
6th International Planning Competition:
Uncertainty Part

Daniel Bryce
SRI International

bryce@ai.sri.com

Olivier Buffet
LORIA-INRIA

olivier.buffet@loria.fr

Abstract

The 6th International Planning Competition will be colo-
cated with ICAPS-08 in Sydney, Australia. This com-
petition will contain three parts: i) the classical part,
ii) the uncertainty part and iii) the learning part. This
document presents the uncertainty part and its various
tracks. The official site for the uncertainty part is:
http://ippc-2008.loria.fr/wiki/, where this
document and other materials are provided.

Introduction
The 6th International Planning Competition (IPC-6) will be
co-located with the 18th International Conference on Au-
tomated Planning and Scheduling (ICAPS-08) in Sydney,
Australia on September 14–18, 2008. The competition is
a biannual event where a number of planning systems are
evaluated on a variety of problems. This is an opportunity
to compare existing algorithms and to provide the automated
planning community with recognized benchmarks written in
a standardized language: PDDL.

The IPC started in 1998, taking place at AIPS until 2004,
then at ICAPS. It was originally limited to classical plan-
ning, i.e. automated planning in deterministic domains.
In 2004 has been introduced a “probabilistic track” —
organized by Michael Littman and Haakan Younes— which
introduced an extension of PDDL to probabilistic domains
and a client-server plan evaluator (MDPSim). In 2006 this
track —organized by Blai Bonet and Bob Givan— has been
enriched with a conformant subtrack and renamed “non-
deterministic track”.

This year’s competition (2008) renames “tracks” as
“parts” and includes three of them:

• the classical part —organized by Minh Do, Malte Helmert
and Ioannis Refanidis1—,

• the uncertainty part2 —organized by ourselves—, and

• a novel learning part —organized by Alan Fern, Roni
Khardon and Prasad Tadepalli3—, in which planners can

1http://ipc.informatik.uni-freiburg.de/
2“Uncertainty” is preferred over “probabilistic” or “non-

deterministic” to avoid possible confusions.
3http://eecs.oregonstate.edu/ipc-learn/

train on small instances of problems before being evalu-
ated on large ones.
This document is a modified version of the previous edi-

tion’s call for participations (Bonet & Givan 2005). It
presents the uncertainty part, which is made of
• a non-observable non-deterministic (conformant) track,
• a fully-observable non-deterministic track,
• a fully-observable probabilistic track and
• a partially-observable probabilistic track.

Planning Tasks and Solutions
Most of the competition will focus on shortest-path planning
problems. This is more general than goal reachability with
unit costs as actions may have a non unit cost. Problems of
this type can be described by models of the form:
M1. a finite state space (set of states) S,
M2. an initial state s0 ∈ S,
M3. a set SG ⊆ S of goal states,
M4. sets A(s) of applicable actions for each s ∈ S,
M5. a cost function c(s, a)→ R, and
M6. a non-deterministic transition function F (s, a) ⊆ S.

Models of M1–M6 are described using a high-level plan-
ning language based on propositional logic in which the
states are valuations for the propositional symbols, the set
of initial and goal states are described by logical formulae,
and the set of applicable actions (operators) and the transi-
tion function are described by means of action schemata.

The form of a solution and the optimality criteria depend
on the particular planning task as follows.

Non-Observable Non-Deterministic Planning
(NOND/Conformant Planning)
The problem of conformant planning is that of deciding
whether there exists a linear sequence of actions that will
achieve the goal from any initial state and any resolution
of the non-determinism in the problem (Goldman & Boddy
1996; Smith & Weld 1998).

In non-observable or partially observable domains, belief
states are used to represent ones belief of the possible cur-
rent states. The belief state at time-step n depends on the

initial belief state b0 and on the history of past observations
(if any) and actions (hn = 〈a0, o0, . . . , an−1, on−1〉) since
the initial state.4

In a non-deterministic setting, a non-deterministic5 belief
state b is a set of states. Then, a conformant planning prob-
lem is modeled with M1–M6, where M2 and M5 are rede-
fined as

M2’. an initial belief state b0 ⊆ S, and

M5’. a cost function c(s, a)→ 1.

