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ABSTRACT
Real–time transcription of drum signals is an emerging area

of research. Several applications for music education and

commercial use can utilize such algorithms and allow for an

easy-to-use way to interpret drum signals in real–time. The

paper at hand proposes a system that performs real–time

drums transcription. The proposed system consists of two

subsystems, the real–time separation and the training mod-

ule. The real–time separation module is based on the use

of characteristic filters, combining simple bandpass filter-

ing and amplification, a fact that diminishes computational

cost and potentially renders it suitable for implementation

on hardware. The training module employs Differential Evo-
lution to create generations of characteristic filter combina-

tions that optimally separate a set of given drum sources.

Initial experimental results indicate that the proposed sys-

tem is relatively accurate rendering it convenient for real-

time hardware implementations targeted to a wide range of

applications.

Categories and Subject Descriptors
J.7 [Computer Applications]: Computers in other Sys-

tems—Real time; I.2.8 [Computing Methodologies]: Ar-

tificial IntelligenceProblem Solving, Control Methods and

Search[Heuristic Methods]
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1. INTRODUCTION
Real–time audio analysis is becoming a subject of great

scientific interest. The increasing computational power that

is available by small electronic and portable devices allows

the encapsulation of sophisticated algorithms to commercial

and educational applications. The paper at hand introduces

a novel approach for performing real–time transcription of a

polyphonic single–channel drum signals. The novelty of the

proposed approach is the simplicity of its architecture, while

high-efficiency is achieved based on a robust training proce-

dure. The transcription strategy proposed was implemented

in terms of two submodules: the real–time separation and

the training module. The first one utilizes a combination

of bandpass filters and amplifiers that we hereby term as

characteristic filters. These filters are trained to capture the

characteristic frequencies produced by the onset of each per-

cussive element of a specific drum set. Thus, the intensity of

the signal that passes through each characteristic filter in-

dicates the onsets of the respective percussive element. The

training process is realized through a) the evolution of the

characteristic filters with the Differential Evolution (DE) al-

gorithm and b) fitness evaluation measures for determining

each filter’s ability to correctly detect the onset of the re-

spective drum element.

Although several works have been already presented for

the transcription of recorded drum signals, until very re-

cently, the real–time potential of this task remained unex-

plored. Among the non–real–time methodologies, the early

works of Schloss [12] and Blimes [3] incorporated the tran-

scription of audio signals with one percussive element be-
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ing active at a time. The work of Goto and Muraoka [7]

(extended in [14]) introduced the transcription of simulta-

neously played drum elements by utilizing template match-

ing. Several other methodologies are based on preprocessing

a recorded file for onset detection [8]. These methodolo-

gies utilize sophisticated pattern recognition techniques like

Hidden Markov Models and Support Vector Machines [6],

N-grams and Gaussian Mixture Models [10], Prior Subspace

Analysis and Independent Component Analysis [5], Princi-

pal Component Analysis and Clustering [4] and Non-Negative

Matrix Factorization [9] among others. The real–time per-

spective of drums transcription has been examined in [1],

where each drum beat is identified with Probabilistic Spec-

tral Clustering Based on the Itakura-Saito Divergence.

The rest of the paper is organized as follows. Section 2

presents the proposed transcription technique by describing

the two modules that comprise its implementation: the real–

time separation and the training modules. The first one is

analyzed in Section 2.1. A detailed analysis of the train-

ing module is provided in Section 2.2, combined with the

analytic description of the required parameter representa-

tion, the continuous transformation of the training process

and the segregation of the waveforms to onset and no–onset

parts. Experimental results on using 3 drum signals among

12 different drum sets are provided in Section 3, which in-

dicate that the proposed approach is promising and suit-

able for real-time implementation on reduced-power hard-

ware platforms. Finally, Section 4 concludes the work and

defines some points for future work.

