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Abstract

We present results on a user independent fully automatic
system for real time recognition of facial actions from the
Facial Action Coding System (FACS). The system automat-
ically detects frontal faces in the video stream and codes
each frame with respect to 20 Action units. We present
preliminary results on a task of facial action detection in
spontaneous expressions during discourse. Support vector
machines and AdaBoost classifiers are compared. For both
classifiers, the output margin predicts action unit intensity.

1 Introduction

In order to objectively capture the richness and complex-
ity of facial expressions, behavioral scientists have found it
necessary to develop objective coding standards. The facial
action coding system (FACS) [2] is the most objective and
comprehensive coding system in the behavioral sciences. A
human coder decomposes facial expressions in terms of 46
component movements, which roughly correspond to the
individual facial muscles. An example is shown in Figure 1.
Several research groups have recognized the importance of
automatically recognizing FACS [1, 9, 8, 5]. Here we de-
scribe progress on a system for fully automated facial action
coding.

We present results on a user independent fully automatic
system for real time recognition of facial actions from the
Facial Action Coding System (FACS). The system automat-
ically detects frontal faces in the video stream and codes
each frame with respect to 20 Action units. In previous
work, we conducted empirical investigations of machine
learning methods applied to the related problem of classi-
fying expressions of basic emotions [6]. We compared Ad-
aBoost, support vector machines, and linear discriminant
analysis, as well as feature selection methods techniques.
Best results were obtained by selecting a subset of Gabor
filters using AdaBoost and then training Support Vector Ma-
chines on the outputs of the filters selected by AdaBoost.

Figure 1. Example FACS codes for a prototypical expres-
sion of fear. Spontaneous expressions may contain only a
subset of these Action Units.

The combination of AdaBoost and SVM’s enhanced both
speed and accuracy of the system. An overview of the sys-
tem is shown in Figure 2. Here we apply this system to the
problem of detecting facial actions in spontaneous expres-
sions. The system presented here detects 20 action units, is
fully automatic, and operates in real-time.

2 Automated System

2.1 Real-time Face Detection

We developed a real-time face detection system that em-
ploys boosting techniques in a generative framework [3]
and extends work by [10]. Enhancements to [10] include
employing Gentleboost instead of AdaBoost, smart feature
search, and a novel cascade training procedure, combined
in a generative framework. Source code for the face detec-
tor is freely available at http://kolmogorov.sourceforge.net.
Accuracy on the CMU-MIT dataset, a standard public data
set for benchmarking frontal face detection systems, is 90%
detections and 1/million false alarms, which is state-of-the-
art accuracy. The CMU test set has unconstrained lighting
and background. With controlled lighting and background,
such as the facial expression data employed here, detection



Figure 2. Overview of fully automated facial action cod-
ing system.

accuracy is much higher. The system presently operates at
24 frames/second on a 3 GHz Pentium IV for 320x240 im-
ages.

All faces in the training datasets were successfully de-
tected. The automatically located faces were rescaled to
96x96 pixels. The typical distance between the centers of
the eyes was roughly 48 pixels. Automatic eye detection
[3] was employed to align the eyes in each image. The im-
ages were then passed through a bank of Gabor filters 8
orientations and 9 spatial frequencies (2:32 pixels per cy-
cle at 1/2 octave steps) (See [6]). Output magnitudes were
then passed to the classifiers. No feature selection was per-
formed for the results presented here, although it is ongoing
work that will be presented in another paper.

2.2 Facial Action Classification

Facial action classification was assessed for two clas-
sifiers: Support vector machines (SVM’s) and AdaBoost.
SVM’s. SVM’s are well suited to this task because the high
dimensionality of the Gabor representation O(105) does not
affect training time, which depends only on the number of
training examples O(102). In our previous work, linear,
polynomial, and radial basis function (RBF) kernels with
Laplacian, and Gaussian basis functions were explored[6].
Linear and RBF kernels employing a unit-width Gaussian
performed best on that task. Linear SVMs are evaluated
here on the task of facial action recognition.