Given this model, we say that s0, a0, . . . , an−1, sn is a
trajectory generated by actions a0, . . . , an−1 when

C1. s0 ∈ b0,

C2. ak ∈ A(sk) for 0 ≤ k < n, and

C3. sk+1 ∈ F (sk, ak) for 0 ≤ k < n.

The plan a0, . . . , an−1 is a (valid) solution to the model
if each trajectory under a0, . . . , an−1 is such that sn ∈ SG.
A valid plan π is assigned a (worst-case scenario) cost Vπ
equal to the longest trajectory starting in some s0 ∈ b0 and
ending at a goal state.

The plan is optimal if its value is minimal.

Fully-Observable Non-Deterministic Planning
(FOND Planning)
Non-deterministic planning with full observability refers
to deciding whether there exists a conditional plan that
achieves the goal for a model satisfying M1–M6, where M5
is redefined as

M5’. a cost function c(s, a)→ 1.

The main difference from conformant planning is that so-
lutions are policies (partial functions) mapping states into
actions, rather than linear sequences of operators.

Let π : S →
⋃
s∈S A(s) be a policy for model M1–M6,

Sπ the domain of definition of π, and Sπ(s) the set of states
reachable from s using π, then we say that:

a) π is closed with respect to s iff Sπ(s) ⊆ Sπ ,

b) π is proper with respect to s iff a goal state can be
reached using π from all s ∈ Sπ(s),

c) π is acyclic with respect to s iff there is no trajectory
s = s0, π(s0), . . . , si, . . . , sj , . . . , sn with i and j such
that 0 ≤ i < j ≤ n, and si = sj .

d) π is closed (resp. proper or acyclic) with respect to S′ ⊆
S if it is closed (resp. proper or acyclic) with respect to
all s ∈ S′,
A policy π is a valid solution for the non-deterministic

model iff π is closed and proper with respect to the initial
state s0 . A valid policy π is assigned a (worst-case sce-
nario) cost Vπ equal to the longest trajectory starting at s0
and ending at a goal state. For acyclic policies with respect
to s0, the cost Vπ is always well defined, i.e. < +∞.

4We make the assumption that there is no observation prior to
the first action.

5“non-deterministic” is usually omitted when the context is
clear.

A policy π is optimal for model M1–M6 if it is a valid
solution of minimum Vπ value.

The competition will only judge the cost of plans in
non-deterministic domains that admit acyclic solutions,
where optimal solutions always have finite cost. In non-
deterministic domains with cyclic solutions, the solutions
will be judged solely by the time taken to generate a so-
lution.

Fully-Observable Probabilistic Planning
(FOP Planning)
Probabilistic planning problems —here stochastic shortest-
path problems— can be described by models M1–M6 ex-
tended with
M7. transition probabilities 0 < Pa(s′|s), for s′ ∈ F (s, a)

and a ∈ A(s), such that
∑
s′∈F (s,a) Pa(s′|s) = 1.

In this case, solutions are also policies π that map states
into actions. As in the fully-observable non-deterministic
case, definitions (a)–(d) can be used to characterize the prop-
erties of π. A policy π is a valid solution if it is closed and
proper with respect to s0. The cost Vπ assigned to a valid π
is defined as the expected cost incurred by the policy when it
is applied from the initial states, i.e. Vπ is defined as Vπ(s0)
where the function Vπ(·) is the unique solution to the Bell-
man equation giving Vπ(s) for states s 6∈ SG:

Vπ(s) =
∑

a∈A(s)

c(s, a) +
∑

s′∈F (s,π(s))

Pa(s′|s)Vπ(s′),

where Vπ(s) is taken to be zero for s ∈ SG. We can then
take as optimal any policy for a probabilistic model M1–M6
that is a valid policy with minimum Vπ value.

Note that we use a formulation with costs rather than re-
wards in this section to remain in a cost-minimization prob-
lem in all tracks. This doesn’t prevent some costs to be neg-
ative. Planning domains will be adapted so that a large re-
ward (resp. cost) will be associated to each success (resp.
each failure).

