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Abstract-Achievable secrecy rate regions for the general
3-receiver broadcast channel with one common and one
confidential message sets are established. We consider two
setups: (i) when the confidential message is to be sent to two
of the receivers and the third receiver is an eavesdropper;
and (ii) when the confidential message is to be sent to one of
the receivers and the other two receivers are eavesdroppers.
We show that our secrecy rate regions are optim urn for
some special cases.

I. INTRODUCTION

In a seminal paper, Wyner [1] introduced the wiretap
channel, where a sender wishes to communicate a mes­
sage to a receiver, while keeping the message secret from
an eavesdropper. He established the secrecy capacity of
the channel, which is the optimal trade-off between the
rate for reliable communication to the legitimate receiver
and the eavesdropper's message equivocation rate. This
result was later extended by Csiszar and Komer [2] to
establish the secrecy capacity of the 2-receiver broadcast
channel with one confidential message and one common
message. In their setup, a common message is to be sent
to both receivers and a confidential message is to be
sent only to the first receiver under a constraint on the
second receiver's (eavesdropper) equivocation rate. More
recent work following this direction includes the paper
by Ruoheng et al. [3] in which inner and outer bounds
on the secrecy capacity regions of both the broadcast
and interference channels with independent confidential
messages are established.

Extending the result of Csiszar and Komer to more
than 2 receivers has remained open, since the capacity
region (without secrecy constraints) of the 3-receiver
broadcast channel with degraded message sets is not
known in general. Recently, Nair and EI Gamal [4]
showed that the straightforward extension of the Komer
and Marton capacity region for the 2-receiver broadcast
channel with degraded message sets [5] to more than 3
receivers is not optimal. They established an achievable
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rate region for the general 3-receiver broadcast channel
and showed that it can be strictly larger than the straight­
forward extension of the Komer and Marton region.

In this paper, we consider the 3-receivers broadcast
channel with one common and one confidential message
sets. This setup leads to two natural variations; a 2­
receiver, l-eavesdropper scenario where the confidential
message is to be reliably communicated to two receivers
and kept secret from the third receiver, and a I-receiver;
2-eavesdropper scenario where the confidential message
is to be communicated to only one receiver and kept
secret from the other two receivers. We establish inner
bounds on the secrecy capacity regions for both scenar­
ios using the techniques of rate splitting, superposition
coding, random binning, Marton binning, and indirect
decoding [4]. We specialize the inner bound for the 2­
receiver, I-eavesdropper setup to obtain a lower bound
on the secrecy capacity for the case where a message is
to be sent to the two receivers but kept secret from the
eavesdropper. We show that this lower bound is tight
for the reversely degraded product broadcast channel.
For the I-receiver, 2-eavesdropper scenario, we establish
inner and outer bounds on the secrecy capacity region for
the class of 3-receiver multi-level broadcast channel [6].
We show that the bounds coincide when the receiver is
more capable than the non-degraded eavesdropper.

II. DEFINITIONS AND PROBLEM SETUP

We consider the 3-receiver discrete memoryless broad­
cast channel with input alphabet X, output alphabets
Yl,Y2, Y3 and conditional probability mass functions
p(Yl' Y2, Y31 x) and investigate the following two scenar­
ios.

A. 2-Receivers, l-Eavesdropper

Here the confidential message is to be sent to receivers
Y1 and Y2 and is to be kept secret from the eavesdropper
Y3 . A (2n R o , 2n R 1 , n) message set code for this scenario
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consists of: (i) two messages (Mo, M l ) uniformly dis­
tributed over [1 : 2nRo] x [1 : 2nR1]; (ii) an encoder
that randomly generates a codeword xn(mo, ml) ac­
cording to the conditional pmf p(x" Imo, ml); and (iii)
3 decoders; the first decoder assigns to each received
sequence Yl an estimate (Mal, MIl) E [1 : 2nRo] x [1 :
2nR1] or an error message, the second decoder assigns
to each received sequence Y2: an estimate (M02 , M12 ) E

[1 : 2nRo] x [1 : 2nR1] or an error message, and the
third receiver assigns to each received sequence Y3' an
estimate M03 E [1 : 2nRo] or an error message. The
probability of error for this scenario is

(n) { A •

Pel == P M Oj -I- M o for J == 1,2,3 or

MI j -=I- MI for j = 1,2}.

