
Exokernel: an operating system architecture for application-level
resource management

Dawson R. Engler, M. Frans Kaashoek and James O’Toole Jr.
M.I.T. Laboratory for Computer Science

Cambridge, MA 02139

�
engler,kaashoek,james � @lcs.mit.edu

March 24, 1995

Abstract

We describe an operating system architecture that securely
multiplexes machine resources while permitting an unprece-
dented degree of application-specific customization of tradi-
tional operating system abstractions. By abstracting physical
hardware resources, traditional operating systems have sig-
nificantly limited the performance, flexibility, and function-
ality of applications. The exokernel architecture removes
these limitations by allowing untrusted software to imple-
ment traditional operating system abstractions entirely at
application-level.

We have implemented a prototype exokernel-based sys-
tem that includes Aegis, an exokernel, and ExOS, an un-
trusted application-level operating system. Aegis defines
the low-level interface to machine resources. Applications
can allocate and use machine resources, efficiently handle
events, and participate in resource revocation. Measure-
ments show that most primitive Aegis operations are 10–100
times faster than Ultrix, a mature monolithic UNIX operating
system. ExOS implements processes, virtual memory, and
inter-process communication abstractions entirely within a
library. Measurements show that ExOS’s application-level
virtual memory and IPC primitives are 5–50 times faster
than Ultrix’s primitives. These results demonstrate that the
exokernel operating system design is practical and offers an
excellent combination of performance and flexibility.

1 Introduction

Operating systems define the interface between applications
and physical resources. Unfortunately, this interface can
significantly limit the performance and implementation free-
dom of applications. This problem arises because the op-
erating system abstracts the details of hardware resources
to provide a more portable and more full-featured interface
than is directly implemented by the hardware. The end result
of such a full-featured interface is an approach to resource

This work was supported in part by the Advanced Research Projects
Agency under contracts N00014-94-1-0985 and by a NSF National Young
Investigator Award.

management that is strongly centralized. Centralized man-
agement can conflict with application needs, limiting both
performance and flexibility. We believe these problems can
be solved through distributed, application-level, resource
management. To this end, we have designed a kernel that se-
curely multiplexes machine resources and permits traditional
operation system abstractions to be implemented efficiently
at application-level, so that they can easily be extended, spe-
cialized, or even replaced.

Traditionally, operating systems hide information about
machine resources behind high-level core abstractions,
choosing particular implementations of abstractions such as
processes, file system storage, address spaces, inter-process
communication, exception handling, etc. Core abstractions
define a virtual machine on which applications execute, and
their implementation cannot be replaced by untrusted appli-
cations. We believe that fixing the implementations of these
traditional operating system abstractions is unacceptable be-
cause this denies applications the advantages of domain-
specific optimizations. More important, it restricts the flex-
ibility of application builders in adding new resource ab-
stractions to the operating system because they must resort
to emulating the new abstraction on top of high-level core
abstractions.

Substantial evidence exists that applications can benefit
greatly from having more control over how machine re-
sources are used to implement higher-level abstractions. Ap-
pel et al. [4] reported that the high cost of general-purpose
virtual memory primitives reduces the performance of persis-
tent stores, garbage collectors, and distributed shared mem-
ory systems. Cao et al. demonstrated that application-level
control over file caching can reduce the number of I/O op-
erations by up to 80% [9]. Cheriton et al. [21] and Krueger
et al. [25] showed how application-specific virtual mem-
ory policies can increase application performance. Stone-
braker [43] demonstrated that inappropriate file-system im-
plementation decisions can have a dramatic impact on the
performance of databases. Thekkath et al. [45] showed that
by deferring signal handling to applications the cost of ex-
ceptions can be reduced by an order of magnitude.

We have designed a new operating system architecture in
which traditional operating system abstractions are imple-

1



DRAFT COPY — Do not distribute or cite. 2

mented entirely at application level by untrusted software. In
this architecture, an exokernel securely multiplexes available
hardware resources. Using the exokernel, applications can
securely bind to machine resources, efficiently handle events,
and participate in a resource revocation protocol. The ex-
okernel interface is very low-level and can be implemented
extremely efficiently. Library operating systems, working
above the exokernel interface, implement higher-level ab-
stractions and can define special-purpose implementations
that best meet the performance and functionality goals of
applications.

We have implemented a prototype exokernel-based system
that includes an exokernel (Aegis) and an untrusted library
operating system (ExOS). This system demonstrates several
important properties of the exokernel architecture:

� Low-level secure multiplexing of hardware resources
can be implemented efficiently.

� Traditional core abstractions can be implemented effi-
ciently at application-level.

� Applications can create special-purpose implementa-
tions of core abstractions.

In practice, our implementation provides applications with
greater flexibility and better performance than in a mono-
lithic system. Aegis’s low-level interface allows application-
level software, such as ExOS, to manipulate resources very
efficiently. Aegis’s protected control transfer is three times
faster than the best reported implementation [29]. Aegis’s
exception forwarding and control transfers are close to
100 times faster than in Ultrix 4.2, a mature monolithic
system using identical hardware. Because of this efficiency,
ExOS is able to implement virtual memory entirely at appli-
cation level.

Aegis also permits ExOS (or other application-level soft-
ware) flexibility that is not available in microkernel-based
systems. Aegis’s efficient protected control transfer allows
applications to trade between a wide array of IPC semantics
that differ in performance by a factor of 10. In contrast,
microkernel systems such as Amoeba [44], Chorus [39],
Mach [1], and V [13], do not allow untrusted application
software to define specialized IPC primitive because vir-
tual memory and message passing services are implemented
by the kernel and trusted servers. Similarly, many other
microkernel abstractions, such as page-table structures and
process abstractions, are fixed. Finally, many of the hard-
ware resources in microkernel systems, such as the network,
screen, and disk, are encapsulated in heavy-weight servers
that cannot be bypassed or tailored to application-specific
needs.

The focus of this paper is on how the exokernel archi-
tecture can be designed and implemented securely and ef-
ficiently. The remaining sections provide a more detailed
case for exokernels (Section 2), discuss the issues that arise
in their design (Section 3), present the implementation and

summarize performance measurements of Aegis and ExOS
(Sections 4 and 5), discuss global optimizations (Section 6),
summarize related work (Section 7), and report our conclu-
sions (Section 8).

2 Motivation for Exokernels

Traditionally, operating systems have centralized resource
management in a set of core abstractions that cannot be spe-
cialized, extended, or replaced. Whether provided by the
kernel or by trusted user-level servers, these core abstrac-
tions are implemented by privileged software that must be
used by all applications, and therefore cannot be changed
by untrusted software. Typically, the core abstractions de-
fined by the operating system include processes, file storage,
address spaces, and inter-process communication.

In this section, we argue that fixing the implementation
of these high-level abstractions can reduce the performance,
increase the complexity, and limit the functionality of appli-
cation programs. We then give an end-to-end argument for
the exokernel architecture and discuss the role of application-
level library operating systems.

2.1 The Cost of Core Abstractions

Application performance suffers because there is no sin-
gle way to abstract physical resources or to implement a
core abstraction that is best for all applications. In imple-
menting a core abstraction, the operating system is forced
to make trade-offs between support for sparse or dense ad-
dress spaces, read-intensive or write-intensive workloads,
etc. Any such trade-off penalizes some applications, and of-
ten the applications that suffer most are those whose behav-
ior is the most predictable. Relational databases and garbage
collectors sometimes have very predictable data access pat-
terns, and their performance suffers when a general-purpose
page replacement strategy such as LRU is imposed by the
operating system.

High-level core abstractions hide information from
application-level (untrusted) software. For example, most
current systems do not make low-level exceptions, timer
interrupts, or raw device I/O directly available to applica-
tions. Unfortunately, hiding this information makes it diffi-
cult or impossible for applications to implement their own
resource management abstractions. For example, database
implementations must struggle to emulate random-access
record storage on top of file systems [43]. Implementing
light-weight threads on top of heavy-weight processes usu-
ally requires compromises in correctness and performance
because the operating system hides page faults and timer
interrupts [3]. In both of these cases, the complexity of ap-
plications increases because of the difficulty of getting good
performance from high-level core abstractions.

Core abstractions can limit the functionality of applica-
tions because they are the only available interface between



DRAFT COPY — Do not distribute or cite. 3

applications and hardware resources. Because all applica-
tions must share the core abstractions, changes to core ab-
stractions occur rarely, if ever. This is perhaps why few
good ideas from the last decade of operating systems re-
search have been adopted into widespread use. What op-
erating systems support scheduler activations [3], multiple
protection domains within a single address space [10], ef-
ficient IPC [29], or efficient and flexible virtual memory
primitives [4, 21, 25]?

2.2 Exokernels: An End-to-End Argument

The essential observation about core abstractions in tradi-
tional operating systems is that they are overly general. Tra-
ditional operating systems attempt to provide all the fea-
tures needed by all applications. As previously noted by
Lampson et al. [28], Anderson et al. [3] and Massalin [31],
general-purpose implementations of core abstractions force
applications that do not need a given feature to pay substan-
tial overhead costs. This longstanding problem has become
more important with explosive improvements in raw hard-
ware performance and enormous growth in diversity of the
application software base.

