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Online Learning with Kernels
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Abstract—Kernel based algorithms such as support vector with the number of observations. Depending on the loss func-
machines have achieved considerable success in various problemsjon used [4], this will happen in practice in most cases. Thus
in the batch setting where all of the training data is available in the complexity of the estimator used in prediction increases

advance. Support vector machines combine the so-called kernell. | i . tricted situati thi b
trick with the large margin idea. There has been little use of these inearly over time (in some restricted situations this can be

methods in an online setting suitable for real-time applications. reduced to logarithmical cost [5] or constant cost [6], yet with
In this paper we consider online learming in a Reproducing linear storage requirements). Clearly this is not satisfactory for
Kernel Hilbert Space. By considering classical stochastic gradient genuine online applications.
descent within a feature space, and the use of some straight-~ ;g the training time of batch and/or incremental update
forward tricks, we develop simple and computationally efficient . - . . .
algorithms for a wide range of problems such as classification, algorithms t.yplcally Increases SuPerl'nearly_W'th the number
regression, and novelty detection. of observations. Incremental update algorithms [7] attempt
In addition to allowing the exploitation of the kernel trick to overcome this problem but cannot guarantee a bound on
in an online setting, we examine the value of large margins for the number of operations required per iteration. Projection
classification in the online setting with a drifting target. We derive ethods [8] on the other hand, will ensure a limited number
worst case loss bounds and moreover we show the convergence o¥n . . ’ .
the hypothesis to the minimiser of the regularised risk functional. of upd_ates per iteration and also keep the Comple)(,'ty of
We present some experimental results that support the theory the estimator constant. However they can be computationally
as well as illustrating the power of the new algorithms for online expensive since they require a matrix multiplication at each
novelty detection. step. The size of the matrix is given by the number of kernel
Index Terms— Reproducing Kernel Hilbert Spaces, Stochastic functions required at each step and could typically be in the
Gradient Descent, Large Margin Classifiers, Tracking, Novelty hundreds in the smallest dimension.
Detection, Condition Monitoring, Classification, Regression. In solving the above challenges it is highly desirable to
be able to theoretically prove convergence rates and error
bounds for any algorithms developed. One would want to be
able to relate the performance of an online algorithm after
ERNEL methods have proven to be successful in maggeingm observations to the quality that would be achieved
batch settings (Support Vector Machines, Gaussian Pin-a batch setting. It is also desirable to be able to provide
cesses, Regularization Networks) [1]. Whilst one can appipme theoretical insight in drifting target scenarios when a
batch algorithms by utilising a sliding buffer [2], it wouldcomparison with a batch algorithm makes little sense.
be much better to have a truely online algorithm. However In this paper we present algorithms which deal effectively
the extension of kernel methods to online settings where tagth these three challenges as well as satisfying the above
data arrives sequentially has proven to provide some hithedesiderata.
unsolved challenges.

I. INTRODUCTION

B. Related Work

Recently several algorithms have been proposed [5], [9]-
First, the standard online settings for linear methods are [thl] which perform perceptron-like updates for classification
danger of overfitting when applied to an estimator using & each step. Some algorithms work only in the noise free
Hilbert Space method because of the high dimensionality odise, others not for moving targets, and others assume an upper
the weight vectors. This can be handled by use of regularigmund on the complexity of the estimators. In the present paper
tion (or exploitation of prior probabilities in function space ifwe present a simple method which allows the use of kernel
the Gaussian Process view is taken). estimators for classification, regression, and novelty detection
Second, the functional representation of classical kerrasdd which copes with a large number of kernel functions
based estimators becomes more complex as the numbegeffitiently.
observations increases. The Representer Theorem [3] implie¥he stochastic gradient descent algorithms we propose (col-
that the number of kernel functions can grow up to linearlgctively called NorRMA) differ from the tracking algorithms
of Warmuth, Herbster and Auer [5], [12], [13] insofar as we
Manuscript received July 1, 2003; revised July 1, 2010. This work wagg not require that the norm of the hypothesis be bounded
supported by the Australian Research Council. f hand. M . tantl licitly deal with th
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A. Challenges for online kernel algorithms
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function), our algorithm is most similar to Gentile’sLMA 1) k has the reproducing property
[9] and we obtain similar loss bounds to those obtained for k() = f(2) for = € X o
ALMA. One of the advantages of a large margin classifier is VAT IR T

that it allows us to track changing distributions efficiently [14]. 2) H is the closure of the span of al(z,-) with z € X.

In the context of Gaussian Processes (an alternative theofgtother words, allf € H are linear combinations of kernel
ical framework that can be used to develop kernel based alggnctions_ The inner produ(zt7 '>H induces a norm Oﬁ‘ cH
rithms), related work was presented in [8]. The key differengg the ysual way{| || = (f, f>H1/2_ An interesting special
to our algorithm is that Csatand Opper repeatedly project on.aqe ist¥ — R™ with k(z,y) = (z,y) (the normal dot-product
to a low-dimensional subspace, which can be computationailll‘an) which corresponds to learning linear functionsRifi,

costly requiring as it does a matrix multiplication. ~ but much more varied function classes can be learned by using
Mesterharm [15] has considered tracking arbitrary linegjitferent kernels.

classifiers with a variant of Winnow [16], and Bousquet and
Warml_Jth [_l7]_stu_d|ed tracking of a small set of experts VI& Risk Functionals
posterior distributions. . )

Finally we note that whilst not originally developed as an !N batch leamingitis typically assumed that all the exam-
online algorithm, the Sequential Minimal Optimization (SMOP!€S are immediately available and are drawn independently
algorithm [18] is closely related, especially when there j€0mM some distribution over X' x ). One natural measure

no bias term in which case [19] it effectively becomes th@f quality for f in that case is thexpected risk

