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Abstract— Kernel based algorithms such as support vector
machines have achieved considerable success in various problems
in the batch setting where all of the training data is available in
advance. Support vector machines combine the so-called kernel
trick with the large margin idea. There has been little use of these
methods in an online setting suitable for real-time applications.
In this paper we consider online learning in a Reproducing
Kernel Hilbert Space. By considering classical stochastic gradient
descent within a feature space, and the use of some straight-
forward tricks, we develop simple and computationally efficient
algorithms for a wide range of problems such as classification,
regression, and novelty detection.

In addition to allowing the exploitation of the kernel trick
in an online setting, we examine the value of large margins for
classification in the online setting with a drifting target. We derive
worst case loss bounds and moreover we show the convergence of
the hypothesis to the minimiser of the regularised risk functional.

We present some experimental results that support the theory
as well as illustrating the power of the new algorithms for online
novelty detection.

Index Terms— Reproducing Kernel Hilbert Spaces, Stochastic
Gradient Descent, Large Margin Classifiers, Tracking, Novelty
Detection, Condition Monitoring, Classification, Regression.

I. I NTRODUCTION

K ERNEL methods have proven to be successful in many
batch settings (Support Vector Machines, Gaussian Pro-

cesses, Regularization Networks) [1]. Whilst one can apply
batch algorithms by utilising a sliding buffer [2], it would
be much better to have a truely online algorithm. However
the extension of kernel methods to online settings where the
data arrives sequentially has proven to provide some hitherto
unsolved challenges.

A. Challenges for online kernel algorithms

First, the standard online settings for linear methods are in
danger of overfitting when applied to an estimator using a
Hilbert Space method because of the high dimensionality of
the weight vectors. This can be handled by use of regularisa-
tion (or exploitation of prior probabilities in function space if
the Gaussian Process view is taken).

Second, the functional representation of classical kernel
based estimators becomes more complex as the number of
observations increases. The Representer Theorem [3] implies
that the number of kernel functions can grow up to linearly

Manuscript received July 1, 2003; revised July 1, 2010. This work was
supported by the Australian Research Council.

Parts of this work were presented at the 13th International Conference
on Algorithmic Learning Theory, November 2002 and the 15th Annual
Conference on Neural Information Processing Systems, December 2001.

The authors are with the Research School of Information Sciences and
Engineering, The Australian National University. R.C. Williamson is also with
National ICT Australia.

with the number of observations. Depending on the loss func-
tion used [4], this will happen in practice in most cases. Thus
the complexity of the estimator used in prediction increases
linearly over time (in some restricted situations this can be
reduced to logarithmical cost [5] or constant cost [6], yet with
linear storage requirements). Clearly this is not satisfactory for
genuine online applications.

Third, the training time of batch and/or incremental update
algorithms typically increases superlinearly with the number
of observations. Incremental update algorithms [7] attempt
to overcome this problem but cannot guarantee a bound on
the number of operations required per iteration. Projection
methods [8] on the other hand, will ensure a limited number
of updates per iteration and also keep the complexity of
the estimator constant. However they can be computationally
expensive since they require a matrix multiplication at each
step. The size of the matrix is given by the number of kernel
functions required at each step and could typically be in the
hundreds in the smallest dimension.

In solving the above challenges it is highly desirable to
be able to theoretically prove convergence rates and error
bounds for any algorithms developed. One would want to be
able to relate the performance of an online algorithm after
seeingm observations to the quality that would be achieved
in a batch setting. It is also desirable to be able to provide
some theoretical insight in drifting target scenarios when a
comparison with a batch algorithm makes little sense.

In this paper we present algorithms which deal effectively
with these three challenges as well as satisfying the above
desiderata.

B. Related Work

Recently several algorithms have been proposed [5], [9]–
[11] which perform perceptron-like updates for classification
at each step. Some algorithms work only in the noise free
case, others not for moving targets, and others assume an upper
bound on the complexity of the estimators. In the present paper
we present a simple method which allows the use of kernel
estimators for classification, regression, and novelty detection
and which copes with a large number of kernel functions
efficiently.

The stochastic gradient descent algorithms we propose (col-
lectively called NORMA) differ from the tracking algorithms
of Warmuth, Herbster and Auer [5], [12], [13] insofar as we
do not require that the norm of the hypothesis be bounded
beforehand. More importantly, we explicitly deal with the
issues described earlier that arise when applying them to kernel
based representations.

Concerning large margin classification (which we obtain by
performing stochastic gradient descent on the soft margin loss
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function), our algorithm is most similar to Gentile’s ALMA

[9] and we obtain similar loss bounds to those obtained for
ALMA . One of the advantages of a large margin classifier is
that it allows us to track changing distributions efficiently [14].

In the context of Gaussian Processes (an alternative theoret-
ical framework that can be used to develop kernel based algo-
rithms), related work was presented in [8]. The key difference
to our algorithm is that Csató and Opper repeatedly project on
to a low-dimensional subspace, which can be computationally
costly requiring as it does a matrix multiplication.

Mesterharm [15] has considered tracking arbitrary linear
classifiers with a variant of Winnow [16], and Bousquet and
Warmuth [17] studied tracking of a small set of experts via
posterior distributions.

Finally we note that whilst not originally developed as an
online algorithm, the Sequential Minimal Optimization (SMO)
algorithm [18] is closely related, especially when there is
no bias term in which case [19] it effectively becomes the
Perceptron algorithm.

C. Outline of the Paper

In Section II we develop the idea of stochastic gradient
descent in Hilbert Space. This provides the basis of our
algorithms. Subsequently we show how the general form of
the algorithm can be applied to problems of classification,
novelty detection, and regression (Section III). Next we es-
tablish mistake bounds with moving targets for linear large
margin classification algorithms in Section IV. A proof that
the stochastic gradient algorithm converges to the minimum
of the regularised risk functional is given in Section V, and
we conclude with experimental results and a discussion in
Sections VI and VII.

II. STOCHASTIC GRADIENT DESCENT INHILBERT SPACE

We consider a problem of function estimation, where the
goal is to learn a mappingf : X → R based on a sequence
S = ((x1, y1), . . . , (xm, ym)) of examples(xt, yt) ∈ X × Y.

Moreover we assume that there exists a loss function
l : R × Y → R, given by l(f(x), y), which penalises the
deviation of estimatesf(x) from observed labelsy. Common
loss functions include the soft margin loss function [20] or
the logistic loss for classification and novelty detection [21],
and the quadratic loss, absolute loss, Huber’s robust loss [22]
and theε-insensitive loss [23] for regression. We shall discuss
these in Section III.

The reason for allowing the range off to be R rather
than Y is that it allows for more refinement in evaluation
of the learning result. For example, inclassification with
Y = {−1, 1 } we could interpretsgn(f(x)) as the prediction
given by f for the class ofx, and |f(x)| as the confidence
in that classification. We call the outputf of the learning
algorithm anhypothesis, and denote the set of all possible
hypotheses byH.

We will always assumeH is a reproducing kernel Hilbert
space (RKHS) [1]. This means that there exists a kernel
k : X × X → R and a dot product〈·, ·〉H such that

1) k has the reproducing property

〈f, k(x, ·)〉H = f(x) for x ∈ X (1)

2) H is the closure of the span of allk(x, ·) with x ∈ X .
In other words, allf ∈ H are linear combinations of kernel
functions. The inner product〈·, ·〉H induces a norm onf ∈ H
in the usual way:||f ||H := 〈f, f〉H

1/2. An interesting special
case isX = Rn with k(x, y) = 〈x, y〉 (the normal dot-product
in Rn) which corresponds to learning linear functions inRn,
but much more varied function classes can be learned by using
different kernels.

