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Abstract. The initialisation of segmentation methods aiming at the
localisation of biological structures in medical imagery is frequently re-
garded as a given precondition. In practice, however, initialisation is
usually performed manually or by some heuristic preprocessing steps.
Moreover, the same framework is often employed to recover from im-
perfect results of the subsequent segmentation. Therefore, it is of crucial
importance for everyday application to have a simple and effective initial-
isation method at one’s disposal. This paper proposes a new model-based
framework to synthesise sound initialisations by calculating the most
probable shape given a minimal set of statistical landmarks and the ap-
plied shape model. Shape information coded by particular points is first
iteratively removed from a statistical shape description that is based on
the principal component analysis of a collection of shape instances. By
using the inverse of the resulting operation, it is subsequently possible
to construct initial outlines with minimal effort. The whole framework is
demonstrated by means of a shape database consisting of a set of corpus
callosum instances. Furthermore, both manual and fully automatic ini-
tialisation with the proposed approach is evaluated. The obtained results
validate its suitability as a preprocessing step for semi-automatic as well
as fully automatic segmentation. And last but not least, the iterative
construction of increasingly point-invariant shape statistics provides a
deeper insight into the nature of the shape under investigation.

1 Introduction

The advent of the “Active Vision” paradigm in the 1980s came along with the
idea of using model-based prior knowledge to simplify and stabilise the treat-
ment of a specific vision problem. Since then, all kinds of active shape models
have emerged in many application areas in various forms such as Snakes [10],
deformable templates [23] or active appearance models [2]. The amount of prior
knowledge included in these models varies from simple general smoothness as-
sumptions to very detailed knowledge about the shape and the image data to
be expected. In the field of medical imaging, the usage of statistical shape mod-
els has found widespread use [3, 21, 12, 13], since the notion of biological shape
seems to be best defined by a statistical description of a large population.

Even though these statistical methods have proven to be fairly stable and
reliable, there are cases where they fail completely in finding at least an approxi-
mation of the correct object boundary. If a certain application asks for absolutely



flawless segmentations, alternative or supplemental frameworks must be applied
to compensate for the missing functionality. On the one hand, we could employ
semi-automatic [6, 10, 17, 8] or manual segmentation tools that rely on a human
operator providing the missing information. On the other hand, we may initialise
the fully automatic procedure such that the correct solution is just nearby the
initial configuration. Since almost all semi-automatic methods rely on suitable
initialisations as well, the provision of a reasonable starting point seems to be a
valuable extension of both approaches. Our main goal is therefore to provide a
possibly interactive initialisation method that still takes into account the prior
knowledge of the shape as far as possible.

In order to keep the amount of required user input as small as possible, simple
and intuitive interaction metaphors are of crucial importance for the design
of such a tool. Since the most simple and probably most feasible interaction
metaphor is still the adjustment of individual points lying on the boundary of
the object under investigation, we are subsequently looking for a small number
of points describing the overall shape of the object to be segmented — analogous
to coarse control polygons of hierarchical shape descriptions that have recently
been proposed in the field of modelling and animation [7, 24]. Such a “coarse
control polygon” should capture as much prior shape knowledge as possible.
And there should be a way to calculate the most “natural” fine scale shape
given the correct arrangement of the control vertices.

Our shape database should therefore be able to answer the following three
questions: Which points along the object boundary are best suited for a compact
and robust description of the shape? How many control vertices must be included
in the coarsest control polygon? And how should the full resolution object be
predicted so as to provide a reasonable initial outline?

In search of answers to these questions, we have decided to pursue the fol-
lowing strategy: Using statistical shape analysis, we examine the remaining vari-
ability of shape, if the variation coded by the position of individual points is
progressively subtracted. The coarsest control polygon necessary to capture the
main shape characteristics is complete as soon as the remaining variability is
small with respect to the working range of the subsequent segmentation method.
And the most probable shape for a given control polygon can then be calculated
by just inverting the process of subtracting the variation of control vertices.