The familiar “end-to-end” argument applies as well to
low-level operating system software as it does to low-level
communications protocols [40]. Applications know better
than operating systems what the goal of their resource man-
agement decisions should be, and should therefore be given
as much control as possible over those decisions. Our pro-
posed solution is a new operating system architecture in
which traditional abstractions are implemented entirely at
application level.

To provide maximum opportunityfor application-level re-
source management, the exokernel architecture consists of
a thin exokernel veneer that multiplexes physical resources
securely, and library- and server-based operating systems
that implement system objects and policies (see Figure 1).
This structure allows the extension, specialization and even
replacement of abstractions. For example, page-table struc-
tures can vary across different applications. To the best of
our knowledge, no other secure operating system architec-
ture gives applications so much useful freedom.

We expect that an exokernel structure is an effective way
to address the problems listed in Section 2.1. Efficient im-
plementation of basic abstractions at application level solves
many of them, since conflicts between application needs and
available abstractions can be resolved without the interven-
tion of kernel architects. Furthermore, since the kernel only
multiplexes resources, its implementation is simple. Secure
multiplexing does not require complex algorithms; it mostly
requires tables to keep track of ownership. A simple kernel
improves reliability and ease of maintenance, consumes few
resources, and enables quick adaptation to new requirements
(e.g., gigabit networking). Furthermore, as is true in RISC
architectures, the simplicity of exokernel operations allows
them to be implemented very efficiently.

Exokernel

Hardware

Library operating system

Application

Library operating system

Application

Library operating system

Application

Figure 1: An example exokernel-based system consisting of
a thin exokernel veneer that multiplexes physical resources
and library operating systems, each linked with an appli-
cation. Each library operating system implements its own
system objects and policies.

2.3 Library Operating Systems

In addition to providing flexibility and efficiency, an
exokernel-based system has a number of potential implemen-
tation and performance advantages. Since library operating
systems need not multiplex a resource among competing ap-
plications with widely different demands, their implementa-
tion can be more specialized and simpler than corresponding
kernel-level implementations. In addition, since libraries
are not trusted by the exokernel, they are free to trust the
application. For example, if an application passes the wrong
arguments to a library, only that application will be affected.
Finally, the number of kernel transitions in an exokernel
system can be smaller, since most the operating system is
running in the address space of the application.

The unprecedented implementation freedom available to
applications using an exokernel system may create porta-
bility and compatibility problems. Software that uses an
exokernel interface directly will not be portable because the
interface will include hardware-specific information. How-
ever, library operating systems can use a low-level machine-
dependent layer to hide hardware details and can implement
industry standard (e.g., POSIX) interfaces. In short, library
operating systems can provide as much portability as is de-
sirable to applications. However, unlike in other operating
systems, an application running on an exokernel can freely
replace these library operating systems without needing any
special privileges, which simplifies the additionand develop-
ment of new standards and features not anticipated by kernel
architects.

The library software that provides applications with
higher-level operating system services might be consider-
ably simplified by modular design. It is possible that object-
oriented programming methods, overloading, and inheri-
tance can provide useful operating system service imple-



DRAFT COPY — Do not distribute or cite. 4

mentations that can be easily specialized and extended, as
in Anderson’s VM++ library [25]. To control the space
used by these libraries, good support for shared libraries
and dynamic linking will be an essential part of a complete
exokernel-based system.

Backward compatibility can be provided as in
microkernel-based systems. Three viable solutions exist:
(1) binary emulation of the operating system and its pro-
grams; (2) porting the operating system by implementing
its hardware abstraction layer on top of the exokernel; (3)
re-implementing the operating system’s core abstractions on
top of the exokernel. All of these approaches can be used
with an exokernel-based system.

3 Exokernel Design

In order to allow applications to extend, specialize, and re-
place traditional operating system abstractions, the exoker-
nel architecture is designed so that untrusted software can
efficiently implement basic operating system services at ap-
plication level. The exokernel design philosophy encour-
ages distributed control: while traditional operating systems
tend to centralize resource control in core abstractions, an
exokernel strives to give resource control to applications.
To enable untrusted application-level software to implement
higher-level abstractions efficiently, the exokernel interface
must be secure, yet permit very direct and efficient control
over hardware resources.

In exporting these resources the exokernel has responsi-
bility for three important tasks: (1) tracking ownership of
resources, (2) performing access control by guarding all us-
age or binding points to ensure that security is not violated,
and (3) revoking access to resources. In this section, we will
explore the design of exokernels first in general, giving an
overview of the main tasks performed by an exokernel and
the principles that have guided our approach. Then we dis-
cuss in detail the central issues in exokernel design: secure
multiplexing and resource revocation.

3.1 Design Principles

The central tenet of an exokernel is that the kernel should
not manage resources besides that required for protection.
For instance, an exokernel designer strives to safely export
all privileged instructions, hardware DMA capabilities, and
machine resources. The resources exported are those pro-
vided by the underlying hardware: physical memory, the
CPU, disk memory, translation look-aside buffer, addressing
context identifiers, and interrupt/trap events.

The exokernel must specify the details of the interface that
applications use to claim, release, and use machine resources.
Here are some principles that have guided our efforts to
design an exokernel interface that provides applications the
maximum degree of control:

� Expose Hardware: Permit complete and fine-grained

allocation of all hardware resources and privileged hard-
ware operations.

� Expose Names: Define enumerable resource names-
paces that can be used to allocate specific physical re-
sources.

� Expose Events: Provide a visible resource revocation
protocol that allows well-behaved applications to re-
spond to scarcity, but also controls rogue applications.

The exokernel should allow applications to allocate all re-
sources, such as physical memory, the processor, and hard-
ware devices. Most of these resources should be finely sub-
divided so that multiple applications can use particular pieces
of the resource. Some resources are subdivided in time, or
are not subdivided at all, typically when tracking ownership
would be expensive or infeasible. For example, on a MIPS
processor, the general-purpose registers are best allocated
entirely to a single application at a time, because subdivid-
ing the registers seems inconvenient. However, on a SPARC
processor [24] it could be useful to allocate register windows
individually. The number, format, and current set of TLB
mappings should be visible to and replaceable by applica-
tions, as should other “privileged” co-processor state. The
exokernel must export privileged instructions to applications
to enable them to implement traditional operating system
abstractions such as processes and address spaces. Each ex-
ported operation can be encapsulated within a system call
that checks the ownership of any resources involved.

Hardware resources should be named using physical
names. Physical names are easy to implement, since the
kernel does not have to perform translation. Furthermore,
physical names encode useful resource attributes. For in-
stance, in a system with direct-mapped caches, the name of
the physical page (i.e., the page number) determines which
pages it conflicts with. If applications can request specific
physical pages they can reduce cache conflicts among the
pages in their working set [38]. The hardware namespaces
should be enumerable by applications so that applications
can tailor their requests to the available resources.

Resource revocation should be visible to applications to
support lightweight application-level resource management.
For example, it allows physical names to be used easily and
permits applications to respond rapidly to the loss of physical
resources.

3.2 Secure Resource Multiplexing

One of the primary tasks of an exokernel is to multiplex
resources securely, meaning that mutually distrustful appli-
cations can be given access to resources. Many resources,
such as physical memory, CPU, TLBs, addressing-context
identifiers, and traps, can be multiplexed using simple ac-
cess control mechanisms. The exokernel can enforce se-
curity by checking access privileges each time a resource



DRAFT COPY — Do not distribute or cite. 5

is used. Providing low-level protection checking in the ex-
okernel enables mutually distrustful applications to access
resources directly.

However, the exokernel does not know about the own-
ership and access privileges for high-level objects such as
files, directories, windows, and network connections. The
complex semantics associated with such resources are de-
termined by application-level software. Therefore, we use
secure binding to control access to protected hardware re-
sources. Secure binding decouples application-level access
authorization decisions from low-level protection checking.

When an application binds to a resource, complex access
control calculations may be required, but need not be per-
formed by the exokernel. Securely binding to a resource
means gaining controlled access to the resource such that
later operations can be efficiently checked without recourse
to high-level authorization information. For example, a file
server can buffer data in memory pages and grant access to
authorized applications by providing them with the capabili-
ties for the physical pages. The exokernel would enforce the
capability checking without needing any information about
the file system’s access control mechanisms. We will discuss
how this idea applies to the secure multiplexing of memory,
frame buffers, and network devices.

Multiplexing Physical Memory

Secure bindings to physical memory can be implemented
using self-authenticating capabilities and address translation
hardware. When an application allocates a physical memory
page, the exokernel creates a secure binding for that page
by recording the owner and the read and write capabilities
specified by the application. The owner of a page has the
power to change its capability and to deallocate it.

To ensure protection, the exokernel guards every access
to a physical memory page by requiring that the capability
be presented by the application requesting access. If the
capability is insufficient, the request is denied. Typically,
the processor contains a translation look-aside buffer (TLB),
and the exokernel must check memory capabilities when
an application attempts to enter a new virtual-to-physical
mapping.

