A Robust Competitive Clustering Algorithm with
Applications in Computer Vision

Hichem Frigui Raghu Krishnapuram
Department of Electrical Department of Mathematical
Engineering and Computer Sciences
University of Memphis Colorado School of Mines
Memphis, TN 38152 Golden, CO 80401
hfrigui@memphis.edu rkrishna@mines.edu

December 3, 1998

Acknowledgment: This work was partially supported by a grant from the Office of
Naval Research (N00014-96-1-0439).

Abstract

This paper addresses three major issues associated with conventional partitional
clustering, namely, sensitivity to initialization, difficulty in determining the number
of clusters, and sensitivity to noise and outliers. The proposed Robust Competitive
Agglomeration (RCA) algorithm starts with a large number of clusters to reduce the
sensitivity to initialization, and determines the actual number of clusters by a process
of competitive agglomeration. Noise immunity is achieved by incorporating concepts
from robust statistics into the algorithm. RCA assigns two different sets of weights for
each data point: the first set of constrained weights represents degrees of sharing, and
is used to create a competitive environment and to generate a fuzzy partition of the
data set. The second set corresponds to robust weights, and is used to obtain robust
estimates of the cluster prototypes. By choosing an appropriate distance measure in
the objective function, RCA can be used to find an unknown number of clusters of
various shapes in noisy data sets, as well as to fit an unknown number of parametric
models simultaneously. Several examples, such as clustering/mixture decomposition,
line/plane fitting, segmentation of range images, and estimation of motion parameters

of multiple objects, are shown.

Index Terms: Robust clustering, fuzzy clustering, competitive clustering, robust
statistics, optimal number of clusters, linear regression, range image segmentation,

motion estimation.

1 Introduction

Traditional clustering algorithms can be classified into two main categories [1]: hierarchical
and partitional. In hierarchical clustering, the number of clusters need not be specified a
priori, and problems due to initialization and local minima do not arise. However, since
hierarchical methods consider only local neighbors in each step, they cannot incorporate
a priori knowledge about the global shape or size of clusters. As a result, they cannot
always separate overlapping clusters. Moreover, hierarchical clustering is static, and points
committed to a given cluster in the early stages cannot move to a different cluster.

Prototype-based partitional clustering algorithms can be divided into two classes: crisp
(or hard) clustering where each data point belongs to only one cluster, and fuzzy clustering
where every data point belongs to every cluster to a certain degree. Fuzzy clustering algo-
rithms can deal with overlapping cluster boundaries. Partitional algorithms are dynamic,
and points can move from one cluster to another. They can incorporate knowledge about
the shape or size of clusters by using appropriate prototypes and distance measures. These
algorithms have been extended to detect lines, planes, circles, ellipses, curves and surfaces
[2, 3, 4, 5]. Most partitional approaches use the alternating optimization technique, whose
iterative nature makes them sensitive to initialization and susceptible to local minima. Two
other major drawbacks of the partitional approach are the difficulty in determining the
number of clusters, and the sensitivity to noise and outliers.

In this paper, we describe a new approach called Robust Competitive Agglomeration
(RCA), which combines the advantages of hierarchical and partitional clustering techniques
[6]. RCA determines the “optimum” number of clusters via a process of competitive ag-
glomeration [7], while knowledge about the global shape of clusters is incorporated via the
use of prototypes. To overcome the sensitivity to outliers, we incorporate concepts from
robust statistics. Overlapping clusters are handled by the use of fuzzy memberships. The
algorithm starts by partitioning the data set into a large number of small clusters which

reduces its sensitivity to initialization. As the algorithm progresses, adjacent clusters com-

pete for points, and clusters that lose the competition gradually vanish. However, unlike in
traditional hierarchical clustering, points can move from one cluster to another. RCA uses
two different sets of weights (or memberships) for each data point: the first one is a set of
probabilistically constrained memberships that represent degrees of sharing among the clus-
ters. The constraint generates a good partition and introduces competition among clusters.
The second set of memberships is unconstrained or possibilistic [8, 9, 10], and represents
degrees of “typicality” of the points with respect to the clusters. These memberships are
used to obtain robust estimates of the cluster prototypes.

The organization of the rest of the paper is as follows. In section 2, we briefly review
other related approaches. In section 3, we present the RCA algorithm. In section 4, we
illustrate the power and flexibility of RCA to incorporate various distance measures. In
section 5, we describe the application of RCA to segmentation of range images. In section 6,
we formulate a multiple model general linear regression algorithm based on RCA and apply
it to simultaneous estimation of motion parameters of multiple objects. Finally, section 7

contains the conclusions.

2 Related Work

Most prototype-based partitional clustering algorithms such as K-Means and Fuzzy C-Means
(FCM) [2] assume that the number of clusters, C, is known. Moreoever, since they use a
least squares criterion, they break down easily (i. e., the prototype parameter estimates
can be arbitrarily wrong [11]) in the presence of noise. The goal of clustering is to identify
clusters in the data set. This implicitly assumes that we have a definition for a valid cluster.
Thus, the idea of break down [11] can be extended to the clustering domain via the use
of validity [12]. When the number of clusters, C, is known, the ideal cluster breaks down
only when the outliers form a valid cluster with a cardinality higher than the cardinality,
Nynin, of the smallest good cluster. This gives us the theoretical breakdown point of N, /N,

where N is the number of points in the data set. Recent solutions to robust clustering when

C is known can be divided into two categories. In the first category are algorithms that
are derived by modifying the objective function of FCM [13, 14, 10]. These algorithms are
still sensitive to initialization and other parameters [12]. The algorithms in second category
incorporate techniques from robust statistics explicitly into their objective functions. A
notable non-fuzzy clustering algorithms in this category is the K-Medoids algorithm [15].
Bobrowski and Bezdek [16] proposed an L;-norm-based fuzzy clustering algorithm which
also falls into this category. However, there is no mention of robustness in this paper. A
variation of this algorithm that is motivated by robustness can be found in [17]. Another
early fuzzy clustering algorithm (on which RCA is based) is the Robust C-Prototypes (RCP)
algorithm [18], which uses the M-estimator [19]. The Fuzzy Trimmed C Prototypes (FTCP)
algorithm [20] uses the least trimmed squares estimator [21], the Robust Fuzzy C Means
(RFCM) algorithm [22] again uses the M-estimator in a different way, and the Fuzzy C
Least Median of Squares (FCLMS) algorithm [23] uses the least median of squares estimator
[21]. FTCP and FCLMS can achieve the theoretical breakdown point of N,,;,/N with a
trivial modification to their objective functions. However, in theory, they both require an
exhaustive search. To reduce the computational complexty, a heuristic search is used in
[20]and a genetic search is used in [23].

When C' is unknown, one way to state the clustering problem is: find all the valid clusters
in the data set (see [12] for a more precise definition). In this case, the ideal algorithm will
not break down because it will identify all the ”good” clusters correctly (say by exhaustive
search), in addtion to some spurious ones. An alternative way to state the problem is:
identify only all the valid clusters formed by the good data. In this case, the ideal algorithm
will break down when the outliers form a valid cluster, giving us the breakdown point of
Nuinvar /N, where N,inpa is the minimum number of points required to form a valid cluster.
Note that a given clustering algorithm may not achieve these theoretical breakdown points.