2 Experimental Set-up

In order to have a compact statistical shape description at our disposal, we em-
ploy a representation that is based on a principal component analysis (PCA) of
all object instances in our database. This approach, first proposed by Cootes and
Taylor in [4], has the very useful property to reflect the shape variations occur-
ring within the population by a complete set of basis vectors. These basis vectors
span a linear shape space containing all the instances of our collection. This en-
ables us to apply the whole framework of linear algebra to make the statistic



point-wise invariant. Furthermore, the properties of such a shape description are
well understood and appropriately documented [11].

In addition to a statistical description method, we need a population of sev-
eral object instances representing our model-based foreknowledge. The PCA is
therefore applied to a collection of 71 hand segmented outlines of the corpus
callosum on mid-sagittal MR-slices. Five randomly selected examples of this
database are illustrated in Fig. 1. All aspects of the model building process
regarding this population are described in detail in [22].

Since we aim at working with a vertex-based control polygon at interactive
speed, the original representation based on elliptic Fourier descriptors [20, 14, 21]
has been converted to a polygonal representation by equidistantly sampling the
parameter space of the outline. For the following analysis, we assume that the
underlying arc-length based curve parameterisation with normalised parameter
starting point provides a sufficiently good correspondence between the individual
specimen. All experiments we performed suggest that the achieved correspon-
dence is not faultless but sufficiently precise for our intentions (see also [11]).
In order to normalise the model contours, we represented the vertex positions
as usual with respect to an anatomical coordinate system given by the AC-PC
line. Experience shows that these anatomical landmarks can easily be located
and are very stable with respect to the corpus callosum.

Fig. 1. Five randomly selected corpora callosa from our collection that consists of 71
examples.

In the following, Section 3 reviews shortly the statistical shape analysis using
principal components and fixes the mathematical notation. In Section 4, we
discuss in detail the aforementioned progressive subtraction of variation, and
Section 5 describes subsequently the inversion of this operation. The initialisation
procedure founding on the presented framework is evaluated in Section 6 for both
interactive and fully automatic mode of operation. Finally, Section 7 concludes
this report and outlines the next steps towards a highly robust initialisation
oracle.



3 Shape Analysis using Principal Components

The basic idea of statistical shape analysis using principal components consists
in separating and quantifying the main variations of shape that occur within a
population of several instances exemplifying the same object. More precisely, a
PCA defines a linear transformation that decorrelates the parameter signals of
the original shape population by projecting the objects into a linear shape space
spanned by a complete set of orthogonal basis vectors. If the parameter signals
are highly correlated, then the coarse scale variations of shape are described by
the first few basis vectors, whereas fine details are captured by the remaining
ones. Furthermore, if the joint distribution of the parameters describing the
shape is Gaussian, then a reasonably weighted linear combination of the basis
vectors results in a shape that is similar to the existing ones. On the other
hand, if the joint distribution of the parameters is highly non-Gaussian or if the
dependencies of the parameter signals are non-linear, then other decomposition
methods such as the independent component analysis [9] should be employed.

As already mentioned, the considered population consists of N + 1 = 71 cor-

pus callosum instances, given as polygonal models pi = [x
[1]
i , y

[1]
i , . . . , x

[M ]
i , y

[M ]
i ]T

with M = 256 points. Since we will later compare statistic-based initialisations
to the ground truth given by one object instance, we always exclude this particu-
lar instance from the statistic for cross-validation. To simplify the formalism, we
centre the parameter signals of the shapes beforehand by calculating an average
model p and an instance specific difference vector ∆pi:

p =
1

N

N
∑

i=1

pi, ∆pi = pi − p, ∆P = [∆p1 · · · ∆pN ] (1)

Note, the N = 70 difference vectors span only a 69-dimensional space; the miss-
ing dimension obviously originates from the linear dependence

∑N

i=1∆pi =
0. The corresponding covariance matrix Σ ∈ IR2M×2M is consequently rank-
deficient. As has been pointed out in [5], this circumstance can be exploited to
speed up the calculation of the 69 valid eigenvalues and eigenvectors: Instead of
calculating the full eigensystem of the covariance matrix Σ, the multiplication
of the eigenvectors of a smaller matrix Σ̆ with ∆P leads to the correct principal
components:

Σ̆ =
1

N − 1
∆PT∆P

PCA
= ŬΛ′ŬT , Λ′ = diag(λ1, . . . , λN−1, 0)