The equivocation rate at receiver Y3 , which measures
the amount of uncertainty receiver Y3 has about message
M l , is given by H(Ml ly3

n )/ n.
A secrecy rate tuple (Ro, R1, R e ) is said to be achiev­

able if

lim p~~) = 0, and liminf !H(MIlYt) ::::: n;
n----+oo n----+oo n

The secrecy capacity region is the closure of the set
of achievable rate tuples (Ro, R1, R e ) .

B. I-Receiver; 2-Eavesdroppers

In this scenario, the confidential message is to be sent
only to receiver Yl and kept secret from the eavesdrop­
pers Y2 and Y3 . A (2nRo,2nRl,n) message set code
for this scenario consists of the same message sets and
encoding function as in the 2-receiver, l-eavesdropper
case. The first decoder assigns to each received sequence
Yl an estimate (MOl,Ml) E [1 : 2nRo] x [1 : 2nR1] or
an error message, the second decoder assigns to each
received sequence Y2: an estimate M02 E [1 : 2nRo] or
an error message, and the third receiver assigns to each
received sequence Y3' an estimate Mal E [1 : 2nRo] or
an error message. The probability of error is

(n) A • A

Pe2 == P{MOj -I- M o for J == 1,2,3 or M l -I- M l } .

The equivocation rates at the two eavesdroppers are
H(Ml ly2

n )/ n and H(Ml ly3
n )/ n.

A secrecy rate tuple (Ro, R1, R e2 , R e3 ) is said to be
achievable if

lim p(n) == 0
e2 ,

n----+oo

1
liminf -H(Ml l1jn) ~ u.; j == 2,3.

n----+oo n

The secrecy capacity region is the closure of the set of
achievable rate tuples (Ro, R1, R e2 , R e3 ) .
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In the following sections, we establish inner bounds on
the secrecy capacity regions for the above two scenarios.

III. 2-RECEIVERS, I-EAVESDROPPER

We establish an inner bound on the secrecy capacity
for the 3-receiver broadcast channel with one common
and one confidential message when the confidential
message is to be sent to receivers Yl and Y2 and kept
secret from receiver Y3 . As motivation, first consider
the case when M o == 0 and M', == M E [1 :
2nR] is to be kept asymptotically secret from Y3 , i.e.,
lim n ----+oo I(M; y 3

n )/ n == O. For this case, a straightfor­
ward extension of the Csiszar and Komer [2] scheme
to 3-receivers yields the achievable secrecy rate

R < max min{I(V; Yl)-I(V; Y3 ) , I(V; Y2)-I(V; Y3 ) } .
p(v,x)

Now, suppose Y3 is a degraded version of Yl , then
from the Wyner wiretap result, we know that I(V; Yl ) ­

I(V; Y3 ) < I(X; Yl ) - I(X; Y3 ) for all p(v, x). How­
ever, no such inequality holds in general for the second
term. Using indirect decoding [4], we can replace V
with X in the first term while keeping V in the second
term, which can potentially increase the rate. To show the
achievability of this potentially larger rate, we generate
2nSo sequences vn(lo), lo E [1 : 2nSo] each according to
rr~=l P(Vi) and partition the set [1 : 2nSo] into 2nR equal
size bins. For each vn(lo), conditionally independently
generate 2n(Sl) sequences xn(lo, ll), II E [1 : 2nS1]

each according to rr~=l P(Xi IVi). To send a message
m E [1 : 2nR], randomly choose an index La from bin m
and and an index L, E [1 : 2nS1], and send xn(Lo, L l).
Y2 finds m by directly decoding V and Yl finds m by
indirect decoding through X. These steps succeed with
high probability provided

It can be shown that M is hidden from Y3 if

Using Fourier-Motzkin shows the achievability of the
rate

The above argument can be generalized to obtain the
following inner bound.