A. Risk Functionals

In batch learning, it is typically assumed that all the exam-
ples are immediately available and are drawn independently
from some distributionP over X × Y. One natural measure
of quality for f in that case is theexpected risk

R[f, P ] := E(x,y)∼P [l(f(x), y)]. (2)

Since P is unknown, givenS drawn from Pm, a standard
approach [1] is to instead minimise theempirical risk

Remp[f, S] :=
1
m

m∑
t=1

l(f(xt), yt). (3)

However, minimisingRemp[f ] may lead to overfitting (com-
plex functions that fit well on the training data but do not
generalise to unseen data). One way to avoid this is to penalise
complex functions by instead minimising theregularised risk

Rreg[f, S] := Rreg,λ[f, S] := Remp[f ] +
λ

2
||f ||2H (4)

where λ > 0 and ||f ||H = 〈f, f〉1/2
H does indeed measure

the complexity off in a sensible way [1]. The constantλ
needs to be chosen appropriately for each problem. Ifl has
parameters (for examplelρ — see later), we writeRemp,ρ[f, S]
andRreg,λ,ρ[f, S].

Since we are interested in online algorithms, which deal
with one example at a time, we also define an instantaneous
approximation ofRreg,λ, the instantaneous regularised riskon
a single example(x, y), by

Rinst[f, x, y] := Rinst,λ[f, x, y] := Rreg,λ[f, ((x, y))]. (5)

B. Online setting

In this paper we are interested inonline learning, where the
examples become available one by one, and it is desired that
the learning algorithm produces a sequence of hypothesesf =
(f1, . . . , fm+1). Here f1 is some arbitrary initial hypothesis
and fi for i > 1 is the hypothesis chosen after seeing the
(i − 1)th example. Thusl(ft(xt), yt) is the loss the learning
algorithm makes when it tries to predictyt, based onxt and
the previous examples(x1, y1), . . . , (xt−1, yt−1). This kind
of learning framework is appropriate for real-time learning
problems and is of course analogous to the usual adaptive
signal processing framework [24]. We may also use an online
algorithm simply as an efficient method of approximately
solving a batch problem. The algorithm we propose below
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can be effectively run on huge data sets on machines with
limited memory.

A suitable measure of performance for online algorithms in
an online setting is thecumulative loss

Lcum[f , S] =
m∑

t=1

l(ft(xt), yt). (6)

(Again, if l has such asρ, we write Lcum,ρ[f ] etc.) Notice
that hereft is tested on the example(xt, yt) which was
not available for trainingft, so if we can guarantee a low
cumulative loss we are already guarding against overfitting.
Regularisation can still be useful in the online setting: if
the target we are learning changes over time, regularisation
prevents the hypothesis from going too far in one direction,
thus hopefully helping recovery when a change occurs. Fur-
thermore, if we are interested in large margin algorithms, some
kind of complexity control is needed to make the definition of
the margin meaningful.

C. The General Idea of the Algorithm

The algorithms we study in this paper are classical stochas-
tic gradient descent — they perform gradient descent with
respect to the instantaneous risk. The general form of the
update rule is

ft+1 := ft − ηt ∂fRinst,λ[f, xt, yt]
∣∣∣
f=ft

(7)

where for i ∈ N, fi ∈ H, ∂f is short-hand for∂/∂f (the
gradient with respect tof ) and ηt > 0 is the learning rate
which is often constantηt = η. In order to evaluate the
gradient, note that the evaluation functionalf 7→ f(xi) is
given by (1), and therefore

∂f l(f(xt), yt) = l′(f(xt), yt)k(xt, ·), (8)

where l′(z, y) := ∂zl(z, y). Since∂f ||f ||2H = 2f , the update
becomes

ft+1 := (1− ηλ)ft − ηtl
′(ft(xt), yt)k(xt, ·). (9)

Clearly, givenλ > 0, ηt needs to satisfyηt < 1/λ for all t
for the algorithm to work.

We also allow loss functionsl that are only piecewise
differentiable, in which case∂ stands for subgradient. When
the subgradient is not unique, we choose one arbitrarily; the
choice does not make any difference either in practice or in
theoretical analyses. All the loss functions we consider are
convex in the first argument.

Choose a zero initial hypothesisf1 = 0. For the purposes of
practical computations, one can writeft as a kernel expansion
(cf. [25])

ft(x) =
t−1∑
i=1

αik(xi, x) x ∈ X (10)

where the coefficients are updated at stept via

αt :=− ηtl
′(ft(xt), yt) for i = t (11)

αi :=(1− ηtλ)αi for i < t. (12)

Given: A sequenceS = ((xi, yi))i∈N ∈ (X ×Y)∞; a regularisation
parameterλ > 0; a truncation parameterτ ∈ N; a learning rate
η ∈ (0, 1/λ); a piecewise differentiable convexloss functionl : R×
Y → R; and aReproducing Kernel Hilbert SpaceH with reproducing
kernel k, NORMAλ(S, l, k, η, τ) outputs a sequence of hypotheses
f = (f1, f2, . . .) ∈ H∞.

Initialise t := 1; βi := (1− λη)i for i = 0, . . . , τ ;
Loop

ft(·) :=
Pt−1

i=max(1,t−τ) αiβt−i−1k(xi, ·);
αt := −ηl′(ft(xt), yt);
t := t + 1;

End Loop

Fig. 1. NORMAλ with constant learning rateη, exploiting the truncation
approximation.

Thus, at stept the t-th coefficient may receive a non-zero
value. The coefficients for earlier terms decay by a factor
(which is constant for constantηt). Notice that the cost for
training at each step is not much larger than the prediction
cost: once we have computedft(xt), αt is obtained by the
value of the derivative ofl at (ft(xt), yt).

D. Speedups and Truncation

There are several ways of speeding up the algorithm. Instead
of updating all old coefficientsαi, i = 1, . . . , t− 1, one may
simply cache the power series1, (1 − λη), (1 − λη)2, (1 −
λη)3, . . . and pick suitable terms as needed. This is particularly
useful if the derivatives of the loss functionl will only assume
discrete values, say{−1, 0, 1 } as is the case when using the
soft-margin type loss functions (see Section III).

Alternatively, one can also storẽαt = (1 − η)−tαt and
compute ft(x) = (1 − η)t

∑t−1
i=1 α̃ik(xi, xt), which only

requires rescaling oncẽαt becomes too large for machine
precision — this exploits the exponent in the standard floating
point number representation.

A major problem with (11) and (12) is that without ad-
ditional measures, the kernel expansion at timet contains
t terms. Since the amount of computations required for
predicting grows linearly in the size of the expansion, this
is undesirable. The regularisation term helps here. At each
iteration the coefficientsαi with i 6= t are shrunk by(1−λη).
Thus afterτ iterations the coefficientαi will be reduced to
(1− λη)ταi. Hence one can drop small terms and incur little
error as the following proposition shows.