U ′ = [u1 · · · uN−1 uN ] = ψ
(

∆P Ŭ
)

, ψ (A) = Normalise columns of A
(2)

As an alternative that is not equally fast but conceptually more elegant, we
propose to work in a subspace with a complete set of basis vectors to find the
eigensystem of our data. To do so, we project the difference vectors ∆pi into
a lower dimensional space whose basis M is constructed by the Gram-Schmidt
orthonormalisation χ:

M = [m1 · · · mN−1] = χ (∆p1, . . . , ∆pN−1) , ∆p̃i = MT ∆pi (3)



Note, one arbitrary ∆pi must be dropped for the construction of M , and ∆p̃i

denotes the projection of ∆pi into the subspace spanned by M . The covariance
matrix Σ̃ and the resulting PCA given by the eigensystem of Σ̃ can subsequently
be calculated according to:

Σ̃ =
1

N − 1

N
∑

i=1

∆p̃i ∆p̃T
i

PCA
= ŨΛŨT , Λ = diag(λ1, . . . , λN−1) (4)

The principal components defining the eigenmodes in shape space are then given
by back-projecting the eigenvectors Ũ : U = [u1 · · · uN−1] = MŨ . Each object
instance can be represented as a linear combination pi = p + Ubi of these

eigenmodes, where bi = [b
[1]
i , . . . , b

[N−1]
i ]T . In order to calculate the uncorrelated

coordinates bi of each object instance, we project the difference vectors∆pi into
the eigenspace: bi = UT∆pi.

The first four eigenmodes resulting from the PCA of our population are
displayed in Fig. 3(a). The shapes representing the first eigenmode on the left
are calculated by adding the weighted first eigenvector u1 to the average model
p. The following three shape variations to the right of the first one are calculated
correspondingly.

4 Progressive Elimination of Variation

Given a statistical analysis as defined above, we consider the following situation:
After having defined the shape coordinate system by locating the AC-PC line,
the initialisation of a new object instance starts with the average model p, as
illustrated in Fig. 2(a) on the left. Let us assume for the moment that the
aforementioned coarse control polygon consists of the three marked vertices on
the outline of the mean shape. To generate an initial approximation of the object,
we define now a set of boundary conditions for the global shape by moving the
control vertices to an approximately correct position. Given these constraints and
our prior knowledge of the shape, we wish to choose that outline for initialisation
which is most natural in that case. In the following two sections we will show,
how this most probable outline can be found.

Since we hope that some control vertices carry more shape information than
others, we approach the whole problem iteratively. In a first step, we calculate
the most probable shape that satisfies only the boundary conditions provided by
the most important control vertex. For the second most important control point
we use subsequently the resulting outline as initial configuration. This process
is then repeated until we can satisfy all the boundary conditions. Since we do
not yet know how to determine the most important control vertex, we will first
investigate the computation of the most probable shape given the position of an
arbitrary point. This will be the subject of the next subsection. The problem of
finding the points carrying most shape information will be discussed afterwards
in subsection 4.3.



(a) Initial average model (left) and 
correct segmentation (right)

(b) Basis vectors Rj

Fig. 2. (a) Boundary conditions for an initial outline are established by prescribing
a position for each coarse control vertex. (b) Shape variations caused by adding the
two basis vectors Rj to the average model, inducing x- and y-translations of point
j, respectively. The various shapes are obtained by evaluating p + ω U rk with ω ∈
{−2, . . . , 2} and k ∈ {xj , yj}.

4.1 Shape-based Basis Vectors for one Point

To start with, we must translate our conceptual goal into mathematical terms.
Since the most probable shape is given by the mean model p in the context of
PCA, we can reinterpret the notion of “choosing the most probable outline” as
“choosing the shape with minimal deviation from the mean”. And this means
nothing else than choosing the model with minimal Mahalanobis-distance Dm,
the common metric in eigenspaces.

