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NONCOMMUTATIVE GRASSMANIAN OF CODIMENSION TWO

HAS COHERENT COORDINATE RING

DMITRI PIONTKOVSKI

Abstract. A noncommutative Grassmanian A = NGr(m, n) is introduced
by Efimov, Luntz, and Orlov in Deformation theory of objects in homotopy

and derived categories III: Abelian categories as a noncommutative algebra
associated to an exceptional collection of n − m + 1 coherent sheaves on P

n.
It is a graded Calabi–Yau Z-algebra of dimension n − m + 1. We show that
this algebra is coherent provided that the codimension d = n − m of the
Grassmanian is two. According to op. cit., this gives a t-structure on the
derived category of the coherent sheaves on the noncommutative Grassmanian.

The proof is quite different from the recent proofs of the coherence of some
graded 3-dimensional Calabi–Yau algebras and is based on properties of a
PBW-basis of the algebra A.

1. Introduction

Recall that a connected N-graded algebra of the form A = A0 ⊕ A1 ⊕ . . . such
that A0 is a copy of the basic field k is called regular if it has finite global dimension
(say, d) and satisfies the following Gorenstein property:

Ext iA(k, k)
∼=

{

k∗[l] for some l ∈ Z, i = d
0, i 6= d.

The same notion of regularity is extend (following Bondal and Polishchuk [BP]) to
a slightly more general case of a Z-algebra A, see Subsection 2.1 below.

Regular algebras play the roles of coordinate rings of noncommutative projective
spaces in a version of noncommutative projective geometry [Po, BVdB] which gen-
eralizes the well-known approach of Artin and Zhang [AZ]. Namely, suppose that a
regular algebra of global dimension d is graded coherent. Consider the quotient cat-
egory qgrA = cmodA/ torsA of the category cmodA of finitely presented (=graded
coherent) right graded A-modules by its subcategory torsA of finite-dimensional
modules. This category qgrA plays the role of the category of coherent sheaves on
a noncommutative (d− 1)-dimensional projective space.

Here we are interested in the case d = 3, that is, in the case of noncommutative
planes. The famous classification of 3-dimensional regular algebras A of polyno-
mial growth is obtained Artin and Shelter [AS]. Particularly, they have shown
that these algebras are Noetherian (hence, coherent). It is not hard to construct
also non-Noetherian 3-dimensional regular algebras (e.g., one may follow the ap-
proach of [AS, Sections 2 and 3]). In contrast, it is often not easy to prove that
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such an algebra is coherent. However, there are important examples for which
the coherence is established. These are the octonion algebra of P. Smith [S], the
Yang–Mills algebra introduced by Movshev and Swartz [MS] which is coherent by
a theorem of Herscovich [H] (the Yang–Mils algebra introduced by Connes and
Dobios–Violette [CDV] is a particular case of it), and 3-Calabi–Yau algebras which
are Ore extensions of 2-Calaby–Yau ones by He, Oystaeyen, and Zhang [HOZ].

In all these cases, the coherence property is proved using the same lemma [P08,
Prop. 3.2]. It states that if a non-trivial two-sided ideal I in a graded algebra A
is free as a left module and the quotient algebra A/I is right Noetherian, then A
is graded coherent. So, the known examples of coherent regular algebras are, in a
sense, extensions of Noetherian algebras along free modules.

In this paper, we prove the coherence property of another 3-dimensional regular
algebra. In contrast to the previous cases, it seems that the approach based on the
above lemma fails for this algebra.1 This algebra is introduced by Efimov, Luntz,
and Orlov [ELO] under the name Noncommutative Grassmanian (see Subsection 2.2
below for an explicit definition). According to [ELO, Section 7], a noncommutative
Grassmanian NGr(m,n) ‘is a true noncommutative moduli space of the structure
sheaves OP(W ) ∈ Db

coh(P
n)’, where W ⊂ kn runs the vector subspaces of dimension

m. The connection with structure sheaves is based on the theory of helices in
derived categories by A.Bondal and A.Polishchuk [Bon, BP]. The construction
of [ELO] gives a description (by constructing a t-structure) of the derived category
of qgrNGr(m,n) provided that the algebra NGr(m,n) of coherent. It is pointed out
in [ELO, Remark 8.23] that NGr(m,n) is coherent if the codimension d = n−m of
the Grassmanian is equal to 1 (since the algebra NGr(m,n) has global dimension
2 in this case). The first non-trivial case is the Grassmanian of codimension d = 2,
when the algebra has global dimension three. The main result of this paper is the
following.

