original range image, (b) initialapproximation, (c) Final result of RCA.Figure 10: Segmentation of a real range image. (a) Original range image, (c) result ofRCA.Figure 11: Segmentation of a noisy range image. (a) Noisy range image, (a) cross-sectionof the image along row 170, (c) result of RCA.Figure 12: Estimation of multiple motion groups. (a) Range image of 4 moving objects,(b) true optic 
ow �eld, (c) contaminated optic 
ow �eld, (d) segmented optic 
ow�eld. The \�" symbols indicate the detected outliers, (e) Reconstructed optic 
ow.Figure 13: Vehicle and background motions. (a) The 13th image frame with 70 targetpoints, (b) the 14th image frame with the matching target points.Figure 14: Results of MMGLR. The motion group corresponding to the truck is denoted bysquares, and the motion group corresponding to the background is denoted by circles.The detected outliers are shown as \+" signs.29
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Figure 1:
(a) (b)Figure 2:Table 1:Alg. GT correct ang di�. over- under- missed noiseregions detection (std. dev.) seg. seg.UE 15.2 13.4 1:6o (0.9) 0.4 0.2 1.1 0.8RCA 15.2 13.0 1:5o (0.8) 0.8 0.1 1.3 2.1UB 15.2 12.8 1:3o (0.8) 0.5 0.1 1.7 2.1USF 15.2 12.7 1:6o (0.8) 0.2 0.1 2.1 1.2WSU 15.2 9.7 1:6o (0.7) 0.5 0.2 4.5 2.2
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(a) (b) (c) (d)Figure 3:

(a) (b)Figure 4:

(a) (b) (c) (d)Figure 5:
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(a) (b)Figure 6:

(a) (b)Figure 7:
Table 2:Alg. GT correct ang di�. over- under- missed noiseregions detection (std. dev.) seg. seg.UE 14.6 10.0 2:6o (1.5) 0.2 0.3 3.8 2.1UB 14.6 9.6 3:1o (1.7) 0.6 0.1 4.2 2.8USF 14.6 8.9 2:7o (1.8) 0.4 0.0 5.3 3.6WSU 14.6 5.9 3:3o (1.6) 0.5 0.6 6.7 4.8RCA 14.6 9.6 2:6o (1.6) 0.7 0.2 3.7 3.6
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(a) (b)Figure 8:

(a) (b) (c)Figure 9:

(a) (b)Figure 10:
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(a) (b) (c)Figure 11:
Table 3:Object Parameters Angular Velocity Translational Velocity# !1 !2 !3 kx ky kz1 Actual 0.200 -0.800 -0.200 20.00 50.00 -100.00Estimated 0.198 -0.801 -0.201 20.04 49.97 -100.012 Actual 0.300 -0.100 1.000 10.00 -75.00 -50.00Estimated 0.298 -0.099 1.001 10.03 -74.98 -50.013 Actual 0.100 0.800 -0.300 0.00 -50.00 75.00Estimated 0.101 0.799 -0.302 0.01 -49.97 75.024 Actual 1.000 -0.100 0.200 -20.00 20.00 -75.00Estimated 0.997 -0.102 0.198 -20.06 19.93 -75.07
Table 4:Algorithm Motion Rotation Axis Angle TranslationGroup n1 n2 n3 (deg.) kx ky kzLinear Truck -0.988 0.107 -0.107 2.137 -0.158 -0.015 0.987background 0.893 -0.413 -0.176 0.140 0.476 -0.069 0.877MMGLR Truck -0.988 0.107 -0.107 2.137 -0.157 -0.015 0.988(No outliers) background 0.895 -0.404 -0.189 0.143 0.517 -0.059 0.854MMGLR Truck -0.988 0.111 -0.106 2.097 -0.158 -0.021 0.988(10 outliers) background 0.895 -0.404 -0.189 0.143 0.517 -0.059 0.854
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(a)

(b) (c)

(d) (e)Figure 12:36



(a) (b)Figure 13:

Figure 14:
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