Partially-Observable Probabilistic Planning
(POP Planning)
Partially observable probabilistic planning problems can be
described by models M1–M7 with the following changes:
M2’. an initial belief state b0 ∈ Π(S),
M3’. a set SG ⊆ S of goal states recognizable through their

observations,
M4’. sets A(s) of applicable actions for each s ∈ S
and extended with
M8. a set Ω of possible observations and
M9. an observation function O(o|s, a) giving the probabil-

ity to get observation o in state s and given the last action.
In this probabilistic setting, let us define a new type of be-

lief state. A (probabilistic) belief state b is a probability dis-
tribution over states (b(s) = Pr(s)). The current belief state
at time-step n can be written as: bn(·) = Pr(·|b0(·), hn).
For n > 0 and given the last action-observation pair 〈a, o〉 =

〈an−1, on−1〉, the belief state is updated with (for all s′ ∈
S):

bn(s′) =
O(o|s′, a)

∑
s∈S Pr(s

′|s, a)bn−1(s)∑
s′′ O(o|s′′, a)

∑
s∈S Pr(s′′|s, a)bn−1(s)

.

In this case, solutions are policies that map belief states
into actions. With some notational changes, definitions (a)–
(d) can be used to characterize the properties of π. A policy
π is a valid solution if it is closed and proper with respect to
S0. The cost Vπ assigned to a valid π is defined as the ex-
pected cost incurred by the policy when it is applied from the
initial states, i.e. Vπ is defined as Vπ(b0) where the function
Vπ(·) is the unique solution to the Bellman equation giving
Vπ(b) for belief states b 6∈ BG6:

Vπ(b) =
∑

s∈S,a∈A(o)

b(s)

[
c(s, a) +

∑
b′∈B

Pa(b′|s)Vπ(b′)

]
,

where Vπ(b) is taken to be zero for b ∈ BG. We can
then take as optimal any policy for a probabilistic model
M1–M3’-M4’–M10 that is a valid policy with minimum Vπ
value.

Languages
Modeling Languages
For the first three tracks of the IPC (all but the POP one),
there is no need to introduce a new description language
or to significantly modify PPDDL. Thus, the official lan-
guage for the competition is PPDDL with minor extensions
required to model non-deterministic effects. On the other
hand, the original PPDDL specification is too ample for the
competition needs, and thus only a subset of it will be actu-
ally used. The formal definition of PPDDL and its semantics
is given in (Younes & Littman 2004).

Future editions of the IPC should probably aim at using
an extension of PDDL for the POP track as well. This is not
the case this year for two reasons: 1) there is no common
agreement on how to extend PDDL and 2) properly extend-
ing MDPSim would probably take too much time. The re-
sult is that this edition’s POP track the modeling language
that will be used is Cassandra’s file format.

This section describes the extensions and subset of 1)
PPDDL and 2) Cassandra’s file format to be used in the com-
petition as well as the output language.

All Tracks (but POP) For the competition, PPDDL spec-
ifications will be based on the :adl requirement, i.e.
STRIPS with arbitrary conditions and conditional effects,
yet no existential quantification, disjunctions or negative lit-
erals will be permitted in the preconditions of operators nor
in the conditions for conditional effects. However, general
formulae will be allowed in the descriptions of the goals. As
mentioned in the PPDDL manual, all effects will be order
independent and non-conflicting (interfering), see (Younes
& Littman 2004) for details.

6BG is the set of “goal belief states”. But, as goal states are
supposed to be immediately distinguishible through instant obser-
vations, perceiving such a “goal observation” ensures that b(s) = 0
for all s 6∈ SG.

Non-Deterministic Tracks We extend the formal defini-
tion of PPDDL with an additional non-deterministic state-
ment, the counterpart of the probabilistic statement
for non-deterministic models, of the form:

(oneof e1 e2 . . . en)

where the ek’s are PPDDL effects. We also use the require-
ment tag non-deterministic for such domains. The
semantics is that, when executing such effect, one of the ei
is chosen and applied to the current state. The same state-
ments will be used to express the set of initial states, treating
the initial state as the effect of a “dummy” start action.

Partially-Observable Probabilistic Track Contrary to
PDDL, Cassandra’s file format does not make possible to
encode a lot of structure of the planning problem. All
states, actions and observations are enumerated (specified
with numbers or names). For example, here are two possi-
ble definitions of 4 “move” actions:

actions: 4
actions: north south east west

The reward (/cost) and transition function benefit from spe-
cial constructs that allow for a compact encoding of many
domains. You can for example specify that action 5 always
sends you to state 0 by writing:

T: 5 : * : 0 1.0

A full description of the file format along with a grammar
and examples can be found on Anthony (Tony) Cassandra’s
POMDP page: http://pomdp.org/pomdp/

The only constraint we are putting in the competition is
that all problems will be stochastic-shortest path problems.