2. THE PROPOSEDMETHODOLOGY
The presented approach receives a single–channel signal

of drums and provides real–time indications about the on-

set of each percussion element. In this way, it permits the

real–time transcription of drums performances using a sin-

gle microphone as an input device. The architecture of the

system illustrated in Figure 1 is rather simple, avoiding the

hazard of software–oriented latency dependencies deriving

from complicated algorithms that demand high computa-

tional cost and advanced signal processing techniques. Ad-

ditionally, the complete system can be easily implemented in

hardware, provided that the training process is accomplished

through a typical computer. As mentioned previously, the

proposed technique implementation includes two modules,

both of which are for the purposes of this work developed in

software: the training and the real–time separation module.

These modules are described in detail in the following two

Sections.

2.1 The real–time separation module
We have built and evaluated our system in a set of test–

tube cases (sampled and processed drum recordings), with

the utilization of 3 drum elements, the kick (K), the snare

(S) and the hi-hat (H). The module under discussion uti-

lizes correspondingly 3 filter–amplifier pairs that are able

to isolate characteristic frequency bands of the respective

percussive elements. As Figure 1 demonstrates, the poly-

phonic single–channel signal that is captured by the micro-

phone is processed by the filter–amplifier pairs, a procedure

that we hereby term characteristic filtering, with each filter–

amplifier pair being called a characteristic filter.
Each characteristic filter utilizes a bandpass filter with fre-

quency response as the one depicted in Figure 2. The results
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Figure 1: Block diagram of the proposed methodol-
ogy. If the LK, LS and LH levels exceed a predefined
threshold, then the respective drum element is con-
sidered active.
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Figure 2: The frequency response of a bandpass fil-
ter and the parameters that define its characteris-
tics.

presented in this work are implemented using the elliptic IIR

filters of MATLAB. These filters are defined by the following

four parameters:

1. s1I : the edge of the stop band,

2. p1
I
: the edge of the pass band,

3. s2I : closing edge of the pass band and

4. p2
I
: edge of the second stop band,

where the index I ∈ {K, S, H} characterizes the filter val-

ues for the respective percussive elements. Furthermore, we

denote by vI , I ∈ {K, S, H}, the amount of amplification

for each filtered signal. Given this formulation of the band-

pass filters and the amplification values, the problem can

be stated as follows: find the proper s1I , p1
I
, p2

I
, s2I

and vI values for I ∈ {K, S, H} so that maximum separabil-
ity between K, S and H is accomplished with the respective

filters.

The term separability is used to convey that the respec-

tive characteristic filters suppress the frequency bands that

result in cross–talk between the percussive elements and at

the same time highlight the exclusive frequency band of each

active drum part. With the terminology provided so far, two

aspects need to be discussed for the construction of the train-

ing module: parameter tuning and separability formulation.
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2.2 The training module
The training module adjusts the characteristic filter pa-

rameters (frequency borders and amplification levels) for

each percussive element. The training is based on a single

recorded sample by each element provided by the drummer,

i.e. in our case a kick (K), a snare (S) and a hi-hat (H). These

sample clips are used as the preset sound patterns for each

element. They are fed into the system and are handled by

the training module with a training methodology described

in the following paragraphs.

2.2.1 Parameter Encoding and Filter Evolution
As mentioned in the previous Section, the bandpass fil-

ters are described by 4 values, s1I , p1I , p2I and s2I for

I ∈ {K, S, H}, for which we obviously observe that s1I <
p1I < p2I < s2I . To reduce the number of parameters

and the consequent computational and algorithmic cost de-

rived by the aforementioned inequality checks, we encode

these 4 parameters using 3 variables: αI , ρI and τI , for

I ∈ {K, S, H}. This decoding is accomplished as follows:

s1I = αI

p1I = αI + ρI

p2I = αI + ρI + τI

s2I = αI + 2 ρI + τI

With this simplification we consider only symmetric band-

pass filters, meaning that s1I − p1I = p2I − s2I . Thus, a

characteristic filter is defined with four variables (αI , ρI , τI ,
vI), with the latter variable indicating the amplification

value.