Perceptron algorithm. R[f, P| := Eguyy~pll(f(z),y))- )
_ Since P is unknown, givenS drawn from P™, a standard
C. Outline of the Paper approach [1] is to instead minimise teenpirical risk
In Section Il we develop the idea of stochastic gradient 1
descent in Hilbert Space. This provides the basis of our Remplf, S] := Ezl(f(xt%yt). (3
algorithms. Subsequently we show how the general form of t=1

the algorithm can be applied to problems of classificatiopiowever, minimisingR...,[f] may lead to overfitting (com-
novelty detection, and regression (Section Ill). Next we eptex functions that fit well on the training data but do not
tablish mistake bounds with moving targets for linear larggeneralise to unseen data). One way to avoid this is to penalise
margin classification algorithms in Section IV. A proof thatomplex functions by instead minimising thegularised risk
the stochastic gradient algorithm converges to the minimum A\
of the regularised risk functional is given in Section V, and Ricg|f, S] := Rreg 2 [f, 5] := Remp|f] + §||f||$1 4)
we conclude with experimental results and a discussion in
Sections VI and VII. where A > 0 and ||f||lx = ([, f>%2 does indeed measure
the complexity of f in a sensible way [1]. The constant
needs to be chosen appropriately for each problem.hs
parameters (for examplg — see later), we Writ@cm, ,[f, 5]
We consider a problem of function estimation, where thend R, » ,[f, S].
goal is to learn a mapping: X — R based on a sequence Since we are interested in online algorithms, which deal
S=((z1,91),---+ (Tm>ym)) Of exampleg(z;, ;) € X x Y. with one example at a time, we also define an instantaneous
Moreover we assume that there exists a loss functi@pproximation ofR,., 1, theinstantaneous regularised riskn
I :RxY — R, given byl(f(z),y), which penalises the a single exampléz,y), by
deviation of estimateg(x) from observed labels. Common
loss functions include(trze soft margin loss function [20] or Rinstlf, 2,9] 1= Binst Alf, 2,91 .= Breg S5 ((2,9))]. - (8)
the logistic loss for classification and novelty detection [21],
and the quadratic loss, absolute loss, Huber’s robust loss [82] Online setting
and thes-insensitive loss [23] for regression. We shall discuss In this paper we are interesteddnline learning where the
these in Section Il examples become available one by one, and it is desired that
The reason for allowing the range ¢f to be R rather the learning algorithm produces a sequence of hypotheses
than ) is that it allows for more refinement in evaluation(fy,..., f,..1). Here f; is some arbitrary initial hypothesis
of the learning result. For example, iclassificationwith and f; for i > 1 is the hypothesis chosen after seeing the
Y ={-1,1} we could interpretgn(f(x)) as the prediction (i — 1)th example. Thug(f;(x;),y:) is the loss the learning
given by f for the class ofz, and|f(x)| as the confidence algorithm makes when it tries to predigt, based on; and

Il. STOCHASTIC GRADIENT DESCENT INHILBERT SPACE

in that classification. We call the outpyt of the learning the previous exampleéry,y1), ..., (zt—1,y:—1). This kind
algorithm anhypothesis and denote the set of all possibleof learning framework is appropriate for real-time learning
hypotheses byH. problems and is of course analogous to the usual adaptive

We will always assumé+ is areproducing kernel Hilbert signal processing framework [24]. We may also use an online
space (RKHS) [1]. This means that there exists a kernalgorithm simply as an efficient method of approximately
k: X x X — R and a dot product:, -),, such that solving a batch problem. The algorithm we propose below
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can be effectively run on huge data sets on machines wjiffiven: Asequences = ((z4,y:))ien € (X x ¥)™; aregularisation

limited memory parameterA > 0; a truncation parameterr € N; a learning rate
A suitabl i f perf f i lgorith € (0,1/)); a piecewise differentiable convéass function: R x
Su_' able njeasure ot per o_rmance or oniine algorithms — R; and aReproducing Kernel Hilbert Spade with reproducing
an online setting is theumulative loss kernel k, NORMA\ (S, 1, k,n,7) outputs a sequence of hypotheses
m f:(fl,fz,...)EHoc.
Leun[£, 8] = > 1(f(xe), ve)- (6) |Initialise t :=1; B; := (1 — M)’ fori=0,...,7;
t=1 Loop

P - : : Fi() = X o max(ro ) @iBe—i1k(@i, );
(Again, if [ has such ap, we write L..m ,[f] etc.) Notice ar = -l (Fi(21), yo):

that here f; is tested on the exampléx;,y;) which was ti=t41;
not available for trainingf;, so if we can guarantee a low| End Loop
cumulative loss we are already guarding against overfitting. _ _ B _
Regularisation can still be useful in the online setting: Efbrgg(immw“ with constant leaming ratg, exploiting the truncation
the target we are learning changes over time, regularisation

prevents the hypothesis from going too far in one direction,
thus hopefully helping recovery when a change occurs. Fufhys, at stepr the t-th coefficient may receive a non-zero

thermore, if we are interested in large margin algorithms, So)§|ue. The coefficients for earlier terms decay by a factor
kind of complexity control is needed to make the definition O(KNhich is constant for constant,). Notice that the cost for

the margin meaningful. training at each step is not much larger than the prediction
cost: once we have computed(z,), a; is obtained by the
C. The General Idea of the Algorithm value of the derivative of at (f;(z+),y:).

The algorithms we study in this paper are classical stochas-
tic gradient descent — they perform gradient descent with. Speedups and Truncation
respect to the instantaneous risk. The general form of th

update rule is ®There are several ways of speeding up the algorithm. Instead

of updating all old coefficients;, i = 1,...,t — 1, one may
1 i 2
= f, — 1y Of Rinsi A fs Tt 7y simply cache the power serids (1 — An), (1 — An)*, (1 —
fe fe =1 01 ealf 2o vl f=r % An)3, ... and pick suitable terms as needed. This is particularly

where fori € N, f; € H, d; is short-hand ford/df (the useful if the derivatives of the loss functiémwill only assume
gradient with respect tgf) andn, > 0 is the learning rate discrete values, say—1,0,1} as is the case when using the
which is often constanty = 7. In order to evaluate the SOft:margin type loss functions (see Section ”')-%

gradient, note that the evaluation functionfil— f(z;) is  Alternatively, one can also storé, = (1 —#) ‘a; and

given by (1), and therefore compute fi(z) = (1 — )" >21Z; @ik(xi, ), which only
requires rescaling oncé; becomes too large for machine
Opl(fxe),ye) = U (f(e), ye) (e, -), (8) precision — this exploits the exponent in the standard floating
wherel’(z,y) := 9.l(z,y). Sinceds||f||?, = 2f, the update point number representation.

A major problem with (11) and (12) is that without ad-
ditional measures, the kernel expansion at titneontains
fear = (1 =\ fr — 0l (fe(2e), e (e, -). (9) t terms. Since the amount of computations required for
predicting grows linearly in the size of the expansion, this
Clearly, givenA > 0, 7, needs to satisfy, < 1/A for all ¢ s undesirable. The regularisation term helps here. At each
for the algorithm to work. iteration the coefficienta,; with i # ¢ are shrunk by(1 — 7).