Appendix A makes a summarized description of the ver-
sions of the PPDDL language to be used in the competition.

Output Languages and Evaluation
For those tasks where an explicit solution plan is required—
here: non-deterministic planning—a language for describ-
ing such plans is required. For other tasks—here: proba-
bilistic planning—plans (policies) are evaluated by Monte-
Carlo simulation using the MDPSim simulator.

Non-Deterministic Tracks In both non-deterministic
tracks, only proper plans are considered as valid. Thus, non-
deterministic planners will be required to output the solu-
tion policy into a file in a suitable representation language
so that this file can be passed on to a plan verifier. This sec-
tion describes such language. Other output languages will be
considered on request, as needed, but the competition staff
may not have the resources to support additional output lan-
guages. If the properness verifier detects an improper policy,
then the planner is disqualified from the corresponding in-
stance, and may at the organizers’ discretion be disqualified
from the entire track.

The competition software will not only check plans for
properness, but also compute their cost. At the end, the plan-
ners are ranked by quality of solution and time to compute.
For this case, we plan to distribute the properness verifier
and cost computation software so competitors can prepare

in advance. The software will read the PPDDL specifica-
tion of the problem and the plan description, and then output
whether the plan is proper and its cost.

In the output language, the file contains three sections sep-
arated by ’%%’:

<n> <atom-list>
%%
<m> <action-list>
%%
<plan>

where <n> is an integer, possibly 0, denoting the size of
<atom-list> which is a space-separated list of atoms
such as ’(on A B)’, <m>, possibly 0, is the size of
<action-list> which is a space-separated list of oper-
ators ’such as (move A C B)’, and <plan> is the repre-
sentation of the plan.

For conformant planning problems, <plan> must be of
the form:

linear <k> <integer-list>

where <k> is the size of <integer-list> which is a
space-separated list of integers in [0,m − 1] each denoting
the action with such index.

For example, the following file denotes the conformant
plan ’(pick B);(putdown B)’:

0
%%
4 (pick A) (putdown A) (pick B) (putdown B)
%%
linear 2 2 3

For fully-observable non-deterministic problems,
<plan> can be either an explicit or a factored represen-
tation of the policy. In the first case, <plan> is of the
form:

policy <k> <map-list>

where <k> is the size of <map-list> which is a space-
separated list of variable-sized elements. The elements of
<map-list> define a partial function mapping states into
actions. Each element is of the form:

<l> <atom-list> <action-index>

where <l> is the size of <atom-list> which is a space-
separated list of integers in [0, n−1], each denoting the atom
with such index, and <action-index> is an integer in
[0,m−1] denoting the action with such index. Such element
defines the mapping from the unique state that makes all and
only all atoms in <atom-list> true into the action with
appropriate index.

For example, the file:
4 (on A B) (clear A) (clear B) (on B A)
%%
4 (pick A) (putdown A) (pick B) (putdown B)
%%
policy 2 2 0 1 0 2 3 2 2

denotes the policy π such that π(s) and π(s′)
are ’(pick A)’ and ’(pick B)’ respectively,
and s = {(on A B), (clear A)} and s′ =
{(on B A), (clear B)}.

Factored representation of policies are supported in
the form of Free Algebraic Decision Diagrams (FADDs)

(Bryant 1992). An FADD is like an Free Binary Decision
Diagram whose leaves are tagged with reals. In our case, we
use FADDs with leaves tagged with integers in [0,m − 1]
denoting actions.

For a factored policy, <plan> is of the form:

factored <k> <fadd-elements>

where <k> is the size <fadd-elements> which is a
space-separated list of variable-sized elements that define
the FADD. Each FADD element is either an internal element
or a leaf element. An internal element is of the form:

I <atom> <left> <right>

where <atom> is an integer in [0, n− 1] denoting the atom
with such index, and <left> and <right> are integers in
[0, k − 1] denoting the FADD elements with such indexes.
The <left> branch corresponds to states when <atom>
is true and the <right> branch to states when <atom> is
false. A FADD leaf is of the form:

L <action>

where <action> is an integer in [0,m]: if <action> is
less than m, it denotes the action with such index, else it de-
notes the undefined action. Undefined actions are needed in
factored representations since not all the valuations of atoms
stand for valid states of the problem and/or since the pol-
icy doesn’t need to be complete in order to be a proper and
closed policy. The FADD elements should be listed in in-
verse topological order of the DAG associated to the FADD.