Proposition 1 (Truncation Error) Supposel(z, y) is a loss
function satisfying|∂zl(z, y)| ≤ C for all z ∈ R, y ∈
Y and k is a kernel with bounded norm‖k(x, ·)‖ ≤ X
where ‖ · ‖ denotes either‖ · ‖L∞ or ‖ · ‖H. Let ftrunc :=∑t−1

i=max(1,t−τ) αik(xi, ·) denote the kernel expansion trun-
cated toτ terms. The truncation error satisfies

‖f − ftrunc‖ ≤
t−τ∑
i=1

η(1− λη)t−iCX < (1− λη)τCX/λ.

Obviously the approximation quality increases exponen-
tially with the number of terms retained.
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The regularisation parameterλ can thus be used to control
the storage requirements for the expansion. In addition, it
naturally allows for distributionsP (x, y) that change over time
in which cases it is desirable toforget instances(xi, yi) that
are much older than the average time scale of the distribution
change [26].

We call our algorithm NORMA (Naive OnlineRreg Min-
imisation Algorithm) and sometimes explicitly write the pa-
rameterλ: NORMAλ. NORMA is summarised in Figure 1. In
the applications discussed in the next section it is sometimes
necessary to introduce additional parameters that need to be
updated. We nevertheless refer somewhat loosely to the whole
family of algorithms as NORMA.

III. A PPLICATIONS

The general idea of NORMA can be applied to a wide
range of problems. We utilise the standard [1] addition of
the constant offsetb to the function expansion, i.e.g(x) :=
f(x) + b wheref ∈ H and b ∈ R. Hence we also updateb
via

bt+1 := bt − η ∂bRinst[g, xt, yt]
∣∣∣
g=ft+bt

.

A. Classification

In (binary) classification, we haveY = {±1 }. The most
obvious loss function to use in this context isl(f(x), y) = 1
if yf(x) ≤ 0 and l(f(x), y) = 0 otherwise. Thus, no loss is
incurred ifsgn(f(x)) is the correct prediction fory; otherwise
we say thatf makes amistakeat (x, y) and charge a unit loss.

However, the mistake loss function has some drawbacks:
a) it fails to take into account themargin yf(x) that can be
considered a measure of confidence in the correct prediction, a
non-positive margin meaning an actual mistake; b) the mistake
loss is discontinuous and non-convex and thus is unsuitable for
use in gradient based algorithms.

In order to deal with these drawbacks the main loss function
we use here for classification is thesoft margin loss

lρ(f(x), y) := max(0, ρ− yf(x)) (13)

whereρ ≥ 0 is the margin parameter. The soft margin loss
lρ(f(x), y) is positive if f fails to achieve a margin at leastρ
on (x, y); in this case we say thatf made amargin error. If
f made an actual mistake, thenlρ(f(x), y) ≥ ρ.

Let σt be an indicator of whetherft made a margin error
on (xt, yt), i.e., σt = 1 if ytft(xt) ≤ ρ and zero otherwise.
Then

l′ρ(ft(xt), yt) = −σtyt =

{
−yt if ytft(xt) ≤ ρ

0 otherwise
(14)

and the update (9) becomes

ft+1 :=(1− ηλ)ft + ησtytk(xt, ·) (15)

bt+1 :=bt + ησtyt. (16)

Suppose now thatX > 0 is a bound such thatk(xt, xt) ≤
X2 holds for all t. Since||f1||H = 0 and

||ft+1||H ≤ (1− ηλ)||ft||H + η||k(xt, ·)||H
= (1− ηλ)||ft||H + ηk(xt, xt)1/2,

we obtain||ft||H ≤ X/λ for all t. Furthermore,

|ft(xt)| = | 〈ft, k(xt, ·)〉H | ≤ X2/λ. (17)

Hence, when the offset parameterb is omitted (which we
consider particularly in Sections IV and V), it is reasonable to
requireρ ≤ X2/λ. Then the loss function becomes effectively
bounded, withlρ(ft(xt), yt) ≤ 2X2/λ for all t.

The update in terms ofαi is (for i = 1, . . . , t− 1)

(αi, αt, b) := ((1− ηλ)αi, ησtyt, b + ησtyt). (18)

Whenρ = 0 andλ = 0 we recover the kernel perceptron [27].
If ρ = 0 and λ > 0 we have a kernel perceptron with
regularisation.

For classification with theν-trick [4] we also have to take
care of the marginρ, since there (recallg(x) = f(x) + b)

l(g(x), y) := max(0, ρ− yg(x))− νρ. (19)

Since one can show [4] that the specific choice ofλ has no
influence on the estimate inν-SV classification, we may set
λ = 1 and obtain the update rule (fori = 1, . . . , t− 1)

(αi, αt, b, ρ) := ((1−η)αi, ησtyt, b+ησtyt, ρ+η(σt−ν)).

B. Novelty Detection

Novelty detection [21] is like classification without labels.
It is useful for condition monitoring tasks such as network
intrusion detection. The absence of labelsyi means the algo-
rithm is not precisely a special case of NORMA as presented
earlier, but one can derive a variant in the same spirit.

Theν-settingis most useful here as it allows one to specify
an upper limit on the frequency of alertsf(x) < ρ. The loss
function to be utilised is

l(f(x), x, y) := max(0, ρ− f(x))− νρ

and usually [21] one usesf ∈ H rather thang = f + b where
b ∈ R in order to avoid trivial solutions. The update rule is
(for i = 1, . . . , t− 1)

(αi, αt, ρ) :=

{
((1− η)αi, η, ρ + η(1− ν)) if f(x) < ρ

((1− η)αi, 0, ρ− ην) otherwise.
(20)

Consideration of the update forρ shows that on average only
a fraction of ν observations will be considered for updates.
Thus it is necessary to store only a small fraction of thexis.

C. Regression

We consider the following three settings: squared loss, the
ε-insensitive loss using theν-trick, and Huber’s robust loss
function, i.e. trimmed mean estimators. For convenience we
will only use estimatesf ∈ H rather thang = f + b where
b ∈ R. The extension to the latter case is straightforward.

1) Squared Loss:Here l(f(x), y) := 1
2 (y − f(x))2. Con-

sequently the update equation is (fori = 1, . . . , t− 1)

(αi, αt) := ((1− λη)αi, η(yt − f(xt))). (21)

This means that we have to storeevery observation we
make, or more precisely, the prediction error we made on the
observation.
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2) ε-insensitive Loss: The use of the loss function
l(f(x), y) = max(0, |y−f(x)|−ε) introduces a new parameter
— the width of the insensitivity zoneε. By makingε a variable
of the optimisation problem we have

l(f(x), y) := max(0, |y − f(x)| − ε) + νε.

The update equations now have to be stated in terms ofαi, αt,
and ε which is allowed to change during the optimisation
process. Settingδt := yt − f(xt) the updates are (fori =
1, . . . , t− 1)

(αi, αt, ε) :={
((1− λη)αi, η sgn δt, ε + (1− ν)η) if |δt| > ε

((1− λη)αi, 0, ε− ην) otherwise.

(22)

This means that every time the prediction error exceedsε, we
increase the insensitive zone byην. If it is smaller thanε, the
insensitive zone is decreased byη(1− ν).

3) Huber’s Robust Loss:This loss function was proposed
in [22] for robust maximum likelihood estimation among a
family of unknown densities. It is given by

l(f(x), y) :=

{
|y − f(x)| − 1

2σ if |y − f(x)| ≥ σ
1
2σ (y − f(x))2 otherwise.