We also allow loss functions that are only piecewise Thus afterr iterations the coefficient; will be reduced to
differentiable, in which casé stands for subgradient. When(1 — \;))7a,;. Hence one can drop small terms and incur little

the subgradient is not unique, we choose one arbitrarily; tBeror as the following proposition shows.
choice does not make any difference either in practice or in
theoretk_:al anglyses. All the loss functions we consider aif’nroposition 1 (Truncation Error) Supposd
convex in the first argument.

Choose a zero initial hypothesfs = 0. For the purposes of
practical computations, one can wrifgas a kernel expansion

becomes

(z,y) is a loss
function satisfying|d.l(z,y)| < C for all z € R, y €
Y and k is a kernel with bounded nornjk(z,-)|| < X

where|| - || denotes eithet| - ||z or || - [|%- Let firune =
(cf. [25]) i1 E;ilax(LH) a;k(z;,-) denote the kernel expansion trun-
fw) =Y ak(miz)  weX (10) cated tor terms. The truncation error satisfies
i=1 t—7
where the coefficients are updated at stefia 1f = firunell <D n(1 =AM CX < (1= )" CX/A,
=1
= —nl fori = 11 . . . o
a ml (Fi(2e), 92) ore t (11) Obviously the approximation quality increases exponen-
a; =1 =)oy fori <t. (12)  tially with the number of terms retained.
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The regularisation parametarcan thus be used to controlwe obtain||f:||» < X/ for all t. Furthermore,
the storage requirements for the expansion. In addition, it 9
S . = . < )
naturally allows for distribution®(z, i) that change over time [fel@e)l = | {fe b(@e, D)y | < X5/ (17)
in which cases it is desirable forgetinstances(z;, y;) that Hence, when the offset parameteris omitted (which we
are much older than the average time scale of the distributiconsider particularly in Sections IV and V), it is reasonable to

change [26]. requirep < X?2/\. Then the loss function becomes effectively
We call our algorithm MRMA (Naive Online R,.; Min-  bounded, withl,(fi(z:),y:) < 2X?2/X for all ¢.
imisation Algorithm) and sometimes explicitly write the pa- The update in terms a#; is (fori=1,...,t — 1)

rameter\: NORMA). NORMA is summarised in Figure 1. In o
the applications discussed in the next section it is sometimes (ai, o, 0) := (1= nA ), norye, b+ noy). (18)

necessary to introduce additional parameters that need toWshenp = 0 and\ = 0 we recover the kernel perceptron [27].
updated. We nevertheless refer somewhat loosely to the whiflep = 0 and A > 0 we have a kernel perceptron with

family of algorithms as MRMA. regularisation.
For classification with thes-trick [4] we also have to take
[1l. APPLICATIONS care of the margir, since there (recalf(z) = f(x) + b)

The general idea of NRMA can be applied to a wide e — max(0. o — va(z)) — vo. 19
range of problems. We utilise the standard [1] addition of (9(2),9) (0,6 = y9( )) p. (19)
the constant offseb to the function expansion, i.g(z) := Since one can show [4] that the specific choiceXdfias no
f(z) +b where f € H andb € R. Hence we also update influence on the estimate SV classification, we may set
via A =1 and obtain the update rule (for=1,...,t — 1)

bit1 = by —n OpRinst]g, Tt, yt] g=foiby (i, g, b, p) := (1=, nowye, b+nowys, p+n(or—v)).
A. Classification B. Novelty Detection

In (binary) classification, we hav®y = { £1}. The most  Novelty detection [21] is like classification without labels.
obvious loss function to use in this contextlig’(z),y) =1 It is useful for condition monitoring tasks such as network
if yf(z) <0andl(f(xz),y) = 0 otherwise. Thus, no loss isintrusion detection. The absence of labglsmeans the algo-
incurred ifsgn(f(x)) is the correct prediction fay; otherwise rithm is not precisely a special case 0bRMA as presented
we say thatf makes amistakeat (z,y) and charge a unit loss. earlier, but one can derive a variant in the same spirit.

However, the mistake loss function has some drawbacks:The v-settingis most useful here as it allows one to specify
a) it fails to take into account thmargin yf(z) that can be an upper limit on the frequency of alerf§x) < p. The loss
considered a measure of confidence in the correct predictiorfuaction to be utilised is
non-positive margin meaning an actual mistake; b) the mistake

loss is discontinuous and non-convex and thus is unsuitable for (f (@), 2,y) = max(0,p — f(z)) —vp
use in gradient based algorithms. and usually [21] one usef € H rather thary = f + b where

In order to deal with these drawbacks the main loss functionc R in order to avoid trivial solutions. The update rule is
we use here for classification is tlseft margin loss (fori=1,...,t—1)

L (f(x),y) := max(0, p — yf(x)) (13) (s, o, p) = (A =mas, n, p+n(l—v)) if f(z) <p
iy Gty - .

wherep > 0 is the margin parameter The soft margin loss (1 =mn)es, 0, p—nr) otherwise.
1,(f(x),y) is positive if f fails to achieve a margin at least _ _ (20)
on (z,y); in this case we say thagt made amargin error. If Consideration of the update farshows that on average only
f made an actual mistake, théy(f(z),y) > p. a fraction of v observations will be considered for updates.

Let o, be an indicator of whethef, made a margin error Thus it is necessary to store only a small fraction of the.

on (x4, y), i.e., 00 = 1 if y.fi(zy) < p and zero otherwise.
Then C. Regression

, —ye if yfi(ze) < p We co_n_sider the f(_)llowing three settings: squared loss, the

L(fe(ze),p) = —ouvyy = 0 theni (14) c-insensitive loss using the-trick, and Huber's robust loss
otherwise function, i.e. trimmed mean estimators. For convenience we
and the update (9) becomes will only use estimates’ € H rather thang = f + b where
b € R. The extension to the latter case is straightforward.

frar =1 =nA)fe +nowyek(zy, ) (15) 1) Squared LossHerel(f(z),y) := 3(y — f(z))?. Con-
be1 :=by + nory:. (16) sequently the update equation is (foe 1,...,t — 1)
Suppose now thaX > 0 is a bound such that(z;, z;) < (s, o) == ((1 = An)evi, n(ye — fla))). (21)

