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AbstractÐThe need for efficient content-based image retrieval has increased tremendously in many application areas such as

biomedicine, military, commerce, education, and Web image classification and searching. We present here SIMPLIcity (Semantics-

sensitive Integrated Matching for Picture LIbraries), an image retrieval system, which uses semantics classification methods, a

wavelet-based approach for feature extraction, and integrated region matching based upon image segmentation. As in other region-

based retrieval systems, an image is represented by a set of regions, roughly corresponding to objects, which are characterized by

color, texture, shape, and location. The system classifies images into semantic categories, such as textured-nontextured, graph-

photograph. Potentially, the categorization enhances retrieval by permitting semantically-adaptive searching methods and narrowing

down the searching range in a database. A measure for the overall similarity between images is developed using a region-matching

scheme that integrates properties of all the regions in the images. Compared with retrieval based on individual regions, the overall

similarity approach 1) reduces the adverse effect of inaccurate segmentation, 2) helps to clarify the semantics of a particular region,

and 3) enables a simple querying interface for region-based image retrieval systems. The application of SIMPLIcity to several

databases, including a database of about 200,000 general-purpose images, has demonstrated that our system performs significantly

better and faster than existing ones. The system is fairly robust to image alterations.

Index TermsÐContent-based image retrieval, image classification, image segmentation, integrated region matching, clustering,

robustness.

æ

1 INTRODUCTION

WITH the steady growth of computer power, rapidly
declining cost of storage, and ever-increasing access

to the Internet, digital acquisition of information has
become increasingly popular in recent years. Effective
indexing and searching of large-scale image databases
remain as challenges for computer systems.

The automatic derivation of semantically-meaningful

information from the content of an image is the focus of

interest for most research on image databases. The image

ªsemantics,º i.e., the meanings of an image, has several

levels. From the lowest to the highest, these levels can be

roughly categorized as

1. semantic types (e.g., landscape photograph, clip art),
2. object composition (e.g., a bike and a car parked on a

beach, a sunset scene),
3. abstract semantics (e.g., people fighting, happy

person, objectionable photograph), and
4. detailed semantics (e.g., a detailed description of a

given picture).

Content-based image retrieval (CBIR) is the set of techniques
for retrieving semantically-relevant images from an image
database based on automatically-derived image features.

1.1 Related Work in CBIR

CBIR for general-purpose image databases is a highly
challenging problem because of the large size of the
database, the difficulty of understanding images, both by
people and computers, the difficulty of formulating a query,
and the issue of evaluating results properly. A number of
general-purpose image search engines have been devel-
oped. We cannot survey all related work in the allocated
space. Instead, we try to emphasize some of the work that is
most related to our work. The references below are to be
taken as examples of related work, not as the complete list
of work in the cited area.

In the commercial domain, IBM QBIC [4] is one of the
earliest systems. Recently, additional systems have been
developed at IBM T.J. Watson [22], VIRAGE [7], NEC
AMORA [13], Bell Laboratory [14], and Interpix. In the
academic domain, MIT Photobook [15], [17], [12] is one of
the earliest. Berkeley Blobworld [2], Columbia VisualSEEK
and WebSEEK [21], CMU Informedia [23], UCSB NeTra
[11], UCSD [9], University of Maryland [16], Stanford EMD
[18], and Stanford WBIIS [28] are some of the recent
systems.

The common ground for CBIR systems is to extract a
signature for every image based on its pixel values and to
define a rule for comparing images. The signature serves as
an image representation in the ªviewº of a CBIR system.
The components of the signature are called features. One
advantage of a signature over the original pixel values is the
significant compression of image representation. However,
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a more important reason for using the signature is to gain
on improved correlation between image representation and
semantics. Actually, the main task of designing a signature
is to bridge the gap between image semantics and the pixel
representation, that is, to create a better correlation with
image semantics.

Existing general-purpose CBIR systems roughly fall into
three categories depending on the approach to extract
signatures: histogram, color layout, and region-based
search. We will briefly review the three methods in this
section. There are also systems that combine retrieval
results from individual algorithms by a weighted sum
matching metric [7], [4], or other merging schemes [19].

After extracting signatures, the next step is to determine a
comparison rule, including a querying scheme and the
definition of a similarity measure between images. For most
image retrieval systems, a query is specified by an image to
be matched. We refer to this as global search since similarity
is based on the overall properties of images. By contrast,
there are also ªpartial searchº querying systems that retrieve
based on a particular region in an image [11], [2].