If the underlying hardware defines a page table interface,
then the exokernel must guard the page table instead of the
TLB. Although the details of how to implement secure mem-
ory bindingswill vary depending on the details of the address
translation hardware, the basic principle is straightforward.
Privileged machine operations such as TLB loads and DMA
must be guarded by the exokernel.

Using capabilities to secure resource access enables ap-
plications to grant access rights to other applications without
kernel intervention. Applications can also use “well-known”
capabilities to share resources easily. The overhead of capa-
bilities is fairly small. For example, two 64-bit capabilities
per 4 kilobyte page is a 0.4% space overhead.

To break a secure binding, the exokernel must change the

associated capabilities and mark the resource as free. In the
case of physical memory, the exokernel would flush all TLB
mappings and any queued DMA requests. In practice, these
operations are deferred until the resource is reallocated, so
that the cost of TLB flush operations is amortized.

Multiplexing a Frame Buffer

Device multiplexing presents problems because of the almost
organic nature of complex device interfaces and because as-
signing ownership to pieces of a device can be difficult with-
out detailed knowledge of the device. Some devices, such
as disk drives, could be partitioned using a capability-based
method similar to that used for physical memory. However,
the value of a centralized I/O scheduling policy may make it
more desirable to assign ownership of the entire device to a
single application.

When the device hardware contains a low-level protection
mechanism, it can be used to implement secure binding ef-
ficiently. For example, some Silicon Graphics frame buffer
hardware associates an ownership tag with each pixel. This
mechanism can be used by the window manager to set up a
binding between an application and a portion of the frame
buffer. The application can access the frame buffer hard-
ware directly because the hardware checks the ownership
tag when I/O takes place. Similarly, the “label” feature of
the Xerox Alto disk device [28] could be used by an exoker-
nel to cheaply implement secure bindings for individual disk
blocks.

Multiplexing the Network

If there is no hardware capability support that can be used
to efficiently multiplex a device, secure bindings can be
implemented by the exokernel. We have already seen that
the exokernel can maintain software capabilities for every
physical memory page and check capabilities when TLB
operations are attempted. Network devices offer a greater
challenge because protocol-specific knowledge is normally
required to identify packet ownership.

In some cases, the network hardware may offer a uni-
form way to demultiplex the incoming data stream. For
example, ATM cells contain a virtual circuit identifier that
might uniquely identify the application that should receive
the data. However, in general, protocol-specific knowledge
must be used to interpret the contents of incoming messages
and identify the intended recipient. Packet filters [32] can
be used, with simple security precautions, to distribute in-
coming messages among applications without incorporating
protocol-specific knowledge into the exokernel.

Sharing the network interface for outgoingmessages is rel-
atively much easier. Transmission buffers can be allocated,
shared, and protected by the exokernel just as easily as phys-
ical memory pages. Applications could map these message
transmission buffers into their address space as suggested by
Druschel et al. [18]



DRAFT COPY — Do not distribute or cite. 6

3.3 Revocation

An exokernel pushes as much resource management as it can
to application level. Once resources have been allocated to
applications there must be a way to reclaim them. Revocation
can either be invisible or visible to applications. Tradition-
ally, operating systems have performed revocation invisibly,
deallocating resources without application involvement. For
example, with the exception of some external pagers [1, 39],
most operating systems deallocate (and allocate) physical
memory without informing applications. This form of re-
vocation has lower latency than visible revocation since it
requires no application involvement. Its disadvantage is that
applications have no control over deallocation and no knowl-
edge of whether resources are scarce.

An exokernel uses visible revocation for most resources.
Even the processor is explicitly revoked at the end of a time
slice; the application can react by saving only the required
processor state. For example, an application could avoid
saving the floating point state or other registers that are not
live. However, there are situations where invisible revoca-
tion performs much better because revocations occur very
frequently. Processor addressing-context identifiers are a
stateless resource that may be revoked very frequently and
are best handled by invisible revocation.

Revocation and Physical Naming

Although well-behaved applications are expected to give up
resources when requested to do so by the exokernel, we call
this interaction “revocation” because future access to the
relinquished resources must be prevented by the exokernel.
Revocation has interesting trade-offs because applications
use physical names to refer to resources. The main constraint
that the use of physical names places on the exokernel is that
revocation must be revealed to the application.

The application must be notified so that it can properly
manage the loss of the resource. For example, an application
that relinquishes physical page “5” should update any of
its page-tables that refer to this page. This is easy for an
application to do when it chooses to deallocate a resource in
reaction to an exokernel revocation request.

We view the revocation process as a dialogue between the
exokernel and the application. Applications (or library oper-
ating systems) are responsible for organizing resource lists
so that resources can be deallocated quickly. For example,
an application could have a simple vector of physical pages
that it owns: when the kernel indicates that a page should be
deallocated, the applicationselects one of these pages, writes
it to disk, and frees it. The revocation protocol could allow
the application to make the exokernel aware of “good faith”
operations such as writing a page to disk in preparation for
deallocation.

The Abort Protocol

The exokernel must also be able to take resources from ap-
plications that fail to respond satisfactorily to revocation
requests. The exokernel can define a second stage of the
revocation protocol in which the revocation request (“please
return a memory page”) becomes an imperative (“return a
page within 50 micro-seconds”). However, if the applica-
tion fails to respond quickly, some emergency action must
be taken.

We rejected the idea of simply killing any application
that fails to respond quickly to revocation requests because
we believe that programmers have great difficulty reasoning
about hard real-time bounds. We expect that such a rule is
unnecessarily strict. Instead, if an application fails to comply
with the revocation protocol, the abort protocol defines what
action the exokernel will take. The exokernel will take some
resources away “by force”, and will inform the application.

To record the forced loss of a resource, we use a repos-
session vector. When the exokernel takes a resource from
an application, this fact is registered in the vector and the
application receives a “repossession” exception so that it can
update any mappings that use the resource. For resources
with state, the exokernel can write the state into another
memory or disk resource. In preparation, the application
can pre-load the repossession vector with a list of resources
that can be used for this purpose. For example, it could
provide names and capabilities for disk blocks that should
be used as backing store for physical memory pages.

Another complication is that the exokernel should not ar-
bitrarily choose the resource to repossess; for example, the
application uses some physical memory to store vital boot-
strap informationsuch as exception handlers and page tables.
The simplest way to deal with this is to guarantee the applica-
tion a small number of resources that will not be repossessed
(e.g., 5–10 physical memory pages). If even those resources
must be repossessed, some emergency exception that tells
an application to submit itself to a “swap server” would be
required.

3.4 Summary

We discussed design guidelines for exokernels. The main
task of the exokernel is to securely expose machine resources
to applications. The exokernel employs access control and
secure bindings to achieve this goal safely. To allow effec-
tive application-level resource management, the exokernel
uses physical names and visible resource revocation. An
abort protocol is used to protect against uncooperative appli-
cations.

4 Aegis: an Exokernel

This section and Section 5describe two software systems
that follow the principle of exposing all hardware function-
ality: Aegis, a prototype exokernel, and ExOS, a prototype



DRAFT COPY — Do not distribute or cite. 7

ExOS

Emacs DOOM

DECstatation 3100

Aegis

...
VM/DOS

Figure 2: Aegis securely multiplexes the hardware resources
that are exported by DECstations to library operating sys-
tems. ExOS, an library operating system, implements pro-
cesses, virtual memory, user-level exceptions, and various
interprocess abstractions.

library operating system (see Fig. 2). Another prototype
exokernel, Glaze, is being built for an experimental SPARC-
based shared-memory multiprocessor, supporting PhOS, a
parallel operating system library. Glaze differs from Aegis
in details (they implement fewer hardware resources), but
they both share the same basic exokernel design. One key
difference between PhOS and ExOS is that PhOS supports
multiple page tables: (1) an inverted one for shared memory
and (2) an hierarchical one for local memory. In this paper,
we will focus on Aegis and ExOS.

The outline of this section is as follows: We first discuss
the experimental environment. Then, we discuss Aegis’s
implementation. Included in the discussion are experiments
that test the efficacy of the exokernel approach. In addition,
we compare the performance of Aegis with the performance
of Ultrix, a mature monolithic UNIX operating system. It is
important to note that Aegis does not offer the same level of
functionality as Ultrix: it has no disk support, and only rudi-
mentary software. While we do not expect these additions to
cause large fluctuations in our measurements, we emphasize
that ours is not a widely-used, robust implementation: the
entire user community is, at the moment, three people. The
performance results for Aegis test our first hypothesis from
the introduction: low-level multiplexing is not expensive.
Our experiments indicate that the cost of flexibility in an
exokernel system is either negligible or easily recouped. In
fact, the low-level nature of the exokernel allows many basic
operations to be implemented an order of magnitude more
efficiently than in Ultrix. The next section describes ExOS
and presents results supporting the other two hypotheses of
this paper.

