
Privacy Preserving Frequent Itemset Mining

Stanley R. M. Oliveira1,2

oliveira@cs.ualberta.ca

Osmar R. Zäıane2

zaiane@cs.ualberta.ca

1Embrapa Information Technology 2Department of Computing Science
André Tosello, 209 – Barão Geraldo University of Alberta
13083-886 - Campinas, SP, Brasil Edmonton, AB, Canada, T6G 2E8

Abstract

One crucial aspect of privacy preserving frequent itemset min-
ing is the fact that the mining process deals with a trade-off:
privacy and accuracy, which are typically contradictory, and
improving one usually incurs a cost in the other. One al-
ternative to address this particular problem is to look for a
balance between hiding restrictive patterns and disclosing non-
restrictive ones. In this paper, we propose a new framework for
enforcing privacy in mining frequent itemsets. We combine, in
a single framework, techniques for efficiently hiding restrictive
patterns: a transaction retrieval engine relying on an inverted
file and Boolean queries; and a set of algorithms to “sanitize”
a database. In addition, we introduce performance measures
for mining frequent itemsets that quantify the fraction of min-
ing patterns which are preserved after sanitizing a database.
We also report the results of a performance evaluation of our
research prototype and an analysis of the results.

Keywords: Assosiation Rule Mining, Privacy Preserv-
ing Data Mining, Privacy Preservation in Association
Rule Mining; Frequent Itemset Mining, Security.

1 Introduction

One of the most studied problems in data mining
is the process of discovering frequent itemsets and,
consequently, association rules. Discovering hidden
patterns from large amounts of data plays an im-
portant role in marketing, business, medical analy-
sis, and other applications where these patterns are
paramount for strategic decision making.

Despite its benefits in various areas, data min-
ing can also pose a threat to privacy and informa-
tion security if not done or used properly. Recent
advances in data mining and machine learning algo-
rithms have introduced a new problem in database
security (Johnsten & Raghavan 1999, Clifton 2000).
The main problem is that from non-sensitive informa-
tion or unclassified data, one is able to infer sensitive
information, including personal information, facts, or
even patterns that are not supposed to be disclosed.

Privacy issues in data mining cannot simply be
addressed by restricting data collection or even by re-
stricting the use of information technology. An appro-
priate balance between a need for privacy and knowl-
edge discovery should be found (Brankovic & Estivill-
Castro 1999). In (Clifton, Du, Atallah, Kantarcioglu,
Lin & Vaidya 2001), Clifton et al. argued that there is
no exact solution that resolves this privacy problem

Copyright c©2002, Australian Computer Society, Inc. This pa-
per appeared at IEEE International Conference on Data Min-
ing Workshop on Privacy, Security, and Data Mining, Maebashi
City, Japan. Conferences in Research and Practice in Informa-
tion Technology, Vol. 14. Chris Clifton and Vladimir Estivill-
Castro, Eds. Reproduction for academic, not-for profit purposes
permitted provided this text is included.

in data mining. An approximate solution could be
sufficient depending on the application since the level
of privacy can be interpreted in different contexts.

Let us consider a motivating example discussed in
(Evfimievski, Srikant, Agrawal & Gehrke 2002). Sup-
pose we have a server and many clients in which each
client has a set of items (e.g. books or movies). The
clients want the server to gather statistical informa-
tion about associations among items in order to pro-
vide recommendations to the clients. However, the
clients do not want the server to know some restric-
tive itemsets. Thus, when a client sends its dataset
to the server, it hides some restrictive itemsets from
the dataset according to some specific privacy poli-
cies, and the server then gathers statistical informa-
tion from the modified dataset. In this case, the server
is provided with the data and not the patterns and it
is free to use its own tools so that the restriction for
privacy has to be applied before the mining phase on
the data itself.

The simplistic solution to address the motivat-
ing example is to implement a filter after the min-
ing phase to weed out/hide the restricted discovered
patterns, since discovery is a process that finds hid-
den patterns without a predetermined idea or hy-
pothesis what the patterns may be. This solution
is straightforward. However, in this particular case,
the servers do not send patterns, but a dataset with-
out the restrictive patterns. In addition, depending
on the number of pattern discovered (e.g. millions or
more), it is more reasonable and feasible to send a
sanitized dataset than a huge set of patterns.

One simple and effective way to hide some restric-
tive patterns is to decrease their support in a given
database. This procedure of altering the transac-
tions is called the sanitization process and was in-
troduced in (Atallah, Bertino, Elmagarmid, Ibrahim
& Verykios 1999). To do so, a small number of trans-
actions have to be modified by deleting one or more
items from them or even changing items in transac-
tions, i.e., adding noise to the data. This work re-
lies on boolean association rules. The authors proved
that the optimal sanitization problem is NP-hard. On
one hand, this approach slightly modifies some data,
but this is perfectly acceptable in some real appli-
cations (Clifton & Marks 1996, Dasseni, Verykios,
Elmagarmid & Bertino 2001, Saygin, Verykios &
Clifton 2001). On the other hand, such an approach
must hold the following restrictions: (1) the impact
on the data in D has to be minimal and (2) an appro-
priate balance between a need for privacy and knowl-
edge discovery must be guaranteed.

In the context of our work, we do not add noise to
the data by turning some items from 0 to 1 in some
transactions, but only strategically and selectively we
remove individual items from sensitive transactions
preventing the disclosure of some patterns while pre-

serving as much of the original information as possible
for other applications. To do so, we propose a new
framework for enforcing privacy in mining frequent
patterns that combines techniques for efficiently hid-
ing restrictive rules. The framework is composed of
a transaction retrieval engine relying on an inverted
file and Boolean queries for retrieving transaction IDs
from a database, and a set of sanitizing algorithms.
One major novelty with our approach is that we take
into account the impact of our sanitization not only
on hiding the patterns that should be hidden but
also on hiding legitimate patterns that should not
be hidden. Thus, our framework tries to find a bal-
ance between privacy and disclosure of information
by attempting to minimize the impact on the san-
itized transactions. Other approaches presented in
the literature focus on the hiding of restrictive pat-
terns but do not study the effect of their sanitization
on accidentally concealing legitimate patterns or even
generating artifact patterns.

The main contributions of this paper are the fol-
lowing: (1) the design and implementation of the
framework; (2) a taxonomy of algorithms for sani-
tizing a transactional database; and (3) performance
measures for mining frequent patterns that quantify
the fraction of mining patterns which are preserved
after sanitizing a database.

This paper is organized as follows. In Section 2,
we provide the basic concepts that are necessary to
understand the scope and the issues addressed in this
paper. In addition, the problem definition is given.
We present our framework in detail in Section 3. In
Section 4, we introduce our taxonomy of sanitizing
algorithms. In Section 5, we present the experimental
results and discussion. Related work is reviewed in
Section 6. Finally, we summarize the conclusions of
our study and outline future avenues to explore in
Section 7. At the end of this paper, we address the
reviewers’ remarks.

2 Basic Concepts

A transactional database is a relation consisting of
transactions in which each transaction t is charac-
terized by an ordered pair, defined as t = 〈TID,
list of elements〉, where TID is a unique transac-
tion identifier number and list of items represents a
list of items making up the transactions (Han &
Kamber 2001). For instance, in market basket data, a
transactional database is composed of business trans-
actions in which the list of elements represents items
purchased in a store.