(23)

Settingδt := yt − f(xt) the updates are (fori = 1, . . . , t− 1)

(αi, αt) :=

{
((1− η)αi, η sgn δt) if |δt| > σ

((1− η)αi, σ−1δt) otherwise.
(24)

Comparing (24) with (22) leads to the question of whether
σ might also be adjusted adaptively. This is a desirable goal
since we may not know the amount of noise present in the
data. While theν-setting allowed the formation of adaptive
estimators for batch learning with theε-insensitive loss, this
goal has proven elusive for other estimators in the standard
batch setting.

In the online situation, however, such an extension is quite
natural (see also [28]). It is merely necessary to makeσ a
variable of the optimisation problem and the updates become
(for i = 1, . . . , t− 1)

(αi, αt, σ) :={
((1− η)αi, η sgn δt, σ + η(1− ν)) if |δt| > σ

((1− η)αi, σ−1δt, σ − ην) otherwise.

IV. M ISTAKE BOUNDS FORNON-STATIONARY TARGETS

In this section we theoretically analyse NORMA for clas-
sification with the soft margin loss with marginρ. In the
process we establish relative bounds for the soft margin loss. A
detailed comparative analysis between NORMA and Gentile’s
ALMA [9] can be found in [14].

A. Definitions

We consider the performance of the algorithm for a fixed
sequence of observationsS := ((x1, y1), . . . , (xm, ym)) and
study the sequence of hypothesesf = (f1, . . . , fm), produced

by the algorithm onS. Two key quantities are the number of
mistakes, given by

M(f , S) := |{ 1 ≤ t ≤ m | ytft(xt) ≤ 0 }|, (25)

and the number ofmargin errors, given by

Mρ(f , S) := |{ 1 ≤ t ≤ m | ytft(xt) ≤ ρ }|. (26)

Notice that margin errors are those examples on which the
gradient of the soft margin loss is non-zero, soMρ(f , S) gives
the size of the kernel expansion of final hypothesisfm+1.

We useσt to denote whether a margin error was made at
trial t, i.e., σt = 1 if ytft(xt) ≤ ρ and σt = 0 otherwise.
Thus the soft margin loss can be written aslρ(ft(xt), yt) =
σt(ρ − ytft(xt)) and consequentlyLcum,ρ[f , S] denotes the
total soft margin loss of the algorithm.

In our bounds we compare the performance of NORMA to
the performance of function sequencesg = (g1, . . . , gm) from
somecomparison classG ⊂ Hm.

Notice that we often use a different marginµ 6= ρ for the
comparison sequence, andσt always refers to the margin errors
of the actual algorithm with respect to its marginρ. We always
have

lµ(g(x), y) ≥ µ− yg(x). (27)

We extend the notationsM(g, S), Mµ(g, S), lµ(gt, yt) and
Lcum,µ[g, S] to such comparison sequences in the obvious
manner.

B. A Preview

To understand the form of the bounds, consider first the
case of a stationary target, with comparison against a constant
sequenceg = (g, . . . , g). With ρ = λ = 0, our algorithm
becomes the kernelised Perceptron algorithm. Assuming that
someg achievesMµ(g, S) = 0 for someµ > 0, the kernelised
version of the Perceptron Convergence Theorem [27], [29]
gives

M(f , S) ≤ ||g||2H max
t

k(xt, xt)/µ2.

Consider now the more general case where the sequence is
not linearly separable in the feature space. Then ideally we
would wish for bounds of the form

M(f , S) ≤ min
g=(g,...,g)

M(g, S) + o(m),

which would mean that the mistake rate of the algorithm would
converge to the mistake rate of the best comparison function.
Unfortunately, even approximately minimising the number of
mistakes over the training sequence is very difficult, so such
strong bounds for simple online algorithms seem unlikely.
Instead, we settle for weaker bounds of the form

M(f , S) ≤ min
g=(g,...,g),||g||H≤B

Lcum,µ[g, S]/µ + o(m), (28)

whereLcum,µ[g, S]/µ is an upper bound forM(g, S), and the
norm boundB appears as a constant in theo(m) term. For
earlier bounds of this form, see [30], [31].
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In the non-stationary case, we consider comparison classes
which are allowed to change slowly, that is

G(B,D1, D2)

:=

{
(g1, . . . , gm)

∣∣∣∣∣
m−1∑
t=1

||gt − gt+1||H ≤ D1

m−1∑
t=1

||gt − gt+1||2H ≤ D2 and ||gt||H ≤ B

}
.

The parameterD1 bounds the total distance travelled by the
target. Ideally we would wish the target movement to result in
an additionalO(D1) term in the bounds, meaning there would
be a constant cost per unit step of the target. Unfortunately,
for technical reasons we also need theD2 parameter which
restricts the changes of speed of the target. The meaning of the
D2 parameter will become clearer when we state our bounds
and discuss them.

Choosing the parameters is an issue in the bounds we have.
The bounds depend on the choice of the learning rate and
margin parameters, and the optimal choices depend on quan-
tities (such asming Lcum,µ[g, S]) that would not be available
when the algorithm starts. In our bounds, we handle this by
assuming an upper boundK ≥ ming Lcum,µ[g, S] that can
be used for tuning. By substitutingK = ming Lcum,µ[g, S],
we obtain the kind of bound we discussed above; otherwise
the estimateK replacesming Lcum,µ[g, S] in the bound. In
a practical application, one would probably be best served
to ignore the formal tuning results in the bounds and just
tune the parameters by whatever empirical methods are pre-
ferred. Recently, online algorithms have been suggested that
dynamically tune the parameters to almost optimal values as
the algorithm runs [9], [32]. Applying such techniques to our
analysis remains an open problem.

C. Relative Loss Bounds

Recall that the update for the case we consider is

ft+1 := (1− ηλ)ft + ησtytk(xt, ·). (29)

It will be convenient to give the parameter tunings in terms
of the function

h(x,K, C) =

√
C

K

(
x +

C

K

)
− C

K
, (30)

where we assumex, K and C to be positive. Notice that
0 ≤ h(x,K, C) ≤ x holds, andlimK→0+ h(x,K, C) = x/2.
Accordingly, we defineh(x, 0, C) = x/2.

We start by analysing margin errors with respect to a given
marginρ.

Theorem 2 Supposef is generated by (29) on a sequenceS
of lengthm. Let X > 0 and suppose thatk(xt, xt) ≤ X2 for
all t. Fix K ≥ 0, B > 0, D1 ≥ 0 and D2 ≥ 0. Let

C =
1
4
X2
(
B2 + B

(√
mD2 + D1

))
(31)

and, given parametersµ > ρ ≥ 0, let η′ = 2h(µ −
ρ,K,C)/X2. Choose the regularisation parameter

λ = (Bη′)−1
√

D2/m, (32)

and the learning rate parameterη = η′/(1+η′λ). If for some
g ∈ G(B,D1, D2), we haveLcum,µ[g, S] ≤ K then

Mρ(f , S) ≤ K

µ− ρ
+

2C

(µ− ρ)2
+

2
(

C

(µ− ρ)2

)1/2(
K

µ− ρ
+

C

(µ− ρ)2

)1/2

.

The proof can be found in Appendix A.
We now consider obtaining mistake bounds from our margin

error result. The obvious method is to setρ = 0, turning
margin errors directly to mistakes. Interestingly, it turns out
that a subtly different choice of parameters allows us to obtain
the same mistake bound using a non-zero margin.