Since we can make no prior assumptions about the prop-

erties of each characteristic filter, we utilize a metaheuristic
search method to tune the 4-tuple of each filter. The search

space for finding three optimal characteristic filters is thus

a 12-dimensional space. The search method that we use is

the Differential Evolution (DE) approach [13, 11]. DE is

initialized with a set of random guesses about the optimal

filters by producing an“initial population”of 12-dimensional

vectors, also called individuals, that define the properties of

the three filters. Then it iteratively provides optimized so-

lutions to the problem at hand by improving the candidate

solutions in each iteration, also called generation, using the

“crossover” operator which combines the coordinates of in-

dividuals to produce new ones. With a selection procedure,

the individuals that provide an improved solution to the

problem propagate to the next generation. This improve-

ment is measured with a quality or fitness function, the op-

timal points of which describe a satisfactory solution to the

given problem. Using the aforementioned formulation, the

DE algorithm searches for the appropriate 4-tuples that de-

scribe the 3 characteristic filters which designate the charac-

teristic frequencies of each percussion element. To this end,

the aptness of each characteristic filter combination needs

to be evaluated.

2.2.2 The objective function
For the formulation of the proper fitness function, we pre-

viously have to define as strictly as possible the desired at-

tributes of the system. To this end, the system should dis-

tinguish:

1. the onsets of separate percussive elements,

Table 1: All the possible onset scenarios that the
system may encounter.

onset combination

scenario K S H

1 1 0 0

2 0 1 0

3 0 0 1

4 1 0 1

5 1 1 0

6 0 1 1

7 1 1 1

8 0 0 0

2. the onsets of simultaneously played elements in all pos-
sible combinations and

3. the parts of silence or no-onset regions.

Therefore, considering the fact that we have 3 percussive

elements, we have 8 possible scenarios, as demonstrated in

Table 1. Specifically, scenarios 1, 2 and 3 describe the single

onset events, where a single drum element is played. Sce-

narios 4, 5 and 6 incorporate simultaneous activation of two

elements, while scenario 7 describes the simultaneous sound-

ing of all three considered elements. The utilization of the

8th scenario, the no-onset scenario, is an auxiliary condition

that improves the accuracy of the system towards locating

the “head” of the drum hit and discarding the “tail” (the

“head” and “tail” terminology is borrowed by [1]), improving

the detection accuracy of each percussive elements’ onset.

Given the 8 scenarios, the training of the system can be

realized with the utilization of a template sound clip for each

drum element provided by the drummer. Having the sepa-

rate sources of each percussive element we are able to con-

struct any scenario by mixing–down the respective element

waveforms. Specifically, since we are interested in captur-

ing only the head of the waveform, we split each element’s

clip in two parts: the head and the tail. An example of

this splitting is depicted in Figure 3. The scenarios that in-

corporate element activations (all scenarios except the last

one), utilize only head part of the participating elements.

The last scenario on the other hand, utilizes the tail of the

mixed–down signal of all 3 template clips.

The training module creates all the combinations dictated

by the above scenarios. Next, we describe the training pro-

cess with an example on a specific scenario. Later, we will

provide an analysis on the no-onset training scenario. Sup-

pose that we are currently constructing and testing the 4th

scenario, with binary representation {1, 0, 1} which indicates

that only the K and H elements are active. We mix–down

the head parts of the K and H template clips, provided in

the beginning of the training process by the drummer, and

pass the mixed–down signal through all three characteris-

tic filters. We then measure the amplitude responses or the

activity of these filters. If a characteristic filter’s activity ex-

ceeds a predefined threshold, then the respective percussive

element is considered active, else it is considered inactive.
When a filter is active, we conclude that the respective per-

cussive element is played. The training for the 4th scenario

would have a successful conclusion if the characteristic filters

of K and H were active (their levels are above threshold) and

the S characteristic filter inactive (its level is below thresh-
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(a) Hihat signal

(b) Snare signal

(c) Kick signal

(d) The summed signals

Figure 3: Darker parts demonstrate the waveform
parts that are used for the training scenarios. The
lighter parts are discarded.

old).
However, there are two problems with this binary train-

ing approach. Firstly, it afflicts the training itself, since the
search space abounds in large plateaus of local minima that
provide unsatisfactory solutions. Secondly, even if an area
with a satisfactory local minimizer is located, the solution
it provides would most likely be a solution on the bound-
ary of acceptable. Thus the system would be very sensitive
to noise, i.e. small modification of the input signal (like dy-
namic variations of a drum hit) would provide misleading
results during real–time separation.