Theorem 1.1. The noncommutative Grassmanian algebra NGr(m,n) is coherent

provided that n−m = 2.

The paper is organized as follows. In Section 2 we briefly remind necessary
facts about Z-algebras and, in particular, about the noncommutative Grassmanian
algebra NGr(m,n). In Subsection 3.1, we note that the Z–algebra A = NGr(m,n)
with n − m = 2 is 3-periodic, so, its properties are essentially the same as the

properties of the corresponding algebra Â over a triangle quiver. We immediately
calculate here the Hilbert series of Â. This obviously gives also the Hilbert series of
A. In Subsection 3.2, we show that A is a PBW algebra as a 6-periodic Z-algebra
(in particular, it admits a quadratic Gröbner basis of relations). Note that we do

not know if Â is PBW or not. In Proposition 3.5, we prove that A satisfies a
property of bounded processing [P01], that is, the structure of the multiplication
of paths in this quiver algebra is essentially depend only on bounded segments of
the multipliers. We recall necessary definitions in Subsection 3.3. Using a result
of [P01], we finally deduce in Corollary 3.8 that the algebra A is coherent. A
stronger consequence of bounded processing is briefly discussed in Remark 3.9.

1At least, for this algebra A calculations of Hilbert series for several ideals I such that the
quotient algebra A/I is Noetherian by natural reasons show that I cannot be projective as a left
module.
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2. Background and notations

2.1. Z-algebras. Recall that a Z-algebra is a path algebra (with relations) over the
infinite line quiver · · · → −1 → 0 → 1 → 2 → . . . with multiple arrows. We refer
the reader to [BP] or [PP, Ch. 4, Sect. 9–10] for the basic definitions of quadratic,
Koszul and PBW Z–algebras. We say that a Z-algebra A = ⊕i,j∈Z (where Ai,j = 0
for i < j and Ai,i = k) is regular of dimension d if each irreducible module ki =
Pi/ ⊕j>i Ai,j has global dimension d (where Pi = ⊕j≥iAi,j is the corresponding
projective module) and the Exts of these modules satisfy an analogous Gorenstein
condition [BP, Sect. 4]

Ext i(ks, Pt) ∼=

{

k∗ if t = s+ l, i = d,
0, otherwise

for some l ∈ Z. Note that regular algebras are also called AS-regular.

2.2. Noncommutative Grassmanian. A noncommutative Grassmanian is de-
fined by Efimov, Lunts, and Orlov [ELO, Part 3] as a noncommutative scheme
associated to the following algebra. Given two positive integers m < n and an
n-dimensional vector space V , let A = Am,V be a quadratic Z-algebra with Aij = k
(a basic field) and generators

Ai,i+1 =

{

ΛdV, i|(d+ 1),
V ∗, otherwise,

where d = n −m. The quadratic relations of A are defined via the natural exact
sequences

0 → Λd−1V → Ai+1,i+2 ⊗Ai,i+1 → Ai,i+2 → 0 for (d+ 1)|i, i+ 1

and

0 → Λ2V ∗ → Ai+1,i+2 ⊗Ai,i+1 → Ai,i+2 → 0, otherwise.

Obviously, A is (d+1)-periodic (that is, Ai,j is naturally isomorphic toAi+d+1,j+d+1).
By [ELO, Prop. 8.18], A isomorphic to the automorphism Z-algebra of the helix
generated by the exceptional collection of (d+ 1) coherent sheaves on P(kn)

E = (OP(kn)(m− n), . . . ,OP(kn)(−1),OP(kn)).

It follows from [BP] that A is Koszul and Gorenstein of global dimension d+ 1.
Note that A is a so-called graded Calabi–Yau algebra of dimension 3 (in the

sense of [Bock]). This follows from the same property of the corresponding algebra

Â, see Subsection 3.1 below.
It is pointed out in [ELO, Remark 8.23] that the description of the derived cat-

egory of QModA (“quasicoherent sheaves” on the noncommutative Grassmanian)
can the transferred to Db(qmodA) (derived category of the “coherent sheaves”)
provided that the category qmodA is Abelian, that is, A is coherent. Namely,
in this case a t-structure on the derived category of the finite-dimensional mod-
ules over a finite-dimensional algebra ⊕1≤i,j≤nAi,j constructed in [ELO, Section 8]
induces a t-structure on Db(qmodA).
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3. The results

3.1. Algebra Â and its Hilbert series. Since A is (d + 1)-periodic (in terms
of [BP, Section 4], it is geometric of period d+1), its categories of graded modules
(all , finitely generated, finitely presented, finite dimensional. . . ) are equivalent

to the ones of the algebra Â = ⊕d
i=0 ⊕j∈Z Aij considered as a path algebra over

a cyclic quiver of length d + 1 with multiple arrows. It follows that Â is Koszul
and Gorenstein of global dimension d + 1 as well as A is. The components of Â
are indexed by the pairs (i, j) with i ∈ Z/(d + 1)Z and j ∈ Z, where elements of

Âi,j are considered as path from i to (j − i)mod (d + 1). The surjection A → Â is
induced by the natural surjection of quiver algebras.