The traditional approach to determining C'is to evaluate a certain global validity measure

of the C-partition for a range of C values, and then pick the value of C' that optimizes

the validity measure [25, 1, 26, 27]. An alternative is to perform progressive clustering
[28, 27, 5], where clustering is initially performed with an overspecified number of clusters.
After convergence, spurious clusters are eliminated, compatible clusters are merged, and
“good” clusters are identified. Another variation of progressive clustering extracts one cluster
at a time [29, 30]. These approaches are either computationally expensive, or rely on validity
measures (global or individual) which can be difficult to devise. Robust approaches to
clustering when (' is unknown treat the data as a mixture of components, and use a robust
estimator to estimate the parameters of each component. The Generalized MVE (GMVE)
[29] which is based on the Minimum Volume Ellipsoid estimator [21], the Model Fitting (MF)
algorithm [31], and the Possibilistic Gaussian Mixture Decomposition (PGMD) algorithm
[30] are some examples. In the above approaches, the data set is classified into a set of
“inliers” i.e., points belonging to a cluster, and a set of “outliers”. Since the set of outliers
includes points from other clusters, the proportion of outliers can be very high. Therefore,
even the use of a robust estimaor with the theoretical-best breakdown point of 50% is not
sufficient to make these algorithms highly robust. To overcome this problem, these algorithms
consider the “validity” of the cluster formed by the inliers, and try to extract every valid
cluster in the data set. In order to guarantee a good solution, the GMVE and PGMD use
many random initializations. Cooperative Robust Estimation (CRE) [32] and MINPRAN
[33] are two other robust model-fitting approaches that fall into this category. The CRE
algorithm attempts to overcome the low breakdown point of M-estimators by initializing a
large number of hypotheses and then selecting a subset of the initial hypotheses based on the
Minimum Description Length (MDL) criterion. The CRE technique assumes that the scale
(6 in [32]) is known. MINPRAN assumes that the outliers are randomly distributed within
the dynamic range of the sensor, and the noise (outlier) distribution is known. Because of
these assumptions, CRE and MINPRAN do not easily extend to the clustering domain. If
the data is expected to have multiple curves, MINPRAN seeks one curve/surface at a time.

In [12] the relation between the above progressive approaches and other robust clustering

algorithms are explored.

When the clusters overlap, the idea of extracting them in a serial fashion will not work.
Removing one cluster may partially destroy the structure of other clusters, or we might get
“bridging fits” [33]. Fig. 2(a) shows one such noisy data set with two crossing clusters.
The algorithm we propose is designed to overcome this drawback. Moreover, all the current
algorithms use hard finite rejection [34], i.e., points within an inlier bound are given a
weight of 1, and points outside the bound are given a weight of zero. This means that these
algorithms do not handle the “region of doubt” [21] very well. To overcome this problem,

we use smooth [34, 21] or fuzzy rejection, where the weight function drops to zero gradually.

3 The Robust Competitive Agglomeration (RCA) al-
gorithm

3.1 Algorithm Development

Let X = {x; | j =1,...,N} be a set of N vectors in an n-dimensional feature space with
coordinate axis labels (z,---,z,). Let B = (8,,...,8:) represent a C-tuple of prototypes
each of which characterizes one of the C' clusters. Each 3, consists of a set of parameters.
The Fuzzy C-Means algorithm [2] minimizes:

N

C
Im (B, U X) =" (ui;)"d3,; (1)
1

i=1j=
subject to
c
> u =1, for 1 < j < N. (2)

n (1), dfj represents the distance of feature vector x; from prototype 3;, u;; represents the
degree to which x; belongs to cluster i, U = [u;;] is a Cx N matrix called the constrained
fuzzy C-partition matrix, and m € [0, 00) is known as the fuzzifier. .J,,, which is essentially
the sum of (fuzzy) intra-cluster distances, has a monotonic tendency, and has the minimum
value of zero when C=N. Therefore, it is not useful for the automatic determination of C.

To overcome this drawback, we add a second regularization term to prevent overfitting the

data set with too many prototypes. The resulting objective function J4 is:

J.(B,U; X) zzum —a;{ZuU

i=1 j=1

2

: (3)

which is minimized subject to the constraint in (2). In (3), the second term is the negative
of the sum of the squares of the cardinalities of the clusters, and is minimized when the
cardinality of one of the clusters is N and the rest of the clusters are empty. With a proper
choice of o, we can balance the two terms to find a solution for C'. .J, is still not robust,
since the first term is a Least Squares objective function. Therefore, we robustify J, to yield

the objective function for the proposed RCA algorithm as follows:

cC . N 2
Jr(B,U; X) ZZ Um ,07 — az Zwijuij} (4)
i=1 Lj=1

i=17=1
In (4), p;() is a robust loss function associated with cluster i, and w;; = w;(df;) = dp; (dy;)/0d;;

represents the “typicality” of point x; with respect to cluster 4. The function p;() corresponds
to the loss function used in M-estimators of robust statistics and w;() represents the weight
function of an equivalent W-estimator (see, [11], for example). This particular choice for
robustification is motivated by the need to keep the computational complexity low. The loss
function reduces the effect of outliers on the first term, and the weight function discounts
outliers while computing the cardinalities. By selecting d;; and the a prudently, Jr can be
used to find compact clusters of various types while partitioning the data set into a minimal
number of clusters.

To minimize Jr with respect to the prototype parameters, we fix U and set the derivative

of Ji with respect to 3, to zero, i.e.,
N adQ
> (uig) ™ wy; = 0. (5)
= J J 6,3

Further simplification of (5) depends on p;() and d,;. Since the distance measure is applica-
tion dependent, we will return to this issue in Section 4. To minimize (4) with respect to U

subject to (2), we apply Lagrange multipliers and obtain

J(B,U; X) ZZ i) 2pi(d Z] — az; z_:wmum} Z (Z“m) (6)

i=17=1 7j=1 =

We then fix B and solve

0.J

aust

N
= 2ugps(d?,) — QaZwsjusj —N=0 for1<s<(C,and 1<t<N. (7)
j=1

Equations (7) and (2) represent a set of of NxC+N linear equations with NxC+N un-
knowns (ug, and \;). A computationally simple solution can be obtained by computing the

term Z;-V:] ws;tg; in (7) using the memberships from the previous iteration. This yields:

Yy 200 X (Z;-V:l Wyjts;) + Ay
v 2p€(d§t) .

Solving for A; using (8) and (2), and substituting in (8), we obtain the following update

(8)

equation for the membership u,, of feature point x; in cluster 3,:

Yp(d) o
Zgz] 1/pi(d3,) — ps (d%)

Ugp = (N, — Nt) = uﬁR + uljtias, 9)

where uRR is the degree to which cluster s shares x; (computed using robust distances), and

uP1? is a signed bias term which depends on the difference between the robust cardinality,

N, = Z;VZI Wgjgj, of the cluster of interest and the weighted average of cardinalities

N, :kz_: Nk/gl/Pk(dit)-

1
pr(diy)

The bias term, uB?, is positive(negative) for clusters with cardinality higher(lower) than
average, and hence the membership of x; in such clusters will appreciate(depreciate). When
a feature point x; is close to only one cluster (say cluster i), and far from other clusters,
we have N; ~ N;, or u;;® ~ 0, implying no competition. On the other hand, if a point
is roughly equidistant from several clusters, these clusters will compete for this point based
on cardinality. When the cardinality of a cluster drops below a threshold, we discard the
cluster, and update the number of clusters.

It is possible for u;; to become negative if N; is very small and point x; is close to other
dense clusters. In this case, it is safe to set u;; to zero. It is also possible for u;; to become

larger than 1 if V; is very large and feature point x; is close to other low cardinality clusters.

In this case it is clipped to 1. This practice is customary in optimization theory.

The process of agglomeration, controlled by «, should be slow in the beginning to en-
courage the formation of small clusters. Then it should be increased gradually to promote
agglomeration. After a few iterations, when the number of clusters becomes close to the
“optimum”, the value of a should again decay slowly to allow the algorithm to converge.