Both drawbacks are avoided if we consider a continuous
analogous of the aforementioned binary training scheme.
The continuous scheme rewards the filter activities that con-
verge to the correct binary solution and at the same time pe-
nalizes opposite answers in a continuous manner. Consider
a characteristic filter activity response, r, and a threshold,
t, above which this response is considered as active. The
continuous analogous of the thresholding states is provided
by normalizing the response according to its distance from
the threshold within [0, 1], by

c =
1
2
− 1

2
arctan(λ(t− r)), (1)

where λ is a smoothing coefficient that controls the conver-
gence rate to the binary states. The result of the transfor-
mation of Equation 1 is illustrated in Figure 4.

The continuous approach of training tackles the two afore-
mentioned problems caused by the binary approach. Firstly,
the flat fitness plateaus in the 12–dimensional search space
become curved. This facilitates the training process by of-
fering continuous optimization flow. From Figure 4 it is ob-

threshold
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amplitude
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ti
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ty

 

 
inactive
active

Figure 4: The sigmoid function that was utilized for
the continuous transformation of the discrete objec-
tive function.
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Figure 5: The binary target scenarios (left) and the
continuous filter amplitude responses of a training
trial with error 0.7010.

vious that the farthest an activity response moves from the
threshold value, the more it approaches the desired activa-
tion value (0 or 1). This resolves the second problem, since
the borderline solutions (solutions close to the threshold) do
not have high fitness rate. On the contrary, activities with
considerably higher value than the threshold are closer to
one and activities with lower value to zero. Thus, extreme
activity differences are rewarded, leading to more robust so-
lutions. Figure 5 illustrates the binary target values (left)
and the normalized responses (right) of a trained system.
The training error is measured as the Euclidean distance of
the two matrices (square root of the squared differences of
the respective matrix elements), which is the fitness evalu-
ation of the 3 characteristic filters combination among all
scenarios.

An important aspect of the training procedure is the sce-
nario enumerated as number 8, the no-onset scenario. If
we train the system without the no-onset scenario, then the
optimal filters that are obtained by the training process do
not detect the onset efficiently. Specifically, on the one hand
they capture frequency regions that are characteristic for
each drum element, but on the other hand these regions are
not characteristic about their onset. For example, the char-
acteristic filter of the snare or the kick drum captured their
harmonic frequencies and thus remained active several mil-
liseconds after their onset, as did the respective harmonic
frequencies. The no-onset scenario excludes the filters that
preserve the “harmonic tails”, keeping only the ones that
are characteristic about the head–onset part. The clip that
is utilized for the no-onset scenario is the tail part of the
mixed–down audio of all preset clips, as illustrated in Fig-
ure 3 (d). The mixed–down audio is filtered before the tail
part is cut off, in order to maintain the remnants of the
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filtered impulsive part.

3. EXPERIMENTAL RESULTS
To assess the accuracy of the presented system we measure

the responses among 12 different drum sets in 2 rhythmic
sequences. In order to have an accurate representation of the
ground truth rhythms, they are recorded through MIDI files.
These MIDI files trigger sampled percussion elements that
correspond to a kick, a snare and a hi-hat, combined to form
12 different drum sets. Both rhythmic sequences through
which we tested the system were recorded in a tempo of 100
beats per minute. They are 1 measure long, but they differ
in their dynamics. Rhythm1 has no dynamic variations, while
Rhythm2 has great dynamic variations expressed with MIDI
velocity and more onsets. The MIDI velocity variations do
not only affect the intensity level of the each drum hit, but
also alter the sound characteristics. This is accomplished by
activating separate drum samples of the same element with
different drum hit dynamics. Furthermore, we assess the
accuracy of each percussive element separately, in order to
obtain indications about the limitations and improvement
potential of the system. Therefore, we could say that we
measure the system’s ability to locate onsets of separate
drum elements.