2.1 The Basics of Mining Frequent Patterns
and Association Rules

The discovery of the recurrent patterns in large trans-
actional databases has become one of the main topics
in data mining. In its simplest form, the task of find-
ing frequent patterns can be viewed as the process
of discovering all item sets, i.e., all combinations of
items that are found in a sufficient number of exam-
ples, given a frequency threshold σ. If the frequency
threshold is low, then there might be many frequent
patterns in the answer set.

The items in a frequent pattern are Boolean, i.e.,
items are either present or absent. For this reason,
a transactional database may be represented by a
sparse matrix in which the rows correspond to trans-
actions and the columns correspond to the items
available in one store. If the element (i, j) is 1, this
indicates that customer i purchased item j, while 0
indicates that the item j was not purchased.

When the frequent patterns are known, finding as-
sociation rules is simple. Association rules provide a
very simple but useful form of rule patterns for data
mining.

Association rule mining algorithms rely on support
and confidence and mainly have two major phases:
(1) based on a support σ set by the user, frequent
itemsets are determined through consecutive scans of
the database; (2) strong association rules are derived
from the frequent item sets and constrained by a mini-
mum confidence ϕ also set by the user. Since the main
challenge is the discovery of the frequent itemsets, we
consider only this second phase in our analysis.

2.2 Privacy Preservation: Problem Defini-
tion

In this work, our goal is to hide a group of frequent
patterns which contains highly sensitive knowledge.
We refer to these frequent patterns as restrictive pat-
terns, and we define them as follows:

Definition 1 Let D be a transactional database, P
be a set of all frequent patterns that can be mined from
D, and RulesH be a set of decision support rules that
need to be hidden according to some security policies.
A set of patterns, denoted by RP , is said to be restric-
tive if RP ⊂ P and if and only if RP would derive the
set RulesH. ~RP is the set of non-restrictive patterns
such that ~RP ∪RP = P .

Rp Rp

1

2

3

P ~

P’

Figure 1: Visual representation of restrictive and non-
restrictive patterns and the patterns effectively dis-
covered after transaction sanitization

Figure 1 illustrates the relationship between the
set P of all frequent patterns in the database D, the
restrictive and non-restrictive patterns, as well as the
set P ′ of frequent patterns discovered from the san-
itized database D′. 1, 2, and 3 are potential prob-
lems that represent the restrictive patterns that were
failed to be hidden, the legitimate patterns acciden-
tally missed, and the artificial patterns created by the
sanitization process. These are explained in Section 5
in the discussion of how to measure the effectiveness
of our algorithms.

A group of restrictive patterns is mined from a
database D based on a special group of transactions.
We refer to these transactions as sensitive transac-
tions and define them as follows.

Definition 2 Let T be a set of all transactions in a
transactional database D and RP be a set of restric-
tive patterns mined from D. A set of transactions
is said to be sensitive, as denoted by ST , if ST ⊂ T
and if and only if all restrictive patterns can be mined
from ST and only from ST .

The specific problem addressed in this paper can
be stated as follows: If D is the source database of
transactions and P is a set of relevant patterns that
could be mined from D, the goal is to transform D
into a database D′ so that the most frequent pat-
terns in P can still be mined from D′ while others
will be hidden. In this case, D′ becomes the released
database.

2.3 The Sanitization Process

The goal of the sanitization process is to hide some re-
strictive patterns that contain highly sensitive knowl-
edge. This process is composed of four steps as fol-
lows. In the first step, the set P of all patterns from
D is identified. The second step distinguishes re-
stricted patterns Rp from the non-restrictive patterns
~RP by applying some security policies. It should be
noted that what constitute as restrictive patterns de-
pends on the application and the importance of these
patterns in a decision process. In Step 3, sensitive
transactions are identified within D. In our approach,
we use a very efficient retrieval mechanism called the
transaction retrieval engine (discussed in Section 3.2)
to speed up the process of finding the sensitive trans-
actions. Finally, Step 4 is dedicated to the alteration
of these sensitive transactions to produce the sani-
tized database D′. In our framework, the process of
modifying such transactions satisfies a risk of disclo-
sure threshold ψ controlled by the user. For short,
we will refer to this threshold as disclosure thresh-
old. This threshold basically expresses how relaxed
the privacy preserving mechanisms should be. When
ψ = 0%, no restrictive patterns are allowed to be dis-
covered. When ψ = 100%, there are no restrictions
on the restrictive patterns.

3 The Framework for Privacy Preservation

As depicted in Figure 2, our framework encompasses
a transactional database (modeled into a document
database), an inverted file, a set of sanitizing algo-
rithms used for hiding restrictive patterns from the
database, and a transaction retrieval engine for fast
retrieval of transactions. We describe the inverted file
and the transaction retrieval engine in this section,
and the set of algorithms in Section 4.

Transactional
Database

Set of Sanitizing

Algorithms

Inverted File
Transaction
Retrieval
Engine

Figure 2: Privacy Preservation Framework

Sanitizing a transactional database consists of
identifying the sensitive transactions and adjusting
them. To speed up this process, we model transac-
tions into documents in which the items simply be-
come terms. This model preserves all the information
and provides the basis for our indexing, borrowing
from the information retrieval domain.

3.1 The Inverted File Index

One very efficient strategy for indexing a text
database is an inverted file (Baeza-Yates & Ribeiro-
Neto 1999). An inverted file, a structure comprising
the vocabulary and the occurrences, is a word-oriented
mechanism for indexing a text collection with the pur-
pose of speeding up the searching task.

In our framework, the inverted file’s vocabulary is
composed of all different items in the transactional
database, and for each item there is a corresponding
list of transaction IDs in which the item is present.
Figure 3 shows an example of an inverted file corre-
sponding to the sample transactional database shown
in the figure.

FreqItems

A

B

C

D

T1, T2, T3, T4, T5

T1, T2, T3, T5, T6

T1, T2, T4, T5

T1, T3, T4, T6

Vocabulary

5

5

4

4

Transaction IDs

T1
T2
T3
T4
T5
T6

A B C D
A B C
A B D
A C D
A B C
B D

Docs Items/Terms

Figure 3: An example of transactions modeled by doc-
uments and the corresponding inverted file

We implemented the vocabulary based on a perfect
hash table (Dietzfelbinger, Karlin, Mehlhorn, Heide,
Rohnert & Tarjan 1994), with no collision, insertion,
or deletion. For a given item, one access suffices to
find the list of all transaction IDs that contain the
item. The occurrences with transaction IDs are cre-
ated and simultaneously sorted in ascending order of
transaction IDs. Thus, to search for the transaction
ID of a particular item, we use a binary search in
which, in the worst case, the access time is O(logN),
where N is the number of transaction IDs in the oc-
currences.

3.2 The Transaction Retrieval Engine

To search for sensitive transactions in the transac-
tional database, it is necessary to access, manipu-
late, and query transaction IDs. The transaction re-
trieval engine performs these tasks. It accepts re-
quests for transactions from a sanitizing algorithm,
determines how these requests can be filled (consult-
ing the inverted file), processes the queries using a
query language based on Boolean model, and returns
the results to the sanitizing algorithm. The process
of searching for sensitive transactions through the
transactional database works on the inverted file. In
general, this process follows three steps: (1) Vocabu-
lary search: each restrictive pattern is split into sin-
gle items. Isolated items are transformed into basic
queries to the inverted index; (2) Retrieval of transac-
tions: The lists of all transaction IDs of transactions
containing each individual item respectively are re-
trieved; and (3) Intersections of transaction lists: The
lists of transactions of all individual items in each re-
strictive pattern are intersected using a conjunctive
Boolean operator on the query tree to find the sen-
sitive transactions containing a given restrictive pat-
tern.