In our case d = 2, the algebra Â is a path algebra (=quiver algebra with relations)
over the quiver Q : 0 → 1 → 2 → 0 where the arrows are multiple, namely, with
n(n− 1)/2 arrows 0 → 1, n arrows 1 → 2 and n arrows 2 → 0. Note that it follows

from [Bock, Theorem 3.1] that Â is a graded Calabi–Yau algebra of dimension 3.
In the notations of Subsection 3.2 below, the corresponding superpotential is equal
to a cyclic element represented by

∑

t∈3Z

∑

i,j∈[1..n],i6=j

xt−1
i etijx

t+1
j .

Recall that the Hilbert series H
Â

of the graded path algebra Â over the above
quiver with 3 vertices is a 3× 3 matrix H

Â
= (hij) over Z[[t]] defined by

hij =
∑

m∈Z

(the number of paths i → j of length m)tm =
∑

n∈Z

t3n+j−idim Âi,3n+j .

Proposition 3.1. The Hilbert series H
Â

of the path algebra Â is

H
Â
=





1− t3
(

n
2

)

t nt2

nt2 1− t3 −nt
−nt

(

n
2

)

t2 1− t3





−1

=









1 + 4−5n2+n4

4 t3 n(n−1)
2 t n

(

n2 − n− 2
)

t2/2

n(n+1)
2 t2 1 + 4−5n2+n4

4 t3 nt

nt nn2−n−2
2 t2 1 + 2+n4−n3−4n2

2 t3









+O(t4).

Proof. Note that the Koszul dual algebra of Â has the following components:

Â!
ii = k for all i = 0, 1, 2,

Â!
i,i+1 = (Âi,i+1)

∗ ≈

{ (

Λ2V
)∗

, i = 0,
V, i = 1, 2,

Â!
i,i+2 = (relations of A inAi+1,i+2 ⊗Ai,i+1)

∗ ≈

{ (

Λd−1V
)∗

= V ∗, i = 0, 2
(

Λ2V ∗
)∗

, i = 1,

and, by the Gorenstein property,

Â!
i,i+3 ≈ k.

All other components of Â! vanish.
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It follows that the Hilbert series of Â! is the following matrix of order d+ 1 = 3

H
Â!(t) =





1 + t3
(

n
2

)

t nt2
(

n
2

)

t2 1 + t3 nt
nt nt2 1 + t3





Since Â is Koszul, we have H
Â
(t)H

Â
(−t) = Id , thus,

H
Â
(t) = H

Â
(−t)−1.

�

3.2. PBW property. Let us fix a pair of dual bases x = {x1, . . . , xn} in V ∗ and
e = {e1, . . . , en} in V . Given a finite sequence α = (α1, . . . , αs), we denote by eα
the product eα1

∧ · · · ∧ eαs
∈ ΛsV , so that the set e = {eij|i < j} is a basis of Λ2V .

For t ∈ Z, we denote by xt = {xt
1, . . . , x

t
n} and et = {etij |i < j} the corresponding

bases of At,t+1 in the cases 3|t and 3 6 |t, respectively. We will sometimes omit the
upper indexes for elements of these bases.

In this notations, the relations of the algebraA of the grading component (t, t+2)
has the following form (where for i > j we use the sign eij := −eji):

(3.1)

fi = f t
i :=

∑

j 6=i

etijx
t+1
j , i = 1..n, t ∈ 3Z,

cij = ctij := xt
ix

t+1
j − xt

jx
t+1
i , 1 ≤ i < j ≤ n, t ∈ 3Z+ 1,

gi = gti :=
∑

j 6=i

xt
je

t+1
ji , i = 1..n, t ∈ 3Z+ 2.

Let us fix orderings of the elements of the bases xt and et in the following (6-
periodic) way:

eij > ekl if i < k or i = k, j < l for t ∈ 6Z,
eij > ekl if i > k or i = k, j > l for t ∈ 6Z+ 3,
x1 < · · · < xn for t ∈ 6Z± 1,
x1 > · · · > xn for t ∈ 6Z± 2.