X? holds for allt. Since||f1||z = 0 and _ _
This means that we have to stoeyery observation we

[feetlle < (X =N fellw + nllk(@e, )l |n make, or more precisely, the prediction error we made on the
= (1= NI felln + nk (e, x0) 2, observation.
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2) e-insensitive Loss: The use of the loss function by the algorithm onS. Two key quantities are the number of
I(f(z),y) = max(0, |[y— f(z)|—¢) introduces a new parametemistakes given by
— the width of the insensitivity zone By makinge a variable

of the optimisation problem we have M(f,5) == {1<t<m|yfe(z)) <0}, (25)
I(f(x),y) := max(0,|y — f(z)| — ) + ve. and the number ofnargin errors given by

The updaFe equauons now have to be st_ated in term_s,t_m‘t, . M,(£,8) == [{1<t<m|yfile)<p}. (26)

and ¢ which is allowed to change during the optimisation

process. Setting: := y; — f(x:) the updates are (for = Notice that margin errors are those examples on which the

1,...,t—1) gradient of the soft margin loss is non-zeroMg(f, S) gives

the size of the kernel expansion of final hypothegis. ;.
We useos; to denote whether a margin error was made at
((1 - /\77)0%‘7 nsgn6t7 €+ (1 - V)Tl) if |6t| >¢€ (22) trial t, i.e., Ot — 1 if ytft(xt) S P and oy — 0 OtherWise.
((1 = Mn)ay, 0, e —nv) otherwise. Thus the soft margin loss can be written 136f; (x:),y:) =
] ) o oi(p — ye fe(z¢)) and consequentl..m ,[f, S] denotes the
Thls means that every time the pre('dltl:tlon eIror exceeue inia| soft margin loss of the algorithm.
increase the insensitive zone hy. If it is smaller thang, the In our bounds we compare the performance @RWA to

insensitive zone is decreased hit —v). the performance of function sequenges: (g1, ..., g,,) from
3) Huber's Robust LossThis loss function was pmposedsomecomparison clas§ c H™.

in [22] for robust maximum likelihood estimation among a Ntice that we often use a different margin= p for the
family of unknown densities. It is given by comparison sequence, amgdalways refers to the margin errors

(a4, g, €) :=

(f(2),y) = ly = f(@)| =30 if ly—f(z)| >0 ) E; f/r;e actual algorithm with respect to its margirWe always
o L= S othenwise. (o)) 2 1 yg(a) 27)
n ) - - .
Settingd; := y; — th dat far=1,...,t—1
eting: := y, — f(x,) the updates are (far=1,..., ) We extend the notationsi(g, S), M,,(g, S), 1,.(¢+,y+) and
( ) {((1 —n)a, nsgndy) if [0 > o (24) Leum (g, S] to such comparison sequences in the obvious
Qiy Q) 2= - ; manner.
(1 =n)a;, 0716,)  otherwise.

Comparing (24) with (22) leads to the question of whether
o might also be adjusted adaptively. This is a desirable gd‘jéﬂ
since we may not know the amount of noise present in theTo understand the form of the bounds, consider first the
data. While thev-setting allowed the formation of adaptivecase of a stationary target, with comparison against a constant
estimators for batch learning with theinsensitive loss, this sequencez = (g,...,g). With p = XA = 0, our algorithm
goal has proven elusive for other estimators in the standdrécomes the kernelised Perceptron algorithm. Assuming that
batch setting. someyg achievesM (g, S) = 0 for somey > 0, the kernelised
In the online situation, however, such an extension is quitersion of the Perceptron Convergence Theorem [27], [29]
natural (see also [28]). It is merely necessary to maka gives
\(/fariable of the opti)misation problem and the updates become M(f, S) < ||g||${ mtan(xtwt)/uQ-
ori=1,...,t—1

A Preview

Consider now the more general case where the sequence is

(i, o, 0) = not linearly separable in the feature space. Then ideally we
{((1 —nag, nsgndy, o+ n(l—v)) if |6] >0 would wish for bounds of the form
M. o1 _ i
(L =n)ay, 06, 0 — ) otherwise. M(£,$) < min Mg, S) + o(m),

g=(9,---,9)

IV. MISTAKE BOUNDS FORNON-STATIONARY TARGETS  \\hich would mean that the mistake rate of the algorithm would

In this section we theoretically analyseoRmA for clas- converge to the mistake rate of the best comparison function.
sification with the soft margin loss with margip. In the Unfortunately, even approximately minimising the number of
process we establish relative bounds for the soft margin lossniistakes over the training sequence is very difficult, so such
detailed comparative analysis betweepfa and Gentile’s strong bounds for simple online algorithms seem unlikely.

ALMA [9] can be found in [14]. Instead, we settle for weaker bounds of the form
M(f,5) < min Leym, g, S/ +o(m), (28
A. Definitions B35 oo il Penm (8 Slpe o+ o), (28)

We consider the performance of the algorithm for a fixesthere L.,m (g, S]/1 is an upper bound fakI(g, S), and the
sequence of observatiorts := ((z1,y1),---, (Tm,ym)) @nd norm boundB appears as a constant in thén) term. For
study the sequence of hypothedes (f1,..., fi,), produced earlier bounds of this form, see [30], [31].
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In the non-stationary case, we consider comparison classesl the learning rate parameter=»’/(1+4n’)\). If for some

which are allowed to change slowly, that is g € G(B, D1, D,), we haveLcy, ,[g, S| < K then
2
G(B, Dy, D2) M (8 < By 2C
el p=p (n—p)?
= (g1, 0m) | Y 190 = geralln < D o N\2/ g oo\V2
(559) (5055
(1 —p) pw=p (—p)

m—1

> llge = gerall3 < D2 and||ge|ln < B} : The proof can be found in Appendix A.

t=1 We now consider obtaining mistake bounds from our margin

The parameteD; bounds the total distance travelled by therror result. The obvious method is to set= 0, turning

target. Ideally we would wish the target movement to result margin errors directly to mistakes. Interestingly, it turns out

an additionalO(D;) term in the bounds, meaning there wouldhat a subtly different choice of parameters allows us to obtain

be a constant cost per unit step of the target. Unfortunatellye same mistake bound using a non-zero margin.

for technical reasons we also need thg parameter which

restricts the changes of speed of the target. The meaning of Theorem 3 Supposef is generated by (29) on a sequence

D, parameter will become clearer when we state our bounfisof lengthm. Let X > 0 and suppose thak(x:, z;) <

and discuss them. X? for all t. Fix K, B, Dy, D, > and defineC as in (31),
Choosing the parameters is an issue in the bounds we haved givenu > 0 let ' = 2r/X? wherer = h(u, K,C).