The experimental setup is focused on assessing the ac-
curacy on onset detections, given a time error tolerance.
Specifically, we measure the precision, the recall and their
combination into the f–measure, for onset detections of sep-
arate drum elements that fall into certain time windows.
Precision describes the percentage of the correctly detected
onsets among all the identified onsets. Recall describes the
correctly detected onsets, among the annotated“ground truth”
onsets. Strictly speaking, if L is the set of onsets that are
correctly allocated by the system and C is the set of the
annotated onsets, then precision is computed by p = |L∩C|

|L|

and recall by r = |L∩C|
|C| , where |X| denotes the number of

elements in a set X. High values of precision informs us
that the detected onsets are mostly correct, but we can-
not not be sure about how many onsets remain to be de-
tected. This lack of detecting enough onsets is monitored
with recall. Thereby, a good result is described by com-
bined high values of both precision and recall. This combi-
nation is provided by the f–measure [2] and is computed as
f–measure = 2pr/(p+ r).

A drum element onset is considered correct if it is de-
tected within a specified time interval. Following this kind
of analysis, we admit that a percussive element of the ground
truth rhythmic sequence may not have two onsets into the
same time interval window. Moreover, our system in the
present form is not capable of defining the intensity of an
onset, although this could be realized with certain modifica-
tions (which is discussed in Section 4). The above comments
indicate that there is no need to include an experimental
procedure with numerous ground truth rhythmic sequences.
On the other hand, it is important to assess the system’s
accuracy in several time windows of error tolerance, on two
rhythms with different intensity characteristics. Thus, we
are able to interpret latency issues imposed by the algorithm
per se and the system’s sensitivity in a variety of playing
styles in terms of dynamics. The latency of the proposed
system is not “software–oriented”, in a sense that it is not
caused by increased computational cost of the algorithmic

parts. The latency has to do with the areas of the drum
signals that the bandpass filters are able to isolate. Specifi-
cally, each filter would work with no latency if it could isolate
the signal of a drum element at the exact time of its onset.
However, there is great spectral overlapping between differ-
ent percussive onset impulses, a fact that forces the filters to
adapt and isolate the “tail” parts, several milliseconds after
the actual onset occurs.

The training module was allowed to evolve 50 individuals
of filter combinations as described in Section 2.2.1 for 100
generations for each drum set’s preset clips. The charac-
teristic filter values of the initial population had bandpass
frequency borders within the audible range, and the ampli-
fication values were allowed to have a range between 0 and
100. Table 2 demonstrates the error and the characteristic
filter values of the best individual for each drum set. Since
the characteristic filters are symmetric, as stated in Sec-
tion 2.2.1, they are described in Table 2 with their center
frequency fc = (s1 + s2)/2, their range Q = (q1 + q2)/2,
where q1 = (s1+ p1)/2 and q2 = (s2+ p2)/2, and their am-
plification value v. These values are also depicted with box
plots in Figure 6, where it is clear that the optimal character-
istic filter values are grouped in distinguishable distributions
per drum element.

The training module created the characteristic filter com-
binations for each drum set. Using these filter combinations,
we have applied the real–time separation framework on the
two rhythms recorded by the respective drum sets. Figure 7
illustrates the spectrograms of Rhythm1 played by a certain
drum set and the signal that was produced by the charac-
teristic filters of this drum set. It is clear that the filtered
signals isolate characteristic frequencies of the respective el-
ement’s onset. Rhythm1 is also depicted in binary form in
Figure 7 (a), while in Figure 7 (b) and (c) we see the ac-
tivity level of each filter and the resulting binary rhythm
respectively.