4 The Sanitization Algorithms

Sanitizing algorithms for transactional databases can
be classified into two classes: the algorithms that
solely remove information from the transactional

database and those that modify existing information.
The first algorithms only reduce the support of some
items, while the second may increase the support of
some items. Our taxonomy of sanitizing algorithms,
depicted in Figure 4, relies on the first category.

Sanitizing Algorithms

Item Restriction−Based Pattern Restriction−Based

MinFIA MaxFIA IGA

Naive

Figure 4: A Taxonomy of Sanitizing Algorithms

Algorithms that solely remove information cre-
ate a smaller impact on the database since they do
not generate artifacts such as illegal association rules
that would not exist had the sanitizing not hap-
pened. Among the approaches that remove infor-
mation only, we distinguish the pattern restriction-
based approaches that remove complete restrictive
patterns from the sensitive transactions and the item
restriction-based approaches that selectively remove
some items from sensitive transactions. The pattern
restrictive-based approaches have a bigger impact on
the database as more legal patterns may end-up hid-
den along with the restricted patterns.

To sanitize a database, each sanitizing algorithm
requires an additional scan over the original database
D in order to alter some sensitive transactions while
keeping the other transactions intact. An initial scan
is necessary to build the inverted index.

In most cases, a sensitive transaction contains
more than one restrictive pattern. We refer to these
transactions as conflicting transactions since modify-
ing one of them causes an impact on other restrictive
patterns or even on non-restrictive ones. The degree
of conflict of a sensitive transaction is defined as the
number of restrictive patterns that can be mined from
the sensitive transaction.

To illustrate the presented concepts, let us con-
sider the sample transactional database in Figure 3.
Suppose that we have a set of restrictive patterns RP

= {ABD, ACD}. This example yields the following
results. The sensitive transactions ST containing the
restrictive patterns are {T1, T3, T4}. The degrees of
conflict for the transactions T1, T3 and T4 are 2, 1
and 1 respectively. Thus, the only conflicting trans-
action is T1, which covers both restrictive patterns at
the same time. An important observation here is that
any pattern that contains a restrictive pattern is also
a restrictive pattern. Hence, if ABD is a restricted
pattern but not ACD as above, the pattern ABCD
will also be restrictive since it contains ABD. This is
because if ABCD is discovered to be a frequent pat-
tern, it is straight forward to conclude that ABD is
also frequent, which should not be disclosed.

All our item restriction-based algorithms have es-
sentially four major steps: (1) Identify sensitive trans-
actions for each restrictive pattern; (2) For each
restrictive pattern, identify a candidate item that
should be eliminated from the sensitive transactions.
This candidate item is called the victim item; (3)
Based on the disclosure threshold ψ, calculate for each
restrictive pattern the number of sensitive transac-
tions that should be sanitized; and (4) Based on the
number found in step 3, identify for each restrictive
pattern the sensitive transactions that have to be san-
itized and remove the victim item from them.

Our sanitizing algorithms mainly differ in step 2
in the way they identify a victim item to remove from
the sensitive transactions for each restrictive pattern,
and in step 4 where the sensitive transactions to be
sanitized are selected. Steps 1 and 3 remain essen-
tially the same for all approaches.

The complexity of our sanitization algorithms in
main memory is O(n1×NlogN), where n1 is the num-
ber of restrictive patterns and N the number of trans-
actions in the database. This is considering the num-
ber of items per restrictive pattern relatively small
compared to the size of the database. The proof of
this is given in (Oliveira & Zäıane 2002).

4.1 The Näıve Algorithm

The main idea behind the Näıve Algorithm is to se-
lect all items in a given restrictive pattern as victims.
The rationale behind this selection is that by remov-
ing from the sensitive transactions the items of a re-
strictive pattern, such a pattern will be hidden. If a
sensitive transaction contains exactly the same items
as a restrictive pattern, the Näıve Algorithm removes
all items of this transaction except for the item with
the highest frequency in the database. Because one
item must be kept, the number of transactions is not
modified.

Selecting the sensitive transactions to sanitize is
based simply on their degree of conflict. Given the
number of sensitive transactions to alter, based on
ψ, this approach selects for each restrictive pattern
the transactions with the smallest degree of conflict.
The rationale is, as above, to minimize the impact
of the sanitization on the discovery of the legitimate
patterns.

The sketch of the Näıve Algorithm is given as
follows:

Naive Algorithm
Input: D, RP , ψ
Output: D′

Step 1. For each restrictive pattern rpi ∈ RP do
1. T [rpi]←Find Sensitive Transactions(rpi, D);

Step 2. For each restrictive pattern rpi ∈ RP do
1. V ictimsrpi

← ∀ itemk such that itemk ∈ rpi

Step 3. For each restrictive pattern rpi ∈ RP do
1. NumTransrpi

← |T [rpi]| × (1 − ψ) // |T [rpi]|
is the number of sensitive transactions for rpi

Step 4. D′ ← D
For each restrictive pattern rpi ∈ RP do
1. Sort Transactions(T [rpi]); //in ascending order

of degree of conflict
2. TransToSanitize← Select first NumTransrpi

transactions from T [rpi]
3. in D′ foreach transaction t ∈ TransToSanitize

do
3.1. t← (t− V ictimsrpi

)
End

The four steps in this algorithm correspond to the
four steps described above for all pattern restriction-
based algorithms. The first step builds an inverted
index of the item in D in one scan of the database.
As illustrated in the example in Figure 3, the support
of each item in the database is also calculated during
this scan and attached to the respective items in the
inverted index. This support of the items is used in
step 2 to identify the victim items V ictimsrpi

for each
restrictive pattern. For the Näıve algorithm, all items
in a given restrictive pattern are selected. Line 1 in
step 3 shows that ψ is used to compute the num-
ber NumTransrpi

of transactions to sanitize. This
means that the threshold ψ is actually a measure of

the impact of the sanitization rather than a direct
measure of the restricted patterns to hide or disclose.
Indirectly, ψ does have an influence on the hiding or
disclosure of restricted patterns. There is actually
only one scan of the database in the implementation
of step 4. Transactions that do not need sanitization
are directly copied from D to D′, while the others
are sanitized before being copied to D′. In our imple-
mentation, the sensitive transactions to be cleansed
are first marked before the database scan for copying.
The selection of the sensitive transactions to sanitize,
TransToSanitize, is based on their degree of conflict,
hence the sorting in line 1 of step 4. When a transac-
tion is selected for sanitization, the victim items are
removed from it (line 3.1 in step 4).

4.2 The Minimum Frequency Item Algo-
rithm

The main idea behind the Minimum Frequency
Item Algorithm, denoted by MinFIA, is to select as
a victim item, for a given restrictive pattern, the
restrictive pattern item with the smallest support
in the pattern. The rationale behind this selection
is that by removing the item from the sensitive
transactions with the smallest support will have the
smallest impact on the database and the legitimate
patterns to be discovered. Selecting the sensitive
transactions to sanitize is simply based on their
degree of conflict. Given the number of sensitive
transactions to alter, based on ψ, this approach
selects for each restrictive pattern the transactions
with the smallest degree of conflict. The rationale is,
as above, to minimize the impact of the sanitization
on the discovery of the legitimate patterns. The
sketch of the Minimum Frequency Item Algorithm is
given as follows:

Minimum Frequency Item Algorithm
Input: D, RP , ψ
Output: D′

Step 1. For each restrictive pattern rpi ∈ RP do
1. T [rpi]←Find Sensitive Transactions(rpi, D);

Step 2. For each restrictive pattern rpi ∈ RP do
1. V ictimrpi

← itemv such that itemv ∈ rpi and
∀ itemk ∈ rpi sup(itemk, D) ≥ sup(itemv, D)

Step 3. For each restrictive pattern rpi ∈ RP do
1. NumTransrpi

← |T [rpi]| × (1 − ψ) // |T [rpi]|
is the number of sensitive transactions for rpi

Step 4. D′ ← D
For each restrictive pattern rpi ∈ RP do
1. Sort Transactions(T [rpi]); //in ascending order

of degree of conflict
2. TransToSanitize← Select first NumTransrpi

transactions from T [rpi]
3. in D′ foreach transaction t ∈ TransToSanitize

do
3.1. t← (t− V ictimrpi

)
End

The four steps of this algorithm correspond to
those in the Näıve Algorithm. The only difference is
that the Minimum Frequency Item Algorithm selects
exactly one victim item, as aforementioned.