Therefore an appropriate choice of « in iteration k is.

- k—1 _
?:1 Z;'V:I(uz(j))QPi(d?j)(k b

C N (k—1) (k—1)]?
z‘:1[j=1Wij Uij

(10)

a(k) = (k)

In (10), o and n are functions of the iteration number k, and the superscript (k — 1) is used

2

on u;j, di;, and w;; to denote their values in iteration £ — 1. A good choice for 7 is

—lko=kl/T it k>0
_) ™o € 1
= ¢ k>0 (11)

where 1) is the initial value, 7 is the time constant, and £k is the iteration number at which
n starts to decrease. In all examples presented in this paper (except in section 5 where
these parameters were fine-tuned for best performance), we choose 17y = 1, ky = 5, and
7 = 10. With proper initialization, these values are reasonable regardless of the application.

Initialization issues are discussed in section 7.

3.2 Choice of the weight function

In curve/surface fitting or linear regression, it is reasonable to assume that the residuals
have a symmetric distribution about zero. Therefore, we choose Tukey’s biweight function

[11] given by

1 * \2\3 : *
()2 5[1 - (1- (Tz'j)) if ‘7“1‘_7“ <1,
pz((rij)) = { % if ‘Tm > 1 (12)
ey ==)27 i gl <1,
() ={§ iR (13)
where r;‘j stands for the normalized residual defined as:
% Tij — Medl
= 14
i T X MAD; (14)

In (12)-(14), r;; is the residual of the j”* point with respect to the i" cluster, Med, is the

median of the residuals of the 7" cluster, and MAD is the median of absolute deviations [11]

9

of the i*" cluster. In other words, in each iteration, the data set X is crisply partitioned into
C components X;, fori=1,---,C, and Med; and M AD, are estimated for each cluster.
When distances (rather than residuals) are used, the symmetric distribution assumption
does not hold. We suggest a monotonically non-increasing weight function w;(d?) : R* —
[0, 1] such that w;(d?) = 0 for d> > T; + ¢S;, where ¢ is a constant, and 7; and S; are given
by
T, =]Wfd (dfj) and S; = M?D (d?]) fori=1,---,C. (15)

Choosing w;(0) = 1, w;(7;) = 0.5, and w;/(0) = 0, results in the following weight function:

e if d? € [0,T;],
w;(d?) = W if d*> € (T}, T; + ¢S], (16)
0 Z if > T, + ¢S;.

The corresponding loss function can be shown to be

dQ*(jd% ifdQG [071—12]7
2 2 -zc- ’
pld) = Lol st g 2 € (1,7, + 5 .
SiteS |), if > > T; + ¢S;.

In (17) K; is an integration constant used to make all p;() reach the same maximum value.

5Tj + CSj } 5T|7 + CSi

Kizmax{ 5 5

1<j<C

fori=1,---,C.

This choice ensures that all noise points will have the same membership value in all clusters.
Fig 1 shows the plot of the weight function and the corresponding loss function.

In (14), (16), and (17), ¢ is a tuning constant [11] which is normally chosen to be between
4 and 12. When ¢ is large, many outliers will have small nonzero weights, thus affecting the
parameter estimates. On the other hand, if ¢ is small, only a subset of the data points will
be visible to the estimation process, making convergence to a local minimum more likely. As
a compromise, we start the estimation process with a large value of ¢, and then decrease it

gradually as function of the iteration number (k), i.e.,

k. = Max(Copin, k1 — Ac) (18)

10

with ¢y=12, ¢,,;n,=4, and Ac=1.

The RCA algorithm is summarized below.

Fiz the mazimum number of clusters C' = C,,4;
Initialize the prototype parameters, and set k =0 ;
Set wij=1V 1,73;
Repeat
Compute dfj for1 <i<Candl<j< Ny
FEstimate T; and S; by using (15);
Update the weights w;; by using (13) or (16);
Update (k) by using (10);
Update the partition matriz U*) by using (9);
Compute the robust cardinality N;;
If (N; < €1) discard cluster 3;;
Update the number of clusters C;
kE=k+1;
Update the tuning factor ¢ by using (18);
Update the prototype parameters;
Until (prototype parameters stabilize);

4 Examples of Distance Measures

As mentioned in section 3.1, RCA can be used with a variety of distance measures depending

on the nature of the application. In this section, we discuss distance measures suitable for

ellipsoidal clusters and hyperplanes.

4.1 Detection of Ellipsoidal Clusters

To detect ellipsoidal clusters in a data set, we use the following distance measure [35, 36].

d;; = |Ci " (x; —) C (%, — @), (19)

In (19), c; is the center of cluster 3;, and C,; is its covariance matrix. (See [37] for an
interpretation of d%m) Using (5), it can be shown that the update equations for the centers
c; and the covariance matrices C; are

o (i) wigx;

S0 (uig) 2wy

(20)

i =

11

SN () 2w (x5 — €3) (% —)"

SN (i) 2wi;

If we assume C; = 01, then (19) reduces to the Euclidean distance. This simplified version

C, =

(21)

can be used when the clusters are expected to be spherical.

Fig. 3 illustrates RCA using d%ij. Fig. 3(a) shows a synthetic Gaussian mixture consist-
ing of 4 clusters of various sizes and orientations. Uniformly distributed noise constituting
40% of the total points was added to the data set. Fig. 3(b) shows the initial 20 prototypes
superimposed on the data set, where “4” signs indicate the cluster centers, and the ellipses
enclose points with a Mahalanobis distance less than 9. These prototypes were obtained by
running the G-K algorithm [36] for 5 iterations. After 2 iterations of RCA, 9 empty clusters
are discarded (see Fig. 3(c)). The number of clusters is reduced to 6 after 3 iterations, and
to 4 after 4 iterations. The final result after a total of 10 iterations is shown in Fig. 3(d).

To illustrate the ability of RCA to handle non-uniform noise, Fig. 4 shows the result of
RCA on a data set containing Gaussian clusters with roughly 25% noise. To illustrate the
ability of the RCA algorithm to detect overlapping clusters, in Fig. 2(b) we show the result

of RCA on the data set in Fig. 2(a). The algorithm converged in 10 iterations.

4.2 Detection of Linear Clusters

To detect clusters that resemble lines or planes, we use a generalization of the distance

measure proposed in [3, 2]. This distance is given by

A7 =D va((xj — ;) e e)?, (22)
k=1

where e;;, is the k' unit eigenvector of the covariance matrix C;. The eigenvectors are
assumed to be arranged in ascending order of the corresponding eigenvalues. The value of
Vi, in (22) is chosen dynamically in every iteration to be v;, = \;,/A\i, where vy, is the k'
eigenvalue of C;. It can be shown that for the distance measure in (22), the update equations
for ¢; and C; are given by (20) and (21) respectively.

Fig. 5(a) shows an image consisting of 10 line segments in a noisy background. Fig. 5(b)

12

shows the 20 initial prototypes obtained by running the AFC algorithm [3] for 5 iterations.
After 2 iterations of RCA, the number of clusters drops to 15 as shown in Fig. 5(c). After
9 iterations, the number of clusters reduces to the “optimal” number and the algorithm

converges after a total of 12 iterations. The final result is shown in Fig. 5(d).

5 Application to Range Image Segmentation

5.1 Planar Range Image Segmentation

Since planar surface patches can be modeled by flat ellipsoids, the distance measure d%ij
in (19) can also be used to find the optimal number of planar patches. To avoid missing
tiny surfaces, we start by dividing the image into non-overlapping windows of sizes W xWj.
Then, we apply RCA in each window with C' = C,,,, to estimate the optimal number of
planar patches within the window. Finally, we pool the resulting (say M) prototypes to
initialize the RCA algorithm with C=M. Because of the nature of d7,;, planar surfaces
with non-convex shapes may be approximated by several planar patches, or several spatially
disconnected planar patches may be approximated by a single cluster. Therefore, after RCA
converges, we merge compatible clusters [27] that are adjacent. We then perform connected
component labeling on each cluster, and assign different labels to disjoint regions.