Theorem 3 Supposef is generated by (29) on a sequence
S of length m. Let X > 0 and suppose thatk(xt, xt) ≤
X2 for all t. Fix K, B, D1, D2 ≥ and defineC as in (31),
and givenµ > 0 let η′ = 2r/X2 where r = h(µ,K, C).
Choose the regularisation parameter as in (32), the learning
rate η = η′/(1 + η′λ), and set the margin to eitherρ = 0 or
ρ = µ − r. Then for either of these margin settings, if there
exists a comparison sequenceg ∈ G(B,D1, D2) such that
Lcum,µ[g, S] ≤ K, we have

M(f , S) ≤ K

µ
+

2C

µ2
+ 2

(
C

µ2

)1/2(
K

µ
+

C

µ2

)1/2

.

The proof of Theorem 3 is also in Appendix A.
To gain intuition about Theorems 2 and 3, consider first the

separable caseK = 0 with a stationary target (D1 = D2 = 0).
In this special case, Theorem 3 gives the familiar bound from
the Perceptron Convergence Theorem. Theorem 2 gives an
upper bound ofX2B2/(µ − ρ)2 margin errors. The choices
given for ρ in Theorem 3 for the purpose of minimising the
mistake bound are in this caseρ = 0 and ρ = µ/2. Notice
that the latter choice results in a bound of4X2B2/µ margin
errors. More generally, if we chooseρ = (1 − ε)µ for some
0 < ε < 1 and assumeµ to be the largest margin for which
separation is possible, we see that the algorithm achieves in
O(ε−2) iterations a margin within a factor1 − ε of optimal.
This bound is similar to that for ALMA [9], but ALMA is much
more sophisticated in that it automatically tunes its parameters.

Removing the separability assumption leads to an additional
K/µ term in the mistake bound, as we expected. To see the
effects of theD1 and D2 terms, assume first that the target
has constant speed:||gt−gt+1||H = δ for all t whereδ > 0 is
a constant. ThenD1 = mδ andD2 = mδ2, so

√
mD2 = D1.

If the speed is not constant, we always have
√

mD2 > D1.
An extreme case would be||g1 − g2||H = D1, gt+1 = gt for
t > 1. Then

√
mD2 =

√
mD1. Thus theD2 term increases

the bound in case of changing target speed.

V. CONVERGENCE OFNORMA

A. A Preview

Next we study the performance of NORMA when it comes to
minimising the regularised risk functionalRreg[f, S], of which
Rinst[f, xt, yt] is the stochastic approximation at timet. We
show that under some mild assumptions on the loss function,
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the average instantaneous risk(1/m)
∑m

t=1 Rinst[ft, xt, yt] of
the hypothesesft of NORMA converges towards the mini-
mum regularised riskming Rreg[g, S] at rateO(m−1/2). This
requires no probabilistic assumptions. If the examples are
i.i.d., then with high probability the expected regularised risk
of the average hypothesis(1/m)

∑m
t=1 ft similarly converges

towards the minimum expected risk. Convergence can also
be guaranteed for the truncated version of the algorithm that
keeps its kernel expansion at a sublinear size.

B. Assumptions and notation

We assume a boundX > 0 such thatk(xt, xt) ≤ X2 for all
t. Then for allg ∈ H, |g(xt)| = | 〈g, k(xt, ·)〉H | ≤ X||g||H.

We assume that the loss functionl is convex in its first
argument and also satisfies for some constantc > 0 the
Lipschitz condition

|l(z1, y)− l(z2, y)| ≤ c|z1 − z2| (33)

for all z1, z2 ∈ R, y ∈ Y.
Fix now λ > 0. The hypothesesft produced by (9)

||ft+1||H = ||(1− ηtλ)ft − ηtl
′(f(xt), yt)k(xt, ·)||H

≤ (1− ηtλ)||ft||H + ηtcX,

and sincef1 = 0 we have for allt the bound||ft||H ≤ U
where

U :=
cX

λ
. (34)

Since |l′(f(xt), yt)| ≤ c, we have||∂f l(f(xt), yt)||H ≤ cX
and ||∂fRinst[f, xt, yt]|||H ≤ cX + λ||f ||H ≤ 2cX for any f
such that||f ||H ≤ U .

Fix a sequenceS and for0 < ε < 1 define

ĝ := argmin
g∈H

Rreg[g, S], g := (1− ε)ĝ.

Then0 ≤ Rreg[g, S]−Rreg[ĝ, S]

=
1
m

m∑
t=1

(l(g(xt), yt)− l(ĝ(xt), yt))

+
λ

2
(||g||2H − ||ĝ||2H)

≤ cX||g − ĝ||H +
λ

2
((1− ε)2 − 1)||ĝ||2H

= cXε||ĝ||H − λε||ĝ||2H +
λε2

2
||ĝ||2H.

Considering the limitε → 0+ shows that||ĝ||H ≤ U where
U is as in (34).

C. Basic convergence bounds

We start with a simple cumulative risk bound. To achieve
convergence, we use a decreasing learning rate.

Theorem 4 Fix λ > 0 and 0 < η < 1/λ. Assume thatl
is convex and satisfies (33). Let the example sequenceS =
((xt, yt))m

t=1 be such thatk(xt, xt) ≤ X2 holds for all t, and
let (f1, . . . , fm+1) be the hypothesis sequence produced by

NORMA with learning rateηt = ηt−1/2. Then for anyg ∈ H
we have

m∑
t=1

Rinst,λ[ft, xt, yt] ≤ mRreg,λ[g, S] + am1/2 + b (35)

wherea = 2λU2(2ηλ + 1/(ηλ)), b = U2/(2η) and U is as
in (34).

The proof, given in Appendix B, is based on analysing the
progress offt towardsg at updatet. The basic technique is
from [33], [34], and [32] shows how to adjust the learning
rate (in a much more complicated setting than we have here).

Note that (35) holds in particular forg = ĝ, so

1
m

m∑
t=1

Rinst,λ[ft, xt, yt] ≤ Rreg,λ[ĝ, S] + O(m−1/2)

where the constants depend onX, c and the parameters of
the algorithm. However, the bound does not depend on any
probabilistic assumptions. If the example sequence is such that
some fixed predictorg has a small regularised risk, then the
average regularised risk of the on-line algorithm will also be
small.

Consider now the implications of Theorem 4 to a situation in
which we assume that the examples(xt, yt) are i.i.d. according
to some fixed distributionP . The bound on the cumulative
risk can be transformed into a probabilistic bound by standard
methods. We assume thatk(x, x) ≤ X2 with probability 1
for (x, y) ∼ P . We say that therisk is bounded byL if with
probability 1 we haveRinst,λ[f, xt, yt] ≤ L for all t andf ∈
{ ĝ, f1, . . . , fm+1 }.

As an example, consider the soft margin loss. By the
preceding remarks, we can assume||f ||H ≤ X/λ. This
implies |f(xt)| ≤ X2/λ so the interesting values ofρ satisfy
0 ≤ ρ ≤ X2/λ. Hencelρ(f(xt), yt) ≤ 2X2/λ, and we can
take L = 5X2/(2λ). If we wish to use an offset parameter
b, a bound for|b| needs to be obtained and incorporated into
L. Similarly, for regression type loss functions we may need
a bound for|yt|.