Unlike the Minimum Frequency Item Algorithm,
the idea behind the Maximum Frequency Item Algo-
rithm, denoted by MaxFIA, is to select as a victim
item, for a given restrictive association rule, the item
with the maximum support in the restrictive associ-
ation rule. The algorithms MinFIA and MaxFIA are
thus conceptually very similar.

4.3 The Item Grouping Algorithm

The main idea behind the Item Grouping Algorithm,
denoted by IGA, is to group restricted patterns in
groups of patterns sharing the same itemsets. If
two restrictive patterns intersect, by sanitizing the
conflicting sensitive transactions containing both
restrictive patterns, one would take care of hiding
these two restrictive patterns at once and conse-
quently reduce the impact on the released database.
However, clustering the restrictive patterns based on
the intersections between patterns leads to groups
that overlap since the intersection of itemsets is
not transitive. By solving the overlap between
clusters and thus isolating the groups, we can use a
representative of the itemset linking the restrictive
patterns in the same group as a victim item for
all patterns in the group. By removing the victim
item from the sensitive transactions related to the
patterns in the group, all sensitive patterns in the
group will be hidden in one step. This again will
minimize the impact on the database and reduce the
potential accidental hiding of legitimate patterns.
The sketch of the Item Algorithm is given as follows:

Item Grouping Algorithm
Input: D, RP , ψ
Output: D′

Step 1. For each restrictive pattern rpi ∈ RP do
1. T [rpi]←Find Sensitive Transactions(rpi, D);

Step 2.
1.Group restrictive patterns in a set of groups

GP such that ∀ G ∈ GP, ∀ rpi, rpj ∈ G, rpi and rpj

share the same itemset I . Give the class label α to G
such that α ∈ I and ∀β ∈ I , sup(α, D) ≤ sup(β, D).

2. Order the groups in GP by size in terms of
number of restrictive patterns in the group.

3. Compare groups pairwise Gi and Gj starting
with the largest. For all rpk ∈ Gi ∩Gj do

3.1. if size(Gi) 6= size(Gj) then remove rpk

from smallest(Gi, Gj)
3.2. else remove rpk from group with class

label α such that sup(α, D) ≤ sup(β, D) and α, β
are class labels of either Gi or Gj

4. For each restrictive pattern rpi ∈ RP do
4.1. V ictimrpi

← α such that α is the class
label of G and rpi ∈ G
Step 3. For each restrictive pattern rpi ∈ RP do

1. NumTransrpi
← |T [rpi]| × (1 − ψ) // |T [rpi]|

is the number of sensitive transactions for rpi

Step 4. D′ ← D
For each restrictive pattern rpi ∈ RP do
1. Sort Transactions(T [rpi]); //in descending order

of degree of conflict
2. TransToSanitize← Select first NumTransrpi

transactions from T [rpi]
3. in D′ foreach transaction t ∈ TransToSanitize

do
3.1. t← (t− V ictimrpi

)
End

In this algorithm, Steps 1 and 3 are identical to
the respective steps in the previous algorithm Min-
FIA. Step 4 is slightly different from Step 4 in Min-
FIA since the sensitive transactions are now ordered
in descending order of their degree of conflict so that
more conflicting transactions are selected for saniti-
zation instead of non conflicting ones. The reason is
that since the victim item now represents a set of re-
strictive patterns (from the same group), sanitizing a
conflicting transaction will allow many restrictive pat-
terns to be taken care of at once per sanitized transac-
tion. There are, however, other possible strategies for

step 4 that we report only in (Oliveira & Zäıane 2002)
for lack of space. The goal of step 2 is to identify a
victim item per restrictive pattern. This is done by
first clustering restrictive patterns in a set of overlap-
ping groups GP (task 1), such that all restrictive pat-
terns in the same group G share the some items that
are the same. The shared items are the class label
of the group. For example, the patterns “ABC” and
“ABD” would be in the same group labeled either A
or B (depending on support of A and B - task 1, line
3). However, “ABC” could also be in another group if
there was one where restrictive patterns shared “C”.
Tasks 2 and 3 identify such overlap between groups
and eliminate it by favoring larger groups or groups
with a class label with higher support in the database.

5 Experimental Results

We performed two series of experiments: the first
to measure the effectiveness of our sanitization algo-
rithms and the second to measure the efficiency and
scalability of the algorithms. All the experiments
were conducted on a PC, AMD Athlon 1900/1600
(SPEC CFP2000 588), with 1.2 GB of RAM running a
Linux operating system. To measure the effectiveness
of the algorithms, we used a dataset generated by the
IBM synthetic data generator to generate a dataset
containing 500 different items, with 100K transac-
tions in which the minimum size per transaction is
40 items. The effectiveness is measured in terms of
the number of restrictive patterns effectively hidden,
as well as the proportion of legitimate patterns acci-
dentally hidden due to the sanitization. Some types
of sanitization could also lead to the discovery of non-
existing patterns in the original database D, but not
in D′ the sanitized database. As depicted in Figure 1
of Section 2.2, if P is the set of all mining patterns in
the original database D and we have some restricted
patterns RP , the legitimate patterns are ~RP such
that P = ~RP ∪ RP . After sanitization, the pat-
terns P ′ that should be discovered from the sanitized
database D′ should be equal to ~RP and only ~RP .
However, this is not the case, and we have three pos-
sible problems, as illustrated in Figure 1.

Problem 1 occurs when some restrictive patterns
are discovered. We call this problem Hiding Fail-
ure, and it is measured in terms of the percentage
of restrictive patterns that are discovered from D′.
Ideally, the hiding failure should be 0%. The hiding

failure is measured by HF =#RP (D′)
#RP (D) where #RP (X)

denotes the number of restrictive patterns discovered
from database X . In our framework, the proportion
of restrictive patterns that are nevertheless discov-
ered from the sanitized database can be controlled
with the disclosure threshold ψ, and this proportion
ranges from 0% to 100%. Note that ψ does not con-
trol the hiding failure directly, but indirectly by con-
trolling the proportion of sensitive transactions to be
sanitized for each restrictive pattern.

Problem 2 occurs when some legitimate patterns
are hidden by accident. This happens when some
non-restrictive patterns lose support in the database
due to the sanitization process. We call this prob-
lem Misses Cost, and it is measured in terms of
the percentage of legitimate patterns that are not
discovered from D′. In the best case, this should
also be 0%. The misses cost is calculated as fol-
lows: MC =#∼RP (D)−#∼RP (D′)

#∼RP (D) where # ∼ RP (X)

denotes the number of non-restrictive patterns discov-
ered from database X . Notice that there is a compro-
mise between the misses cost and the hiding failure.