For example, the file:

4 (on A B) (clear A) (clear B) (on B A)
%%
4 (pick A) (putdown A) (pick B) (putdown B)
%%
factored 3
L 0
L 2
I 1 0 1

denotes a policy π′ such that Sπ′ ⊇ Sπ and that π′ agrees
with π in Sπ , the domain of definition of π, where π′ is the
policy defined above. The corresponding FADD is depicted
in Fig. 1.

(clear A)

(pick A) (pick B)

Figure 1: FADD associated with the factored policy in the
example text.

Appendix B includes a BNF grammar for the output lan-
guage used in non-deterministic tracks.

Probabilistic Track The fully observable probabilistic
track will use the server-based evaluation of the planning
system as was done in IPC-4 and IPC-5. Indeed, the same
client-server architecture (MDPSim) will be used, with few
changes on the protocol and the evaluation function. In this
case, the planner is not required to produce an explicit solu-
tion, instead it connects with a server and sends the actions
to be executed in a dynamic environment. The planner is
evaluated over a number of random ’trials’.

The MDPSim software is available at the following
URL: http://code.google.com/p/mdpsim/
(participants may also want to check
http://www.tempastic.org/mdpsim/). We
make a brief presentation of MDPSim below. More details
are available through the README file and the source
code.

The mdpsim executable is a server used to simulate
a variety of probabilistic planning problems specified in
PPDDL. It is typically started with a list of PPDDL files
as its main argument. In this setting, a planner is viewed
as a client software which —when working on a given
problem— has 45 minutes to:

1. connect to the server (indicating which domain and prob-
lem it wants to work on),

2. search for a policy,

3. interact with the simulator to perform 100 experimental
trials7 and

4. close the connection.

Planning and acting can be interleaved, as a re-planner
would do for example. The interaction is a loop alternating
between:

• the server simulating the domain and sending the current
state to the client, and

• the client making a decision and sending the resulting ac-
tion to the server.

There are 100 such loops —the 100 experimental trials—,
each starting from an initial state and ending in a success
state or after a maximum number of iterations (which en-
sures that all policies are valid).

MDPSim changes once in a while, some bugs being dis-
covered, tracked and fixed, and new features being added.
The main novelty in this year’s version of MDPSim (more
details in the README file) is as follows:

• Up to now, the complete state was sent at each time step,
possibly resulting in a very large set of atoms and fluents.
To make communications less expensive, a new proto-
col has been made available, which only transfers state
changes.

Partially Observable Probabilistic Track This track still
requires a few more entrants before ensuring that it will be
organized.

If it is organized, a client-server software will be provided.
It’s principle should be similar to MDPSim, but on the basis

7The competition makes a move from 30 to 100.

of Cassandra’s POMDP file format. As in MDPSim, each
planner will be evaluated on each problem by performing
100 experiment trials, each trial ending in a goal state or
after a time limit (which ensures that all policies are valid).

Other Software Planners often have preferences for spe-
cific file formats (ADL vs STRIPS) or data structures (ma-
trices vs factored representations). The organizers cannot
develop a variety of software tools, but participants are en-
couraged to share source code (translators, parsers...). The
wiki of the uncertainty part of the IPC should be an appro-
priate place where to store files or URLs.

The non-deterministic plan verifier will also be available
on the wiki. The verifier includes a parser as well. How-
ever, there is no reference planner implemented for non-
deterministic domains.

As a starter, note that MDPSim makes it easy to get
C versions of i) a PPDDL parser, ii) a sample planner
(mdpclient) and iii) a BDD-based planner (mtbdd).

Participating
The first thing to do if you want to partic-
ipate is to contact the organizers by email
ippc-2008-organizers@loria.fr with the
following information:
• Planner name
• Team members and contact information
• Tracks of interests

– Non-Observable Non-Deterministic
– Fully-Observable Non-Deterministic
– Fully-Observable Probabilistic
– Partially-Observable Probabilistic

• Comments/Questions (schedule, language, etc.)
Note: Up to date deadlines and instructions are available on
http://ipc-2008.loria.fr/wiki/.