The bounds depend on the choice of the learning rate a@Hoose the regularisation parameter as in (32), the learning

margin parameters, and the optimal choices depend on quexte n = '/(1 + n’)\), and set the margin to eithgr = 0 or

tities (such asning Lcum, (g, S]) that would not be available p = i — r. Then for either of these margin settings, if there

when the algorithm starts. In our bounds, we handle this lexists a comparison sequengee G(B, Dy, Ds) such that

assuming an upper bounl > ming Leym (g, S] that can  Leym (g, S] < K, we have

be used for tuning. By substituting = ming Leym, (g, S, 1/2 1/2

we obtain the kind of bound we discussed above; otherwise \j(f, §) < K + g +2 (C;> (K + C;) )

the estimatek” replacesming Loum,.[g, S] in the bound. In jz 1Y H wooop

a practical application, one would probably be best servedthe proof of Theorem 3 is also in Appendix A.

to ignore the formal tuning results in the bounds and just To gain intuition about Theorems 2 and 3, consider first the

tune the parameters by whatever empirical methods are p§@parable cask = 0 with a stationary targetiy; = Dy = 0).

ferred. Recently, online algorithms have been suggested thiathis special case, Theorem 3 gives the familiar bound from

dynamically tune the parameters to almost optimal values @@ Perceptron Convergence Theorem. Theorem 2 gives an

the algorithm runs [9], [32]. Applying such techniques to oWipper bound ofX2B2/(u — p)2 margin errors. The choices

analysis remains an open problem. given for p in Theorem 3 for the purpose of minimising the
) mistake bound are in this cage= 0 and p = p/2. Notice
C. Relative Loss Bounds that the latter choice results in a bound40f2B?/p margin
Recall that the update for the case we consider is errors. More generally, if we choose= (1 — €)u for some

0 < e < 1 and assume: to be the largest margin for which

= (1 —nA k 3. 29 T . ; . .
feri= (= nA)fe - nowyeh(ae, ) (29) separation is possible, we see that the algorithm achieves in
It will be convenient to give the parameter tunings in termg(¢—2) iterations a margin within a factor — e of optimal.

of the function This bound is similar to that for BmA [9], but ALMA is much
C C C more sophisticated in that it automatically tunes its parameters.
e, K,C)=y|=|z+ =) — =, (30) Removing the separability assumption leads to an additional
K K K

K/u term in the mistake bound, as we expected. To see the
where we assume, K and C' to be positive. Notice that effects of theD; and D, terms, assume first that the target
0 < h(z, K,C) < x holds, andlimg o1 h(z, K,C) = 2/2. has constant speefly; — g;.1||» = o for all t wheres > 0 is

Accordingly, we defindz(x, 0, Q) =uz/2. . ~aconstant. The; = mé and Dy = mé?, so/mDy = Dy.
We start by analysing margin errors with respect to a givanthe speed is not constant, we always haye:D; > D;.
margin p. An extreme case would bigg; — g2||x = D1, gt+1 = g4 for

) t > 1. Theny/mDy = /mD;. Thus theD, term increases
Theorem 2 Suppose is generated by (29) on a sequente ihe bound in case of changing target speed.
of lengthm. Let X > 0 and suppose that(x;,x;) < X? for

all t. Fix K >0, B> 0, D; > 0and D, > 0. Let V. CONVERGENCE OFNORMA
1 .
=X (32 +B (x/ng + D1>> (31) A. A Preview

Next we study the performance ofd®MA when it comes to
minimising the regularised risk function&l,.[f, S], of which
Rinst[f, e, yt] IS the stochastic approximation at tinneWe
A= (By)"'\/Dy/m, (32) show that under some mild assumptions on the loss function,

and, given parameterg: > p > 0, let o/ = 2h(p —
p,K,C)/X?. Choose the regularisation parameter
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m

the average instantaneous rigk'm) >"7" | Rinst[fi, 7t, ;) of  NORMA with learning ratern, = nt~*/2. Then for anyg € H
the hypotheses; of NORMA converges towards the mini-we have

mum regularised risknin, Ryeq[g, S] at rateO(m~1/2). This m

requires no probabilistic assumptions. If the examples are Y Rinst Alft, 71, 9i] < mRueg Alg, 5]+ am'/® + b (35)
i.i.d., then with high probability the expected regularised risk t=1

of the average hypothesis/m) >")" ;| f; similarly converges wherea = 2\U?(2n\ + 1/(n))), b = U?/(2n) and U is as
towards the minimum expected risk. Convergence can aligo(34).

be guaranteed for the truncated version of the algorithm that ) ) ) ) ]
keeps its kernel expansion at a sublinear size. The proof, given in Appendix B, is based on analysing the
progress off; towardsg at updatet. The basic technique is

from [33], [34], and [32] shows how to adjust the learning

B. Assumptions and notation rate (in a much more complicated setting than we have here).
We assume a boundl > 0 such thatk(z,, z;) < X2 for all Note that (35) holds in particular foy = g, so
t. Then for allg € H, [g(z¢)| = | (g, k(z+, )3 | < X[lglln. 1 &
We assume that the loss functiéris convex in its first — > Rinsealft 2t 1] < Reega[9, S]+ O(m™'/?)
argument and also satisfies for some constant 0 the t=1
Lipschitz condition where the constants depend 8h ¢ and the parameters of
the algorithm. However, the bound does not depend on any
1(z1,9) = U(z2,9)| < ¢lz1 — 2 (33) probabilistic assumptions. If the example sequence is such that
for all 21,20 € R,y € V. some fixed predictoy has a small regularised risk, then the
Fix now \ > 0. The hypotheses; produced by (9) averﬁlge regularised risk of the on-line algorithm will also be
small.
ferlln = [N =) fr = nel (f (), ye) k(e )| Consider now the implications of Theorem 4 to a situation in
< (1 =N felln + neeX, which we assume that the examples, y;) are i.i.d. according