The key idea enabling the solution of our first problem can now be sum-
marised as follows: We must find two vectors in the space of variation that de-
scribe decoupled x- and y-translations of a given point j with minimal variation,
respectively. In other words, these two vectors should cause a unit translation of
vertex j in either x- or y-direction, and they should have minimal Mahalanobis-
length Dm. If we have found them, we can satisfy all possible boundary con-
ditions caused by one vertex with minimal variation by just adding the two
appropriately weighted “basis” vectors to the mean. This problem gives rise to
the following constrained optimisation:

Let rxj
and ryj

denote the two unknown basis vectors causing unit x- and
y- translation of point j, respectively. The Mahalanobis-length Dm of these two
vectors is then given by:

Dm(rk) = (Ũrk)T Σ̃−1Ũrk = rT
kΛ

−1rk =

N−1
∑

e=1

(

r
[e]
k

)2

λe

, k ∈ {xj, yj} (5)



Taking into account that xj and yj depend only on two rows of U , we define the
sub-matrix Uj according to the following expression:

[

xj

yj

]

=

[

xj

yj

]

+

[

u2j−1 ◦

u2j ◦

]

b =

[

xj

yj

]

+ Uj b, uj ◦ = jth row of U (6)

In order to minimise the Mahalanobis-distance Dm subject to the constraint of
a separate x- or y-translation by one unit, we establish — as is customary for
constrained optimisation — the Lagrange function L:

L(rk, lk) =
N−1
∑

e=1

(

r
[e]
k

)2

λe

− lTk [Ujrk − ek] , e{xj ,yj} = {
[

1
0

]

,

[

0
1

]

} (7)

The vectors lxj
and lyj

contain as usual the required Lagrange multipliers. To
find the minimum of L(rk, lk), we calculate the derivatives with respect to all
elements of rxj

, ryj
, lxj

, and lyj
and set them equal to zero:
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(8)

If the basis vectors and the Lagrange multipliers are combined according to
Rj = [rxj

ryj
] and Lj = [lxj

lyj
], Eq. (8) can be rewritten as two linear matrix

equations:

2Λ−1Rj = UT
j Lj (9)

UjRj = I (10)

The two basis vectors rxj
and ryj

resulting from simple algebraic operations
(resolve (9) for Rj and replace Rj in (10) by the result, use to resulting equation
to find Lj = 2[UjΛU

T
j ]−1 and substitute for Lj in (9)) are then given by:

Rj =
[

rxj
ryj

]

= Λ UT
j

[

Uj Λ U
T
j

]−1
(11)

While rxj
describes the translation of xj by one unit with constant yj and min-

imal shape variation, ryj
alters yj correspondingly. The resulting effect caused

by adding these shape-based basis vectors to the average model is illustrated
in Fig. 2(b). The most probable shape p̌ given the displacement [∆xj , ∆yj ]

T of
control vertex j is consequently determined by

p̌ = p + URj

[

∆xj

∆yj

]

. (12)



Another possibility to find the two basis vectors Rj consists in exploiting the
least-squares property of the Moore-Penrose pseudo-inverse. The basic idea in
this context is to solve the highly under-determined linear system Ujrk = ek

(representing the prescribed constraints) by calculating the pseudo-inverse U#
j .

Since we are not looking for the normal least-squares solution but for the one with
minimal Mahalanobis-distance, we have to introduce a weighting of the rows of
Uj , in order to map the problem into normal Euclidean space, where the minimal
solution is then given by the generalised inverse. As shown in Appendix A, this
approach leads to the same basis vectors Rj and validates Eq. (11), since there
is only one unique element in the hyper-plane of all solutions that has minimum
Mahalanobis-norm.

4.2 Point-wise Subtraction of Variation

In the previous subsection we have seen how to choose the most probable shape
given the position of one specific control vertex j. Before we can now proceed
to the next control point, we must ensure that subsequent shape modifications
will not alter the previously adjusted vertex j. To do so, we must remove those
components from the statistic that cause a displacement of this point. Unfor-
tunately, we cannot apply a projection for this purpose, since the basis vectors
Rj are not orthogonal in the shape space. Therefore, we propose to subtract the
variation coded by the point j from each instance i, and to rebuild the statis-
tic afterwards. For the first part of this operation, we must subtract the basis
vectors Rj weighted by the example-specific displacement [∆xj , ∆yj ]

T
i from the

parameter representation bi of each instance i:

b
ĵ
i = bi −Rj

[

∆xj

∆yj

]

i

= bi −Rj Uj bi = (I −Rj Uj) bi, ∀i ∈ {1, .. , N} (13)

Doing so for all instances, we obtain a new description of our population which

is invariant with respect to the point j (denoted by ◦ĵ). The variability in this
point-normalised population is expected to be smaller compared to the original
collection. In order to verify this assumption and to rebuild the statistic, we

apply anew a PCA to the normalised set of instances {bĵ
i | i ∈ {1, . . . , N}}.