4.1 Experimental Configuration

We run experiments within the DECstation/MIPS family;
the machine configurations we use are shown in Figure 3.
The two machine configurations are used to get a tentative
measure of the scalability of the exokernel. All times are
measured using the “wall-clock.” We used clock on the

Machine SpecInt89 MIPS Memory
DEC2100 (12.5 MHz) 8.7 11 12 MB
DEC3100 (16.67 MHz) 11.8 15 24 MB

Figure 3: Experimental platforms

Unix implementations and a micro-second counter on the
exokernel. The exokernel’s time-quantum was set at 15.625
milliseconds. All benchmarks were compiled using an iden-
tical compiler and flags: gcc version 2.6 with optimization
flags “-O2”. None of the benchmarks use floating-point in-
structions; we do not, therefore, save floating-point state.
Both systems were run in “single-user” mode.

All experiments were measured by performing a large
number of trials and dividing by this number to get the base
cost of a single operation. Because such measurements do
not consider cold start misses in the cache or TLB, they
represent a “best case”. However, Ultrix has a much larger
cache and virtual memory footprint than Aegis, making this
form of measurement more favorable to it than to the ex-
okernel. Additionally, none of the experiments used loop
unrolling to minimize looping overhead. Since this over-
head is equivalent on both systems, it again understates the
performance gains that our system obtains over Ultrix. We
therefore believe that the difference in performance between
the two systems is a conservative one. In closing, we note
that Ultrix, despite its poor performance relative to Aegis, is
not a poorly tuned system. It is a mature monolithic system
that performs quite well in comparison to other research op-
erating systems. For example, it performs two to three times
better than Mach 3.0 in a set of I/O benchmarks [33]. Also,
its virtual memory performance is approximately twice that
of Mach 2.5 and three times that of Mach 3.0 [4].

A few of our benchmarks were extremely sensitive to in-
struction cache conflicts. In some cases the effects amounted
to a factor of three performance penalty. Changing the
order in which ExOS’s object files were linked was suffi-
cient to remove most conflicts. A happy side-effect of using
application-level libraries is that object code rearrangement
is extremely straightforward (i.e., a “makefile” edit). Fur-
thermore, with instruction cache tools, conflicts between ap-
plication and library operating system code can be removed
automatically — an option not available to applications us-
ing traditional operating systems! We believe that the large
impact of instruction cache conflicts is due to the fact that
most Aegis operations are performed at near hardware speed;
as a result, even minor conflicts are noticeable.

4.2 Aegis Overview

Table 4 lists a subset of the Aegis interface. We will dis-
cuss the implementation of most of the system calls in this
section. In addition to the system calls listed in the table,
Aegis supports a set of primitive operations that encapsu-
late privileged instructions (see Figure 5 for some exam-
ples). These primitive operations can be viewed as pseudo-



DRAFT COPY — Do not distribute or cite. 8

System call Description
Yield Yield processor
Scall Synchronous protected control transfer
Acall Asynchronous protected control transfer
Alloc Allocation of resources (e.g., page)
Dealloc Deallocation of resources
DMA Two DMA calls (not discussed in this paper)
Clock Two calls related to the clock

Figure 4: Subset of the Aegis system call interface.

instructions (similar to the Alpha’s use of PALcode [42]). In
this subsection we examine how Aegis protects time-slices
and environments; other resources are protected as described
in the previous section.

4.2.1 Processor Time Slices

The CPU representation is unique and deserves a brief dis-
cussion. Aegis treats the CPU as a space-multiplexed device:
it is represented as a linear vector, where each element cor-
responds to a time-slice. Time-slices are partitioned at the
clock granularity and can be allocated in a manner similar
to physical memory. Scheduling is done “round robin” by
cycling through the vector of time-slices. A crucial property
of this representation is position, which encodes an ordering
and an approximate upper bound on when the time-slice will
be run. Position can be used to meet deadlines, and to trade
off latency for throughput. For example, a long-running sci-
entific application could allocate contiguous time-slices in
order to minimize the overhead of context-switching, while
an interactive application could allocate several equidistant
time-slices in order to maximize responsiveness.

Timer interrupts denote the beginning and end of time-
slices, and are delivered in a manner similar to exceptions:
a register is saved in the “interrupt save area”, the exception
program counter is loaded, and Aegis jumps to user-specified
interrupt handling code with interrupts re-enabled. The
application’s handlers are responsible for general-purpose
context-switching: saving and restoring live registers, re-
leasing locks, etc. The flexibility this framework provides
allows a number of optimizations. For example, context-
switching code can implement efficient uni-processor syn-
chronization by moving (“pc-lusering”) the program counter
out of critical sections at context-switching time [8].

Fairness is provided by bounding the time an application
takes to save its context: each subsequent timer interrupt is

Primitive operations Description
TLBwr Insert mapping into TLB
FPUmod Enable/disable FPU
CIDswitch Install context identifier
TLBvadelete Delete virtual address from TLB

Figure 5: A sample of Aegis’s primitive operations.

recorded, and when a threshold is exceeded, the environment
is destroyed. In a more mature implementation the kernel
will simply context-switch the application “by hand.” When
a time-slice is selected to run, this record is checked: if its
value is non-zero, the count is decremented and the time-slice
is skipped; if its value is zero, the time-slice is initiated.

This simple scheduler can support a wide range of higher-
level scheduling policies. For example, a server could en-
force proportional sharing (perhaps through lottery schedul-
ing [47]) on a collection of sub-processes by allocating a
number of time-slices; as each time-slice is initiated the
server first determines which of its sub-process should run
and then enables it by performing a yield system call to
the chosen process. The exokernel’s efficient implementa-
tion of yield allows high-level schedulers to perform their
operations with minimal overhead.

4.2.2 Processor Environments

An Aegis processor environment is a structure that stores
the information needed to deliver events to applications. All
resource consumption is associated with an environment,
because Aegis must deliver events associated with a resource
to its designated owner.

Four kinds of events are delivered by Aegis: an excep-
tion, an interrupt, a protected control transfer, and an ad-
dress translation. Processor environments contain the four
contexts required to support these events:

Exception context: includes starting program counter ad-
dresses and a pointer to physical memory for saving registers,
for each of several exceptions.

Interrupt context: includes interrupt vector program
counter values and register-save regions for dispatching in-
terrupts. For timer interrupts, the interrupt context specifies
separate program counters for start-time-slice and end-time-
slice cases, as well as status register values that control co-
processor and interrupt-enable flags.

Protected Entry context: specifies legal program counter
values for synchronous and asynchronous protected control
transfers from other applications. Aegis allows any proces-
sor environment to transfer control into any other; access
control is managed by the application itself.

Addressing context: consists of a set of guaranteed ad-
dress translations that the application relies on for boostrap-
ping page-tables, exception handling code, exception stacks,
an address space identifier, a status register, and a tag used
to hash into the Aegis software TLB (see Section 4.5). To
switch from one environment to another, Aegis must install
these values.

These are the event-handling contexts required to define a
process. Each context depends on the others for validity: for
example, an addressing context does not make sense without
an exception context, since it does not define any action to
take when an exception or interrupt occurs.



DRAFT COPY — Do not distribute or cite. 9

Machine OS procedure call syscall (getpid)
DEC2100 Ultrix4.2 .57 32.2
DEC2100 Aegis .56 3.2 / 4.7
DEC3100 Ultrix4.2 .42 33.7
DEC3100 Aegis .42 2.9 /3.5

Figure 6: Null procedure and system call. Aegis has two
paths: (1) with stack and (2) without stack. Times are in
micro-seconds

4.3 Basic Costs

The base cost for null procedure and system calls are
shown in Figure 6. The null procedure call is presented
as a sanity check: given its minimal operating system re-
quirements, it should be (and is) the same on both operating
systems. It obliquely shows that Aegis’ scheduling flexibil-
ity does not add overhead to base operations.

Aegis has two system call paths: one for system calls that
do not require a stack and another for those that do. With the
exception of protected control transfers, which are special-
cased for efficiency, all Aegis system calls are vectored along
one of these paths. Ultrix’s getpid is approximately an
order of magnitude slower than Aegis’ slowest system call
path — this suggests that the base cost of demultiplexing
system calls is noticeably higher in Ultrix. Part of the reason
Ultrix is so much less efficient on this basic operation is
that it performs a more expensive demultiplexing operation.
For example, on the MIPS, kernel TLB faults are vectored
through the same fault handler as system calls. Therefore,
Ultrix must take great care not to disturb any registers that
will be required to “patch up” an interrupted TLB miss.
Because Aegis does not map its data structures (and has no
page tables) it can avoid such intricacies. We expect that
this will be the common case with all exokernels, since they
should be quite small and therefore not require paging of
kernel text and code.

4.4 Exceptions

Aegis forwards to applications all hardware exceptions save
for system calls and interrupts, using techniques similar to
those described in Thekkath et al. [45]. To forward an ex-
ception, Aegis performs the following actions:

1. It saves three scratch registers into an agreed-upon “save
area”. (To avoid TLB exceptions, Aegis does this op-
eration using physical addresses.)