The more restrictive patterns we hide, the more le-
gitimate patterns we miss. This is basically the jus-
tification for our disclosure threshold ψ, which with
tuning, allows us to find the balance between privacy
and disclosure of information whenever the applica-
tion permits it.

Problem 3 occurs when some artificial patterns
are generated from D′ as a product of the sanitiza-
tion process. We call this problem Artifactual Pat-
terns, and it is measured in terms of the percentage
of the discovered patterns that are artifacts. This

is measured as: AP = |P ′|−|P∩P ′|
|P ′| where |X | denotes

the cardinality of X . One may claim that when we
decrease the frequencies of some items, the relative
frequencies in the database may be modified by the
sanitization process, and new patterns may emerge.
However, in our experiments, AP was always 0% with
all algorithms regardless of the values of ψ.

5.1 Measuring effectiveness

We selected for our experiments a set of ten restrictive
patterns from the dataset ranging from two to five
items in length, with support ranging from 20% to
40% in the database.

Note that the higher the support for the restrictive
patterns, the larger the number of sensitive transac-
tions, and the greater the impact of the sanitization
on the database.

We ran the Apriori algorithm to select such pat-
terns. The time required to build the inverted file
in main memory was 4.05 seconds. Based on this
inverted file, we retrieved all the sensitive transac-
tions in 1.02 seconds. With our ten original restric-
tive patterns, 22479 patterns (out of 1866693) became
restricted in the database since any pattern that con-
tains restrictive patterns should also be restricted.
Thus, in our experiments RP contained the 22479 re-
strictive patterns.

Figure 5 shows the effect of the disclosure thresh-
old ψ on the hiding failure and the misses cost for
all four algorithms, considering the minimum support
threshold σ = 10%. As can be observed, when ψ is
0%, no restrictive pattern is disclosed for all four al-
gorithms. However, 90% of the legitimate patterns in
the case of Näıve, 69% in the case of MaxFIA, 65%
in the case of MinFIA, and 44% in the case of IGA
are accidentally hidden.

When ψ is equal to 100%, all restrictive patterns
are disclosed and no misses are recorded for legitimate
patterns. What can also be observed is that the hid-
ing failure for IGA is better than that for the other
approaches. In addition, the impact of IGA on the
database is smaller and the misses cost of IGA is the
lowest among all approaches until ψ = 40%. After
this value, MinFIA and MaxFIA yield better results
than IGA’s.

Figures 6, 7, 8, and 9 show the effect of varying
the support threshold for the patterns in the mining
process. Notice that the higher the support, the more
effective the hiding of patterns even with a more re-
laxed disclosure threshold. However, the misses are
more recurrent. In practice, the support threshold for
mining frequent patterns should always be set to 0%
since before sanitizing the database one cannot know
the support threshold that the user will select. Thus,
for better privacy preservation, the security admin-
istrator should assume the lowest support threshold
possible.

We could measure the dissimilarity between the
original and sanitized databases by computing the dif-
ference between their sizes in bytes. However, we be-

0

20

40

60

80

100

0 20 40 60 80 100

H
id

in
g

F
ai

lu
re

 (
%

)

Privacy Threshold (%)

Naive
MinFIA
MaxFIA

IGA

0

20

40

60

80

100

0 20 40 60 80 100

M
is

se
s

C
os

t (
%

)

Privacy Threshold (%)

Naive
MinFIA

MaxFIA
IGA

Figure 5: Effect of ψ on the hiding failure and the misses cost

0

20

40

60

80

100

0 20 40 60 80 100

H
id

in
g

F
ai

lu
re

 (
%

)

Privacy Threshold (%)

σ = 5%
σ = 10%
σ = 15%
σ = 20%

0

20

40

60

80

100

0 20 40 60 80 100

M
is

se
s

C
os

t (
%

)

Privacy Threshold (%)

σ = 5%
σ = 10%
σ = 15%
σ = 20%

Figure 6: Effect of support threshold on privacy preservation (Näıve)

0

5

10

15

20

0 20 40 60 80 100

D
is

si
m

ila
rit

y
(%

)

Privacy Threshold (%)

Naive
MinFIA
MaxFIA

IGA

Figure 10: The difference in size between D and D′

lieve that this dissimilarity should be measured com-
paring their contents, instead of their sizes. Compar-
ing their contents is more intuitive and gages more
accurately the modifications made to the transactions
in the database.

To measure the dissimilarity between the original
and the sanitized datasets we could simply compare
the difference of their histograms. In this case, the
horizontal axis of a histogram contains all items in the
dataset, while the vertical axis corresponds to their
frequencies. The sum of the frequencies of all items
gives the total of the histogram. So the dissimilarity
between D and D’ is given by:

Dif(D,D′) =
1∑n

i=1 fD(i)
×

n∑

i=1

[fD(i)− fD′(i)]

where fX(i) represents the frequency of the ith item
in the dataset X.

Figure 10 shows the differential between the ini-
tial size of the database and the size of the sanitized
database with respect to the disclosure threshold ψ.
To have the smallest impact possible on the database,
the sanitization algorithm should not reduce the size
of the database significantly. As can be seen in the
first graph, IGA is the one that impacts the least on
the database for all values of the disclosure thresh-
old ψ. In the worst case, when ψ = 0%, 3.55% of the
database is lost. MinFIA and MaxFIA lose 6.35% and
6.78% respectively, and Näıve reduces 16.41% of the
database, with the same threshold. This is due to the
fact that Näıve removes all items of a restrictive pat-
tern in its corresponding sensitive transactions, while
the other algorithms only remove one item for each re-
strictive pattern. Thus, as can be seen, the four algo-
rithms slightly alter the data in the original database,
while enabling flexibility for someone to tune them.

5.2 CPU Time for the Sanitization Process

We tested the scalability of our sanitization algo-
rithms vis-à-vis the size of the database as well as
the number of patterns to hide. We varied the size
of the original database D from 20K transactions to
100K transactions, while fixing the disclosure thresh-
old ψ and the support threshold to 0%, and keeping
the set of restrictive patterns constant (10 original
patterns). Figure 11A shows that the four algorithms
increase CPU time almost linearly with the size of
the database. Note that Näıve, MinFIA, and Max-
FIA yield almost the same CPU time since they are
very similar. The I/O time (2 scans of the database)
is also considered in these figures. This demonstrates

0

20

40

60

80

100

0 20 40 60 80 100

H
id

in
g

F
ai

lu
re

 (
%

)

Privacy Threshold (%)

σ = 5%
σ = 10%
σ = 15%
σ = 20%

0

20

40

60

80

100

0 20 40 60 80 100

M
is

se
s

C
os

t (
%

)

Privacy Threshold (%)

σ = 5%
σ = 10%
σ = 15%
σ = 20%

Figure 7: Effect of support threshold on privacy preservation (MinFIA)

0

20

40

60

80

100

0 20 40 60 80 100

H
id

in
g

F
ai

lu
re

 (
%

)

Privacy Threshold (%)

σ = 5%
σ = 10%
σ = 15%
σ = 20%

0

20

40

60

80

100

0 20 40 60 80 100

M
is

se
s

C
os

t (
%

)

Privacy Threshold (%)

σ = 5%
σ = 10%
σ = 15%
σ = 20%

Figure 8: Effect of support threshold on privacy preservation (MaxFIA)

good scalability with the cardinality of the transac-
tional database.