The result of Cesa-Bianchi et al. for bounded convex loss
functions [35, Theorem 2] now directly gives the following.

Corollary 5 Assume thatP is a probability distribution over
X × Y such thatk(x, x) ≤ X2 holds with probability1 for
(x, y) ∼ P , and let the example sequenceS = ((xt, yt))m

t=1

be drawn i.i.d. according toP . Fix λ > 0 and 0 < η < 1/λ.
Assume thatl is convex and satisfies (33), and that the risk
is bounded byL. Let f̄m = (1/m)

∑m−1
t=1 ft whereft is the

t-th hypothesis produced byNORMA with learning rateηt =
ηt−1/2. Then for anyg ∈ H and 0 < δ < 1, and for a and b
as in Theorem 4, we have

E(x,y)∼P Rinst,λ[f̄m, x, y]

≤ Rreg,λ[g, S] +
1

m1/2

(
a + L(2 ln(1/δ))1/2

)
+

b

m

with probability at least1− δ over random draws ofS.

To apply Corollary 5, chooseg = g∗ where

g∗ = argmin
f∈H

E(x,y)∼P Rinst,λ[f, x, y]. (36)
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With high probability, Rreg,λ[g∗, S] will be close to
E(x,y)∼P Rinst,λ[g∗, x, y], so with high probability
E(x,y)∼P Rinst,λ[f̄m, x, y] will be close to the minimum
expected risk.

D. Effects of truncation

We now consider a version where at timet the hypothesis
consist of a kernel expansion of sizest, where we allowst to
slowly (sublinearly) increase as a function oft. Thus

ft(x) =
st∑

τ=1

αt−τ,tk(xt−τ , x)

whereαt,t′ is the coefficient ofk(xt, ·) in the kernel expansion
at timet′. For simplicity, we assumest+1 ∈ { st, st + 1 } and
include in the expansion even the terms whereαt,t = 0. Thus
at any update we add a new term to the kernel expansion; if
st+1 = st we also drop the oldest previously remaining term.
We can then write

ft+1 = ft − ηt∂fRinst[f, xt, yt]|f=ft −∆t

where∆t = 0 if st+1 = st + 1 and ∆t = αt−st,tk(xt−st
, ·)

otherwise. Sinceαt,t′+1 = (1 − ηt′λ)αt,t′ , we see that
the kernel expansion coefficients decay almost geometrically.
However, since we also need to use a decreasing learning rate
ηt = ηt−1/2, the factor1− ηtλ approaches1. Therefore it is
somewhat complicated to choose expansion sizesst that are
not large but still guarantee that the cumulative effect of the
∆t terms remains under control.

Theorem 6 Assume thatl is convex and satisfies (33). Let the
example sequenceS = ((xt, yt))m

t=1 be such thatk(xt, xt) ≤
X2 holds for all t. Fix λ > 0, 0 < η < 1/λ and0 < ε < 1/2.
Then there is a valuet0(λ, η, ε) such that the following holds
when we definest = t for t ≤ t0(λ, η, ε) andst = dt1/2+εe for
t > t0(λ, η, ε). Let (f1, . . . , fm+1) be the hypothesis sequence
produced by truncatedNORMA with learning rateηt = ηt−1/2

and expansion sizesst. Then for anyg ∈ H we have

m∑
t=1

Rinst,λ[ft, xt, yt] ≤ mRreg,λ[g, S] + am1/2 + b (37)

wherea = 2λU2(10ηλ + 1/(ηλ)), b = U2/(2η) and U is as
in (34).

The proof, and the definition oft0, is given in Appendix C.
Conversion of the result to a probabilistic setting can be

done as previously, although an additional step is needed to
estimate how the∆t terms may affect the maximum norm of
ft; we omit the details.

VI. EXPERIMENTS

The mistake bounds in Section IV are of course only worst-
case upper bounds, and the constants may not be very tight.
Hence we performed experiments to evaluate the performance
of our stochastic gradient descent algorithms in practice.

A. Classification

Our bounds suggest that some form of regularisation is
useful when the target is moving, and forcing a positive margin
may give an additional benefit.

This hypothesis was tested using artificial data, where we
used a mixture of 2-dimensional Gaussians for the positive
examples and another for negative ones. We removed all
examples that would be misclassified by the Bayes-optimal
classifier (which is based on the actual distribution known to
us) or are close to its decision boundary. This gave us data
that were cleanly separable using a Gaussian kernel.

In order to test the ability of NORMA to deal with changing
underlying distributions we carried out random changes in
the parameters of the Gaussians. We used two movement
schedules:
• In the drifting case, there is a relatively small parameter

change after every ten trials.
• In the switching case, there is a very large parameter

change after every 1000 trials.
Thus, given the form of our bounds, all other things being
equal, our mistake bound would be much better in the drifting
than in the switching case. In either case, we ran each
algorithm for 10000 trials and cumulatively summed up the
mistakes made by them.

In our experiments we compared NORMAλ,ρ with ALMA [9]
with p = 2 and the basic Perceptron algorithm (which is the
same stochastic gradient descent with the marginρ in the loss
function (13) and weight decay parameterλ both set to zero).
We also considered variants NORMAλ,0 and ALMA 0 where the
marginρ is fixed to zero. These algorithms are included to see
whether regularisation, either by weight decay as in NORMA

or by a norm bound as in ALMA , helps predicting a moving
target even when we are not aiming for a large margin. We
used Gaussian kernels to handle the non-linearity of the data.
For these experiments, the parameters of the algorithms were
tuned by hand optimally for each example distribution.

Figure 2 shows the cumulative mistake counts for the
algorithms. There does not seem to be any decisive differences
between the algorithms.

In particular, NORMA works quite well, also on switching
data, even though our bound suggests otherwise (which is
probably due to slack in the bound). In general, it does seem
that using a positive margin is better than fixing the margin to
zero, and regularisation even with zero margin is better than
the basic Perceptron algorithm.

B. Novelty Detection

In our experiments we studied the performance of the
novelty detection variant of NORMA given by (20) for various
kernel parameters and values ofν.

We performed experiments on the USPS database of hand-
written digits (7000 scanned images of handwritten digits at a
resolution of16× 16 pixels, out of which5000 were chosen
for training and2000 for testing purposes).

Already after one pass through the database, which took in
MATLAB less than 15s on a 433MHz Celeron, the results can
be used for weeding out badly written digits (cf. the left plot
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Fig. 2. Mistakes made by the algorithms on drifting data (top) and on
switching data (bottom).

of Figure 3). We choseν = 0.01 to allow for a fixed fraction
of detected “outliers.” Based on the theoretical analysis of
Section V we used a decreasing learning rate withηt ∝ t−

1
2 .

Figure 3 shows how the algorithm improves in its assess-
ment of unusual observations (the first digits in the left table
are still quite regular but degrade rapidly). It could therefore
be used as an online data filter.

VII. D ISCUSSION

We have shown how the careful application of classical
stochastic gradient descent can lead to novel and practical
algorithms for online learning using kernels. The use of
regularisation (which is essential for capacity control when
using the rich hypothesis spaces generated by kernels) allows
for truncation of the basis expansion and thus computationally
efficient hypotheses. We explicitly developed parameterisa-
tions of our algorithm for classification, novelty detection and
regression. The algorithm is the first we are aware of for
online novelty detection. Furthermore, its general form is very
efficient computationally and allows the easy application of
kernel methods to enormous data sets, as well, of course, to
real-time online problems.