AdaBoost. The features employed for the AdaBoost
AU classifier were the individual Gabor filters. This gave
9x8x48x48= 165,888 possible features. A subset of these
features was chosen using AdaBoost. On each training
round, the Gabor feature with the best expression classi-
fication performance for the current boosting distribution
was chosen. The performance measure was a weighted sum
of errors on a binary classification task, where the weight-
ing distribution (boosting) was updated at every step to re-
flect how well each training vector was classified. AdaBoost
training continued until 200 features were selected per ac-
tion unit classifier. The union of all features selected for
each of the 20 action unit detectors resulted in a total of
4000 features.

3 Facial expression data

3.1 The RU-FACS Spontaneous Expres-
sion Database

Our collaborators at Rutgers University have collected a
dataset of spontaneous facial behavior with rigorous FACS
coding. The dataset consists of 100 subjects participating
in a ’false opinion’ paradigm. In this paradigm, subjects
first fill out a questionnaire regarding their opinions about
a social or political issue. Subjects are then asked to either
tell the truth or take the opposite opinion on an issue where
they rated strong feelings, and convince an interviewer they
are telling the truth. This paradigm has been shown to elicit
a wide range of emotional expressions as well as speech-
related facial expressions. This dataset is particularly chal-
lenging both because of speech-related mouth movements,
and also because of out-of-plane head rotations which tend
to be present during discourse.

Two minutes of each subject’s behavior is being FACS
coded by two certified FACS coders. FACS codes include
the apex frame as well as the onset and offset frame for
each action unit (AU). Here we present preliminary results
for a system trained on two large datasets of FACS-coded
posed expressions, and tested on the spontaneous expres-
sion database.

3.2 Posed expression databases

The system was trained on FACS-coded images from 2
datasets. The first dataset was Cohn and Kanade’s DFAT-
504 dataset [4]. This dataset consists of 100 university stu-
dents ranging in age from 18 to 30 years. 65% were fe-
male, 15% were African-American, and 3% were Asian
or Latino. Videos were recoded in analog S-video using
a camera located directly in front of the subject. Subjects
were instructed by an experimenter to perform a series of 23
facial displays. Subjects began each display with a neutral
face. Before performing each display, an experimenter de-
scribed and modeled the desired display. Image sequences
from neutral to target display were digitized into 640 by 480
pixel arrays with 8-bit precision for grayscale values. The
facial expressions in this dataset were FACS coded by two
certified FACS coders.

The second dataset consisted of directed facial actions
from 24 subjects collected by Hager and Ekman. (See [1].)
Subjects were instructed by a FACS expert on the display of
individual facial actions and action combinations, and they
practiced with a mirror. The resulting video was verified for
AU content by two certified FACS coders.

4 Training

The combined dataset contained 2568 training examples
from 119 subjects. Separate binary classifiers, one for each



AU, were trained to detect the presence of the AU regard-
less of the co-occurring AU’s. We refer to this as context-
independent recognition. Positive examples consisted of the
last frame of each sequence which contained the expression
apex. Negative examples consisted of all apex frames that
did not contain the target AU plus neutral images obtained
from the first frame of each sequence, for a total of 2568-N
negative examples for each AU.

5 Results

5.1 Generalization Performance Within
Dataset

We first report performance for generalization to
novel subjectswithin the Cohn-Kanade and Ekman-Hager
databases. Generalization to new subjects was tested using
leave-one-subject-out cross-validation in which all images
of the test subject were excluded from training. Results
for the AdaBoost classifier are shown in Table 1. System
outputs were the output of the AdaBoost discriminant func-
tion for each AU. All system outputs above threshold were
treated as detections.