Theorem l : An inner bound to the secrecy capacity
region of the 2-receiver, l-eavesdropper broadcast chan­
nel with one common and one confidential messages is
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given by the set of non-negative rate tuples (R a, R 1,R e )

such that

R a < I(U; Y3 ) ,

R 1 < min {I(V1; Y1IU) - I(V1; Y3IVa),
I(V2; Y2IU) - I(V2; Y3IVa)} ,

2R 1 < I(V2; Y2IU) + I(V1; Y1IU) - I(V1,V2IVa)
- I(V1; Y3IVa) - I(V2; Y3IVa),

Ra + R 1 < min {I(V1; Y1 ) - I(V1; Y3IVa),
I(V2; Y2) - I(V2; Y3IVa)} ,

Ra + 2R 1 < I(V1; Y1 ) + I(V2; Y2IU) - I(V1; V2IVa)
- I(V1; Y3IVa) - I(V2; Y3IVa),

Ra + 2R 1 < I(V1; Y1IU) + I(V2; Y2) - I(V1,V2IVa)
- I(V1; Y3IVa) - I(V2; Y3IVa),

2Ra + 2R 1 < I(V1; Y1 ) + I(V2; Y2) - I(V1; V2IVa)
- I(V1; Y3IVa) - I(V2; Y3IVa),

u; < [R1 - I(Va; Y3IU)]+,

for some P(U,Va,Vl,V2,X) == p(u)p(vaIU)P(Vllva)
. p(x,v2I va,Vl) == p(u)p(vaIU)P(V2I va)P(X,Vllva,V2)
such that I(V1,V2; Y3IVa) < I(V1; Y3IVa) +
I(V2;Y3IVa), where [x]+ :== max{O, x}.

Note that if we discard the equivocation constraints
and set Va == VI == V2 == X, the inner bound reduces
to the straightforward extension of the Komer-Marton
degraded message set region to the 3-receiver case [4,
Corollary 1]. We provide a proof outline.
Codebook generation: Randomly and independently
generate 2nRo sequences un (nu,) each according to
rr~=l P(Ui). For each un(ma), independently gen­
erate 2nR1 sequences v[)(ml' ma) each according
to rr~=l p(vailui). For each v[)(ml' ma), generate
2nT1 sequences vr (tl, ml, ma) each according to
rr~=l p(VIi IVai), and partition them into 2nS1 equal
size bins. Similarly, for each v[)(ml' ma), randomly
generate 2nT2 sequences v'2 (t2, ml, ma) each accord­
ing to rr~=l p(V2i IVai), and partition them into 2nS2

bins. Finally, for each product bin (ll' l2) E [1 :
2nS1] x [1 : 2nS2], find a jointly typical sequence pair
(vr(tl(ll), ml, ma), v'2(t2(l2), ml, ma)). This succeeds
with high probability provided

Encoding: To send a message pair (ma, ml), the encoder
first chooses the sequence pair (un (ma), v[) (ml' ma)).
It then randomly chooses a product bin (L 1 , L 2 )

and finds the jointly typical sequence pair
(vr(tl(L 1), ml, ma), v'2(t2(L 2), ml, ma)) in it. Finally,
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it generates a codeword X" at random according to

rr~=l P(XilVIi, V2i).
Decoding and error analysis: Receiver Y1 finds
(ma, ml) indirectly by decoding VI. Receiver Y2 finds
(ma, ml) by indirectly decoding V2 . Receiver Y3 finds
nu, by decoding U. These steps succeed with high
probability provided

Ra + R 1+ T1 < I(V1; Y1 ) ,

R 1+T1 < I(V1;Y1IU),

R a + R 1 + T2 < I(V1 ; Y2 ) ,

R 1 + T2 < I(V1 ; Y2 IU),

R a < I(U; Y3 ) .