1.1.1 Histogram Search

Histogram search algorithms [4], [18] characterize an image
by its color distribution or histogram. Many distances have
been used to define the similarity of two color histogram
representations. Euclidean distance and its variations are
the most commonly used [4]. Rubner et al. of Stanford
University proposed the earth mover's distance (EMD) [18]
using linear programming for matching histograms.

The drawback of a global histogram representation is
that information about object location, shape, and texture
[10] is discarded. Color histogram search is sensitive to
intensity variation, color distortions, and cropping.

1.1.2 Color Layout Search

The ªcolor layoutº approach attempts to overcome the
drawback of histogram search. In simple color layout
indexing [4], images are partitioned into blocks and the
average color of each block is stored. Thus, the color layout
is essentially a low resolution representation of the original
image. A relatively recent system, WBIIS [28], uses
significant Daubechies' wavelet coefficients instead of
averaging. By adjusting block sizes or the levels of wavelet
transforms, the coarseness of a color layout representation
can be tuned. The finest color layout using a single pixel
block is the original pixel representation. Hence, we can
view a color layout representation as an opposite extreme of
a histogram. At proper resolutions, the color layout
representation naturally retains shape, location, and texture
information. However, as with pixel representation,
although information such as shape is preserved in the
color layout representation, the retrieval system cannot
perceive it directly. Color layout search is sensitive to
shifting, cropping, scaling, and rotation because images are
described by a set of local properties [28].

The approach taken by the recent WALRUS system [14]
to reduce the shifting and scaling sensitivity for color layout
search is to exhaustively reproduce many subimages based
on an original image. The subimages are formed by sliding
windows of various sizes and a color layout signature is
computed for every subimage. The similarity between
images is then determined by comparing the signatures of

subimages. An obvious drawback of the system is the
sharply increased computational complexity and increase of
size of the search space due to exhaustive generation of
subimages. Furthermore, texture and shape information is
discarded in the signatures because every subimage is
partitioned into four blocks and only average colors of the
blocks are used as features. This system is also limited to
intensity-level image representations.

1.1.3 Region-Based Search

Region-based retrieval systems attempt to overcome the
deficiencies of color layout search by representing images at
the object-level. A region-based retrieval system applies
image segmentation [20], [27] to decompose an image into
regions, which correspond to objects if the decomposition is
ideal. The object-level representation is intended to be close
to the perception of the human visual system (HVS).
However, image segmentation is nearly as difficult as
image understanding because the images are 2D projections
of 3D objects and computers are not trained in the 3D world
the way human beings are.

Since the retrieval system has identified what objects are
in the image, it is easier for the system to recognize similar
objects at different locations and with different orientations
and sizes. Region-based retrieval systems include the NeTra
system [11], the Blobworld system [2], and the query system
with color region templates [22].

The NeTra and the Blobworld systems compare images
based on individual regions. Although querying based on a
limited number of regions is allowed, the query is
performed by merging single-region query results. The
motivation is to shift part of the comparison task to the
users. To query an image, a user is provided with the
segmented regions of the image and is required to select the
regions to be matched and also attributes, e.g., color and
texture, of the regions to be used for evaluating similarity.
Such querying systems provide more control to the user.
However, the user's semantic understanding of an image is
at a higher level than the region representation. For objects
without discerning attributes, such as special texture, it is
not obvious for the user how to select a query from the large
variety of choices. Thus, such a querying scheme may add
burdens on users without significant reward. On the other
hand, because of the great difficulty of achieving accurate
segmentation, systems in [11], [2] often partition one object
into several regions with none of them being representative
for the object, especially for images without distinctive
objects and scenes.

Not much attention has been paid to developing similarity
measures that combine information from all of the regions.
One effort in this direction is the querying system developed
by Smith and Li [22]. Their system decomposes an image into
regions with characterizations predefined in a finite pattern
library. With every pattern labeled by a symbol, images are
then represented by region strings. Region strings are
converted to composite region template (CRT) descriptor
matrices that provide the relative ordering of symbols.
Similarity between images is measured by the closeness
between the CRT descriptor matrices. This measure is
sensitive to object shifting since a CRT matrix is determined
solely by the ordering of symbols. The measure is also lacking
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robustness to scaling and rotation. Because the definition of
the CRT descriptor matrix relies on the pattern library, the
system performance depends critically on the library. The
performance degrades if region types in an image are not
represented by patterns in the library. The system uses a
CRT library with patterns described only by color. In
particular, the patterns are obtained by quantizing color
space. If texture and shape features are also used to
distinguish patterns, the number of patterns in the library
will increase dramatically, roughly exponentially in the
number of features if patterns are obtained by uniformly
quantizing features.