to some fixed distribution?. The bound on the cumulative
and sincef, = 0 we have for allt the bound||f:|l < U risk can be transformed into a probabilistic bound by standard
where X methods. We assume thafz,z) < X2 with probability 1
U:=—. (34) for (z,y) ~ P. We say that theisk is bounded by if with
A probability 1 we haveRing A [f, z:,v:] < L for all ¢t and f €
Since |lI'(f(z¢),ye)| < ¢, we have||0pl(f(ze), y)lln < X {g, f1, .0, fonga b
and [|0f Rinst[f, 6, yell|le < eX + M| f[ln < 2¢X forany f  As an example, consider the soft margin loss. By the

such thatl| f[[» < U. _ preceding remarks, we can assumié||x < X/\. This
Fix a sequence and for0 < e < 1 define implies | f(z¢)| < X?/\ so the interesting values ¢f satisfy
L : 1 s 0 < p < X?/\ Hencel,(f(x),y:) < 2X?/X, and we can
9= argger?{m Preglg, 51, g:= (1= €)g. take L = 5X2/(2)). If we wish to use an offset parameter
b, a bound for|b| needs to be obtained and incorporated into
Then0 < Rieglg, S] — Rieglds S] L. Similarly, for regression type loss functions we may need
L a bound for|y:|.
= = (Ug(@e), ) = Ua(ze), v1)) The result of Cesa-Bianchi et al. for bounded convex loss
mi functions [35, Theorem 2] now directly gives the following.
A R
+ 5(”9”% - |\9||31) Corollary 5 Assume thaf is a probability distribution over
A A ) o X x Y such thatk(z,2z) < X? holds with probability1 for
< eXllg =l + 5 (A =€) = Dlgll (z,y) ~ P, and let the example sequenSe= ((z,y:))™,
K o A be drawn i.i.d. according taP. Fix A > 0 and0 < n < 1/\.
= cXellgllr = Aellglfz + = llll3- Assume that is convex and satisfies (33), and that the risk

is bounded byL.. Let f,, = (1/m)>.7";" f; where f; is the
t-th hypothesis produced BYORMA with learning raten, =
nt=1/2. Then for anyg € H and0 < § < 1, and fora and b
as in Theorem 4, we have

Considering the limitt — 0+ shows that|j||» < U where
U is as in (34).

C. Basic convergence bounds 3
. . . . . E(ac,y)NPRinst,)\[fma €T, 1/]
We start with a simple cumulative risk bound. To achieve b

1
convergence, we use a decreasing learning rate. < Riegalg, S+ i (a + L(21n(1/5))1/2) +—
i with probability at leastl — 6 over random draws of.
Theorem 4 Fix A > 0 and 0 < n < 1/A. Assume thaf
is convex and satisfies (33). Let the example sequénee To apply Corollary 5, choosg = g. where
(24, )i, be such that(z,, z;) < X? holds for all¢, and _ LE .
let (f1,...,fms1) be the hypothesis sequence produced by 9 arfgﬁm @)~ Binsilf, 3] (36)
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With high probability, Ryesx[g«,S] Wwill be close to A. Classification

E(ay)~pRinst A9+, 2,y], S0 with high — probability  oyr pounds suggest that some form of regularisation is
E(ay)~p Rinst.A[fm, x,y] will be close to the minimum ,sefyl when the target is moving, and forcing a positive margin
expected risk. may give an additional benefit.

This hypothesis was tested using artificial data, where we
used a mixture of 2-dimensional Gaussians for the positive
examples and another for negative ones. We removed all

We now consider a version where at timéhe hypothesis examples that would be misclassified by the Bayes-optimal
consist of a kernel expansion of sizg where we allows; t0  classifier (which is based on the actual distribution known to

D. Effects of truncation

slowly (sublinearly) increase as a functionfThus us) or are close to its decision boundary. This gave us data
st that were cleanly separable using a Gaussian kernel.
fi(z) = Zat,mk(xt,ﬂx) In order to test the ability of BSRMA to deal with changing
r=1 underlying distributions we carried out random changes in

the parameters of the Gaussians. We used two movement
schedules:
« In thedrifting case, there is a relatively small parameter
¢ change after every ten trials.
« In the switching case, there is a very large parameter
change after every 1000 trials.

Thus, given the form of our bounds, all other things being
fe41 = [t — mOf Rinst[ [ e, el p=5, — Ay equal, our mistake bound would be much better in the drifting
than in the switching case. In either case, we ran each

where Ay = 0 if sp41 = s+ 1 and Ay = @, 1k(Z1-s,5°)  aigorithm for 10000 trials and cumulatively summed up the
otherwise. Sinceay 41 = (1 — neA)oyp, We see that mistakes made by them.

the kernel expansion coefficients decay almost geometrically,, o experiments we comparedRMA,_, with ALMA [9]
P

However, since we also need to use a decreasing Iear.ni.ng (R » = 2 and the basic Perceptron algorithm (which is the
ne =nt~"'/2, the factorl — A approaches. Therefore itis g;me stochastic gradient descent with the maggmthe loss
somewhat complicated to choose expansion sizefiat are g,nction (13) and weight decay parameteboth set to zero).
not large but still guarantee that the cumulative effect of trwe also considered variantsiRMA o and ALMA , where the
A, terms remains under control. marginp is fixed to zero. These algorithms are included to see
whether regularisation, either by weight decay as mRNMA
Theorem 6 Assume that is convex and satisfies (33). Let theor by a norm bound as in A, helps predicting a moving
example sequencg = ((x,y:))7~, be such thak(xz¢,2,) < target even when we are not aiming for a large margin. We
X2 holds for allt. Fix A > 0,0 <n<1/Aand0 < e < 1/2. used Gaussian kernels to handle the non-linearity of the data.
Then there is a valué& (A, 7, €) such that the following holds For these experiments, the parameters of the algorithms were
when we define, = t for ¢t < ¢5(\,n,€) ands; = [t}/2+<] for tuned by hand optimally for each example distribution.

whereo + is the coefficient of(xy, -) in the kernel expansion
at timet’. For simplicity, we assume;;; € { s;,s; +1} and
include in the expansion even the terms wheye = 0. Thus
at any update we add a new term to the kernel expansion; i
s¢r+1 = s¢ we also drop the oldest previously remaining term.
We can then write

t>to(Am,€). Let(fi,..., fms1) be the hypothesis sequence Figure 2 shows the cumulative mistake counts for the
produced by truncateM oRMA with learning raten, = nt~'/2  algorithms. There does not seem to be any decisive differences
and expansion sizes. Then for anyg € H we have between the algorithms.

m In particular, NorRMA works quite well, also on switching
ZRinst,/\[ftaxtyyt] < MRyeg A[g, S] + am*? + b (37) data, even though our bound suggests otherwise (which is
1 probably due to slack in the bound). In general, it does seem
that using a positive margin is better than fixing the margin to
zero, and regularisation even with zero margin is better than
the basic Perceptron algorithm.

wherea = 2\U?(10n\ + 1/(n\)), b= U?/(2n) and U is as
in (34).