Equivocation analysis: We consider two cases. If
R 1 < I(Va; Y3 IU), then u; == o. If R 1 >
I(Va; Y3 IU), we split message M 1 into 2 independent
parts, M 1c E [1 : 2n(I(Vo;Y3IU)+48(E))] and M 1p E [1 :
2n(RI-I(Vo;Y3IU)-48(E))] and lower bound the equivoca-

tion as follows

H(M1Iy3
n)

~ H(M1ply3
n, un)

== H(M1p) - I(M1p; y3
nlun)

(a)
~ H(M1p) - 3n8(E) - 3nEn

== n(R1 - I(Va; Y3IU) - 7n8(E) - 3En),

where 8(E) -----+ 0 as E -----+ 0 and En -----+ 0 as n -----+ 00. This
implies that

R; ::; R 1 - I(Va; Y3 IU) - 78(E) - 3En .

To prove step (a), consider

I(M1p; y 3
n lu n

)

== I(tl (L 1), t2(L2), M 1p, M 1c ; y3
n

Iun)

- I(tl(L 1), t2(L2), M 1c ; y3
nlM1p, un)

(b)
< I(V1

n, V2
n; y3

nlun) - I(M1c; y3
nlM1p, un)

- I(tl(L 1), t2(L2); y3
n 1M1 , un)

(c)
< nI(V1,V2; Y3IU) - H(M1cIM1p, un)

+ H(M1cIM1p, o», y3
n)

- I(tl(L 1), t2(L2); y3
n 1M1 , un)

(d)
< nI(V1,V2; Y3IU) - n(I(Va; Y3IU) + 48(E))

+ 5n8(E)+ nc., - I(tl(L 1), t2(L2); y3
n 1M1 , un)

== nI(V1,V2; Y3IVa) - H(tl(L1)IM1,un)

- H(t2(L2)IM1,un)

+ H(tl(L 1), t2(L2)IM1,U": y3
n) + n8(E) + nc.,

(e)
< nI(V1,V2; Y3!Va) - n(81 + 82 )
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+ H(tl(Ll)IMl, tr ,y3
n)

+ H(t2(L2)IMl, U"; y3
n) + n8(E) + nc.,

(f)
::; n1(Vl, V2; Y3IVa) - n(8l + 82 ) + n.S« + n82

- n1(Vl; Y3IVa) - n1(V2; Y3IVa) + 3n(8(E) + En)
(g)
< 3n (8(E) + En),

where (b) follows by the data processing inequality,
(c) follows by the concavity of mutual information
(averaged over codewords), (d) holds from the rate
definitions, (e) follows because conditioning reduces en­
tropy, (g) follows from the constraint I (VI, V2; Y3 1 Va) <
1(Vl; Y3IVa) + 1(V2; Y3IVa), and (f) holds provided

8 j ~ 1('0; Y3 IVa) + 48(E), j == 1,2.

Using Fourier-Motzkin gives the achievable region
stated in Theorem 1.

As a special case of Theorem 1, consider the asymp­
totically perfect secrecy setting. In the proof of Theo­
rem 1, we showed that a sub-message M lp with rate
RIp == R l - 1(Va; Y31 U) - 48(E) can be hidden from the
eavesdropper with asymptotically perfect secrecy. Using
this observation and the fact that the region in Theorem
1 is convex, we set Ra == 0 and R == R l - 1(Va; Y3 IQ)
in the characterization of Theorem 1 to obtain the
following.

Corollary 1: A rate R is achievable for the setup of
sending a confidential message to two receivers, with
one eavesdropper if

R < min {1(Vl; YlIQ) - 1(Vl; Y3IQ),

1(V2; Y2IQ) - 1(V2; Y3IQ),

1
2"(1(Vl; YlIQ) + 1(V2; Y2IQ) - 1(Vl; Y3IQ)

-1(V2; Y3 IQ) - 1(Vl; V2IVa))}

for some p(q,va,vl,V2,X) == p(q)p(valq)P(Vllva) .
p(x, v2lva,VI) p(q)p(valq)P(V2Iva)P(x, vllva, V2)
such that 1(Vl, V2; Y3IVa) < 1(Vl; Y3IVa) +
1(V2; Y3IVa).