Note, the eigenspace shrinks by two dimensions since we removed two degrees

of freedom. The resulting principal components, denoted by U ĵ , confirm the
expected behaviour and validate also the removal of the variation of point j.
The first four one-point invariant eigenmodes are illustrated in Fig. 3(b).

4.3 Point Selection Strategy

The point-wise elimination of variability presented above can subsequently be
repeated for several points, until the remaining variability is small enough with
respect to the working range of the subsequent segmentation algorithm. In order
to achieve optimal results and to find the most compact control polygon, we
should now explore the strategy for the selection of control points. Since we



(a) Original eigenmodes (b) One-point invariant eigenmodes

Fig. 3. (a) The first four eigenmodes of 70 corpus callosum instances. The various
shapes are obtained by evaluating p+ω

√
λkuk with ω ∈ {−2, . . . , 2} and k ∈ {1, . . . , 4}.

(b) The first four one-point invariant eigenmodes after subtracting the first principal

landmark. The various shapes are obtained by evaluating p + ω

q
λ

ĵ

ku
ĵ

k with ω ∈
{−2, . . . , 2} and k ∈ {1, . . . , 4}.

aim to choose those vertices that carry as much shape information as possible,
we should select the points according to their “reduction potential”. A control
vertex holds a large reduction potential, if the remaining variability after its
elimination is small.

To make the following formalism as precise as possible, we introduce some
additional definitions at this point: Firstly, we will subsequently refer to the kth

point being removed from the statistic as the kth principal landmark. Secondly,
let the sequence ŝk = {ĵ1, . . . , ĵk} denote the set of point-indices of those k

principal landmarks that have been removed from the statistic in the given
order. And last but not least, the superscript ◦ŝk is used for the value of ◦, if
the principal landmarks ŝk have been removed.

Using this formalism, the reduction potential P of vertex jk, being a candi-
date to serve as the kth principal landmark, can be defined as follows:

P (jk) = −
N−1−2(k−1)

∑

l=1

(

σ̃2
l

)ŝk
= −tr(Σ̃ ŝk) = −tr(Λŝk), ŝk = {ĵ1, . . . , ĵk} (14)

Figure 4(a) shows the reduction potential for all the points of the original model.
In order to remove as much variation as possible, we choose consequently that
point as the first principal landmark that holds the largest reduction potential:
j1 = max

j
[P (j)]. The selected vertex and the resulting point-invariant statistic

after its elimination have already been shown in Fig. 3(b).
If we apply this selection and elimination step twice again, we end up with

the second and third principal landmark. The corresponding eigenmodes and
the selected points are depicted in Fig. 5. The decreasing deviations from the
mean indicate that the variation within the population is progressively reduced
by this operation. The observation of the overall variance subject to progressive
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Fig. 4. (a) & (b) Reduction potentials for the selection of (a) the first and (b) the
second principal landmark. For each point j in the abscissa, the reduction potential
P (j) is displayed. Note, the first principal landmark j1 = 196 has minimal reduction
potential in (b), because subtracting the same point twice has no effect at all. (c)
The overall variance tr(Σ̃ŝk) of the population depending on the number of subtracted
principal landmarks.

point removal (see Fig. 4(c)) verifies this hypothesis and shows that the vari-
ability decreases surprisingly fast in the beginning. Later on, after three vertices
have been processed, the decline levels out and the benefit of each additional
principal landmark becomes fairly small. This finding suggests that the main
shape characteristics of a corpus callosum can be captured by only three or four
principal landmarks.