The above RCA-based algorithm was tested on two standard data sets, ABW data set
and perceptron data set, that were created for bench-marking range image segmentation
algorithms [38]. Each set contains 40 images of size 512x512, and has been randomly divided
into a 10-image training set and a 30-image testing set. We use the performance measures
developed by Hoover et al. [38] to evaluate the performance of RCA. These measures rely
on comparing the Machine Segmented (MS) image and the Ground Truth (GT) image, and
classify the regions into one of the 5 categories: correct detection, over-segmentation, under-
segmentation, missed, and noise. The accuracy of the segmentation is quatified by computing
the average and standard deviation of the differences between the angles made by all pairs

of adjacent regions that are instances of correct detection in the MS and GT images. The

13

above data sets and performance measures have been used in [38] to compare the University
of South Florida (USF), University of Edinburgh (UE), Washington State University (WSU),
and University of Bern (UB) segmentation algorithms. Here, we will reproduce the same set
of experiments and include the RCA algorithm in the comparison.

In the training phase, we fine-tuned the parameters of RCA as follows: window size used
in the initialization W, = 128; initial number of prototypes in each window C,,,, = 15;
(o, 7) = (2,20) (see (10)). These parameters are optimal for both ABW and Perceptron
data sets. Since the Perceptron data is more noisy, we use ¢,,;, = 4, and for the ABW
data, ¢,,;, = 8. Also, to reduce computations, all images were subsampled in the x and y
directions by a factor of 3. These parameters are all then fixed in the testing phase.

Fig 6(a) shows the intensity image of one of the ABW test images. The segmented range
image is shown in Fig 6(b). The shaded gray regions correspond to background points that
are ignored during segmentation. Fig. 7 shows an example from the Perceptron data set.
As in [38], we compute the performance metrics of the five segmentation algorithms while
varying the compare tool tolerance from 51% to 95%. Due to space limitation, we only show
plots of the correct detection measure (Fig 8). The performance measures using an 80%
compare tolerance for all five segmenters are listed in Table 1 for the ABW data and Table
2 for the Perceptron data. RCA compares very well with the best segmenters.

Among the 5 planar surface segmenters in the comparison, UE, WSU, and RCA have the
capability to segment curved surfaces. RCA has the additional advantage that it can handle

irregularly spaced sparse data as well (e.g. range data computed from stereo methods).

5.2 Quadric Range Image Segmentation

Let the 7" prototype 3;, represented by the parameter vector p;, define the equation of a
quadric surface as p/ q = 0, where p! = [pi1, pia; - - -, Do), ' = [22, 92, 2%, vy, w2, yz, 2, ¥, 2, 1],

and x = (z,y, z) is a 3-D point. Since the exact distance from a point x; to a quadric surface

14

(3; has no closed-form expression, we use the approximate distance [39, 40] given by

pid P/ q
T =)
Vpidll - \/pI'D(q;)D(q,)" p;

daij = (23)

where D(q;) is the Jacobian of q evaluated at x;. To avoid the all-zero trivial solution for
p;, the following constraint may be chosen [39]

p/ [}

N
7=

N
l(u,;j)Qw?;j [D(q;)D(q;)"]|pi = z;(uij)Qwij;

j=
Starting from (5), it can be shown that the use of d;; leads to a solution of p; based on the
following generalized eigenvector problem: F;p; = \;G;p;, where F; = Zﬁl(uij)Qwijqjqf,
and G; = 27 (u;5)*wi;[D(q;)D(q;)"].

To obtain a reliable initialization, we divide the image into small non-overlapping win-
dows, and apply RCA in each window with C'=1. Finally, we pool the resulting prototype
parameters to initialize the RCA algorithm. Initially, there might be several initial proto-
types corresponding to the same surface. However, due to competition, only one of these
surfaces will survive.

The examples used in this section consist of some 240x240 real and some synthetic range
images'. A sampling rate of 3 in the x and y directions was used to reduce computations.
30%x30 windows were used to estimate the initial prototypes. Fig. 9(a) shows a synthetic
range image of a plastic pipe. Fig. 9(b) shows the initial 36 surface patches. These patches
were generated after assigning each point to the nearest prototype. Fig. 9(c) shows the final
results, where each each surface is displayed with a different gray value, and the boundaries
are shown in black. Fig. 10(a) shows a real range image of three plastic pipes of different
sizes and orientations. The final results of the RCA algorithm consisting of the correctly
identified surfaces are shown in Fig. 10(b).

To test the robustness of RCA, Gaussian noise (with 0=4) was added to the image in

Fig. 9(a), and about 10% of the data points were randomly altered to become outliers. The

!These images were obtained from Michigan State University and Washington State University via anony-
mous ftp.

15

results are shown in Fig. 11, where noise points (i.e. points with zero weight (w;;) in all

clusters) are shown in black.

6 Estimation of Multiple Motion Groups and Segmen-
tation

In this section, we show how RCA can be used to perform multiple model linear regression,

and apply it to estimation of the motion parameters of multiple motion groups.

6.1 General Linear Regression

The General Linear Regression (GLR) [41] for solving a set of homogeneous equations for

motion parameters can be written as: X3 = r, where X7 = (x;|---|xy) is the design

matrix with x; = (1,21, xip)", B = [Bo, B1,- -+, B,]" is the parameter vector, and r =
T. : . .

[rg, 71, --,7,]" is the residual vector. Since the system is homogeneous, we can fix) = —1,

and reformulate the GLR model as: —1 + X*8* = r, where 1 denotes a N-dimensional

vector with every component equal to 1, X = [1|X*], and 87 = [-1,8"]. GLR can be

solved by the least squares minimization: min g- 3, r? = min g- r||?, with the solution:
B* = (X*TX")"'X*T1. However, least squares is very sensitive to noise. An alternative is
the weighted least squares: minﬂ* >, wir?, with the solution: 8% = (X*TWXT)AX*TWI,
where W = diag(wy, - -+, wy).

If a data set contains multiple models, the GLR model must be applied repetetively to
extract one model at a time. This approach is computationally expensive, requires models to
be well separated, needs a high breakdown estimator (since while extracting the i model, all
other models are considered as outliers), and is sensitive to initialization. To deal with these

problems, we propose the Multiple-Model General Linear Regression (MMGLR) method,

which allows the simultaneous estimation of an unknown number of models.