Let us introduce the reverse lexicographical order on the paths of the quiver Q,
that is, for two paths v = v1 . . . vt and w = w1 . . . wt of length t with the same head
and the same tail we set v < w iff vj < wj , vj+1 = wj+1, . . . and vt = wt for some
j.

Proposition 3.2. The above quadratic relations of the algebra Â form a Gröbner

basis of the ideal of relations with respect to the above order, that is, the algebras Â
and A are PBW algebras.

Proof. The leading monomials of the relations (3.1) w. r. t. the above reverse
lexicographical order are

(3.2)

einxn for 1 ≤ i < n, en−1,nxn−1, t ∈ 6Z,
xixj for n ≥ i > j ≥ 1, t ∈ 6Z+ 1,
x1e1i for n ≥ i > 1, x2e12, t ∈ 6Z+ 2,
e1ix1 for n ≥ i > 1, e12x2, t ∈ 6Z+ 3,
xixj for 1 ≤ i < j ≤ n, t ∈ 6Z+ 4,
xnein for 1 ≤ i < n, xn−1en−1,n, t ∈ 6Z+ 5,

Let B be the Z-algebra defined by the same generators as A and the above
monomial relations. We have dimBij = dimAij for j = i, j = i + 1, j = i + 2 and
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dimBij ≥ dimAij for j ≥ i + 3. By [PP, Prop. 10.1 of Ch. 4], to show that A is
PBW it is sufficient to check the equalities dimBi,i+3 = dimAi,i+3 for all i.

Because of the symmetry of the monomial relations above, we have dimBi,i+3 =
dimBi+3s,i+3s+3 for all s ∈ Z. Since the algebra A is 3-periodic, it is enough
to show that the equalities dimBi,i+3 = dimAi,i+3 hold for i = 0, 1, 2. Here

dimAi,i+3 = dim Â
imod 3,i+3 is the coefficient of t3 in the (imod 3, imod3)-th entry

of the Hilbert series given in Proposition 3.1, that is,

dim Â0,3 = dim Â1,4 = 1− 5/4n2 + 1/4n4

or

dim Â2,5 = 1 + 1/2n4 − 1/2n3 − 2n2.

To find dimBt,t+3, let us calculate the nonzero paths of length 3 in the algebra
B. The integers i, j, k, l below belong to the interval [1, . . . , n]. We have

dimB0,3

= Card{eijxkxl|i < j, k ≤ l}−Card{einxnxl|i < n}−Card{en−1,nxn−1xl|l ≤ n−1}

=
n(n− 1)

2

n(n+ 1)

2
− n(n− 1)− (n− 1) =

n4

4
−

5n2

4
+ 1,

dimB1,4 = dimB0,3 =
n4

4
−

5n2

4
+ 1 by symmetry

and

dimB2,5 = Card{xiejkxl|j < k} − Card{xneinxl|i < n} − Card{xn−1en−1,nxl}

−Card{xie1kx1|k > 1} − Card{xie12x2}+Card{xne1nx1}

= n2n(n− 1)

2
−

n(n− 1)

2
− n−

n(n− 1)

2
− n+ 1 =

n4

2
−

n3

2
− 2n2 + 1.

We obtain the equality dimBt,t+3 = dim Ât,t+3 for each t = 0, 1, 2, thus, the algebra
A is PBW. �

Remark 3.3. There is another proof of Proposition 3.2 based on the Diamond
Lemma and the Buchberger criterion for Gröbner bases.

Remark 3.4. Note that while the algebra A is 3-periodic, we have shown only
that A is PBW as a 6-periodic algebra. We do not know whether A is PBW as a
3-periodic algebra, that is, whether Â is PBW or not.

3.3. Bounded processing. Given an algebra R defined by a set of generators X
and a Gröbner basis of relations G (given an admissible order of monomials on
X), one can identify each element of the algebra with a linear combinations of the
words on X which are normal (=irreducible) with respect to G. Recall that the
multiplication of normal words after this identification is defined as follows. We may
assume that the Gröbner basis G is reduced, that is, each its element g ∈ G has
the form g = ĝ− ḡ, where ĝ is its leading monomial and −ḡ is a linear combination
of lower monomials. Given two normal words u and v, one applies (if possible) to
the concatenation uv a reduction by some element of the Gröbner g ∈ G, that is,
one replaces a subword ĝ in uv by the noncommutative polynomial (−ḡ). In the
resulted noncommutative polynomial, one applies to all its nonzero terms additional
reductions, etc. After a finite number of steps, all nonzero terms of the resulted
noncommutative polynomial u∗v became irreducible. By the definition of Gröbner
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basis, the linear combination of the normal words u ∗ v is defined uniquely and is
identified with the product of u and v in the algebra R.