The proof, and the definition af), is given in Appendix C. )

Conversion of the result to a probabilistic setting can g& Novelty Detection
done as previously, although an additional step is needed tdn our experiments we studied the performance of the
estimate how the\; terms may affect the maximum norm ofnovelty detection variant of NRMA given by (20) for various
f+; we omit the details. kernel parameters and values:of

We performed experiments on the USPS database of hand-
written digits (7000 scanned images of handwritten digits at a
resolution of16 x 16 pixels, out of which5000 were chosen

The mistake bounds in Section IV are of course only worder training and2000 for testing purposes).
case upper bounds, and the constants may not be very tightAlready after one pass through the database, which took in
Hence we performed experiments to evaluate the performamMdATLAB less than 15s on a 433MHz Celeron, the results can
of our stochastic gradient descent algorithms in practice. be used for weeding out badly written digits (cf. the left plot

VI. EXPERIMENTS
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3500

with the goal of understanding the advantage of securing a
large margin when tracking a drifting problem. On the positive

side, we have obtained theoretical bounds that give some
guidance to the effects of the margin in this case. On the
negative side, the bounds are not that well corroborated by
000} the experiments we performed.
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NORSA, A. Proofs of Theorems 2 and 3
RoRwA The following technical lemma, which is proved by a simple

differentiation, is used in both proofs for choosing the optimal

parameters.

1000 [

<+ D ox ok

mistakes

soop , Lemma 7 Given K > 0, C > 0 andy > 0 define f(z) =
K/(y—2)+C/(z(y —2)) for 0 < z < v. Then f(z) is
a00r maximised forz = h(y, K,C) whereh is as in (30), and the
maximum value is

" K 2C K C 1/2 C 1/2
F(1 K, C)) = = + 55 42 < N ) <> .
Y Y Y

y? 72
2000 4000 6000 8000 10000 12000

wials The main idea in the proofs is to lower bound fhregress
: : . . at updatet, which we define aflg; — f:||%, — |lgi+1 — fisr1l12,-
Fig. 2. Mistakes made by the algorithms on drifting data (top) and o'g . . . H H
switching data (bottom). or notational convenience we introdugg 1 := gm.
Proof of Theorem 2:Define f/,, = fi + n'owyik(ay,-).
We split the progress into three parts:
of Figure 3). We chose = 0.01 to allow for a fixed fraction

2 2
of detected “outliers.” Based on the theoretical analysis of llge — felliy = ll9t+1 — frerll5¢
. . . . 1
Section V we used a decreasing learning rate wijth ¢~ 2. = (lge = filld; = llge = fLiall30)
Figure 3 shows how the algorithm improves in its assess- + (gt = friall3 = llge — feall3e)

ment of unusual observations (the first digits in the left table 2 2
+ — — — . (38
are still quite regular but degrade rapidly). It could therefore (llge = Feallte = llgers = ferallre)- (38)
be used as an online data filter. By substituting the definition of; ;, using (27) and applying
ol (ge(xe), ye) < 1u(g¢(x¢), ye), we can estimate the first part

VIl. DISCUSSION of (38) as

We have shown how the careful application of classical ||g: — fill3 — lg: — flia |l
stochastic gradient descent can lead to novel and practical = 20w (k(e, ), gt — fi)ay — 1o — Franll
algorithms for online learning using kernels. The use of o orye(gi(n) — Filan)) — 200k (x, 1)
regularisation (which is essential for capacity control when 77/ tYeRge\Te) = Jelle)) 0L AT Tt
using the rich hypothesis spaces generated by kernels) allows = 21 (0¢t = 1u(9e(21), ye))
for truncation of the basis expansion and thus computationally =20 (oep — Lp(fe(@e), ) — 2o X2 (39)
efficient hypotheses. We explicitly developed parameterisa-
tions of our algorithm for classification, novelty detection and FOF the second part of (38), we have
regression. The algorithm is the first we are aware of foer B = lge = Fonl?
online novelty detection. Furthermore, its general form is very ~~ *“*11'% , 2+ t ,
efficient computationally and allows the easy application of ~ — [ ferr = flaall3 + 2 (fln = ferrs fen = 9e)y -
kernel methods to enormous data sets, as well, of coursegsifice 7, | — fir1 = nAfio1 = nAfrr1/(1 —n)), we have
real-time online problems.

We also presented a theoretical analysis of the algorithm /na nA 2 9
when applied to classification problems with soft margin [ fea1 — feaalli = (1 —TI/\) [ o117

V
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Fig. 3. Results of online novelty detection after one pass through the USPS database. The learning problem is to discover (online) novel patterns. We us
Gaussian RBF kernels with widtbo? = 0.5d = 128 andv = 0.01. The learning rate wasL-. Left: the first 50 patterns which incurred a margin error

— it can be seen that the algorithm at first finds even well formed digits novel, but later only finds unusually writteMiolts; the 50 worst patterns
according tof(xz) — p on the training set — they are mostly badly written digRéght: the 50 worst patterns on an unseen test set.

and

<f{+1 = fey1, fro1 — gt>H
nA

= 1_77)‘ ((||ft+1||3{_<ft+hgt>7.‘)~

Hence, recalling the definition of, we get

||9t - fi{+1||$—l - ||9t - ft+1|\%c
= (20X + 0 X) (| ferrllF — 20" X (fiq1, 9e)yq (40)

For the third part of (38) we have

llg: — ft+1\|31 - ||9t+1 - ft+1|\%c

= lgell3 = Ngesll3y +2{ge1 — 9o, frea)p - (41)

Substituting (39), (40) and (41) into (38) gives us

lge = fell3e = llges1 — ferall3
> 20 (oep — Lu(ge(2t), i)
=20 (ovp — Lo (fe(@e), yt))
_ 77/20th

+ 19113 = Nge1 |3 + H[frsa] (42)