The system obtained a mean of 91% agreement with hu-
man FACS labels. Overall percent correct can be an unreli-
able measure of performance, however, since it depends on
the proportion of targets to nontargets, and also on the de-
cision threshold. A more reliable performance measure is
area under the ROC (receiver-operator characteristic curve.)
This curve is obtained by plotting hit rate (true positives)
against false alarm rate (false positives) as the decision
threshold varies. The area under this curve is denoted A′.
A′ is equivalent to percent correct in a 2-alternative forced
choice task, in which the system must choose which of two
options contains the target on each trial. Mean A′ for the
posed expressions was 92.6. Inspection of the ROC curves
in Figure 3 shows the dependence of system performance
on the number of training examples.

System outputs for full image sequences of test subjects
are shown in Figure 4. Although each individual image
is separately processed and classified, the outputs change

Figure 3. ROC curves for 8 AU detectors, tested on posed
expressions.

Table 1. Performance for posed expressions. Shown is
fully automatic recognition of 20 facial actions, general-
ization to novel subjects in the Cohn-Kanade and Ekman-
Hager databases. N: Total number of positive examples. P:
Percent agreement with Human FACS codes (positive and
negative examples classed correctly). Hit, FA: Hit and false
alarm rates. A′: Area under the ROC. The classifier was
AdaBoost.

AU Name N P Hit FA A′

1 Inn. brow raise 409 92 86 7 95
2 Out. brow raise 315 88 85 12 92
4 Brow lower 412 89 76 9 91
5 Upper lid raise 286 92 88 7 96
6 Cheek raise 278 93 86 6 96
7 Lower lid tight 403 88 89 12 95
9 Nose wrinkle 68 100 88 0 100
10 Lip Raise 50 97 29 2 90
11 Nasolabial 39 94 33 4 74
12 Lip crnr. pull 196 95 93 5 98
14 Dimpler 32 99 20 0 85
15 Lip crnr. depr. 100 85 85 14 91
16 Lower Lip depr. 47 98 29 1 92
17 Chin raise 203 89 86 10 93
20 Lip stretch 99 92 57 6 84
23 Lip tighten 57 91 42 8 70
24 Lip press 49 92 64 7 88
25 Lips part 376 89 83 9 93
26 Jaw drop 86 93 58 5 85
27 Mouth stretch 81 99 100 1 100

Mean 90.9 80.1 8.2 92.6

smoothly as a function of expression magnitude in the suc-
cessive frames of each sequence, enabling applications for
measuring the magnitude and dynamics of facial expres-
sions.

For many applications of automatic facial expression
analysis, image compression is desirable in order to make
an inexpensive, flexible system. The image analysis meth-
ods employed in this system, such as Gabor filters, may not
be as affected by lossy compression as other image analy-
sis methods such as optic flow. We therefore investigated
the relationship between AU recognition performance and
image compression. Detectors for three action units (AU 1,
AU2, and AU4) were compared when tested at five levels of
compression: No loss (original bmp images), and 4 levels
of jpeg compression quality: 100%, 75in Figure 5. Perfor-
mance remained consistent across substantial quantities of
lossy compression. This finding is of practical importance
for system design.
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Figure 4. Automated FACS measurements for full im-
age sequences. a. Surprise expression sequences from 4
subjects containing AU’s 1,2 and 5. b. Disgust expression
sequences from 4 subjects containing AU’s 4,7 and 9.

Figure 5. Effects of compression on AU recognition
performance.

5.2 Generalization to Spontaneous Ex-
pressions

The system described in Section 4 was then tested on the
spontaneous expression database. Hence this test included
generalization to a new database, as well as handling speech
and head movement, with both in-plane and out-of-plane
rotations. Preliminary results are presented for 12 subjects.
This data contained a total of 1689 labeled events, consist-
ing of 33 distinct action units, 19 of which were AU’s for
which we had trained classifiers. Face detections were ac-
cepted if the face box was greater than 150 pixels width,
both eyes were detected with positive position, and the dis-
tance between the eyes was> 40 pixels. This resulted in
faces found for 95% of the video frames. Most non-detects
occurred when there was head rotations beyond±10 deg or
partial occlusion. All detected faces were passed to the AU
recognition system.