We also presented a theoretical analysis of the algorithm
when applied to classification problems with soft marginρ

with the goal of understanding the advantage of securing a
large margin when tracking a drifting problem. On the positive
side, we have obtained theoretical bounds that give some
guidance to the effects of the margin in this case. On the
negative side, the bounds are not that well corroborated by
the experiments we performed.
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APPENDIX

A. Proofs of Theorems 2 and 3

The following technical lemma, which is proved by a simple
differentiation, is used in both proofs for choosing the optimal
parameters.

Lemma 7 Given K > 0, C > 0 and γ > 0 definef(z) =
K/(γ − z) + C/(z(γ − z)) for 0 < z < γ. Then f(z) is
maximised forz = h(γ, K,C) whereh is as in (30), and the
maximum value is

f(h(γ, K,C)) =
K

γ
+

2C

γ2
+ 2

(
K

γ
+

C

γ2

)1/2(
C

γ2

)1/2

.

The main idea in the proofs is to lower bound theprogress
at updatet, which we define as||gt−ft||2H−||gt+1−ft+1||2H.
For notational convenience we introducegm+1 := gm.

Proof of Theorem 2:Definef ′t+1 = ft + η′σtytk(xt, ·).
We split the progress into three parts:

||gt − ft||2H − ||gt+1 − ft+1||2H
= (||gt − ft||2H − ||gt − f ′t+1||2H)

+ (||gt − f ′t+1||2H − ||gt − ft+1||2H)
+ (||gt − ft+1||2H − ||gt+1 − ft+1||2H). (38)

By substituting the definition off ′t+1, using (27) and applying
σtlµ(gt(xt), yt) ≤ lµ(gt(xt), yt), we can estimate the first part
of (38) as

||gt − ft||2H − ||gt − f ′t+1||2H
= 2η′σtyt 〈k(xt, ·), gt − ft〉H − ||ft − f ′t+1||2H
= 2η′σtyt(gt(xt)− ft(xt))− η′2σtk(xt, xt)
≥ 2η′(σtµ− lµ(gt(xt), yt))

− 2η′(σtρ− lρ(ft(xt), yt))− η′2σtX
2. (39)

For the second part of (38), we have

||gt − f ′t+1||2H − ||gt − ft+1||2H
= ||ft+1 − f ′t+1||2H + 2

〈
f ′t+1 − ft+1, ft+1 − gt

〉
H .

Sincef ′t+1 − ft+1 = ηλf ′t+1 = ηλft+1/(1− ηλ), we have

||ft+1 − f ′t+1||2H =
(

ηλ

1− ηλ

)2

||ft+1||2H
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Fig. 3. Results of online novelty detection after one pass through the USPS database. The learning problem is to discover (online) novel patterns. We used
Gaussian RBF kernels with width2σ2 = 0.5d = 128 and ν = 0.01. The learning rate was1√

t
. Left: the first 50 patterns which incurred a margin error

— it can be seen that the algorithm at first finds even well formed digits novel, but later only finds unusually written ones;Middle: the 50 worst patterns
according tof(x)− ρ on the training set — they are mostly badly written digits,Right: the 50 worst patterns on an unseen test set.

and 〈
f ′t+1 − ft+1, ft+1 − gt

〉
H

=
ηλ

1− ηλ

(
(||ft+1||2H − 〈ft+1, gt〉H

)
.

Hence, recalling the definition ofη, we get

||gt − f ′t+1||2H − ||gt − ft+1||2H
=

(
2η′λ + η′2λ2

)
||ft+1||2H − 2η′λ 〈ft+1, gt〉H .(40)

For the third part of (38) we have

||gt − ft+1||2H − ||gt+1 − ft+1||2H
= ||gt||2H − ||gt+1||2H + 2 〈gt+1 − gt, ft+1〉H . (41)

Substituting (39), (40) and (41) into (38) gives us

||gt − ft||2H − ||gt+1 − ft+1||2H
≥ 2η′(σtµ− lµ(gt(xt), yt))

− 2η′(σtρ− lρ(ft(xt), yt))
− η′2σtX

2

+ ||gt||2H − ||gt+1||2H + H[ft+1] (42)

where

H[f ] =
(
2η′λ + η′2λ2

)
||f ||2H

− 2η′λ 〈f, gt〉H + 2 〈gt+1 − gt, f〉H .

To boundH[ft+1] from below, we write

H[f ] = a||f ||2H − 2 〈r, f〉H = a||f − r/a||2H − ||r||2H/a

wherea = 2η′λ + η′2λ2 andr = (1 + η′λ)gt − gt+1. Hence,

H[ft+1] ≥ −||r||2H/a

≥ − 1
2η′λ + η′2λ2

(||gt − gt+1||H + η′λ||gt||H)2

= − 1
2 + η′λ

(
||gt − gt+1||2H

η′λ

+ 2||gt − gt+1||H||gt||H + η′λ||gt||2H
)

.(43)

Since−1/(2 + η′λ) > −1/2, (42) and (43) give

||gt − ft||2H − ||gt+1 − ft+1||2H
≥ −2η′(σtρ− lρ(ft(xt), yt))

+ 2η′(σtµ− lµ(gt(xt), yt))
− η′2σtX

2 + ||gt||2H − ||gt+1||2H

− 1
2

(
||gt+1 − gt||2H

η′λ

+ 2||gt||H||gt+1 − gt||H + η′λ||gt||2H
)

. (44)

By summing (44) overt = 1, . . . ,m and using the assumption
that g ∈ G(B,D1, D2) we obtain

||g1 − f1||2H − ||gm+1 − fm+1||2H
≥ 2η′Lcum,ρ[f , S]− 2η′Lcum,µ[g, S]

+ η′Mρ(f , S)
(
2µ− 2ρ− η′X2

)
+ ||g1||2H − ||gm+1||2H

− 1
2

(
D2

η′λ
+ 2BD1 + mη′λB2

)
. (45)

Now λ appears only in (45) as a subexpressionQ(η′λ)
where Q(z) = −D2

z − zmB2. Since the functionQ(z) is
maximised forz =

√
D2/(mB2), we chooseλ as in (32)

which gives Q(η′λ) = −2B
√

mD2. We assumef1 = 0,
so ||g1 − f1||2H − ||gm+1 − fm+1||2H ≤ ||g1||2H. By moving
some terms around and estimating||gm+1||H ≤ B and
Lcum,µ[g, S] ≤ K we get

Lcum,ρ[f , S] + Mρ(f , S)
(
µ− ρ− η′X2/2

)
≤ K +

B2 + B(
√

mD2 + D1)
2η′

. (46)

To get a bound for margin errors, notice that the valueη′

given in the theorem satisfiesµ−ρ−η′X2 > 0. We make the
trivial estimateLcum,ρ[f , S] ≥ 0, which gives us

Mρ(f , S) ≤ K

µ− ρ− η′X2/2

+
B2 + B(

√
mD2 + D1)

2η′(µ− ρ− η′X2/2)
.