1.2 Related Work in Semantic Classification

The underlying assumption of CBIR is that semantically-
relevant images have similar visual characteristics, or
features. Consequently, a CBIR system is not necessarily
capable of understanding image semantics. Image semantic
classification, on the other hand, is a technique for
classifying images based on their semantics. While image
semantics classification is a limited form of image under-
standing, the goal of image classification is not to under-
stand images the way human beings do, but merely to
assign the image to a semantic class. We argue that image
class membership can assist retrieval.

Minka and Picard [12] introduced a learning component
in their CBIR system. The system internally generated many
segmentations or groupings of each image's regions based
on different combinations of features, then it learned which
combinations best represented the semantic categories
given as exemplars by the user. The system requires the
supervised training of various parts of the image.

Although region-based systems aim to decompose
images into constituent objects, a representation composed
of pictorial properties of regions is indirectly related to its
semantics. There is no clear mapping from a set of pictorial
properties to semantics. An approximately round brown
region might be a flower, an apple, a face, or part of a sunset
sky. Moreover, pictorial properties such as color, shape, and
texture of an object vary dramatically in different images. If
a system understood the semantics of images and could
determine which features of an object are significant, it
would be capable of fast and accurate search. However, due
to the great difficulty of recognizing and classifying images,
not much success has been achieved in identifying high-
level semantics for the purpose of image retrieval. There-
fore, most systems are confined to matching images with
low-level pictorial properties.

Despite the fact that it is currently impossible to reliably
recognize objects in general-purpose images, there are
methods to distinguish certain semantic types of images.
Any information about semantic types is helpful since a
system can constrict the search to images with a particular
semantic type. More importantly, the semantic classification
schemes can improve retrieval by using various matching
schemes tuned to the semantic class of the query image.

One example of semantic classification is the identifica-
tion of natural photographs versus artificial graphs gener-
ated by computer tools [29]. The classifier divides an image
into blocks and classifies every block into either of the
two classes. If the percentage of blocks classified as

photograph is higher than a threshold, the image is marked
as photograph; otherwise, text.

Other examples include the WIPE system to detect
objectionable images developed by Wang et al. [29],
motivated by an earlier system by Fleck et al. [5] of the
University of California at Berkeley. WIPE uses training
images and CBIR to determine if a given image is closer to
the set of objectionable training images or the set of benign
training images. The system developed by Fleck et al.,
however, is more deterministic and involves a skin filter
and a human figure grouper.

Szummer and Picard [24] have developed a system to
classify indoor and outdoor scenes. Classification over
low-level image features such as color histogram and
DCT coefficients is performed. A 90 percent accuracy rate
hasbeenreportedoveradatabaseof1,300imagesfromKodak.

Other examples of image semantic classification include
city versus landscape [26] and face detection [1]. Wang and
Fischler [30] have shown that rough, but accurate semantic
understanding, can be very helpful in computer vision tasks
such as image stereo matching.

1.3 Overview of the SIMPLIcity System

CBIR is a complex and challenging problem spanning
diverse disciplines, including computer vision, color per-
ception, image processing, image classification, statistical
clustering, psychology, human-computer interaction (HCI),
and specific application domain dependent criteria. While
we are not claiming to be able to solve all the problems
related to CBIR, we have made some advances towards the
final goal, close to human-level automatic image under-
standing and retrieval performance.

In this paper, we discuss issues related to the design and
implementation of a semantics-sensitive CBIR system for
picture libraries. An experimental system, the SIMPLIcity
(Semantics-sensitive Integrated Matching for Picture
LIbraries) system, has been developed to validate the
methods. We summarize the main contributions as follows.

1.3.1 Semantics-Sensitive Image Retrieval

The capability of existing CBIR systems is limited in large
part by fixing a set of features used for retrieval.
Apparently, different image features are suitable for the
retrieval of images in different semantic types. For example,
a color layout indexing method may be good for outdoor
pictures, while a region-based indexing approach is much
better for indoor pictures. Similarly, global texture matching
is suitable only for textured pictures.

We propose a semantics-sensitive approach to the problem
of searching general-purpose image databases. Semantic
classification methods are used to categorize images so that
semantically-adaptive searching methods applicable to each
category can be applied. At the same time, the system
can narrow down the searching range to a subset of the
original database to facilitate fast retrieval. For example,
automatic classification methods can be used to categorize a
general-purpose picture library into semantic classes
including ªgraph,º ªphotograph,º ªtextured,º ªnontex-
tured,º ªbenign,º ªobjectionable,º ªindoor,º ªoutdoor,º
ªcity,º ªlandscape,º ªwith people,º and ªwithout people.º
In our experiments, we used textured-nontextured and
graph-photograph classification methods. We apply a
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suitable feature extraction method and a corresponding
matching metric to each of the semantic classes. When more
classification methods are utilized, the current semantic
classification architecture may need to be improved.