(20’ A +1"22) || £113,
=20’ X(f, 9t) +249e41 — 9o [y -

To boundH|f;1] from below, we write
H{f] = allf|l3 = 2(r, )y, = allf = r/allF, = |Ir|[3/a
wherea = 20’ + 1?2 andr = (1 +n'\)g: — g¢+1. Hence,

H{f41] —HTH%/G

Y

Y

2
—m (Ilge = gesrllr + 1" Nlgell#)

_ 1 gt *9t+1\|31
240"\ n'A

+ﬂm—gwmﬁmmH+WAwm%)ma

Since—1/(2 +n'\) > —1/2, (42) and (43) give

ge = fill3e = llgerr — fraall
> =20 (owp — Lp(fe2e), ye))
+ 20" (g — Lu(9e(w), i)
— 0?0 X% + [|g:]F, — llgesa 3

1 |lge+1 — g¢ll3
2 n'A

+ﬂ@MMwH1mHH+Wde@>-@®

By summing (44) ovet = 1,...,m and using the assumption
thatg € G(B, Dy, D3) we obtain

llg1 — leit = lgm+1 — fm+1||$-t
Z Qn/Lcumm[ﬂ S] - 277/Lcum,,u[ga S]
+n'M,(£,5) (2 — 2p — ' X?)

+ g1l — llgm+1113,

1 ( Dy 2
—— (=2 4+2BD; +mn/AB*).  (45)

2 \n'A

Now \ appears only in (45) as a subexpressiQfy’'\)
where Q(z) = —£2 — zmB2. Since the functionQ(z) is
maximised forz = /Dy/(mB?), we choose\ as in (32)
which gives Q(7n’\) = —2B+y/'mD,. We assumef; = 0,
s0 |lg1 — filli = llgm+1 — fmr1ll; < llg1ll7,. By moving
some terms around and estimatifg,,+1||» < B and
Leum,ulg, S] < K we get

Leum p[f, 8]+ M, (£,5) (n—p—n'X?/2)

B2+ B D D
< K+ + B(v'mDy + 1).

27 (46)

To get a bound for margin errors, notice that the vajle
given in the theorem satisfigs— p — 7' X2 > 0. We make the
trivial estimateLcum ,[f, S] > 0, which gives us

K
p—p—1mX2/2
B? + B(v/mD; + D»)
20'(p—p—n'X2/2)
The bound follows by applying Lemma 7 with= 1 — p and
z=n'X?/2.

M,(f,5) <
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Proof of Theorem 3The claim forp = 0 follows directly We use this to estimat@A;||». If s;y1 =t + 1, then clearly
from Theorem 2. For non-zerg we take (46) as our starting A; = 0, so we consider the case> to(\, 7, €). Letr = t—s,
point. We choosg’ = 2(u—p)/X?, so the term witM (£, 5)  sO||A¢||x < X|ay¢]. We havea,. .| < n.c, and|a,. i r41] =

vanishes and we get (I=npgrN)|arrir| < (T—=mA)|prgr| forr=0,...,5,—1.
X?(B2 + B(ymDs + D Hence
Lounylf, 8] < K 4 2B BWmD2 £ D)) ) o
' 4(/’L - p) 77)\ ¢
. L la¢| < mre(l = A)*t <mpe [ |1 — =5 .
Since Leum, [f, S] > pM(f, S), this implies ’ t1/2
2 2
M(f, S) < K + X*(B° + B(ymD, + Dl)). (48) Sincen)/t'/2 <1, we have
“op 4p(p —p) e
. o o Y
The claim follows from Lemma 7 withy = p andz = u— p. <1 B t?j;) ; < exp(-1),

B. Proof of Theorem 4 S0 oy ¢| < mrcexp(—nAte) < m.enAt—1/2. Finally, sincer >
Without loss of generality we can assume= g, and in t¢/4, we haven, < 27, o
particular||g||» < U. First notice that )
) , 1A 2 < 2 AcX.
fe = gll3 = [1fr1 — gll

Nfer = Sl =2 i — for fi— g In particular, we have|A;||x < 2m:cX, so
= 2|0 Rinsilf> e, ye)| j= 1. | 1 [fesalle < @ =nM)felln

+ 20¢ (O RinstLf, 26, vl l =10, fr — 9)34 el (fe(@e, W) e+ 1A e
> —dne*x? < (=) fellr + 3meX.

= 20t (Rinst[9, 21, vt — Rinst[f, w0, w:])  (49)  Since f; = 0, we get||fi||» < 3¢X/A. Again, without loss
where we used the Lipschitz property band the convexity ©f generality we can assume = § and thus in particular

of Ry, in its first argument. This leads to 1fe — 9||?1 < deX/A. ] _
1 1 To estimate the progress at trigllet f,11 = fi1 + A be
—Ife = 9ll3, — —I|fit1 — gl the new hypothesis before truncation. We write
Ur Ni41
1 (I1Fe = gl12 = 1 fuss — gl12,) 1fe = gl = 1 fen — gll
- - t - t+1 — r
1t " " = |Ife = gll3 = [l fe+1 — gll% (50)
+ (1_1> e — gl%, I ferr = gl = 1 ferr — gl (51)
o To estimate (51) we write
Z *4772502X2 - 2]%inst [ga Tt, yt} + 2Rinst [fta Tt, yt] _
L Ar? (1 1 > \|ft+1—9\|%—||ft+1—g|\3i
M Mgl = N(fira = frrr) + (Frrr = DIF = [ frar — gl
since||fi11 — gllx < 2U. By summing overt = 1,...,m + = 2(Ay, fiy1 — )y + || A%
;, arll;nl2 notlcm% that some terms telescope 3nd", 7, < > =2/|Ad x|l firr — gllx
nm'/=, we ge > —16n2cE X2
_ 2 _ 2
151 = gl - [fomt1 = 9113 By combining this with the estimate (49) for (50) we get
n NIm+1
< \|ft*g||%*|\ft+1*g|\%
> =82 X?mY? — 2" Rineilg, ©1, yt)
tzz:l ‘ bt > — 2077?C2X2 - 277t(Rinst [ga Tt yt] — Rinst [ft: Tt, yt]);
m
1L (m+1)Y2 notice the similarity to (49). The rest follows as in the proof
. 2 _—— —_—_————— *
+ 2 ; Rlnst [fta Tt, yt] + 4U ( n of Theorem 4.
The claim now follows by rearranging terms and estimating REFERENCES
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