16

6.2 Multiple-Model General Linear Regression
Let the 7" model with the parameter vector 3; = [Bio, Bi1, - - - ,ﬁip]T, be represented by
Bio + Binwjn + BioTjo + -+ Bipxjp = 1y, for 1 < j <N,

where r;; is the residual corresponding to the j data vector in the i’ model. MMGRL

minimizes (4) (where dj; is replaced by r7;) subject to the constraint in (2). Solving (5)
2

corresponding to this situation leads to %HU7W,I/2(- 14+ X*8])| = 0, where U; =
diag(u;1, -+, u;n), and W;/Q = diag(w;]p, e w;]<,2). The resulting update equation for the
parameters is:

B: = (XTUW, X" ' X TUW,1. (24)

In linear regression, it is customary to use the studentized residuals r} = ri/y/1 — hjj,
where hj; is the j* diagonal element of the hat matrix H = X(X”X)™'X”. Huang et al.
[41] showed that the corresponding hat matrix for GLR is H* = X*(X*'X*)"'X*". To

extend this principle to the MMGLR, we compute C' hat matrices (i. e., one per model), as
H = W,UX* (W UIXX) WU (25)

The residuals can be normalized as r}; = r;;/1/1 — h’;y) However, this normalization intro-
duces a bias towards noise points (w;; &~ 0) or points belonging to other models (u;; ~ 0). In
this case h;‘gi) ~ (), and hence no normalization takes place. Also, residuals will be inflated
for points which are typical of the i model since they are divided by a factor smaller than

one. Therefore, we modify the normalization process as follows:

#() if U Wij > €,
_ AJ1-h7
Tij = v (26)

otherwise

V 1 7h;n,a.7:

“O 1In other words, points which are known to be atypical of the

where h* i1

'maz maxi:j h

i""model, are forced to receive the maximum possible inflation factor.
MMGLR can be used to estimate the motion parameters of multiple objects in the same

scene. The instantaneous velocity p(t) of a point p = (z,y, 2)? located on the surface of

17

a translating object rotating with an instantaneous angular velocity w(t) = (wi,ws,ws)”,
is characterized by p(t) = w(t) x p(t) + k(t), where k(t) = (ki, ks, k3)” is a vector in-
volving translation. Let (X(#),Y(¢)) be the 2-D prespective projection of p(t) onto the
image plane at Z=1, and let (u(¢),v(t)) denote its projective instantaneous velocity. Mo-
tion estimation consists of solving for w and k using a set of N observations (X}, Y;)" and
their corresponding (u;, v;)" for j = 1---N. This can be done by solving Ah = 0, where
A=la],a), - aY], a;= [I,XJZ, Yf, 2X,Y;,2X;,2Y;, —vj, uj, v; X; — u;Y;)", and

h = [hg, hi, ho, hs, ha, hs, he, hy, hg]T. Once h has been determined, the motion parameters
w and k can be easily obtained [42]. Since h is 9-dimensional and Ah = 0 represents a set
of homogeneous equations, we need only 8 observations to solve for the optical flow [42].

When a scene consists of C' independently moving objects, the motion of each object can
be characterized by a different vector h;. In this situation, we need to solve Ah; = 0 for ¢ =
1,---,C. MMGLR solves this set of equations where X and (; correspond to A and h;
respectively. It finds C automatically.

MMGLR requires an overspecified number (C) of initial parameter estimates. We obtain
each one of these estimates by solving Ah = 0 on a randomly selected subset of 8 observa-
tions. These C estimates are then pooled together to initialize the MMGLR, algorithm. To
ensure a reliable result, the initial number of models C' needs to be high. However, since C' de-
creases drastically in the subsequent iterations, this method is still efficient. Since MMGLR
allows points to move from one model to another, and since fuzzy rejection allows points to
change from inliers to outliers and vice versa smoothly, we can afford to use a smaller number
of initializations than algorithms based on hard rejection. In both experiments described in
this subsection, we use C'=50.

Fig. 12(a) shows a synthetic 3-D scene consisting of 4 touching rigid objects, each un-
dergoing a motion with different rotational and translational velocities. Fig. 12(a) displays
the subsampled and scaled true optic flow field. We contaminated this optic flow field with

Gaussian noise (SNR=70), and additionally altered 20% of the observations randomly to

18

make them outliers. The resulting optic flow field is shown in Fig. 12(b). MMGLR succeeds
in determining the correct number of motion groups in the scene. It also estimates their mo-
tion parameters accurately, as shown in Table 3. Fig. 12(c) shows the segmented optic flow
field where each motion group is represented by a different symbol. The correctly identified
outliers (points having zero weight w;; in all models) are shown as black dots in Fig. 12(c).
The recovered optic flow field is shown in Fig. 12(d).

Figs. 13(a) and 13(b) show two 512x512 subimages of the 13! and 14" frames in
a motion sequence [43] containing a moving truck. In this experiment, the background
motion (due to camera panning) is treated as another motion group to create a multiple
motion scenario. We selected 30 target points on the vehicle, and another 30 points from
the background. The matches of these 60 points were computed using a robust matching
algorithm [44] and verified manually. To illustrate the robustness of MMGLR, we added
another 10 target points with erroneous matches. All 70 points are marked ‘4’ in Figs. 13(a)
and 13(b). The target points and their matches were first converted from pixel coordinates
to image coordinates, and then calibrated [43]. Finally, all target points were integrated
to form the mixture data set {(X;,Y;), (us,v;)}, ¢ = 1,---,70, where (X;,Y;) is the image
coordinates of the i’ target point in the 13" frame, and (u;, v;) is its displacement vector.

The “ground truth” for the vehicle motion is unknown. Also, since the rotation angle
of the truck is too small (about 5°), it could not be estimated reliably using two-view point
correspondence and three-view line correspondence algorithms [45]. Since we are testing the
robustness of MMGLR and its ability to detect multiple models, and not the performance of
the linear optic flow algorithm, we compare our results with those obtained when the linear
optic flow algorithm is supplied with the correct data subset for each motion (see Table 4).
MMGLR was first run with only the 60 good target points, and then with the added outliers.
In both cases, the algorithm was able to detect the correct number of motion groups (=2)
and estimate their parameters correctly. Fig. 14 shows the partition of the optic flow field

where the two motion groups and the detected outliers are denoted by different symbols.

19

7 Discussion and Conclusions

7.1 General Comments

RCA is an attempt at addressing the three main issues of partitional clustering algorithms
(the difficulty in determining the number of clusters, sensitivity to initialization, and sen-
sitivity to outliers), without sacrificing computational efficiency. RCA minimizes a fuzzy
objective function in order to handle overlapping clusters. Constrained fuzzy memberships
are used to create a competitive environment that promotes the growth of “good” clusters.
Possibilistic memberships [10]are used to obtain robust estimates of the prototype parame-
ters. Concepts from robust statistics have been incorporated into RCA to make it insensitive
to outliers. To handle the region of doubt, and to reduce the sensitivity to initialization,
RCA uses soft finite rejection. The agglomerative property makes it relatively insensitive to
initialization and local minima effects. By using suitable distance measures, we can apply
this algorithm to solve many computer vision problems. The choice of o in (10) is quite
critical to the algorithm. However, a can be chosen by trial and error to produce stable re-
sults for a given application. The variety of examples presented in this paper show that this
is possible, and that RCA can provide robust estimates of the prototype parameters even

when the clusters vary significantly in size and shape, and the data set is contaminated.

7.2 Computational Complexity

The RCA algorithm has a computational complexity similar to that of FCM [2], which is
O(NC) in each iteration. Here, N is the number of data points, and C' is the number of
clusters. However, additional time is required to estimate the weight function w(d?) which
requires us to compute the median of the squared distances twice (first to compute the

median, then to compute the MAD). The median of a data set can be computed iteratively

using
ZN zj
_ J=1 ‘Ti 7'7;m,ed‘
Tmed — ZN 1

j:1 ‘wjfmmed‘

20

This procedure converges in O(log N) passes through the data set. Since the distribution of
the squared distances does not change significantly in one iteration, this procedure converges
even faster when the median of the previous iteration is used to initialize the computation
of the median of the current iteration. Thus, the overall complexity can be estimated as
O(Nlog N + NC) per iteration, or O(NK (log N +C)), where K is the number of iterations.
It is to be noted that the value of C' varies from Cj,4; t0 Cfina. Except for the application
to motion analysis, in all other cases we use a standard algorithm such as FCM to initialize

RCA. Therefore, the initialization overhead is O(NkC,,4,), where k is a small (=~ 5) integer.