2. It loads the exception program counter, the last virtual
address that failed to have a valid translation, and the
cause of the exception.

3. It uses the exception cause to perform an indirect
jump to an application-specifiedprogram counter value,
where execution resumes with the appropriate permis-
sions set (e.g., in user-mode with interrupts re-enabled).

Machine OS unalign overflow coproc prot
DEC2100 Ultrix n/a 272 n/a 294.
DEC2100 Aegis 2.8 2.8 2.8 3.0
DEC3100 Ultrix n/a 200. n/a 242.
DEC3100 Aegis 2.1 2.1 2.1 2.3

Figure 7: Trap benchmarks; times are in micro-seconds

After processing the exception, applications can immediately
resume execution without entering the kernel. Ensuring that
applications can return from their own exceptions (without
kernel intervention) requires that all exception state be avail-
able for user reconstruction. The means that all registers that
are saved must be in user-accessible memory locations, etc.

Fast exceptions enable a number of intriguing applica-
tions [4, 45]. For example, efficient page-protection traps
can be used by applications such as distributed shared mem-
ory systems, persistent object stores and garbage collec-
tors [4, 45]. In general, most of these operations could
be done by inserting explicit checks in code (e.g., hardware
page-protection can be emulated by checking every load and
store). The obvious advantage to using exceptions instead
of explicit checks is efficiency. A more subtle advantage
is that the use of explicit checks requires compiler support.
Writing a well-tuned, correct compiler that is portable and
generates efficient code is a difficult problem; eliminating
this requirement aids the efficient, simple implementation of
many operations.

Currently, Aegis dispatches exceptions in 18 instructions.
The low-level nature of Aegis allows an extremely efficient
implementation: exception forwarding requires almost four
times fewer instructions than the most highly-tuned imple-
mentation in the literature [45]. Part of the reason for this
improvement is that Aegis does not used mapped data struc-
tures, and so does not have to carefully separate out kernel
TLB misses from the more general class of exceptions in its
exception demultiplexing routine.

We test Aegis’ overhead on exceptions for un-
aligned pointer accesses (unalign), arithmetic overflow
(overflow), attempted use of the floating point co-
processor when it is disabled (coproc) and access to pro-
tected pages (prot). The times for unalign are not avail-
able under Ultrix since the kernel attempts to “fix up” the
unaligned access and writes an error message to standard
error. Additionally, Ultrix does not allow applications to
disable co-processors, and hence cannot utilize the coproc
exception. Times are given in Figure 7. Careful tuning
of the exception path (aided by the minimal kernel func-
tionality Aegis provides) allows all traps to be dispatched
approximately two orders of magnitude faster than Ultrix.

4.5 Address Translations

We look at two problems in supporting application-level
virtual memory (AVM): bootstrapping and efficiency.



DRAFT COPY — Do not distribute or cite. 10

An exokernel must provide support for bootstrapping the
virtual naming system (i.e., supporting translationexceptions
on both application page-tables and exception code). Aegis
provides a simple bootstrapping mechanism through the use
of a small number of guaranteed mappings. An applica-
tion’s virtual address space is partitioned into two segments.
The first segment holds normal application data and code.
The second segment is used to hold exception handling code,
page-tables, etc. The exokernel allows mappings in the sec-
ond segment to be “pinned” through guaranteed mappings.
A miss on a guaranteed mapping will be handled automat-
ically by Aegis. This frees the application from dealing
with the intricacies of boot-strapping the TLB and exception
handlers that can take TLB misses.

On a TLB miss, the following actions occur:

1. Aegis checks which segment the virtual address resides
in. If it is in the standard user segment, the exception is
forwarded directly to the application. If it is in the sec-
ond region, Aegis first checks to see if it is a guaranteed
mapping: if so, it installs the TLB entry and continues,
otherwise it forwards it to the application.

2. The application looks up the virtual address in its page-
table structure, and if the access is not allowed raises
the appropriate exception (e.g., “segmentation fault”).
If the mapping is valid, the application constructs the
appropriate TLB entry and its associated capability and
invokes the appropriate exokernel system routine.

3. Aegis checks that the given capability corresponds to
the access rights requested by the application. If so, the
mapping is installed in the TLB; control is then returned
to the application. Otherwise an error is returned.

4. The application performs cleanup and resumes execu-
tion.

The obvious challenge in supporting AVM is making it
fast. The primary bottleneck that must be overcome is the
cost of TLB refills. We do this by overlaying the hardware
TLB with a large software TLB (STLB) to absorb capacity
misses [5, 23]. On a TLB miss, Aegis first checks to see
whether the required mapping is in the STLB; if so, Aegis
installs it and resumes execution. Otherwise, the miss is
forwarded to the application. Aegis currently uses a unified
STLB. To improve hashing coverage and to decrease the
number of TLB flushes that occur when context identifiers
are recycled, each process is associated with an 11 bit tag
field: this field is constant over the environment’s life-time
and is recycled infrequently. This tag is used to compute
the hash function (by xoring it with virtual addresses during
lookup): to decrease the likelihood of “worst-case” hashing
collisions, the tag is selected randomly from a collection of
211

� 1 tags. The STLB contains 4096 entries of 8 bytes
each; it is a direct-mapped, resides in unmapped physical
memory, and on an STLB “hit”, replaces the desired map-
ping in 18 instructions. By looking at the base system call

Machine OS matrix
DEC2100 Ultrix4.2 7.1
DEC2100 Aegis 7.0
DEC3100 Ultrix4.2 5.2
DEC3100 Aegis 5.2

Figure 8: 150x150 matrix multiplication (time in seconds)

cost presented in Figure 6 we can see that replacing a TLB
mapping from the STLB is 2-3 microseconds (approximately
a factor of two) less expensive than doing so from applica-
tion level using an upcall and a system call. Compared to
a single-level page table (e.g., as supported by Mach), the
STLB requires an additional load in order to check the vir-
tual address space tag. However, this load resides in the
same cache line as the mapping itself, and so does not add
additional cache miss overhead. To avoid the worst-case
behavior of a direct mapped STLB, we will likely move to a
two-way set-associative structure as the implementation ma-
tures (as is used in the Rialto [17] and PA-RISC operating
systems [23]).

As dictated by the exokernel principle of exposing kernel
book-keeping structures, the STLB is mapped using a well-
known capability, allowing applications to efficiently probe
for entries, etc.

The overhead of application-level memory is measured by
performing a 150 by 150 matrix multiplication. Because this
naive version of matrix multiply does not use any of the spe-
cial abilities of ExOS or Aegis (e.g., page-coloring to reduce
cache conflicts), we expect that it will perform equivalently
on both operating systems. The times in Figure 8 give a ten-
tative indication that application-level virtual memory does
not add a noticeable overhead to operations that have large
virtual memory footprints. Of course, this is hardly a con-
clusive proof; see Section 5.2 for a discussion of the ExOS
virtual memory system.

4.6 Protected Control Transfers

Aegis provides a protected control transfer mechanism
as a substrate for implementing efficient IPC mecha-
nisms [6, 22, 29]. Operationally, a protected control transfer
changes the program counter to an agreed-upon value in
the callee, donates the current time-slice to the callee’s pro-
cessor environment, and installs required elements of the
callee’s processor context (addressing-context identifier, ad-
dress space tag, and processor status word).

Aegis provides two forms of protected control transfers:
synchronous and asynchronous. The difference between the
two is what happens to the processor time slice. Asyn-
chronous calls donate the remainder of the current time slice
to the callee. Synchronous calls tranfers the current time
slice period as well as all future instantiations of it: the
callee can then return the time-slice via a synchronous con-
trol transfer call back into the original caller. Both forms



DRAFT COPY — Do not distribute or cite. 11

OS Machine Transfer
Aegis DEC2100/

12.5MHz
2.89

L3 486/50MHz
(normalized)

9.1

Aegis DEC3100/
16.67MHz

2.2

L3 486/50MHz
(normalized)

6.67

Figure 9: Protected control transfer overhead; times are in
micro-seconds

of control transfer guarantee two important properties: (1)
to applications, a protected control transfer is atomic, and
(2) Aegis will not overwrite any application-visible register,
allowing the large register set of modern processors to be
used as a temporary message buffer [12].

Currently, our synchronous protected control transfer op-
eration costs 30 instructions. Roughly ten of these instruc-
tions are required in order to distinguish the system call
“exception” from other hardware exceptions on the MIPS
architecture. The remaining twenty instructions could bene-
fit from additional optimizations. Because Aegis implements
the minimum required for any control transfer mechanism,
applications can introduce additional protection checks only
if required. For example, control transfers between clients
and trusted servers can be optimized by allowing the server to
save and restore only the registers it uses, rather than requir-
ing that the client save and restore the entire register state on
every call. L3 appears to provide similar IPC semantics [29].