(a) Two-point invariant eigenmodes (b) Three-point invariant eigenmodes

Fig. 5. Remaining variability after vertex elimination of (a) two and (b) three principal
landmarks.

5 Initial Shapes for Segmentation

The progressive application of the point selection and removal process enables
now the construction of the most compact principal control polygon, consisting
of the first few principal landmarks. Analogous to traditional parametric curve
representations, each control point has two associated principal basis functions



(URj) that are globally supported. The final outline p̌l based on a principal
control polygon with l vertices is then given by the inverse operation of the con-
struction, that is, by the combination of the mean shape p and all the weighted

principal basis functions R
ŝk−1

jk
:

p̌l = p +
l

∑

k=1

U ŝk−1R
ŝk−1

jk

[

∆xjk

∆yjk

]

(15)

Note that the weights [∆xjk
, ∆yjk

]T for the basis vectors U ŝk−1R
ŝk−1

jk
depend

on the shape defined by the previous principal landmarks ŝk−1. Therefore, if
any control point jk is modified and the less important landmarks shall remain
in their position, the weights {[∆xjk+1

, ∆yjk+1
]T , . . . , [∆xjl

, ∆yjl
]T } must be re-

calculated in the correct order of vertex removal. To emphasise the hierarchical
structure of our formalism and to simplify the algorithmic implementation, we
recommend to use the following recursive definition instead of equation (15):

p̌0 = p , p̌k = p̌k−1 + U ŝk−1R
ŝk−1

jk

[

∆xjk

∆yjk

]

(16)

With this shape-based curve representation p̌, the last piece has fallen into
place. By utilising a minimal principal control polygon with associated basis
functions, we are now able to fulfil all our original objectives: The initialisation
of a new shape instance results in the simple adjustment of a small number of
points, taking into account all our prior knowledge of the shape.

In order to validate the quality of the proposed method, we will subsequently
show some results of cross-validation experiments that have been performed with
each shape instance in our database. It goes without saying that the test instance
has always been removed from the statistic. The initialisations to be presented
have been generated by moving the principal landmarks into the positions of the
corresponding points on the outline of the respective test object. A selection of
the results of these experiments is illustrated in Fig. 6 and can be summarised
as follows: The initial average model in Fig. 6(a) converges efficiently towards
an approximation of the correct shape whilst the control vertices are adjusted.
In most of our examples, only three or four principal landmarks are necessary to
provide a reasonably good initialisation. The consideration of more than five or
six points does not significantly improve the quality of the initial shape. In some
cases, the initialisation even deteriorates slightly, if too much control vertices are
employed. This behaviour may also indicate some deficiencies of the underlying
correspondence function. To show a representative cross-section of the achieved
results, Fig. 6(b) displays four truly randomly chosen experiments, where four
principal landmarks have been adjusted.

6 Interactive and Automatic Initialisation

The major question remaining to be answered is, whether the proposed frame-
work proves its worth in practical application as well. Although we have not yet



(a) Progressive initialisation (b) Four different initialisations

Fig. 6. (a) Generation of an initial outline for segmentation; shape instance in black and
fitted initialisations in gray with an increasing number of fitted principal landmarks.
(b) Initial shapes with four adjusted principal landmarks for the segmentation of four
randomly chosen instances.

gained any experience in everyday clinical application, our experimental results
are fairly convincing. Tests have been performed for both interactive and fully
automatic initialisation.

The interactive approach simply uses the underlying shape basis as a highly
specialised curve representation. The required adjustments of the principal land-
marks must be provided by a human operator. Since the recalculation of the
outline can be done at interactive speed, the instant feedback supports the oper-
ator in finding an appropriate initialisation within a few seconds. In most of the
cases, three principal landmarks are sufficient to define a coarse initialisation.
At most three additional control vertices can then be used to refine the charac-
teristic details of the shape. Figure 7(a) shows one possible initialisation based
on six manually adjusted principal landmarks.