7.3 Breakdown Issues

As discussed in section 2, when C' is known, the breakdown point is N,,;,/N, and when C
is unknown, the breakdown is either undefined or N, 41/IN. These results were derived
by the use of validity, and an ideal clustering algorithm would use a validity measure and
an expensive exhaustive search to achieve this level of robustness [12]. However, validity
measures are hard to define in practice unless the distribution of the good points is known.
Moreover, deviations from the assumed distribution can occur with widely varying degrees
in real applications, and it is hard to choose thresholds when their optimal values can vary
widely among different data sets, and even among clusters in the same data set.

RCA is a general purpose algorithm that attempts to achieve robustness with reasonable
computational complexity. This is the rationale behind the choice of the M-estimator to
robustify RCA. This choice limits the breakdown point of RCA to %%1, where p is the di-
mensionality of the parameter vector to be estimated. However, since RCA starts with a large
mber of initial prototypes, it is possible to increase its robustness under certain conditions.
RCA uses the initial prototypes to generate a partition. The algorithm consists of updating
the weight function for each component of the partition, then updating the memberships,

and then finally updating the prototypes. This process is repeated until convergence. Since

the weight function uses the median and MAD, it can tolerate up to 50% noise points (within

21

the component) provided it starts with a good initialization.

Let there be C actual clusters. Let the good points from the k" actual cluster be given the
label “k”, k = 1,2,---,C, and let the noise points be labeled “0”. Let the (hard) partition
corresponding to the C,,, initial prototypes be labeled as follows. If a given component

s
1

has only noise points, it is labeled “0”, otherwise it is labeled , where 7 is the label of
the majority of good points in the component. Let P/"*" denote the largest component with
the label 7. For the RCA algorithm to give robust results, we require an initialization that
satisfies the following conditions. (i) There exists at least one component that has the label 7,
foralli =1,---,C. (ii) The prototype corresponding to P/ is a good point of the i** actual
cluster. (iii) The largest component labeled ”0” is smaller than P/"%* § =1,--- C. (iv) P/™*®

9 9
7

contains more than 50% of points labeled ”7”. Since the cluster region by definition is denser
than the noise region, by using a sufficiently large number of prototypes, it is usually possible
to achieve an initialization to meet these conditions in practice. Initial prototypes placed in
the cluster region will naturally have larger cardinalities and those in the noise region will
have smaller ones. Conditions (i)-(iv) need to be satisfied in the following iterations as well,
to guarantee that the algorithm will converge to a correct result. However, since cardinalities
are replaced by robust cardinalities in the subsequent iterations, it becomes easier to satisfy
these conditions. When the components coalesce and form the final result, each noise point
will be crisply assigned to one of the components while computing the weight function. In the
worst case, all noise points can be assigned to the smallest cluster. Therefore, conditions (iii)
and (iv) above translate to the requirement that the number of noise points be smaller than
the cardinality of the smallest cluster. Thus, when (i)-(iv) are satisfied, RCA can achieve the
theoretical breakdown point. A similar discussion applies to non-point prototypes as well,

with minor modifications. In this case, each initial prototype can be generated with n data

points, where n is the number of parameters in the prototype.

22

7.4 Initialization Issues

From the above discussion, it is clear that initialization plays a very important role in the
RCA algorithm. The initialization procedure necessarily varies with the type of prototypes
used, the distance measure used, the type of data, and finally the application. We now
outline some guidelines for initialization.

We can compute a theoretical value for the initial number of clusters, C,,.., as follows.
Let there be C,,;, number of actual clusters expected in the data set, let N; denote the
cardinality of cluster 7, and let n be the number of points required to generate a prototype.
If we randomly pick n points to generate a prototype, then the probability p that we pick

C.ap g00d prototypes, one from each cluster, is given by p = []22" {M} If this selection

C(Nn)
is repeated K times, the probability that one of these selections generates good prototypes
for all C,,, clusters is given by P, =1 — (1 — p)*. For a given value of P,, we can compute
the value of K as, K = [%L and Che, can be estimated as Chop = K XClppy. This
value of C,,4, grows exponentially with C¢,, and n, and therefore is unrealistic.

In practice, an existing clustering algorithm (such as FCM [2], GK [36], AFC [3]) can be
used for initialization. At the end of such an initialization, although not all C,,,, prototypes
are expected to be good, we can assume that each of the C¢,, clusters has a fairly high
probability, P of being represented by one of the C,,,, initial prototypes. For example,
consider the case of finding lines in a 2-D data set, i.e. n = 2. If there are N total points,
there are N(N + 1)/2 possible ways to pick a pair of points, and hence N(N + 1)/2 possible
random initializations for a line. However, most of these initializations involve points that are
far away from each other and constitute poor initializations. On the other hand, an algorithm
such as AFC will use only nearby points, and the probability that two nearby points belong
to the same line is high. If the data set is an image, then by dividing the image into small
windows and applying a conventional clustering algorithm with a suitable number of clusters
in each window can dramatically increase the value of P The probability that all C,,,
Z(’:p Piimlt

clusters are represented by the initialization is given by p = 11, . In this case, a much

23

smaller number of initial clusters will suffice.

Based on the above discussion, we suggest the following rules of thumb. For general clus-
tering, choose C’Ww%%, and use a simple clustering algorithm (such as FCM) to generate
the initial prototypes. Since good points are by definition in dense regions, this initialization
can be expected to meet the conditions discussed in the previous sub-section. The case
of plane and surface fitting can be handled by dividing the image into small windows and
applying a suitable clustering algorithm in each window. In the case of regression, the above
initialization techniques are no longer applicable. Hence, we use a random sampling proce-
dure to generate the prototypes. Because of this randomness, we require a larger value for
Cinaz- In our applications, we set Cmamm%.

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable comments.

This work was partially supported by a grant from the Office of Naval Research (N00014-
96-1-0439).

References

[1] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data, Prentice Hall, Englewood
Cliffs, NJ, 1988.

2] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum
Press, New York, 1981.

[3] R. N. Davé, “Use of the adaptive fuzzy clustering algorithm to detect lines in digital
images,” Intelligent Robots and Computer Vision VIII, vol. 1192, pp. 600—611, 1989.

[4] R. N. Davé and K. Bhaswan, “Adaptive fuzzy c-shells clustering and detection of
ellipses,” IEEE Trans. Neural Network, vol. 3, no. 5, pp. 643-662, May 1992.

[5] R. Krishnapuram, H. Frigui, and O. Nasraoui, “Fuzzy and possibilistic shell clustering
algorithms and their application to boundary detection and surface approximation,”
IEEE Trans. Fuzzy Systems, vol. 3, no. 1, pp. 29 60, Feb. 1995.

24

(6]

[11]

[12]

[13]

[14]

[15]

[17]

[18]

[19]

H. Frigui and R. Krishnapuram, “A robust clustering algorithm based on competi-
tive agglomeration and soft rejection of outliers,” in Proceeding of the IEEE Conf. on

Computer Vision and Pattern Recognition, San Fransisco, California, 1996, pp. 550 555.

H. Frigui and R. Krishnapuram, “Clustering by competitive agglomeration,” Pattern
Recognition, vol. 30, no. 7, pp. 1223-1232, 1997.

L. A. Zadeh, “Fuzzy sets as a basis for a theory of possibility,” Fuzzy Sets and Systems,
vol. 1, pp. 3-28, 1978.

D. Dubois and H. Prade, Possibility Theory: An Approach to Computerized Processing
of Uncertainty, Plenum Press, New York, 1988.

R. Krishnapuram and J. Keller, “A possibilistic approach to clustering,” IEEFE Trans.
Fuzzy Systems, vol. 1, no. 2, pp. 98-110, May 1993.

F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel, Robust Statistics
the Approach Based on Influence Functions, John Wiley & Sons, New York, 1986.