We measure the “bare-bones” overhead of our protected
control transfer mechanism in Figure 9. Times are given
in micro-seconds, and were derived by dividing the time to
perform a call and reply by 2 (i.e., we measure the time to
perform a uni-directional control transfer). We measured a
trusted control transfer: only the callee saves and restores
the registers it uses. These measurements also include the
overhead cost of incrementing a counter and performing a
branch, due to our measurement code. The performance of
Aegis shown in Figure 9 is one to two orders of magnitude
faster than any similar operation available under Ultrix (in
fact, they are an order of magnitude more efficient than
getpid!).

We attempt a crude comparison of our protected control
transfer operation to the L3 RPC mechanism. The L3 im-
plementation is the fastest published result [29], but it runs
on an Intel 486. For Figure 9, we scaled the published L3
results based on the MIPS rating of our DECstation. Aegis’s
trusted control transfer mechanism performs 3 times faster
than L3’s trusted RPC mechanism.

We have not tuned the Aegis protected control transfer
implementation aggressively; architectural characteristics of
the MIPS are one of the main determinants of our better
performance relative to L3. For example, L3 pays a heavy

penalty to enter and leave the kernel (71 and 36 cycles, re-
spectively). While our base cost is not so high, much of
the Aegis code does deal with required operations: demul-
tiplexing the system call exception and setting the status,
co-processor and address tag registers.

5 ExOS: an extensible OS

The most unusual aspect of ExOS is that it manages funda-
mental operating system abstractions (e.g., virtual memory
and process mechanisms) at application-level, completely
within the address space of the application that is using it. To
the best of our knowledge ExOS and the Cache Kernel [11]
are the first general-purpose library operating systems im-
plemented in a multiprogramming environment. The Cache
Kernel, however, supports library operating systems primar-
ily for kernel simplification instead of for performance and
extensibility. The goal of this sections is to demonstrate that
(1) basic system abstractions can be implemented at appli-
cation level in a direct manner and (2) specialization and
extensibility of these abstractions can result in substantial
performance improvements. Due to space constraints we
focus on IPC and virtual memory.

5.1 Fast IPC Abstractions

Fast inter-process communication is crucial for building ef-
ficient and decoupled systems [6, 22, 29]. As described in
Section 4, the Aegis protected control transfer mechanism
is an efficient substrate for implementing fast IPC mecha-
nisms. We measure the efficiency of IPC primitives that are
constructed in ExOS on top of the Aegis primitive.

pipe: measures the time needed to send a word-sized
message from one process to another using pipes. It was
measured by “ping-ponging” a counter between two pro-
cesses. The Ultrix pipe implementation uses the standard
UNIX pipe implementation. The ExOS pipe implemen-
tation uses a shared-memory circular buffer. Writes to full
buffers and reads from empty ones cause the current time
slice to be yielded by the current process to the reader or
writer of the buffer, respectively. The pipe implementation
is an application-level library; the only kernel primitives used
are the yield system call and those primitives required to
construct the application-level virtual memory. We use two
pipe implementations: the first is a naive implementation,
while the second exploits the fact that this library exists in
application space by simply inlining the read and write calls.
ExOS’ unoptimized pipe implementation is an order of
magnitude more efficient than the equivalent operation un-
der Ultrix. Much of this performance is due to the efficient
implementation of yield in Aegis.

shmem: this experiment measures the time for two pro-
cesses to “ping-pong” using a shared counter. The exokernel
implementation uses Aegis’ yield system call to yield the
current time-slice between partners. Because Ultrix does not
provide a yield-like primitive, acceptable efficiency can only



DRAFT COPY — Do not distribute or cite. 12

Machine OS pipe pipe-opt shmem lrpc tlrpc
DEC2100 Ultrix4.2 334 n/a 334 680. n/a
DEC2100 Aegis 30.9 24.8 12.4 13.9 8.6
DEC3100 Ultrix4.2 231 n/a 231 457. n/a
DEC3100 Aegis 22.6 18.6 9.3 10.4 6.4

Figure 10: IPC benchmarks; times are in micro-seconds

be achieved by using pipes to emulate the required function-
ality. As in the other IPC tests, the difference between ExOS
and Ultrix is large: in this test ExOS is almost thirty times
faster than Ultrix.

lrpc: this experiment measures the time to RPC into an-
other address space, increment a counter and return its value.
ExOS’s LRPC is built on top of the exokernel’s protected
control transfer mechanism. There are two implementations:
tlrpc and lrpc. tlrpc only saves and restores the stack
pointer: the called processor environment is a trusted server
that will restore any registers that it uses. lrpc saves all
general-purpose callee-saved registers. Ultrix does not have
an RPC mechanism; we emulated RPC functionality through
a server process that waited on a well known pipe: a client
sends an index, the server calls the appropriate function, and
returns the result through the pipe.

Both implementations assume that only a single function
is of interest (i.e., neither uses the RPC number to index
into a table, etc.) and do not check permissions. Both
implementations are also single-threaded. ExOS’s untrusted
lrpc ranges between 44 and 49 times faster than Ultrix,
while the trusted version ranges between 71 and 79 times
faster: almost a two order of magnitude differential. The
most important reason for this difference is the efficiency of
the control transfer mechanism.

In summary, Aegis’ efficient protected control transfer
and yield mechanisms allow very efficient IPC primitives to
be constructed at application-level. Furthermore, doing so is
profitable: exploiting both application-specific requirements
(e.g., RPC between clients and trusted servers) and the char-
acteristics of application-level (e.g., simple inlining) gives
marked performance improvements.

5.2 Application-level Virtual Memory

ExOS provides a rudimentary virtual memory system (its
size is approximately 1000 lines of heavily commented
code). Its two main limitations are that it does not handle
swapping and that page-tables are implemented as a linear
vector (address translations are looked up in this structure
using binary search). Barring these two implementation
constraints, its interface is richer than other virtual memory
systems we know of: it provides flexible support for alias-
ing, sharing, disabling and enabling of caching on a per-page
basis, specific page-allocation, DMA, etc.

We compare Aegis and ExOS to Ultrix on seven virtual
memory experiments, based on those used by Appel and

Li [4]:

dirty: Measures the time to query whether a page is
“dirty” or not. Since it does not require examination of
the TLB, this measurement is used to test the base cost
of looking up a virtual address in ExOS’s page-table
structure. This operation is not provided by Ultrix.

(un)prot1: Measures the time required to change the
page protection of a single page.

prot100: Measures the time required to “read-protect”
100 pages.

unprot100: Measures the time required to remove read-
protections on 100 pages.

trap: Time to take a page-protection trap.

appel1: Time to access a random protected page
and, in the fault-handler, protect some other page
and unprotect the faulting page (this benchmark is
“prot1+trap+unprot” in Appel et al. [4]).

appel2: Time to protect 100 pages, then access each
page in a random sequence and, in the fault-
handler, unprotect the faulting page (this benchmark
is “protN+trap+unprot” in Appel et al. [4]). Note
that appel2 requires less time than appel1 since
appel1 must both unprotect and protect different
pages in the fault handler.

dirty measures the average time to parse the page-table
for a random entry. If we compare the time required for
dirty to the time required to perform (un)prot1, we
see that over half the time spent in (un)prot1 is due to the
overhead of parsing the page-table. This overhead can be
directly eliminated through the use of a data structure more
tuned to efficient lookup (e.g., a hash-table). Even with this
penalty, our system performs these operations close to two
times faster than Ultrix. The likely reason for this difference
is that, as shown in Figure 6, Aegis dispatches system calls
an order of magnitude more efficiently than Ultrix.

In general, our exokernel-based system performs well on
this set of benchmarks. The sole exceptions are prot100
and unprot100. Ultrix is extremely efficient in protecting
and unprotecting contiguous ranges of virtual addresses: it
performs 20% to 60% more efficiently than Aegis in these
operations. One reason for this difference is the immatu-
rity of our implementation; another is that changing page



DRAFT COPY — Do not distribute or cite. 13

Machine OS dirty (un)prot1 prot100 unprot100 trap appel1 appel2
DEC2100 Ultrix4.2 n/a 51.6 175. 175. 297. 438. 392.
DEC2100 Aegis 17.5 32.5 213. 275. 13.9 74.4 45.9
DEC3100 Ultrix4.2 n/a 47.8 140. 140. 240. 370. 325.
DEC3100 Aegis 13.1 24.4 156. 206. 10.1 55. 34.

Figure 11: Virtual memory benchmarks; times are in micro-seconds

protections in ExOS requires access to two data structures
(Aegis’ STLB and ExOS’s page-table). We anticipate that
these times will improve as we tune the system. However,
even with poor performance on these two operations, the
benchmark that uses this operation (appel2) is close to an
order of magnitude more efficient on ExOS than on Ultrix.
trap is another area where the exokernel system per-

forms extremely well (i.e., 21 to 24 times faster than Ul-
trix). This performance differential is achieved even though
the trap benchmark on Aegis is implemented with Unix
signal-like semantics: for example, all caller-saved registers
are saved. If these semantics were violated by ExOS, the
performance difference would become even larger.

Finally, the higher-level benchmarks, appel1 and
appel2, also show impressive speedup: up to an order
of magnitude in some cases and never less than a factor of
five.