Here we present benchmark performance of the basic
frame-by-frame system on the video data. Figure 6 shows
sample system outputs for one subject, and performance is

a
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Figure 6. Sample system outputs for a 10-second seg-
ment containing a brow-raise (FACS code 1+2). System
output is shown for AU 1 (left) and AU 2 (right). Human
codes are overlayed for comparison (onset, apex, offset).

shown in Table 2. Performance was assessed several ways.
First, we assessed overall percent correct for each action
unit on a frame-by-frame basis, where system outputs that
were above threshold inside the onset and offset interval
indicated by the human FACS codes, and below threshold
outside that interval were considered correct. This gave an
overall accuracy of 93% correct across AU’s for the Ad-
aBoost classifier. Mean area under the ROC was .71.

Next an interval analysis was performed, which is in-
tended to serve as a baseline for future analysis of output
dynamics. The interval analysis measured detections on in-
tervals of length I. Here we present performance for inter-
vals of length 21 (10 on either side of the apex), but perfor-
mance was stable for a range of choices of I. A target AU
was treated as present if at least 6/21 frames were above
threshold, where the threshold was set to 1 standard devi-
ation above the mean. Negative examples consisted of the
remaining 2 minute video stream for each subject, outside
the FACS coded onset and offset intervals for the target AU,
parsed into intervals of 21 frames. This simple interval anal-
ysis raised the area under the ROC to .75.



Table 2. Recognition of spontaneous facial actions. The
classifier was AdaBoost. AU: Action unit number. N: To-
tal number of testing examples. P: Percent correct over all
frames. Hit, FA: Hit and false alarm rates. A′: Area un-
der the ROC. A′∆: Area under the ROC for interval analysis
(see text). The classifier was AdaBoost.

AU N P Hit FA A′ A′

∆

1 169 87 35 9 78 83
2 153 84 29 13 62 68
4 32 97 15 2 74 84
5 36 97 7 1 71 76
6 50 92 32 4 90 92
7 46 91 12 7 64 66
9 2 99 0 0 88 93
10 38 95 0 0 62 65
11 3 99 0 0 73 83
12 119 86 45 7 86 88
14 87 94 0 0 70 77
15 77 94 23 4 69 73
16 5 99 0 0 63 57
17 121 93 15 2 74 76
20 12 99 0 0 66 69
23 24 98 0 0 69 75
24 68 95 7 3 64 63
25 200 54 68 50 70 73
26 144 91 2 1 63 64

Mean 93 15 5 71 75

5.2.1 AdaBoost v. SVM performance

Table 3 compares AU recognition performance with Ad-
aBoost to a linear SVM. In previous work with posed ex-
pressions of basic emotions, AdaBoost performed similarly
to SVM’s, conferring a marginal advantage over the linear
SVM [6]. Here we support this finding for recognition of
action units in spontaneous expressions. AdaBoost had a
small advantage over the linear SVM which was statisti-
cally significant on a paired t-test ( t(7)=3.1, p=.018). A
substantial performance increase was incurred for the SVM
by employing an interval analysis. The SVM outputy was
converted to z-scores for each subjectz = (y − µ/σ), and
then z was integrated over a window of 11 frames. The tem-
poral information in the classifier outputs contain consider-
able information that we intend to exploit in future work.

5.2.2 The margin predicts AU intensity

Figure 7 shows a sample of system outputs for a 2 minute 20
second continuous video stream. The output margin, mean-
ing the distance to the separating hyperplane, contained in-
formation about action unit intensity. Correlations were
computed between the margin of the linear SVM and the

Table 3. Comparison of AdaBoost to linear SVM’s for
AU classification in the spontaneous expression database.
A′

∆: Area under the ROC for interval analysis (see text).