The mean precision, recall and f–measure values among
all drum sets, for both rhythms for each percussive element
are demonstrated in Table 3. In a 30ms time window the
results are not satisfactory, but for a 50ms tolerance win-
dow they are improved impressively. For both rhythmic se-
quences the precision reaches perfection, but the recall for
Rhythm2, remains between 0.8 and 0.9. Perfect precision
means that the detected onsets are actually correctly de-
tected. Lower recall means that a percentage of the onsets
remains undetected. The hi-hat element accomplishes max-
imum accuracy in a smaller time window, compared to the
rest. The kick drum comes second in terms of detectability
accuracy, while the snare seems the hardest to locate within
a window smaller than 100ms. However, a window size of
50ms to 70ms provides satisfactory results.

To examine the contribution of each drum set to the re-
sults discussed so far we present the f–measure among all
the percussive elements in each drum set. These results are
demonstrated in Table 4 for two error tolerance time win-
dows, 30ms and 50ms. In the time window of 30ms, that
produces the worst results, the accuracy depends on the
drum set. The drum set number 6 for example achieves
relatively high accuracy, on contrast to the drum set num-
ber 7. Additionally, the majority of the drum sets present an
overall accuracy around 0.7. Another interesting, although
expected, result is the relation of the accuracy among differ-
ent drum sets with the error values during training by the
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Table 2: The error and the characteristic filter values for the best individual of each drum set.
K S H

errors fc Q v fc Q v fc Q v
1 0.49 61.26 1.68 2.69 897.08 1.27 11.07 14854.97 0.16 76.06

2 0.59 50.89 1.93 2.60 1277.61 1.08 33.30 14514.17 0.23 88.26

3 0.42 58.23 1.74 3.41 1452.29 0.78 18.21 15887.40 0.09 95.93

4 0.52 80.77 1.29 6.48 1476.09 1.04 21.94 16338.80 0.17 52.07

5 0.55 134.63 1.22 10.00 1729.53 0.93 67.50 12354.97 0.23 28.08

6 0.33 120.63 1.39 14.47 2534.41 0.95 13.12 10293.96 0.23 85.80

7 0.72 109.53 1.06 9.72 1531.13 0.73 40.34 10399.69 0.34 97.45

8 0.60 48.12 1.79 2.61 2353.63 0.81 23.67 13364.87 0.17 81.65

9 0.44 52.77 1.86 3.34 1842.81 0.89 26.82 12470.65 0.08 41.18

10 0.64 114.40 1.08 5.41 1134.96 0.62 45.24 13141.60 0.20 82.34

11 0.52 40.85 1.97 1.56 2408.93 0.85 28.79 14003.08 0.22 42.87

12 0.59 120.09 1.14 9.96 732.52 1.04 24.69 15736.22 0.13 96.54
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Figure 6: Box plots of the best characteristic filter values for the respective drum elements, as demonstrated
in Table 2.

Table 3: The mean precision, recall and f–measure values for different error tolerance time windows, among
all drum sets for the two rhythms, for each percussive element. Numbers in boldface typesetting indicate
the smallest window that the maximum accuracy is accomplished.

Precision
Rhythm1 Rhythm2

30ms 50ms 70ms 100ms 30ms 50ms 70ms 100ms

H 0.9375 1.0000 1.0000 1.0000 0.9375 1.0000 1.0000 1.0000

S 0.6652 0.8671 0.9833 1.0000 0.6652 0.8671 0.9833 1.0000
K 0.3292 0.9375 1.0000 1.0000 0.3292 0.9375 1.0000 1.0000

Recall
Rhythm1 Rhythm2

30ms 50ms 70ms 10ms 30ms 50ms 70ms 10ms

H 0.9479 0.9792 0.9792 0.9792 0.8426 0.8704 0.8704 0.8704

S 0.9375 1.0000 1.0000 1.0000 0.7500 0.8000 0.8000 0.8000

K 0.3542 0.9375 1.0000 1.0000 0.2833 0.7500 0.8000 0.8000

F–measure
Rhythm1 Rhythm2

30ms 50ms 70ms 100ms 30ms 50ms 70ms 100ms

H 0.9378 0.9889 0.9889 0.9889 0.8828 0.9301 0.9301 0.9301

S 0.7610 0.9162 0.9907 1.0000 0.6890 0.8206 0.8815 0.8889
K 0.3380 0.9375 1.0000 1.0000 0.3016 0.8333 0.8889 0.8889
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(a) The drum signal spectrogram