Thus, one can consider the calculation of the product u ∗ v as a processing of
some “machine” (like a Turing machine, if G is finite) which takes a concatenation
uv as an input, finds the first occurrence of a leading monomial ĝ of some element of
the Gröbner basis, replaces it by −ḡ, etc. Since the words u and v are normal, the
first replaced subword ĝ should overlap the both parts u and v of uv. In the next
steps, the region of processing in each subword should overlap one of the words from
some ḡ which appeared in a previous step. An algebra R is said to be an algebra of

r-processing [P01] for some r > 0 if the region of processing do not spread beyond
r letters to the right from the beginning of the right part v of the initial word uv,
that is, for each pair of normal words u and v = ws, where the word w has length
at least r, we have

u ∗ v = (u ∗ w)s.

Note that the above definition is compatible with the standard assumptions of
the Gröbner basis theory for ideals in path algebras [FFG]. In this theory, it is
assumed that the above set of generators X of a path algebra kQ of a quiver Q
consists of two parts, X = V ∪ E, where V is the set of vertices and E is the set
of arrows of the quiver Q. By definition, the normal words are the paths of the
corresponding quiver, that is, the paths of length 0 which are the vertices and the
paths of positive length which are sequences of arrows.

We see that the definition of length of a normal word in the quiver algebra
is slightly different from the general definition of length as the number of letters
in word used above. However, if we try to check the property of r-processing
(with r ≥ 1) for a quotient of the path algebra by an ideal I generated by linear
combination of paths of positive length (quiver algebra R = kQ/I), then we can
assume that the words u, v, and w are paths of positive length. For these words
u, v, and w, the both definitions of lengths coincide, so, one can use the second one.

In particular, the path algebra kQ of any quiver Q is an algebra of 1-processing.
Another example of a quiver algebra with r-processing is our algebra A.

Proposition 3.5. The algebra A is an algebra of 3-processing with respect to the

generators and the Gröbner basis introduced in Subsection 3.2.

Proof. Let uv = . . . eabxixjeklxsxt . . . be a product of two normal words u and v.
Suppose that the right subword xsxt . . . belongs to the second part v. It is sufficient
to show that in each stage of the processing, the subword which begins with xt is
stable. Since in each stage of the processing the region of processing is extended by
at most one letter (because all leading monomials of the elements of the Gröbner
basis have length 2), it is sufficient to show that this region does not rich xt.

In the reductions w. r. t. the elements of the Gröbner basisG from Subsection 3.2,
any two-letter word c is reduced to a linear combinations of another two-letter words
c′ with the following properties:

(1) each letter e is replaced by some e, and each x is replaced by some x;
(2) if c = yz and c′ = y′z′ for some letters y, z, y′, z′, then z ≥ z′.
In particular, we have
(3’) if c = eαβxs, then c′ = eα′β′xs′ with xs′ ≤ xs.
It follows from observation of the list of the leading monomials of elements of G

given in (3.2) that
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(4) if the monomial xsxt is irreducuble (i. e., normal), then for each xs′ ≤ xs the
monomial xs′xt is irreducible too.

Since the monomial xsxt is a subword of the normal word v, it is irreducible.
By (1), in each stage of the processing this subword will be replaced by a linear
combination of the words of the form xs′xt′ , where xs′ ≤ xs by (3’). By (4),
it follows that xt′ = xt, that is, the region of processing does not reach xt. It
follows that xt and all letters to the right of it will be stable in each stage of the
processing. �

Remark 3.6. Due to the right–left symmetry in list of the leading monomials of
the Gröbner basis, A is an algebra of left 3-processing as well.

Remark 3.7. Note that the sufficient condition for r–processing given in [P01,
Prop. 2] does not hold for the algebra A.

3.4. Coherence.

Corollary 3.8. The algebra A is right and left coherent.

Proof. The right coherence of A follows from Proposition 3.5 and [P01, Th. 8]. The
left coherence follows from symmetry. �

Note that it follows that A is coherent both in graded and non-graded sense.

Remark 3.9. The property of 3–processing implies also the following estimate
for the degrees of relations of ideals [P01, Prop. 7]: If a right sided ideal I in
A is generated in degreed ≤ d for some d, then its relations are concentrated in
degrees ≤ d + 6. It follows that A is universally coherent in terms of [P05], see
also [P05, Prop. 4.10]. Similar linear estimates for the generators of the entries
of the minimal projective resolution for each finitely presented A–module follow
from [P05, Prop. 4.3].
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