AdaBoost SVM
AU N A′ A′

∆
A′ A′

∆

1 169 78 83 73 83
2 153 62 68 63 76
4 32 74 84 74 86
5 36 71 76 63 73
10 38 62 65 60 71
12 119 86 88 84 90
14 87 70 77 65 73
20 12 66 69 60 74

Mean 71.1 76.3 67.8 78.3

AU intensity as coded by the human coders for each sub-
ject for the 8 AU’s shown in Table 3. Mean correlation
across subjects was r=0.26. The AdaBoost margin, which is
the output of the AdaBoost discriminant function, was also
associated with action unit intensity. Mean correlation of
the AdaBoost margin with human-coded intensity was 0.30.
The difference between SVM’s and AdaBoost was not sta-
tistically significant on a paired t-test. These correlations
are not large, but there is indeed a signal on this challeng-
ing dataset. The system that was trained on posed facial
expressions under highly controlled conditions was able to
obtain relevant information when applied to real behavior,
including the presence of an AU and the intensity of that
AU.

In order to examine the relation between the margin and
the AU intensity in conditions with less noise, the corre-
lation analysis was repeated for the posed data. The sys-
tem was retrained on the even-numbered subjects of the
Cohn-Kanade and Ekman-Hager datasets, and then tested
on the odd-numbered subjects of the Ekman-Hager set. The
8 AU’s shown in Table 3 were tested, and the correlation
between the margin of the linear SVM and the AU inten-
sity was computed for each test subject, and then collapsed
across subjects. Mean correlation between the margin of
the linear SVM and the AU intensity was 0.63 for the posed
expression data.

6 Conclusions

Our results suggest that user independent, fully auto-
matic real time coding of facial actions in the continuous
video stream is an achievable goal with present computer
power. The full system operates in real time. Face detection
runs at 24 frames/second in 320x240 images on a 3 GHz
Pentium IV. The AU recognition step operates in less than
10 msec.



Figure 7. Output trajectory for a 2 minute 20 sec. video
(6000 frames), for one subject and one action unit. Shown
is the margin (the distance to the separating hyperplane).
The human FACS labels are overlaid for comparison. Blue
stars indicate the frame at which the AU apex was coded.
The frames within the onset and offset of the AU are shown
in red. Letters A-E indicate AU intensity, with E highest.

Here we presented preliminary results for the perfor-
mance of the system on spontaneous expressions. The sys-
tem was able to detect facial actions in this database despite
the presence of speech, out-of-plane head movements that
occur during discourse, and the fact that many of the action
units occurred in combination. Moreover, the output margin
predicted AU intensity. These results provide a benchmark
for future work on spontaneous expression video.

The output sequence for both the AdaBoost and SVM
classifiers contains information about dynamics that can be
exploited for deciding the presence of a facial action. Future
work will explore these dynamics, and compare improve-
ment to the benchmark provided here. This system has the
potential to provide information about expression dynamics
that was previously intractable by hand coding. The accu-
racy of automated facial expression measurement may also
be considerably improved by 3D alignment of faces. More-
over, information about head movement dynamics is an im-
portant component of nonverbal behavior, and is measured
in FACS. Members of this group have developed techniques
for automatically estimating 3D head pose in a generative
model and for aligning face images in 3D [7].

The system presented here is fully automated, and per-
formance rates for posed expressions compare favorably
with other systems tested on the Cohn-Kanade dataset that
employed varying levels of manual registration. The ap-
proach to automatic FACS coding presented here, in addi-
tion to being fully automated, also differs from approaches
such as [8] and [9] in that instead of designing special
purpose image features for each facial action, we explore
general purpose learning mechanisms for data-driven facial
expression classification. The approach detects not only
changes in position of facial features, but also changes in
image texture such as those created by wrinkles, bulges,

and changes in feature shapes. Certainly the best way to
advance the field is for multiple laboratories to develop
different approaches, and make comparisons on standard
databases such as the Cohn-Kanade database. A standard
database of FACS coded spontaneous expressions would be
of great benefit to the field and we are preparing to make the
RU-FACS spontaneous expression database available to the
research community.
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