Planner Description
As in previous editions, participants are required to submit
a 2–3 page description of their planner. The submission will
be in AAAI style. The deadline will be announced at a later
date.

Comments
We are open to offering other tracks upon request, if there is
sufficient interest and sufficient time available. Another pos-
sibility is to leave space for “special entries” (e.g. a planner
running on a parallel machine) even if a direct comparison
with other competitors is not straightforward. Please inform
the organizers of any interests your group has in this or other
directions prior to the registration deadline.

References
Bonet, B., and Givan, B. 2005. 5th international planning
competition: Non-deterministic track - call for participa-
tion. In Not in the Proceedings of the Fifth International
Planning Competition (IPC-5).

Bryant, R. 1992. Symbolic boolean manipulation with or-
dered binary-decision diagrams. ACM Computing Surveys
24(3):293–318.
Goldman, R., and Boddy, M. 1996. Expressive planning
and explicit knowledge. In Proceedings of the Third In-
ternational Conference on Artificial Intelligence Planning
Systems.
Smith, D., and Weld, D. 1998. Conformant graphplan. In
Proceedings of the Fifteenth National Conference on Arti-
ficial Intelligence (AAAI’98), 889–896.
Younes, H. L. S., and Littman, M. L. 2004. PPDDL1.0: An
extension to PDDL for expressing planning domains with
probabilistic effects. Technical Report CMU-CS-04-167,
Carnegie Mellon University.

Appendix A: (No) BNF for PPDDL
Specifying a complete BNF for the versions of PPDDL that
will be used during the competition would be a bit lengthy.
A complete BNF for the original PPDDL is available in
(Younes & Littman 2004). The following subsections de-
scribe the particular versions of PPDDL used in the various
tracks (but POP) through changes to the original BNF.

Most of the information below should have already been
given earlier in this document.

All Tracks (but POP)
Overview:

Requirements: :adl and :rewards will be require-
ments common to all tracks. As a reminder, :adl is
equivalent to:
:strips + :typing + :equality
+ :negative-preconditions
+ :disjunctive-preconditions
+ :quantified-preconditions
+ :conditional-effects

About rewards: Rewards will be the only fluents, the
goal being always to maximize the accumulated rewards
(whatever the terminal state being reached: the reward
will tell if this is a success or failure state).

As already written, the :adl requirement will be
adopted, i.e. STRIPS with arbitrary conditions and condi-
tional effects, yet no existential quantification, disjunctions
or negative literals will be permitted in the preconditions of
operators nor in the conditions for conditional effects. How-
ever, general formulae will be allowed in the descriptions of
the goals. As mentioned in the PPDDL manual, all effects
will be order independent and non-conflicting (interfering).
Additionally, in order to ease the development of parsers
for PPDDL, all operator schemata will be such that non-
determinism inside conditional effects and/or nested condi-
tional effects will not be allowed.

Both Non-Deterministic Tracks
Requirements: :non-deterministic is a new re-

quirement specifying that non-deterministic effects may
happen.

Actions: The probabilistic statement from PPDDL
is replaced by oneof (followed by a list of 〈a-init-el〉
statements).

Non-Observable Non-Deterministic Track
Requirements: :non-observable is a new require-

ment specifying that no variable is observable. In such
a setting, the reward is also non observable.

Appendix B: BNF for Output Language
〈file〉 ::= 〈atoms〉 %% 〈actions〉 %% 〈plan〉
〈atoms〉 ::= 〈INT〉 〈ATOM〉*

〈actions〉 ::= 〈INT〉 〈ACTION〉*

〈plan〉 ::= 〈linear〉 | 〈policy〉 | 〈factored〉
〈linear〉 ::= linear 〈INT〉 〈INT〉*

〈policy〉 ::= policy 〈INT〉 〈map〉*

〈map〉 ::= 〈INT〉 〈INT〉* 〈INT〉
〈factored〉 ::= factored 〈INT〉 〈fadd〉*

〈fadd〉 ::= 〈internal〉 | 〈leaf〉
〈internal〉 ::= I 〈INT〉 〈INT〉 〈INT〉
〈leaf〉 ::= L 〈INT〉