As an example of Corollary 1, consider the reversely
degraded product broadcast channel with sender X ==

(Xl, X2... ,Xk), receivers }j == (}jl' }j2 ... , }jk) for
j == 1, 2, 3, and conditional probability mass functions

p(Yl' Y2, Y31x) == IT7= 1 p(YlZ, Y2Z, Y3zlxz). In [7], it is
shown that the secrecy rate R is achievable if

k

R < min L[1(Uz; }jz) - 1(Uz; Y3Z)]+ (1)
jE{1,2} Z=l

for some p(Ul, . . . ,Uk, x) == IT7= 1 p(uz)p(xzluz). Fur­
ther, this rate is shown to be optimal when the channel
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is reversely degraded (with Ui == Xz), i.e., each sub­
channel is degraded but not necessarily in the same
order. We can show that this result is a special case
of Corollary 1. Define the sets of l indexes: C :== {l :
1(Uz; Ylz) - 1(Uz; Y3z) ~ 0, 1(Uz; Y2z) - 1(Uz; Y3z) ~

O}, A :== {l: 1(Uz; Ylz) - 1(Uz; Y3z) ~ O} and
B :== {l: 1(Uz; Y2z) - 1(Uz; Y3z) .> O}. Now, setting
Va == {Uz : l E C}, VI == {Uz : lEA}, and
V2 == {Uz : l E B} in the rate expression of Corollary
1 yields (1) Note that the constraint in the corollary is
satisfied for this choice of auxiliary random variables.

IV. I-RECEIVER, 2-EAVESDROPPERS

We now consider the case where the confidential mes­
sage M« is to be sent only to Yl and kept hidden from
the eavesdroppers Y2 and Y3 . For simplicity, we only
consider the special case of multi-level broadcast chan­

nel [6], where p(Yl' Y2, Y31x) == p(Yl' Y31x )p(Y2IYl).
Proposition 1: An inner bound to the secrecy capac­

ity region of the I-receiver, 2-eavesdropper multi-level
broadcast channel with one common message and one
confidential message is given by the set of non-negative
rate tuples (R a, R 1, R e2, R e3) such that

R a < min{1(U; Y2 ) , 1(U3 ; Y3 ) } ,

n, < 1(V;YlIU),

Ra + n, < 1(U3; Y3) + 1(V; Yl IU3 ) ,

R e2 < min{Rl, 1(V; YlIU) - 1(V; Y2IU)},
R e2 < [1(U3; Y3) - Ra - 1(U3; Y2IU)]+

+ 1(V; Yl IU3 ) - 1(V; Y2IU3),
R e3 < min{Rl, [1(V;YlIU3 ) - 1(V; Y3IU3)]+}

for some p(u, U3, V, x) == p(u)p(u3Iu)p(vlu3)p(xlv).
Ifwe set V == X and discard the terms involving R e , we
obtain the capacity region for the degraded message sets
in [4]. Setting U == U3 == Y3 == 0, V == X, Ra == 0, and
R e2 == R l , we obtain the secrecy capacity of the Wyner
wiretap channel. Further, setting Y2 == 0, U1 == U2 == U,
we obtain the Csiszar-Korner secrecy region.