By exploiting the statistical prior knowledge of the shape once again, we
can even eliminate the remaining interaction: For each principal landmark jk,

we calculate the covariance matrix Σ
ŝk−1

jk
in order to determine its positional

variability. On the assumption that a landmark is Gaussian distributed, we can
then compute a confidence ellipse that contains the corresponding control point
with probability χ2

2(c) = P (|ω| < c) (see e.g. [1]). The new auxiliary vari-
able ω is, as usual in this context, a standardised random vector with nor-
mal distribution: ωi ∼ N (0, 1) ∧ ω ∼ N (0, I). Since it is well known that
χ2

2(3) = P (|ω| < 3) ≈ 99%, we can construct the main axes ajk
and bjk

of the
confidence ellipse that contains the principal landmark with a probability of 99%
by the following linear transformation of ω:

ajk
=

√

Σ
ŝk−1

jk
ω‖, bjk

=

√

Σ
ŝk−1

jk
ω⊥; ω‖ = 3

[

1
0

]

, ω⊥ = 3

[

0
1

]

(17)

Figure 7(b) shows these confidence ellipses for all considered control vertices. As
expected, the length of the axes ajk

and bjk
declines with increasing k, according

to the smaller variances in the underlying statistics.



(a) (b) (c) (d)

Fig. 7. (a) Interactive initialisation by manual adjustment of six principal landmarks.
(b) Initial average model with the confidence ellipses of the control vertices. (c) & (d)
Automatic initialisation by the sequential optimisation of the matching function Gk

for (c) three and (d) six principal landmarks.

For an automatic initialisation, we can subsequently use these confidence
intervals as the region of interest with respect to an optimisation of the fit.
The goal function of such an optimisation should measure the correspondence
between the shape p̌k to be optimised and the actual image data I. In order
to simplify and accelerate the optimisation process, we propose to fit only one
principal landmark at a time, analogous to manual initialisation. By employing
a very popular matching function based on the image gradient ∇I, we end up
with the following goal function Gk:

Gk(∆xjk
, ∆yjk

) =
M
∑

e=1

‖ ∇I[ p̌[e]
k (∆xjk

, ∆yjk
) ] ‖, I : Image data (18)

Note that Gk depends on the results of the previously optimised principal

landmarks ŝk−1, since the centre of the confidence ellipse k is given by p̌
[jk]
k−1. A

closer inspection of the goal functions Gk within the confidence ellipse k shows
that the most important goal functions G1, G2, and G3 exhibit several local
minima and maxima. But apart from this minor difficulty, their overall behaviour
is fairly smooth and regular. However, due to the hierarchical dependencies,
it is essential to reliably locate the global maximum. Therefore, we propose
the following simple optimisation scheme: In a first step, we sample the goal
function within the bounding box of the confidence ellipse on a coarse grid, in
order to find the local neighbourhood of the global optimum. Having done so,
we apply the Newton-Raphson method to find the proper optimum. Since the
computation of a Newton-Raphson iteration includes the calculation of first and
second derivatives, we recommend to fit a bivariate Taylor polynom of fourth
degree around the estimated optimum, instead of relying on discrete derivatives.



This optimisation scheme has proven to be robust and it finds reliably the
global optimum with high sub-pixel accuracy. The time taken to optimise one
principal landmark amounts to about one second on an SGI O2. Figure 7(d)
shows the result of the initialisation, if the optimisation is sequentially applied
to six principal landmarks. With the exception of the Splenium of the corpus cal-
losum, the resulting outline is very close to the optimum. A comparison between
the final outline and the manual initialisation in Fig. 7(a) shows two differences:
On the one hand, the automated method obviously detects the border of the
shape with higher precision. On the other hand, manual initialisation seems to
be superior with respect to an overall fit to the image data. Although we could
speculate that the better estimate induces a higher distortion of the correspon-
dence function, we suspect that the superior performance has another reason:
The manual approach simply finds a better solution regarding the problem of
optimising the position of all principal landmarks at once. The automatic opti-
misation of this problem is much more difficult due to the dependencies of the
goal functions Gk and has not yet been investigated.