(b) The H characteristic filter spectrogram

(c) The S characteristic filter spectrogram

(d) The K characteristic filter spectrogram

Figure 7: The spectrogram of the single–channel
drum signal and the derived spectrograms after ap-
plying the characteristic filters.

H

S

K

(a) The ground-truth rhythm

H

S

K

(b) Amplitude activation of the respective filters

H

S

K

(c) The extracted rhythm

Figure 8: (a) The ground-truth rhythm. (b) The
activity levels from each filter and (c) the extracted
binary rhythm.

Table 4: Mean f–measure among all percussive el-
ements for each rhythm, with error tolerance of 30
and 50ms. The final raw shows the correlation of the
respective line with the training error demonstrated
in Table 2.

30ms 50ms
Rhythm Rhythm1 Rhythm2 Rhythm1 Rhythm2

1 0.7556 0.6905 0.9778 0.8843
2 0.7000 0.6449 0.9111 0.8304
3 0.7500 0.6841 1.0000 0.9063
4 0.7037 0.6471 1.0000 0.9063
5 0.7667 0.7043 1.0000 0.9063
6 0.9167 0.8322 1.0000 0.9063
7 0.4343 0.4080 0.8258 0.7582
8 0.7424 0.6841 1.0000 0.9063
9 0.7083 0.6449 1.0000 0.9063
10 0.5333 0.4955 0.9167 0.8322
11 0.5556 0.5189 0.8500 0.7784
12 0.5801 0.5391 0.8889 0.8151

error corr. -0.7957 -0.7871 -0.6457 -0.6481

respective drum set. The linear correlation of the training
errors in Table 2 with the drum set accuracy assessment in
Table 4 is strong negative, which means that the smaller the
error during training, the higher the accomplished precision
during real–time separation.

4. CONCLUSIONS AND FUTURE ENHAN-
CEMENTS

This paper presents a novel method for real–time drums
transcription, through a single–channel polyphonic drums
signal, based on a combination of bandpass filtering and
amplification. These filter–amplifier pairs are called charac-
teristic filters of each percussive element. Each character-
istic filter allows a signal of considerable energy to pass if
the respective drum element is played. The simplicity of the
system’s architecture allows efficient real–time transcription
with minimal cost in terms of computational power. The
system is trained with the Differential Evolution (DE) algo-
rithm, which optimizes the filtering and amplitude param-
eters based on the percussive elements provided as preset
templates for the specific drum set. During the training
stage, filters that isolate the head part of the wave are re-
warded while filters that highlight the tail part are penalized.
This training procedure evolves characteristic filters that are
sensitive on detecting the onset part of the respective drum
element. Experimental results with multiple drum sets indi-
cate that the proposed system is fairly accurate and detects
a great percentage of the onsets of each percussive element
accurately.

Future work would provide enhancements in both the train-
ing and the real–time module. The training process would
be improved if the population was initialized using some
statistical information about the preset template drum ele-
ments. At the present form of the system, no a priori as-
sumptions are made for the initial un–evolved characteristic
filters, which makes training slower and less robust. On
the other hand, the system would be also able to detect
the intensity of each onset and not only its presence. This
modification would require training on non–binary scenar-
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ios, that incorporate information about the intensity of each
percussive element. The system should also be tested with
single microphone drum recordings in several rooms in order
to examine its capabilities n real–world circumstances. Fi-
nally, the system should be tested on detecting onsets from
non–drum percussive sounds.
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