The slight inflection in the curve is due to the fact
that the larger the database, the more restrictive pat-
terns can be derived from the 10 original restrictive
patterns. This significantly increases the number of
sensitive transactions to be touched. The number of
restrictive patterns actually increases more than the
number of transactions, making most sensitive trans-
actions conflicting ones (i.e. with many restrictive
patterns).

We also varied the number of restrictive patterns
to hide from approximately 1290 to 6600, while fix-
ing the size of the database to 100K transactions and
fixing the support and disclosure threshold as before.
Figure 11B shows that our algorithms scale well with
the number of patterns to hide. The figure reports the
size of the original set of restricted patterns, which
varied from 2 to 10. This makes the set of all re-
stricted patterns range from approximately 1298 to
6608. Again, the algorithms Näıve, MinFia, and Max-
FIA yielded results very similar.

This scalability is mainly due to the inverted files
we use in our approaches for indexing the transac-
tions per item and indexing the sensitive transactions
per restrictive pattern. There is no need to scan the
database again whenever we want to access a transac-
tion for sanitization purposes. The inverted file gives
direct access with pointers to the relevant transac-
tions.

6 Related Work

Some effort has been made to address the problem
of privacy preserving in data mining. Such investiga-
tion considers how much information can be inferred

or calculated from large data repositories made avail-
able through data mining algorithms and looks for
ways to minimize the leakage of information. This ef-
fort has been restricted basically to classification and
association rules. In this work, we focus on the latter
category.

Atallah et al. (Atallah et al. 1999) considered the
problem of limiting disclosure of sensitive rules, aim-
ing at selectively hiding some frequent itemsets from
large databases with as little impact on other, non-
sensitive frequent itemsets as possible. Specifically,
the authors dealt with the problem of modifying a
given database so that the support of a given set of
sensitive rules, mined from the database, decreases
below the minimum support value. This work was
extended in (Dasseni et al. 2001), in which the au-
thors investigated confidentiality issues of a broad
category of association rules. This solution requires
CPU-intensive algorithms and, in some way, modifies
true data values and relationships.

In the same direction, Saygin et al. (Saygin
et al. 2001) introduced a method for selectively re-
moving individual values from a database to prevent
the discovery of a set of rules, while preserving the
data for other applications. They proposed some al-
gorithms to obscure a given set of sensitive rules by
replacing known values with unknowns, while mini-
mizing the side effects on non-sensitive rules.

Related to privacy preserving in data mining, but
in another direction, Evfimievski et al. (Evfimievski
et al. 2002) proposed a framework for mining asso-
ciation rules from transactions consisting of categor-
ical items in which the data has been randomized to
preserve privacy of individual transactions. Although
this strategy is feasible to recover association rules
and preserve privacy using a straightforward uniform

0

20

40

60

80

100

0 20 40 60 80 100

H
id

in
g

F
ai

lu
re

 (
%

)

Privacy Threshold (%)

σ = 5%
σ = 10%
σ = 15%
σ = 20%

0

20

40

60

80

100

0 20 40 60 80 100

M
is

se
s

C
os

t (
%

)

Privacy Threshold (%)

σ = 5%
σ = 10%
σ = 15%
σ = 20%

Figure 9: Effect of support threshold on privacy preservation (IGA)

0

50

100

150

200

250

300

350

20 30 40 50 60 70 80 90 100

C
P

U
 T

im
e

(s
ec

.)

Database Size (number of transactions in thousands)

Naive
MinFIA
MaxFIA

IGA

0

50

100

150

200

250

300

2 3 4 5 6 7 8 9 10

C
P

U
 T

im
e

(s
ec

.)

Set of Restrictive Patterns

Naive
MinFIA

MaxFIA
IGA

Figure 11: (A): CPU time wrt database size (B): CPU time wrt number of restrictive patterns

randomization, it introduces some false drops and
may lead a miner to find associations rules that are
not supposed to be discovered.

In the context of distributed data mining, Kantar-
cioglu and Clifton (Kantarcioglu & Clifton 2002) ad-
dressed secure mining of association rules over hor-
izontally partitioned data. This approach considers
the discovery of associations in transactions that are
split across sites, without revealing the contents of in-
dividual transactions. This method is based on secure
multi-party computation (Du & Atallah 2001) and in-
corporates cryptographic techniques to minimize the
information shared, while adding little overhead to
the mining task.

In (Vaidya & Clifton 2002), Vaidya and Clifton
addressed the problem of association rule mining in
which transactions are distributed across sources. In
this approach, each site holds some attributes of each
transaction, and the sites wish to collaborate to iden-
tify globally valid associations rules. This technique
is also based on secure multi-party computation.

Although the papers mentioned above deal with
privacy preserving in association rules, in this paper,
our work is directly related to (Atallah et al. 1999,
Dasseni et al. 2001, Saygin et al. 2001). Our work dif-
fers from the related work in some aspects, as follows:
First, the hiding strategies behind our algorithms deal
with the problem 1 and 2 in Figure 1, and most im-
portantly, they do not introduce the problem 3 since
we do not add noise to the original data. Second,
we study the impact of our hiding strategies in the
original database by quantifying how much informa-
tion is preserved after sanitizing a database. So, our
focus is not only on hiding restrictive patterns but
also on maximizing the discovery of patterns after
sanitizing a database. More importantly, our san-

itizing algorithms select sensitive transactions with
the lowest degree of conflict and remove from them
the victim item with specific criteria, while the al-
gorithms in related work remove and/or add items
from/to transactions without taking into account the
impact on the sanitized database. Third, our frame-
work can achieve a reasonable performance since it is
built on indexes. Another difference of our framework
from the related work is that we “plug” a transaction
retrieval search engine for searching transaction IDs
through the transactional database efficiently.

7 Conclusions

In this paper, we have introduced a new framework for
enforcing privacy in mining frequent patterns, which
combines three advances for efficiently hiding restric-
tive rules: inverted files, one for indexing the transac-
tions per item and a second for indexing the sensitive
transactions per restrictive pattern; a transaction re-
trieval engine relying on Boolean queries for retrieving
transaction IDs from the inverted file and combining
the resulted lists; and a set of sanitizing algorithms.
This framework aims at meeting a balance between
privacy and disclosure of information.

In the context of our framework, the integration
of the inverted file and the transaction retrieval en-
gine are essential to speed up the sanitization process.
This is due to the fact that these two modules feed
the sanitizing algorithms with a set of sensitive trans-
actions to be sanitized. It should be noticed that this
index schema and the transaction retrieval engine are
simple to be implemented and can deal with large
databases without penalizing the performance since
these two techniques are scalable.

The experimental results revealed that our algo-
rithms for sanitizing a transactional database can
achieve reasonable results. Such algorithms slightly
alter the data while enabling flexibility for someone to
tune them. In particular, the IGA algorithm reached
the best performance, in terms of dissimilarity and
preservation of legitimate frequent patterns. In addi-
tion, the IGA algorithm also yielded the best response
time to sanitize the experimental dataset.

Another contribution of this work includes three
performance measures that quantify the fraction of
mining patterns which are preserved in the sanitized
database. The Hiding Failure measures the amount of
restrictive patterns that are disclosed after sanitiza-
tion. Misses Cost measures the amount of legitimate
patterns that are hidden by accident after sanitiza-
tion, and Artifactual Patterns measure the artificial
patterns created by the addition of noise in the data.
We evaluated such metrics by testing different values
of the disclosure threshold ψ for our algorithms.