7 Conclusion and Future Research

In search of a stable initialisation oracle that is based on a small number of points,
we presented a new way to make a statistical shape description point-wise in-
variant. The inverse of the resulting operation generates initial configurations for
subsequent segmentation by choosing the most probable shape given the esti-
mated control polygon. The whole framework has been evaluated by means of a
shape population consisting of 71 corpus callosum instances. To demonstrate its
practical benefit, we implemented both an interactive and a fully automatic ini-
tialisation method. The achieved results are satisfying and validate its suitability
for our initialisation purposes. Furthermore, we gained a deeper insight into the
nature of the shape under investigation by finding the most compact shape de-
scription given by the principal control polygon with associated principal basis
functions.

Additional work has to be done in order to evaluate and improve the prac-
tical application of the proposed shape analysis. In the context of interactive
initialisation, we must explore the influence of the point selection strategy on
the user’s ability to locate the prescribed vertices in the image. Since we choose
the principal landmarks purely on the basis of a statistical measure, problems
may arise in locating the correct position of the points in the image to be seg-
mented. Hence, another point selection strategy could be based on the analysis
of local shape and image characteristics. Control vertices with salient local curve
features or locations with stable image characteristics could serve as landmarks
well suited for automatic or interactive localisation. Such point selection oracles
should be combined with our statistical selection strategy. Moreover, the auto-
matic initialisation should be improved by optimising all the control vertices at
once.



Last but not least, model-based initialisations for surfaces should be provided
as well, in order to overcome the limitations imposed by the two-dimensional
segmentation approach, if three dimensional data sets are available. And if we
broaden the horizons beyond the borders of computer vision, we surmise that
our framework could be of great value for the interactive animation of various
natural objects.
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A Derivation of the Basis Vectors Rj by Means of the

Pseudo-Inverse

Another approach to find the two basis vectors rxj
and ryj

causing unit transla-
tion in x- and y-direction with minimal Mahalanobis-distance Dm involves the
calculation of the generalised Moore-Penrose pseudo-inverse [16, 18]. To derive a
solution with this concept, we use only the prescribed constraints as a starting
point:

UjRj = I (19)

Since Uj is a 2× (N − 1) matrix, the linear system of equations in (19) is highly
under-determined. Such a system either has no solution or there will be an (N−3)
dimensional family of solutions. In the second case, one can show that there is
a unique element in the hyper-plane of all solutions which has minimum 2-norm
[19]. It is well known that this least-squares solution can be found by calculating

the generalised Moore-Penrose pseudo-inverse U#
j . The resulting vectors Rj with

minimal Euclidean norm are then given by

Rj = U
#
j I = U

#
j . (20)

Unfortunately, we are not looking for the solution with minimal 2-norm but
for the one with minimal Mahalanobis-distance Dm. For this reason, we in-
troduce the Mahalanobis-norm ‖ ◦ ‖m that can be expressed in terms of the
traditional Euclidean norm:

‖x‖m = ‖
√
Λ
−1

x‖2 (21)

If we are able to calculate the least-squares solution with respect to this Mahala-
nobis-norm, we have automatically found the solution with minimal Mahala-
nobis-distance, since

‖x‖2
m = ‖

√
Λ
−1

x‖2
2 =

(√
Λ
−1

x
)T (√

Λ
−1

x
)

= xTΛ−1x = Dm . (22)



By exploiting relation (21), we can map the minimisation of the Mahalanobis-
norm to the normal least-squares problem with respect to the Euclidean norm.
The required transformation results in a weighting of the columns of Uj by the
square root of the corresponding eigenvalues Λ:

min
Rj

‖Rj‖m : UjRj = I 7−→ min
R̆j

‖R̆j‖2 :
(

Uj

√
Λ

)

R̆j = I (23)

Rjmin
=

√
ΛR̆jmin

=
√
Λ

(

Uj

√
Λ

)#

(24)

As illustrated in Eq. (24), the minimal m-norm vectors Rjmin
are then given by

the scaled version of the least-squares solution R̆jmin
that is uniquely determined

by the pseudo-inverse of (Uj

√
Λ). By exploiting subsequently the relation A# =

AT
[

AAT
]−1

that holds for m × n matrices A with (m < n) and rank(A) = m

(see [15]), we end up with a fairly familiar result:

Rj =
√
Λ

(

Uj

√
Λ

)#

=
√
Λ

(√
ΛUT

j

[

UjΛU
T
j

]−1
)

(25)
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