These speedups were achieved because the virtual
memory management was performed at application-level.
Application-level virtual memory support might be expected
to add a large overhead to basic memory operations because
of the protected nature of the exokernel interface and because
of more frequent user/kernel crossings. These benchmarks
show that this is not the case. In fact, we can expect further
improvements in performance from more sophisticated page-
table structures and hand-coded assembly language for some
operations. The use of a high-level language (C) currently
wastes time saving and restoring registers when handling
exceptions.

5.3 Summary

We have shown how inter-process communication and vir-
tual memory can be implemented efficiently and directly at
application level. Frequently, the performance differential
between ExOS and Ultrix is more than an order of magni-
tude. We have shown that specialization can provide sig-
nificant performance improvements: for example, trusted
LRPC is close to a factor of two faster than its untrusted
counter-part.

6 Discussion

The focus of this paper has been on how the exokernel ar-
chitecture can be designed and implemented securely and
efficiently. In this section we touch upon how an exokernel

architecture can deal with policy conflicts between compet-
ing applications and how global system optimizations can
be realized. The impact of distributed resource management
on both issues is determined by whether a policy requires
information, or feedback, from the system. If it does not,
then an exokernel implementation of the policy is no more
challenging than in a traditionaloperatingsystem. For exam-
ple, proportional sharing does not require detailed feedback
from the system. Therefore, enforcing proportional sharing
of resources in an exokernel can be implemented in a man-
ner analogous to on a traditional operating system: through
the exokernel’s control over allocation and revocation. As
shown in the last sections, allocation and revocation are in-
expensive operations, so we expect that exokernel systems
behave as well under the high load as traditional operating
systems.

Most modern operating systems expect that applications
do not lie about the resources they need. Systems like UNIX
will give applications all the resources they request until they
reach their quota, even though some application may have
no use for the resources it requests. Under this assumption,
policies that require feedback can easily be realized in an
exokernel architecture. For example, working sets can be
approximated by monitoring TLB insertions and DMA op-
erations. Applications can use this information to decide
whether giving up a page will improve overall system per-
formance, and do so if another application has more need
for physical memory. As in traditional operating systems,
indiscriminate resource requests can be discouraged by sus-
pending or swapping an application that requests a scarce
resource.

As another example, consider disk arm latency, which is
the crucial bottleneck in a disk system. An effective global
policy attempts to ensure that the disk arm does not need to
move frequently. This can be done by reordering reads and
writes, file-caching, and allocating (or migrating) frequently
accessed blocks along a narrow band (which lowers seek time
to requested blocks). Disk operation reordering can be done
in an exokernel system: for security the exokernel controls
all reads and writes from the disk, and so can trivially reorder
any that are performed. The difference in file-caching under
an exokernel system is that the applications manage these
caches: whether this is done through proxy servers or directly
is of little concern. Application-controlled file caching, as
explored by Cao et al. [9], can be directly used in an exokernel
architecture.



DRAFT COPY — Do not distribute or cite. 14

The exokernel protects and guards applications from each
other, but expects, for example, that an application does not
allocate all of its quota of physical memory, if it only needs
a couple of pages. The problem of guarding against such
malicious applications (or badly-written applications) is a
hard one, since it is difficult to distinguish between an ap-
plication that needs many resources and one that is abusing
the available resources. Like in many other systems, the
exokernel architecture as described in this paper relies on
social mechanisms, such as users who refuse to run the ap-
plication, to deal with malicious applications. We think this
degree of trust is acceptable for many computer systems; it is
acceptable in most UNIX systems and it also seems to work
in the Internet. Even lower levels of trust and fault isolation
are accepted in single-user operating systems such as DOS
and MacOS. An interesting research question is whether
distributed control can be extended to an environment with
malicious applications; we plan to investigate this question
in future research.

7 Related work

Many early OS papers discussed the need for extendible,
flexible kernels [27, 37, 48]. Lampson’s description of
CAL-TSS [27] and Brinch Hansen’s microkernel paper [19]
are two classic rationales. Hydra was the most ambitious
system to have the separation of kernel policy and mech-
anism as one of its central tenets [48]. Modern revisita-
tions of microkernels have also argued for kernel extensibil-
ity [1, 15, 36, 39, 44].

The most important difference between our work and pre-
vious approaches is the explicit view that the kernel should
not provide high-level core abstractions. In other systems,
the effective operating system interface is much higher-level
(e.g., page-tables are implemented by the kernel).

Current extensible OS projects include Scout [20],
Bridge [30], and Vino [41]. Some of the techniques used
in these systems, such as type-safe languages [7, 32, 37] and
software fault-isolation [16, 46], are also applicable to exok-
ernels. These systems are just beginning to be constructed,
so it is difficult to determine their relationship to exokernels
in general and Aegis in particular.

Another current extensible OS project, the SPIN project,
investigates adaptable kernels that allow applications to make
policy decisions [7]. The SPIN system encapsulates policies
in spindles that can be dynamically loaded into the kernel.
To ensure safety, spindles will be written in a pointer-safe
language and will be translated by a trusted compiler. We
view the SPIN project as complementary to the exokernel
design and hope to use their results to optimize application-
level library operating systems.

The interface provided by the VM/370 OS [14] is very
similar to what would be provided by our ideal OS: namely,
the raw hardware. However, the important difference is that
VM/370 provides this interface by virtualizing the entire

base-machine. Since this machine can be quite complicated
and expensive to emulate faithfully, virtualization can result
in a complex and inefficient OS. In contrast, our approach ex-
ports hardware resources rather than emulating them, allow-
ing an efficient and fast implementation. Furthermore, the
central tenet of the virtual machine movement (and VM/370
in particular) is that an application should not be able to detect
that it is not executing on the native hardware. Supporting
this illusion precludes application resources management:
Because the application is not supposed to see VM/370 it
is unable to communicate with it about issues such as ex-
plicit allocation, revocation, naming and sharing (sharing is
particularly difficult across virtual machines [26]).

The four approaches we view as most similar to the ex-
okernel philosophy are the SPACE kernel [35], the open
operating system [28], Anderson’s argument for application-
specific operating systems [2] and the Cache Kernel [11].

SPACE is a “submicro-kernel” that provides only low-
level kernel abstractions defined by the trap and architecture
interface [35]. Its close coupling to the architecture makes
it similar in many ways to an exokernel, but we have not
been able to make detailed comparisons because its design
methodology and performance are not yet published.

The open operating system for a single-user machine [28]
is motived by a rationale similar to that of the exokernel.
However, the approach taken to extensibility is very differ-
ent because it is designed for a single-user machine. There-
fore, protection is not an issue in the open operating system,
whereas secure multiplexing is the main task of an exoker-
nel. In addition, the exokernel attempts to define no core
abstractions, while in the open operating systems the file
system and communications are standardized.

Anderson [2] made a clear argument for application-
specific library operating systems and proposed that the
kernel concentrate solely on the adjudication of hardware
resources. The exokernel design addresses how to provide
secure multiplexing of physical resources in such a system,
and moves the kernel interface to a lower level of abstraction.
In addition, Aegis and ExOS demonstrate that low-level se-
cure multiplexing and library operating systems can offer
excellent performance.

Like Aegis, the Cache Kernel [11] provides a low-level
kernel that can support multiple application-level operat-
ing systems. The difference between the Cache Kernel and
Aegis is mainly one of high-level philosophy: the Cache
Kernel focuses primarily on reliability, rather than securely
exporting hardware resources to applications. For example,
the Cache Kernel attempts to eliminate all dynamic mem-
ory allocation (similar to Popek and Klines’ Data Secure
Unix [34]). Unsurprisingly, this single constraint lowers
the kernel interface as compared to traditional operating sys-
tems. However, the deemphasis on application flexibility and
extensibility is telling; the Cache Kernel is biased towards
a server-based system structure (for example, it supports
only 16 “application-level” kernels concurrently). In spite



DRAFT COPY — Do not distribute or cite. 15

of these differences, we believe that with several straightfor-
ward changes the Cache Kernel would fit within our defini-
tion of an exokernel.

8 Conclusion

We have argued that the benefits of distributed, application-
specific resource management are compelling enough that
the entire operating system structure should be organized
to maximize it. We have defined a new OS architecture,
the exokernel, to accomplish this goal and have provided a
set of principles to guide exokernel design. We presented
and tested two prototype systems built on our ideas: Aegis,
a prototype exokernel, and ExOS, a prototype library op-
erating system. Two interesting features of these systems
are that the whole of virtual memory management occurs at
application-level and that basic operations can be performed
one to two orders of magnitude faster than in a mature mono-
lithic structure.

Acknowledgments

We like to thank Bob Gruber, Sandeep Gupta, Wilson Hsieh,
Butler Lampson, Ulana Legedza, Massimiliano Poletto,
Raymie Stata, and Debby Wallach for insightful discussions
and careful reading of earlier versions of this paper.

References

[1] M. Accetta, R. Baron, W. Bolosky, D. Golub,
R. Rashid, A. Tevanian, and M. Young. Mach: a new
kernel foundation for UNIX development. Proc. Sum-
mer 1986 USENIX Conference, pages 93–112, July
1986.