The work presented herein addresses the issue
of hiding some frequent patterns from transactional
databases. All association rules derivable from these
frequent patterns are thus also hidden. This could
make the approach sometimes restrictive. For in-
stance, if the pattern ABC is restricted, the pattern
ABCD would also be restricted since it includes the
previous one, and the association rule ABC → D
would be hidden even though initially there was no
restrictions on D. There is no means to specify the
constraints on the association rules rather than the
frequent patterns. One may want to express that
AB → C is restricted but not C → AB. However,
this is not feasible at the frequent patterns level since
both rules are derived from the same frequent pattern
ABC. We are investigating new optimal sanitization
algorithms that minimize the impact in the sanitized
database. We are also investigating, in the context of
privacy in data mining, association rules or other pat-
terns, the integration of role-based access control in
relational databases with rule-based constraints spec-
ifying privacy policies.

8 Acknowledgments

Stanley Oliveira was partially supported by CNPq
(Conselho Nacional de Desenvolvimento Cient́ıfico e
Tecnológico) of Ministry for Science and Technology
of Brazil, under Grant No. 200077/00-7. Osmar
Zäıane was partially supported by a Research Grant
from NSERC, Canada. The authors would like to ac-
knowledge the helpful comments made by the anony-
mous reviewers of this paper.

References

Atallah, M., Bertino, E., Elmagarmid, A. K.,
Ibrahim, M. & Verykios, V. S. (1999), Disclosure
Limitation of Sensitive Rules, in ‘IEEE Knowl-
edge and Data Engineering Workshop’, Chicago,
Illinois, USA, pp. 45–52.

Baeza-Yates, R. & Ribeiro-Neto, B. (1999), Modern
Information Retrieval, Addison Wesley Long-
man.

Brankovic, L. & Estivill-Castro, V. (1999), Privacy
Issues in Knowledge Discovery and Data Min-
ing, in ‘Australian Institute of Computer Ethics
Conference (AICEC99)’, Melbourne, Australia,
pp. 89–99.

Clifton, C. & Marks, C. (1996), Security and Privacy
Implications of Data Mining, in ‘Workshop on
Data Mining and Knowledge Discovery’, Mon-
treal, Canada, pp. 15–19.

Clifton, C. (2000), ‘Using Sample Size to Limit Ex-
posure to Data Mining’, Journal of Computer
Security 8(4), 281–307.

Clifton, C., Du, W., Atallah, M., Kantarcioglu, M.,
Lin, X. & Vaidya, J. (2001), Distributed Data
Mining to Protect Information Privacy, Proposal
to the National Science Foundation, December
2001.

Dasseni, E., Verykios, V. S., Elmagarmid, A. K. &
Bertino, E. (2001), Hiding Association Rules by
Using Confidence and Support, in ‘4th Infor-
mation Hiding Workshop’, Pittsburg, PA, USA,
pp. 369–383.

Dietzfelbinger, M., Karlin, A. R., Mehlhorn, K., auf
der Heide, F. M., Rohnert, H. & Tarjan, R. E.
(1994), ‘Dynamic Perfect Hashing: Upper and
Lower Bounds’, SIAM Journal on Computing
23(4), 738–761.

Du, W. & Atallah, M. J. (2001), Secure Multi-
Party Computation Problems and their Appli-
cations: A Review and Open Problems, in ‘10th
ACM/SIGSAC New Security Paradigms Work-
shop’, Cloudcroft, New Mexico, pp. 13–22.

Evfimievski, A., Srikant, R., Agrawal, R. & Gehrke,
J. (2002), Privacy Preserving Mining of Associa-
tion Rules, in ‘8th ACM SIGKDD International
Conference on Knowledge Discovery and Data
Mining’, Edmonton, AB, Canada, pp. 217–228.

Han, J. & Kamber, M. (2001), Data Mining: Con-
cepts and Techniques, Morgan Kaufmann Pub-
lishers, San Francisco, CA, USA.

Johnsten, T. & Raghavan, V. V. (1999), Impact of
Decision-Region Based Classification Mining Al-
gorithms on Database Security, in ‘13th Annual
IFIP WG 11.3 Working Conference on Database
Security’, Seattle, USA, pp. 177–191.

Kantarcioglu, M. & Clifton, C. (2002), Privacy-
Preserving Distributed Mining of Association
Rules on Horizontally Partitioned Data, in
‘ACM SIGMOD Workshop on Research Issues
on Data Mining and Knowledge Discovery’,
Madison, Wisconsin, USA.

Oliveira, S. R. M. & Zäıane, O. R. (2002), A Frame-
work for Enforcing Privacy in Mining Frequent
Patterns, TR02-13, Department of Computing
Science, University of Alberta, Canada.

Rizvi, S. J. & Haritsa, J. R. (2002), Maintaining Data
Privacy in Association Rule Mining, in ‘28th
International Conference on Very Large Data
Bases’, Hong Kong, China.

Saygin, Y., Verykios, V. S. & Clifton, C. (2001), ‘Us-
ing Unknowns to Prevent Discovery of Associa-
tion Rules’, SIGMOD Record 30(4), 45–54.

Vaidya, J. & Clifton, C. (2002), Privacy Preserv-
ing Association Rules Mining in Vertically Par-
titioned Data, in ‘8th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and
Data Mining’, Edmonton, AB, Canada, pp. 639-
644.

9 Rejoinder to Reviewers Remarks

In this section, we address some technical ques-
tions raised by the reviewers of this paper. We
believe that this kind of discussion is fruitful to
advance the state of the art in privacy and data
mining. We realize that this is only the start-
ing point, and encourage others to address these
technical questions.

9.1 Indicate applications of the sanitiz-
ing procedure

The idea behind data sanitization comes from
the procedure of data cleaning, typically part
of data pre-processing. While data cleaning rou-
tines operate on the data to clean it by filling in
missing values, smoothing noisy data, and iden-
tifying or resolving inconsistencies; data saniti-
zation procedures act on the data to remove or
hide, or even alter sensitive information from the
data.

The scenario we address in this paper is one
which deals with two parties A and B, A owning
a transactional database and B wanting to mine
it for frequent itemsets (or association rules).
If A is willing to make the database available
to B provided that B cannot find some spe-
cific restricted patterns rp, whether rp exist or
not is not really the issue, the question is how
can we make these patterns rp hidden regardless
of which minimum support threshold B would
use. Note that A does not know which frequent
itemset mining algorithm or support threshold B
would use. Sanitization is the process by which
A’s transactional database is altered to generate
a new database which in turn is provided to B
and guarantees that B would not discover any
rp.

There are many examples of applications that
motivated the research on sanitization in pre-
vious publications. For example, in (Clifton &
Marks 1996) the authors discussed the confiden-
tiality of sensitive information that is not only
limited to patterns of individuals, but also to
other scenarios where data mining techniques
can be used to provide business competitors with
an advantage. They emphasized that data min-
ing technology provides a whole new way of ex-
ploring large databases. However, in the wrong
hands this may be a problem. Among the sce-
narios discussed in that paper, the authors pro-
vided a well designed scenario of how different
data mining techniques can be used in a business
setting to provide business competitors with an
advantage.

This scenario is stated as follows: suppose a situ-
ation exists in which one supplier offers products
in reduced price to some consumers and, in turn,
this supplier receives permission to access the
database of the consumers’ customer purchases.
The threat becomes real whenever the supplier is
allowed to derive highly sensitive knowledge from
unclassified data that is not even known to the
database owners (consumers). In this case, the
consumers benefit from reduced prices, whereas
the supplier is provided with enough informa-
tion to predict inventory needs and negotiate
other products to obtain a better deal for his
consumers. This implies that the competitors of

this supplier start losing business. This applica-
tion is also mentioned in (Dasseni et al. 2001) as
a motivating example.