The bound follows by applying Lemma 7 withγ = µ−ρ and
z = η′X2/2.
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Proof of Theorem 3:The claim forρ = 0 follows directly
from Theorem 2. For non-zeroρ, we take (46) as our starting
point. We chooseη′ = 2(µ−ρ)/X2, so the term withMρ(f , S)
vanishes and we get

Lcum,ρ[f , S] ≤ K +
X2(B2 + B(

√
mD2 + D1))

4(µ− ρ)
. (47)

SinceLcum,ρ[f , S] ≥ ρM(f , S), this implies

M(f , S) ≤ K

ρ
+

X2(B2 + B(
√

mD2 + D1))
4ρ(µ− ρ)

. (48)

The claim follows from Lemma 7 withγ = µ andz = µ− ρ.

B. Proof of Theorem 4

Without loss of generality we can assumeg = ĝ, and in
particular||g||H ≤ U . First notice that

||ft − g||2H − ||ft+1 − g||2H
= −||ft+1 − ft||2H − 2 〈ft+1 − ft, ft − g〉H
= −η2

t ||∂fRinst[f, xt, yt]|f=ft
||H

+ 2ηt 〈∂fRinst[f, xt, yt]|f=ft
, ft − g〉H

≥ −4η2
t c2X2

− 2ηt(Rinst[g, xt, yt]−Rinst[ft, xt, yt]) (49)

where we used the Lipschitz property ofl and the convexity
of Rinst in its first argument. This leads to

1
ηt
||ft − g||2H − 1

ηt+1
||ft+1 − g||2H

=
1
ηt

(
||ft − g||2H − ||ft+1 − g||2H

)
+
(

1
ηt
− 1

ηt+1

)
||ft+1 − g||2H

≥ −4ηtc
2X2 − 2Rinst[g, xt, yt] + 2Rinst[ft, xt, yt]

+ 4U2

(
1
ηt
− 1

ηt+1

)
since||ft+1 − g||H ≤ 2U . By summing overt = 1, . . . ,m +
1, and noticing that some terms telescope and

∑m
t=1 ηt ≤

2ηm1/2, we get

||f1 − g||2H
η

− ||fm+1 − g||2H
ηm+1

≥ −8ηc2X2m1/2 − 2
m∑

t=1

Rinst[g, xt, yt]

+ 2
m∑

t=1

Rinst[ft, xt, yt] + 4U2

(
1
η
− (m + 1)1/2

η

)
.

The claim now follows by rearranging terms and estimating
||f1−g||H ≤ U , ||fm+1−g||2H ≥ 0 and(m+1)1/2−1 ≤ m1/2.

C. Proof of Theorem 6

First, let us definet0(λ, η, ε) to be the smallest possible
such that the following hold for allt ≥ t0(λ, η, ε):
• ηλt−1/2 ≤ 1,
• exp(−ηλtε) ≤ ηλt−1/2 and
• dt1/2+εe ≤ 3t/4.

We use this to estimate||∆t||H. If st+1 = t + 1, then clearly
∆t = 0, so we consider the caset ≥ t0(λ, η, ε). Let r = t−st,
so ||∆t||H ≤ X|αr,t|. We have|αr,r| ≤ ηrc, and|αr,r+τ+1| =
(1−ηr+τλ)|αr,r+τ | ≤ (1−ηtλ)|αr,r+τ | for τ = 0, . . . , st−1.
Hence

|αr,t| ≤ ηrc(1− ηtλ)st ≤ ηrc

((
1− ηλ

t1/2

)t1/2)tε

.

Sinceηλ/t1/2 ≤ 1, we have(
1− ηλ

t1/2

) t1/2
ηλ

≤ exp(−1),

so |αr,t| ≤ ηrc exp(−ηλtε) ≤ ηrcηλt−1/2. Finally, sincer ≥
t/4, we haveηr ≤ 2ηt, so

||∆t||H ≤ 2η2
t λcX.

In particular, we have||∆t||H ≤ 2ηtcX, so

||ft+1||H ≤ (1− ηtλ)||ft||H
+ ηt|l′(ft(xt, y))|||k(xt, ·)||H + ||∆t||H

≤ (1− ηtλ)||ft||H + 3ηtcX.

Sincef1 = 0, we get ||ft||H ≤ 3cX/λ. Again, without loss
of generality we can assumeg = ĝ and thus in particular
||ft − g||H ≤ 4cX/λ.

To estimate the progress at trialt, let f̃t+1 = ft+1 + ∆t be
the new hypothesis before truncation. We write

||ft − g||2H − ||ft+1 − g||2H
= ||ft − g||2H − ||f̃t+1 − g||2H (50)

+ ||f̃t+1 − g||2H − ||ft+1 − g||2H. (51)

To estimate (51) we write

||f̃t+1 − g||2H − ||ft+1 − g||2H
= ||(f̃t+1 − ft+1) + (ft+1 − g)||2H − ||ft+1 − g||2H
= 2 〈∆t, ft+1 − g〉H + ||∆t||2H
≥ −2||∆t||H||ft+1 − g||H
≥ −16η2

t c2X2.

By combining this with the estimate (49) for (50) we get

||ft − g||2H − ||ft+1 − g||2H
≥− 20η2

t c2X2 − 2ηt(Rinst[g, xt, yt]−Rinst[ft, xt, yt]);

notice the similarity to (49). The rest follows as in the proof
of Theorem 4.
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[25] B. Scḧolkopf, R. Herbrich, and A. J. Smola, “A generalized representer
theorem,” inProceedings of the Annual Conference on Computational
Learning Theory, 2001, pp. 416–426.

[26] J. Kivinen, A. J. Smola, and R. C. Williamson, “Online learning with
kernels,” in Advances in Neural Information Processing Systems 14,
T. G. Dietterich, S. Becker, and Z. Ghahramani, Eds. Cambridge, MA:
MIT Press, 2002, pp. 785–792.

[27] R. Herbrich,Learning Kernel Classifiers: Theory and Algorithms. MIT
Press, 2002.

[28] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression:
a statistical view of boosting,” Stanford University, Dept. of Statistics,
Tech. Rep., 1998.

[29] A. B. J. Novikoff, “On convergence proofs on perceptrons,” inPro-
ceedings of the Symposium on the Mathematical Theory of Automata,
vol. 12. Polytechnic Institute of Brooklyn, 1962, pp. 615–622.

[30] C. Gentile and N. Littlestone, “The robustness of the p-norm algorithms,”
in Proc. 12th Annu. Conf. on Comput. Learning Theory. ACM Press,
New York, NY, 1999, pp. 1–11.

[31] Y. Freund and R. E. Schapire, “Large margin classification using the
perceptron algorithm,”Machine Learning, vol. 37, no. 3, pp. 277–296,
1999.

[32] P. Auer, N. Cesa-Bianchi, and C. Gentile, “Adaptive and self-confident
on-line learning algorithms,”Journal of Computer and System Sciences,
vol. 64, no. 1, pp. 48–75, Feb. 2002.

[33] N. Cesa-Bianchi, P. Long, and M. Warmuth, “Worst-case quadratic loss
bounds for on-line prediction of linear functions by gradient descent,”
IEEE Transactions on Neural Networks, vol. 7, no. 2, pp. 604–619, May
1996.

[34] M. K. Warmuth and A. Jagota, “Continuous and discrete time
nonlinear gradient descent: relative loss bounds and convergence,”
in Electronic Proceedings of Fifth International Symposium on
Artificial Intelligence and Mathematics, R. G. E. Boros, Ed.
Electronic,http://rutcor.rutgers.edu/ãmai, 1998.
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