[2] T.E. Anderson. The case for application-specific op-
erating systems. In Third Workshop on Workstation
Operating Systems, pages 92–94, 1992.

[3] T.E. Anderson, B.N. Bershad, E.D. Lazowska, and
H.M. Levy. Scheduler activations: Effective kernel
support for the user-level management of parallelism.
In Proc. Thirteenth Symposium on Operating System
Principles, pages 95–109, October 1991.

[4] A.W. Appel and K. Li. Virtual memory primitives for
user programs. In Proceedings of the Fourth Interna-
tional Conference on ASPLOS, pages 96–107, Santa
Clara, CA, April 1991.

[5] K. Bala, M.F. Kaashoek, and W.E. Weihl. Soft-
ware prefetching and caching for translation lookaside
buffers. In Proceedings of the First Symposium on
OSDI, pages 243–253, November 1994.

[6] B. N. Bershad. High performance cross-address space
communication. Technical Report 90-06-02 (PhD The-
sis), University of Washington, June 1990.

[7] B.N. Bershad, C. Chambers, S. Eggers, C. Maeda,
D. McNamee, P. Pardyak, S. Savage, and E. Sirer. SPIN
- an extensible microkernel for application-specific op-
erating system services. TR 94-03-03, Univ. of Wash-
ington, February 1994.

[8] B.N. Bershad, D.D. Redell, and J.R. Ellis. Fast mu-
tual exclusion for uniprocessors. In Proc. of the Conf.
on Architectural Support for Programming Languages
and Operating Systems, pages 223–237, October 1992.

[9] Pei Cao, Edward W. Felten, and Kai Li. Implemen-
tation and performance of application-controlled file
caching. In Proceedings of the First Symposium on
OSDI, pages 165–178, November 1994.

[10] Jeffrey S. Chase, Henry M. Levy, Michel Baker-
Harvey, and Edward D. Lazowska. How to use a 64-bit
virtual address space. Technical Report TR 92-03-02,
University of Washington, 1992.

[11] D. Cheriton and K. Duda. A caching model of oper-
ating system kernel functionality. In Proceedings of
the First Symposium on Operating Systems Design and
Implementation, November 1994.

[12] D. R. Cheriton. An experiment using registers for fast
message-based interprocess communication. Operat-
ing Systems Review, 18:12–20, [10] 1984.

[13] D. R. Cheriton. The v kernel: A software base for
distributed systems. IEEE Software, 1(2):19–42, April
1984.

[14] R. J. Creasy. The origin of the VM/370 time-sharing
system. IBM J. Research and Development, 25(5):483–
490, September 1981.

[15] H. Custer. Inside Windows/NT. Microsoft Press, Red-
mond, WA, 1993.

[16] P. Deutsch and C.A. Grant. A flexible measurement
tool for software systems. Information Processing 71,
1971.

[17] Richard Draves. Private Communication, December
1994.

[18] Peter Druschel, Larry L. Peterson, and Bruce S. Davie.
Experiences with a high-speed network adaptor: A
software perspective. In SIGCOMM‘94, pages 2–13,
1994.

[19] Per Brinch Hansen. The nucleus of a multiprogram-
ming system. Communicationsof the ACM, 13(4):238–
241, April 1970.



DRAFT COPY — Do not distribute or cite. 16

[20] J.H. Hartman, A.B. Montz, David Mosberger, S.W.
O’Malley, L.L. Peterson, and T.A. Proebsting. Scout:
A communication-oriented operating system. Techni-
cal Report TR 94-20, University of Arizona, Tucson,
AZ, June 1994.

[21] K. Harty and D.R. Cheriton. Application-controlled
physical memory using external page-cache manage-
ment. In Proceedings of the Fifth International Con-
ference on ASPLOS, pages 187–199, October 1992.

[22] W.C. Hsieh, M.F. Kaashoek, and W.E. Weihl. The per-
sistent relevance of IPC performance: New techniques
for reducing the IPC penalty. In Fourth Workshop on
Workstation Operating Systems, pages 186–190, Octo-
ber 1993.

[23] J. Huck and J. Hays. Architectural support for transla-
tion table management in large address space machines.
In Proceedings of the 19th InternationalSymposium on
Computer Architecture, 1992.

[24] SPARC International. The SPARC Architecture Manual
Verson 8. Prentice Hall, Englewood Cliffs, New Jersey
07632, 1992.

[25] Keith Krueger, David Loftesness, Amin Vahdat,
and Thomas Anderson. Tools for development of
application-specific virtual memory management. In
Proceedings of OOPSLA, pages 48–64, October 1993.

[26] B. W. Lampson. Hints for computer system design. In
Proceedings of the Eighth ACM Symposium on Operat-
ing Systems Principles, pages 33–48, December 1983.

[27] B.W. Lampson. On reliable and extendable operating
systems. State of the Art Report, Infotech, 1, 1971.

[28] B.W. Lampson and R.F. Sproull. An open operating
system for a single-user machine. Proceedings of the
Seventh ACM Symposium on Operating Systems Prin-
ciples, pages 98–105, 1979.

[29] Jochen Liedtke. Improving IPC by kernel design. In
Proceedings of the Fourteenth ACM Symposium on Op-
erating Systems Principles, pages 175–188, 1993.

[30] Steven Lucco. High-performance microkernel systems
(abstract). In Proc. of the first Symp. on OSDI, Novem-
ber 1994.

[31] H. Massalin. Synthesis: an efficient implementation
of fundamental operating system services. PhD thesis,
Columbia University, 1992.

[32] J.C. Mogul, R.F. Rashid, and M.J. Accetta. The packet
filter: An efficient mechanism for user-level network
code. In Proceedings of 11th SOSP, pages 39–51,
Austin, TX, November 1987.

[33] David Nagle, Richard Uhlig, Tim Stanley, Stuart
Sechrest, Trevor Mudge, and Richard Brown. Design
tradeoffs for software-managed TLBs. 20th Annual
International Symposium on Computer Architecture,
pages 27–38, 1993.

[34] G.J. Popek et al. UCLA data secure UNIX. In Proc. of
the 1979 National Computer Conference, pages 355–
364, 1979.

[35] D. Probert, J.L. Bruno, and M. Karzaorman. SPACE:
A new approach to operating system abstraction. In
IWOOS, 1991.

[36] R.F. Rashid and G. Robertson. Accent: A communi-
cation oriented network operating system kernel. Pro-
ceedings of the Eighth ACM Symposium on Operating
Systems Principles, pages 64–75, December 1981.

[37] D.D. Redell, Y.K. Dalal, T.R. Horsley, H.C. Lauer,
W.C. Lynch, P.R. McJones, H.G. Murray, and S.C.
Purcell. Pilot: An operating system for a personal
computer. Communications of the ACM, 23(2):81–92,
February 1980.

[38] Theodore H. Romer, Dennis Lee, Brian N. Bershad,
and J. Bradley Chen. Dynamic page mapping policies
for cache conflict resolution on standard hardware. In
Proceedings of the First Symposium on OSDI, pages
255–266, November 1994.

[39] M. Rozier, V. Abrossimov, F. Armand, I. Boule,
M. Gien, M. Guillemont, F. Herrmann, C. Kaiser,
S. Langlois, P. Leonard, and W. Neuhauser. Cho-
rus distributed operating system. Computing Systems,
1(4):305–370, 1988.

[40] J.H. Saltzer, D.P. Reed, and D.D. Clark. End-to-end
arguments in system design. Trans. on Computer Sys-
tems, 2(4):277–288, November 1984.

[41] Margo Seltzer et al. An introduction to the architecture
of the VINO kernel, November 1994.

[42] R.L. Sites. Alpha axp architecture. Comm. of the ACM,
36(2), February 1993.

[43] M. Stonebraker. Operating system support for database
management. CACM, 24(7):412–418, July 1981.

[44] A.S. Tanenbaum, R. van Renesse, H. van Staveren,
G. Sharp, S.J. Mullender, A. Jansen, and G. van
Rossum. Experiences with the Amoeba distributed
operating system. Communications of the ACM,
33(12):46–63, December 1990.

[45] C. A. Thekkath and Henry M. Levy. Hardware and
software support for efficient exception handling. In
Sixth International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems (ASPLOS-VI), 1994.



DRAFT COPY — Do not distribute or cite. 17

[46] R. Wahbe, S. Lucco, T. Anderson, and S. Graham. Effi-
cient software-based fault isolation. In Proceedings of
the Fourteenth ACM Symposium on Operating Systems
Principles, pages 203–216, 1993.

[47] Carl A. Waldspurger and William E. Weihl. Lottery
scheduling: Flexible proportional-share resource man-
agement. In Proceedings of the First Symposium on
Operating Systems Design and Implementation, pages
1–11, 1994.

[48] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin,
C. Pierson, and F. Pollack. HYDRA: The kernel of a
multiprocessing operating system. Communications of
the ACM, 17(6):337–345, July 1974.