The proof of achievability follows that of [4, Section
III], with V playing the role of X.
Codebook generation: Let R l == 8 1 +8 2 . Randomly and
independently generate 2nRo sequences un (rna) each ac­
cording to IT~=l P(Ui). For each un(rna), independently
generate 2nS1 sequences u'3 (ll , rna) each according to
IT~=l p(U3il ui). For each u'3(ll, rna), generate 2nS2 se­
quences vn(l2' ll' rna) each according to IT~=l p(vil u3i).
Encoding: To send a message (rna, rnl), we consider
the sequence vn(l2' ll' rna) and send X" generated

according to IT~=l P(XiIVi (l2' ll' rna)).
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Decoding, error and equivocation: Receiver Y1 finds
(ma, m1) by decoding V, Y2 finds nu, by decoding U,
and Y3 finds nu, indirectly through U3 . These decoding
steps succeed with high probability provided

Ra + R 1 < I(V; Y1 ) ,

R 1 < I(V;Y1IU),

8 2 < I(V;Y1IU3),
Ra < I(U; Y2 ) ,

Ra + 81 < I(U3 ; Y3 ) .

The equivocations can be calculated in the same way as
in the previous section, and we obtain the constraints

R e2 < [81 - I(U3; Y2IU)]+ + [82 - I(V; Y2IU3)]+,
R e3::; [82 - I(V; Y3IU3)]+.

Finally, we show that we can choose 8 1 and 8 2 to
achieve any point in the region given by Theorem 2.

We now establish an outer bound and use it to show
that the inner bound in Proposition 1 is tight for several
special cases.

Proposition 2: An outer bound on the secrecy capac­
ity of the multi-level 3-receiver broadcast channel with
one common and one confidential messages is given by
the set of rate tuples (R a, R 1, R e2,R e3) such that

Ra < min{I(U; Y2), I(U3; Y3)},
R 1 < I(V;Y1IU),

Ra + R 1 < I(U3; Y3) + I(V; Y1IU3),
R e2 < I(X; Y1IU) - I(X; Y2IU),
R e2 < [I(U3; Y3) - Ra - I(U3; Y2IU)]+

+ I(X; Y11U3) - I(X; Y2IU3),
R e3::; [I(V; Y11U3) - I(V; Y3IU3)]+

for some p(u, U3, V, x) == p(u)p(u3Iu)p(vlu3)p(xlv).
The proof of this proposition uses a combination of

standard converse techniques from [8], [9] and [2].
Using Propositions 1 and 2, we can establish the

secrecy capacity region for the following special cases.
1) Y1 more capable than Y3 : If Y1 is more capable

than Y3 , the capacity region is given by:

Ra < min{I(U; Y2), I(U3; Y3)},
R 1 < I(X;Y1IU),

Ra +R1 ::; I(U3;Y3) +I(X;Y1IU3),
R e2 < I(X; Y1IU) - I(X; Y2IU),
R e2 < [I(U3; Y3) - Ra - I(U3; Y2IU)]+

+ I(X; Y11U3) - I(X; Y2IU3),
R e3::; [I(X; Y11U3) - I(X; Y3IU3)]+
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for some p(u, U3, x) == p(u)p(u3Iu)p(xlu3).
2) One eavesdropper: Here, we consider the two

scenarios where either Y2 or Y3 is an eavesdropper and
the other receiver is neutral, i.e., there is no constraint on
its equivocation. The secrecy capacity regions for these
two scenarios are as follows.

Y3 is neutral: The secrecy capacity region is the set
of rate tuples (R a, R 1, R e2) such that

Ra < min{I(U; Y2), I(U3; Y3)},
R 1 < I(X;Y1IU),

Ra +R1 ::; I(U3;Y3) +I(X;Y1IU3),
R e2 < I(X; Y1IU) - I(X; Y2IU),
R e2 < [I(U3; Y3) - Ra - I(U3; Y2IU)]+

+ I(X; Y11U3) - I(X; Y21U3)

for some p(u, U3, x) == p(u)p(u3Iu)p(xlu3).
Y2 is neutral: The secrecy capacity region is the set

of rate tuples (R a, R 1, R e3) such that

Ra < min{I(U; Y2), I(U3; Y3)},
R 1 < I(V;Y1IU),

Ra +R1 ::; I(U3;Y3) +I(V;Y1IU3),
R e3::; [I(V; Y11U3) - I(V; Y3IU3)]+

for some p(u, U3, V, x) == p(u)p(u3Iu)p(vlu3)p(xlv).
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