R. N. Davé and R. Krishnapuram, “Robust clustering methods: A unified view,” IFEFE
Trans. Fuzzy Systems, vol. 5, no. 2, pp. 270-293, 1997.

Y. Ohashi, “Fuzzy clustering and robust estimation,” in 9" Meeting of SAS Users
Group International, Hollywood Beach, Florida, 1984.

R. N. Davé, “Characterization and detection of noise in clustering,” Pattern Recognition
Letters, vol. 12, no. 11, pp. 657-664, Nov. 1991.

L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster

Analysis, Wiley Interscience, New York, 1990.

L. Bobrowski and J. C. Bezdek, “c-means clustering with the /; and [, norms,” IEEFE
Trans. SMC, vol. 21, no. 3, pp. 545-554, 1991.

P. R. Kersten, “The fuzzy median and the fuzzy mad,” in Proc. of ISUMA/NAFIPS,
College Park, September 1995, pp. 85 88.

H. Frigui and R. Krishnapuram, “A robust clustering algorithm based on the m-
estimator,” in Proceedings of First Intl. Conf. on Neural, Parallel and Scientific Com-
putations, Atlanta, May 1995, vol. 1, pp. 163 166.

P. J. Huber, Robust Statistics, John Wiley & Sons, New York, 1981.

25

[20]

[21]

22]

23]

[24]

28]

[30]

J. Kim, R. Krishnapuram, and R. N. Davé, “On robustifying the c-means algorithms,”
in Proceedings of ISUMA/NAFIPS, College Park, MD, September 1995, pp. 630 635.

P. J. Rousseeuw and A. M. Leroy, Robust Regression and Qutlier Detection, John Wiley
& Sons, New York, 1987.

Y. Choi and R. Krishnapuram, “Fuzzy and robust formulations of maximum- likelihood-

based gaussian mixture decomposition,” in Proceedings of the Intl. Conf. on Fuzzy
Systems, New Orleans, September 1996, pp. 1899-1905.

O. Nasraoui and R. Krishnapuram, “A genetic algorithm for robust clustering based on
a fuzzy least median of squares criterion,” in Proceedings of the North American Fuzzy

Information Processing Society Conf., Syracuse, NY, September 1997, pp. 217-221.

R. N. Davé, “Generalized noise clustering as a robust fuzzy c-m-estimators model,” in
Proceedings of the North American Fuzzy Information Society Conference, Pensacola,
August 1998, pp. 256 260.

J. C. Bezdek and N. R. Pal, “Some new indices for cluster validity,” IEFE Trans. SMC,
Part: B, vol. 28, no. 3, pp. 301 315, 1993.

I. Gath and A. B. Geva, “Unsupervised optimal fuzzy clustering,” IEFEE Trans. Patt.
Analysis Mach. Intell., vol. 11, no. 7, pp. 773 781, July 1989.

R. Krishnapuram and C. P. Freg, “Fitting an unknown number of lines and planes to

image data through compatible cluster merging,” Pattern Recognition, vol. 25, no. 4,
pp. 385-400, 1992.

R. N. Davé and K. J. Patel, “Progressive fuzzy clustering algorithms for characteristic
shape recognition,” in North American Fuzzy Information Processing Society, Toronto,
1990, pp. 121 124.

J. M. Jolion, P. Meer, and S. Bataouche, “Robust clustering with applications in
computer vision,” IEFEE Trans. Patt. Analysis Mach. Intell., vol. 13, no. 8, pp. 791
802, Aug. 1991.

X. Zhuang, Y. Huang, K. Palaniappan, and J. S. Lee, “Gaussian mixture density
modeling, decomposition and applications,” IEEE Trans. Image Processing, vol. 5, pp.
1293-1302, Sept. 1996.

26

[31]

33]

[34]

[35]

[36]

[37]

[38]

[39]

[41]

X. Zhuang, T. Wang, and P. Zhang, “A highly robust estimator through partially
likelihood function modeling and its application in computer vision,” IEEE Trans.
Patt. Analysis Mach. Intell., vol. 14, no. 1, pp. 19 34, Jan. 1992.

T. Darrell and P. Pentland, “Cooperative robust estimation using layers of support,”
IEEFE Trans. Patt. Analysis Mach. Intell., vol. 17, no. 5, pp. 474-487, May 1995.

C. V. Stewart, “Minpran: A new robust estimator for computer vision,” IEEFE Trans.
Patt. Analysis Mach. Intell., vol. 17, no. 10, pp. 925-938, Oct. 1995.

D. C. Hoaglin, F. Mosteller, and Ed. J. W. Tukey, Understanding Robust and Fzx-
ploratory Data Analysis, Wiley, New York, 1983.

G. S. Sebestyen and Roemder, Decision-Making Process in Pattern Recognition,
Macmillan Company, New York, 1962.

E. E. Gustafson and W. C. Kessel, “Fuzzy clustering with a fuzzy covariance matrix,”
in IEEE CDC, San Diego, California, 1979, pp. 761-766.

R. Krishnapuram and J. Keller, “Fuzzy and possibilistic clustering methods for com-
puter vision,” in Neural and Fuzzy Systems, S. Mitra, M. Gupta, and W. Kraske, Eds.,
vol. IS 12, pp. 135 159. SPIE Institute Series, 1994.

A. Hoover, G. J. Baptiste, X. Jiang, P. J. Flynn, H. Bunke, D. B. Goldgof, K. Bowyer,
D. W. Eggert, A. Fitzgibbon, and R. B. Fisher, “An experimental comparison of range
image segmentation algorithms,” IEEFE Trans. Patt. Analysis Mach. Intell., vol. 18, no.
7, pp. 673-689, July 1996.

G. Taubin, “Estimation of planar curves, surfaces, and nonplanar space curves defined
by implicit equations with application to edge and range image segmentation,” IEFEE
Trans. Patt. Analysis Mach. Intell., vol. 13, no. 11, pp. 1115 1138, Nov. 1991.

H. Frigui and R. Krishnapuram, “A comparison of fuzzy shell-clustering methods for
the detection of ellipses,” IFEE Trans. Fuzzy Systems, vol. 4, no. 2, pp. 193 199, May
1996.

Y. Huang, K. Palaniappan, X. Zhuang, and J. E. Cavanaugh, “Optic flow field seg-
mentation and motion estimation using a robust genetic partitioning algorithm,” IEEE
Trans. Patt. Analysis Mach. Intell., vol. 17, no. 12, pp. 1177-1190, Dec. 1995.

27

[42] X. Zhuang, T. S. Huang, and R. M. Haralick, “A simplified linear optic flow-motion
algorithm,” Computer Vision, Graphics, and Image Processing, vol. 42, pp. 334 344,
1988.

[43] Y. Liu and T. S. Huang, “A sequence of stereo image data of a moving vehicle in
an outdoor scene,” Tech. Rep., Beckman Institute, University of Illinois at Urbana-
Champaign, 1990.

[44] Z. Zhang, R. Deriche, O. Faugeras, and Q. T. Luong, “A robust technique for match-
ing two uncalibrated images through the recovery of the unknown epipolar geometry,”
Artificial Intelligence Journal, vol. 78, pp. 87 119, Oct. 1995.

[45] Y. Liu and T. S. Huang, “Vehicle-type motion estimation from multi-frame images,”
IEEE Trans. Patt. Analysis Mach. Intell., vol. 15, no. 8, pp. 802 808, Aug. 1993.

28

LIST OF FIGURES

Figure 1: Plots of the weight and loss functions.
Figure 2: (a) original data set noisy data set with 2 overlapping clusters, (b) result of RCA.