In (Atallah et al. 1999), the authors argued that
data sanitization could be any interesting build-
ing block solution to the problem of data mining
and security. In particular, the authors identified
several scenarios in which data sanitization could
provide a reasonable solution. For example, data
products (e.g. macrodata or tabular data and mi-
crodata or raw data records), are designed to
inform public or business policy, and research
or public information. Solutions to this prob-
lem require combining various techniques and
mechanisms, such as suppression, generalization,
data swapping, among others. Among these tech-
niques, data sanitization seems an interesting ap-
proach to hide sensitive information from public
access. In that particular paper, Atallah et al.
attempted to selectively hide some association
rules from large databases with as little as possi-
ble impact on other non-sensitive ones. The au-
thors also mentioned that one important exten-
sion of their work should be metrics to quantify
the difference between the released database and
the original one. In our paper, we provide such
metrics.

Apart from these papers, in (Saygin et al.
2001) the authors also presented a method for
selectively removing individual values from a
database to prevent the discovery of a set of
rules. This method relies on data sanitization
and it works by replacing select attribute values
with unknowns. This technique was designed for
applications where it is necessary to store im-
precise or unknown values for some attributes,
such as when actual values are confidential or
not available.

9.2 How can users know the patterns
they want to restrict, specially if they can
not imagine them? (If we know which pat-
terns to deny, in a sense we already know
the patterns)

Indeed, the discovery of patterns in large
databases is an exploratory task in nature. Users
look for hidden patterns without a predeter-
mined idea or hypothesis about what patterns
may be. However, in the context of enforcing pri-
vacy in data mining some constraints are neces-
sary. To guarantee privacy, organizations have to
pay an extra cost to meet security requirements.

In the scenario we described in Section 9.1, A,
the owner of the transactional database, has full
access to the database and would know what
should be restricted based on the application and
the database content, whether these patterns to
restrict exist in the database or not. The objec-
tive of the sanitization is to hide these patterns if
they exist. A does not know if the restricted pat-
terns exist and does not have to look for them.
A only knows that if these patterns exist they
should not be disclosed to B. The user B has no
knowledge that some patterns were hidden. Once
B gets access to the sanitized database, B can
mine any available pattern. The restricted pat-
terns, if they existed in the original database, are
supposedly removed by the sanitization process.
In other words, the user B doesn’t have to know
about the patterns, and the database owner A

doesn’t have to know whether the patterns exist
or not in the original database. A only needs to
know which patterns (existing or not) should not
be disclosed.

Let us analyze different approaches proposed in
the literature. For example, in (Kantarcioglu &
Clifton 2002) the authors incorporate cryptog-
raphy techniques to minimize the information
shared, while adding overhead to the mining
task. The same technique, i.e., multi-party com-
putation, is considered in the solution proposed
in (Vaidya & Clifton 2002). Note that the extra
cost in these approaches is caused by the incor-
poration of cryptography, which implies an over-
head to the discovery process.

In the recent International Conference on Very
Large Data Bases (28th VLDB), Rizvi and Har-
itsa (Rizvi & Haritsa 2002) proposed a scheme,
based on probabilistic distortion of used data.
Although this framework provides a high de-
gree of privacy to the user and retains a high
level of accuracy in the mining results, mining
the distorted database can be, apart from be-
ing error-prone, significantly more expensive in
terms of both time and space as compared to
mining the original database. Again, solutions
to address privacy and data mining always deal
with a trade-off.

Another approach, based on data obfuscation,
was proposed in (Evfimievski et al. 2002). Ev-
fimievski et al. showed that their technique is
feasible to recover association rules and preserve
privacy using a straightforward uniform random-
ization, but there is a cost to be paid: their tech-
nique introduces some false drops to the discov-
ered process.

In the context of data sanitization, we also have
to pay an extra cost. In this particular case, we
need to look ahead for some sensitive patterns
in order to prevent them and guarantee privacy.
However, this approach does not introduce false
drops to the data and does not require any over-
head to the mining process after sanitizing a
database. In addition, we pay an extra cost be-
cause some patterns will be accidentally removed
since there are functional dependencies between
restricted and non-restricted patterns.

9.3 Users would be required to submit
the patterns they do not want to be mined,
but who would store this information?
Users would have to strongly trust the
archiver of transactions?

There is no requirement to submit patterns to
hide or archive them with a trusted archiver.
The database owner simply knows the patterns
not to disclose to a certain user and sanitizes
the database to hide those patterns. If two users
request access to the database for mining, the
database owner could sanitize the database twice
differently to hide different patterns for each
user.

The problem considered in the Introduction Sec-
tion of this paper could be addressed in different
ways. For example, in (Evfimievski et al. 2002)
the authors suggest that the clients should send
patterns instead of the data. To do so, the data
has been randomized to preserve the privacy of
individuals in transactions. Although this strat-
egy is feasible to recover some original patterns

and preserve privacy, this introduces some false
drops and may lead a miner (the server) to find
patterns that are not supposed to be discov-
ered. In this case, some recommendations will
be misleading users. A more devastating situa-
tion would be to use an approach like this with
in patient’s record and jeopardize the life of the
patients by misleading the medical decision mak-
ers with wrong patterns.

Note that in our motivating example, we con-
sider the situation in which the clients will be
sending a sanitized dataset, instead of patterns.
We believe that this approach is reasonable for
the following reasons: (1) We do not know the
thresholds that the user would want to apply
during the mining; (2) The sanitized dataset will
not create false drops, so that the server will rec-
ommend trusted information, although some rec-
ommendations will not be considered, since some
patterns will be removed in the sanitization pro-
cess.

9.4 Why not obtain all patterns, remove
those that users do not want and publish
all the remaining ones?

The simplistic solution to address our motivat-
ing example is to implement a filter after the
mining phase to weed out/hide the restricted
discovered patterns. In this case, we could re-
move the restrictive patterns and send only the
non-restrictive ones. Again, we argue that send-
ing the sanitized database is more efficient than
sending patterns. The database owner does not
know the type of patterns that the user is look-
ing for. In other words, the user could use any
support thresholds. The database owner cannot
guess apriori the thresholds to be used.

9.5 How can we avoid sanitizing to a
threshold ψ, but the user may apply a
lower value of ψ and still retrieve and dis-
close the restricted patterns. This clearly
is a weakness of the algorithm. How much
does the user has to reduce ψ to de-
sanitize the sanitized database?

We argue that the disclosure threshold proposed
in our hiding strategies is not a weakness, but a
strength of our approach. First of all the thresh-
old ψ is set only by the database owner be-
fore sanitization. This threshold represents the
tradeoff between hiding all restrictive patterns
as well as accidentally other legitimate patterns,
and disclosing some restrictive patterns but hid-
ing less of the legitimate patterns. The user has
no knowledge of ψ as the user does not partic-
ipate in the sanitization process. Moreover, by
setting the disclosure threshold ψ to zero, our
algorithms guarantee that no restrictive pattern
is disclosed. It is up to the database owner, who
sets ψ, to decide about the acceptable tradeoff. It
is important to note that our sanitization meth-
ods are lossy in the sense that there is no de-
sanitization possible. The alteration to the orig-
inal database are not saved anywhere since the
owner of the database still keeps an original copy
of the database intact while distributing the san-
itized database. Moreover there is no encryption
involved. There is no possible way to reproduce
the original database from the sanitized one.