Figure 3: Results on a noisy data set with ellipsoidal clusters. (a) Original image, (b) initial

prototypes, (c) results after 2 iterations, (d) results after 10 iterations (convergence).

Figure 4: Clustering 6 ellipsoidal clusters with non-uniform noise. (a) Original data set,

(b) result of RCA.

Figure 5: Results on a noisy data set with linear clusters. (a) Original image, (b) initial

prototype, (c) results after 2 iterations, (d) results after 12 iterations (convergence).
Figure 6: Segmentation of an ABW testing image. (a) Intensity image, (b) result of RCA.

Figure 7: Segmentation of a Perceptron testing image. (a) Intensity image, (b) result of

RCA.
Figure 8: Performance Measures on 30 test images. (a) ABW data, (b) Perceptron data.

Figure 9: Segmentation of a synthetic range image. (a) Original range image, (b) initial

approximation, (c¢) Final result of RCA.

Figure 10: Segmentation of a real range image. (a) Original range image, (c¢) result of

RCA.

Figure 11: Segmentation of a noisy range image. (a) Noisy range image, (a) cross-section
of the image along row 170, (¢) result of RCA.

Figure 12: Estimation of multiple motion groups. (a) Range image of 4 moving objects,
(b) true optic flow field, (¢) contaminated optic flow field, (d) segmented optic flow
field. The “e” symbols indicate the detected outliers, (e) Reconstructed optic flow.

Figure 13: Vehicle and background motions. (a) The 13th image frame with 70 target
points, (b) the 14th image frame with the matching target points.

Figure 14: Results of MMGLR. The motion group corresponding to the truck is denoted by
squares, and the motion group corresponding to the background is denoted by circles.

The detected outliers are shown as “+4” signs.

29

Table 1:

Table 2:

Table 3:

Table 4:

LIST OF TABLES

Results of 5 Segmenters on 30 ABW Test Images at 80% Compare Tolerance.
Results of 5 Segmenters on 30 Perceptron Test Images at 80% Compare Tolerance.
Actual and estimated motion parameters for the objects in Fig. 12(a).

Estimated parameters for the vehicle and background motions shown in Fig. 13.

30

W (d°) “Weight Function pd®) Eho Function
T T+ o a* T T +ou & a*
Figure 1:
Figure 2:
Table 1:
Alg. GT correct ang diff. | over- | under- | missed | noise
regions || detection | (std. dev.) | seg. seg.
UE 15.2 13.4 1.6° (0.9) 0.4 0.2 1.1 0.8
RCA 15.2 13.0 1.5° (0.8) 0.8 0.1 1.3 2.1
UB 15.2 12.8 1.3° (0.8) 0.5 0.1 1.7 2.1
USF 15.2 12.7 1.6° (0.8) 0.2 0.1 2.1 1.2
WSU 15.2 9.7 1.6° (0.7) 0.5 0.2 4.5 2.2

31

Figure 3:

Figure 4:

Figure 5:

32

Figure 6:

Figure 7:

Table 2:
Alg. GT correct ang diff. | over- | under- | missed | noise

regions || detection | (std. dev.) | seg. seg.

UE 14.6 10.0 2.6° (1.5) 0.2 0.3 3.8 2.1
UB 14.6 9.6 3.1° (1.7) 0.6 0.1 4.2 2.8
USF 14.6 8.9 2.7° (1.8) 0.4 0.0 5.3 3.6
WSU 14.6 5.9 3.3° (1.6) 0.5 0.6 6.7 4.8
RCA 14.6 9.6 2.6° (1.6) 0.7 0.2 3.7 3.6

33

Average Number of Correct Instances

ABW Structured Light Images
T T

15

10

Ideal

UE
RCA

USF

wsu

2
50

I
70

80
Compare Tool Tolerance (%)

(2)

100

Figure

Perceptron LRF Images

15

ldeal

10 Rea

Average Number of Correct Instances

UE,UB
RCA

sk

1 I I I I I
50 60 70 80 920

Compare Tool Tolerance (%)

8:

(b)

Figure

9:

&

Figure 10:

34

100

(b)

Figure 11:
Table 3:
Object | Parameters Angular Velocity Translational Velocity
w1y ‘ Wo ‘ ws k., ‘ ky ‘ k,
1 Actual 0.200 | -0.800 | -0.200 20.00 | 50.00 | -100.00
Estimated 0.198 | -0.801 | -0.201 20.04 | 49.97 | -100.01
2 Actual 0.300 | -0.100 | 1.000 10.00 | -75.00 | -50.00
Estimated 0.298 | -0.099 | 1.001 10.03 | -74.98 | -50.01
3 Actual 0.100 | 0.800 | -0.300 0.00 | -50.00 | 75.00
Estimated 0.101 | 0.799 | -0.302 0.01 | -49.97 | 75.02
4 Actual 1.000 | -0.100 | 0.200 || -20.00 | 20.00 | -75.00
Estimated 0.997 | -0.102 | 0.198 || -20.06 | 19.93 | -75.07
Table 4:
Algorithm Motion Rotation Axis Angle Translation
Group ng | ny | ng (deg.) ko | ky | ke
Linear Truck -0.988 | 0.107 | -0.107 || 2.137 || -0.158 | -0.015 | 0.987
background | 0.893 | -0.413 | -0.176 | 0.140 0.476 | -0.069 | 0.877
MMGLR Truck -0.988 | 0.107 | -0.107 || 2.137 || -0.157 | -0.015 | 0.988
(No outliers) || background || 0.895 | -0.404 | -0.189 || 0.143 0.517 | -0.059 | 0.854
MMGLR Truck -0.988 | 0.111 | -0.106 || 2.097 || -0.158 | -0.021 | 0.988
(10 outliers) || background | 0.895 | -0.404 | -0.189 | 0.143 0.517 | -0.059 | 0.854

35

C e

C e

e e N . .
oo [MEVEVRN VRN S \:\N..
NN RSP BN
B R R \\\\,\\y&\ R R e S T I VAN \
i e s \\.\-\\\\\\\' TEE T S e N NN N (>‘\'
SNNSSSSARNNNNNNAES BOSNSSLAAVRNNINANES
cLITIIIOTII Y S NN
€ e e e e N NNy s ~ .

AN NN LTIT AN

B NN A I N
e RIS S NI
> 2> 2 3 x A P A El 7 N
N R O R SNV
‘ti”“f R SN :
IR A
e A
S S S L C AR, TS LA Le
I Mt S g A
. Vi Ll L Ve 7T VLY L LL
Vv ey T VVLyy o
(b) ()
S e
0000 o e e N
ececee oooao cec 0. o0 - SNV N Y
60000000 ocend ODODODe e S 8 (Vv ®
0000 OOOe oD DNDODe eOmO I o L T VRN L IR
000000 eD DO DeODe ®O0 TEET e O NN
6000 00ceeedIDO0enO TEET e 00 LN NN VY
©e0 000000 DOOOBODGODO e S NSO Y NN Y
€00 000 eDDennonon S CONAS Vv Y
o0 0o ODoDemDednan T e MAON® Vv
AAAANO®OOOCO®SODODD RIS S AR AR VAV
s v e @ 7t . e, 0.
AA®OAAAANO®OO®O RS
P °
AAAAAAAAOOOO®OO D T
AAAAAAAOOOOOOOS® > e oA {Ll‘llll:.
INCIVNUNUN 0co0o0o00O0 e Freees . tYLLLI™
AAheeee®e 00000O0CO0S® et bbb LY
AOAAAA ®0@00O@®0O0 o 1o 7. . LI
e A ® A A OO0 e 0o OO0 R A xl lll
A A A 00000 Vi

Figure 12:

36

Figure 13:

Figure 14:

37