In our current system, the set of features for a particular
image category is determined empirically based on the
perception of the developers. For example, shape-related
features are not used for textured images. Automatic
derivation of optimal features is a challenging and important
issue in its own right. A major difficulty in feature selection is
the lack of information about whether any two images in the
database match with each other. The only reliable way to
obtain this information is through manual assessment which
is formidable for a database of even moderate size.
Furthermore, human evaluation is hard to be kept consistent
from person to person. To explore feature selection, primitive
studies can be carried with relatively small databases. A
database can be formed from several distinctive groups of
images, among which only images from the same group are
considered matched. A search algorithm can be developed to
select a subset of candidate features that provides optimal
retrieval according to an objective performance measure.
Although such studies are likely to be seriously biased,
insights regarding which features are most useful for a certain
image category may be obtained.

1.3.2 Image Classification

For the purpose of searching picture libraries such as those
on the Web or in a patient digital library, we are initially
focusing on techniques to classify images into the classes
ªtexturedº versus ªnontextured,º ªgraphº versus ªphoto-
graph.º Several other classification methods have been
previously developed elsewhere, including ªcityº versus
ªlandscapeº [26], and ªwith peopleº versus ªwithout
peopleº [1]. In this paper, we report on several classification
methods we have developed and their performance.

1.3.3 Integrated Region Matching (IRM) Similarity

Measure

Besides using semantics classification, another strategy of
SIMPLIcity to better capture the image semantics is to
define a robust region-based similarity measure, the
Integrated Region Matching (IRM) metric. It incorporates
the properties of all the segmented regions so that
information about an image can be fully used to gain
robustness against inaccurate segmentation. Image segmen-
tation is an extremely difficult process and is still an open
problem in computer vision. For example, an image
segmentation algorithm may segment an image of a dog
into two regions: the dog and the background. The same
algorithm may segment another image of a dog into six
regions: the body of the dog, the front leg(s) of the dog, the
rear leg(s) of the dog, the eye(s), the background grass, and
the sky.

Traditionally, region-based matching is performed on
individual regions [2], [11]. The IRM metric we have
developed has the following major advantages:

1. Compared with retrieval based on individual re-
gions, the overall ªsoft similarityº approach in IRM
reduces the adverse effect of inaccurate segmenta-
tion, an important property lacked by previous
systems.

2. In many cases, knowing that one object usually
appears with another helps to clarify the semantics
of a particular region. For example, flowers typically
appear with green leaves, and boats usually appear
with water.

3. By defining an overall image-to-image similarity
measure, the SIMPLIcity system provides users with
a simple querying interface. To complete a query, a
user only needs to specify the query image. If desired,
the system can be added with a function allowing
users to query based on a specific region or a few
regions.

1.4 Outline of the Paper

The remainder of the paper is organized as follows: The
semantics-sensitive architecture is further introduced in
Section 2. The image segmentation algorithm is described in
Section 3. Classification methods are presented in Section 4.
The IRM similarity measure based on segmentation is
defined in Section 5. In Section 6, experiments and results
are described. We conclude and suggest future research in
Section 7.

2 SEMANTICS-SENSITIVE ARCHITECTURE

The architecture of the SIMPLIcity retrieval system is
presented in Fig. 1. During indexing, the system partitions
an image into 4� 4 pixel blocks and extracts a feature vector
for each block. A statistical clustering [8] algorithm is then
used to quickly segment the image into regions. The
segmentation result is fed into a classifier that decides the
semantic type of the image. An image is currently classified as
one of the n manually-defined mutually exclusive and
collectively exhaustive semantic classes. The system can be
extended to one that classifies an image softly into multiple
classes with probability assignments. Examples of semantic
types are indoor-outdoor, objectionable-benign, textured-
nontextured, city-landscape, with-without people, and
graph-photograph images. Features reflecting color, texture,
shape, and location information are then extracted for each
region in the image. The features selected depend on the
semantic type of the image. The signature of an image is the
collection of features for all of its regions. Signatures of images
with various semantic types are stored in separate databases.

In the querying process, if the query image is not in the
database as indicated by the user interface, it is first passed
through the same feature extraction process as was used
during indexing. For an image in the database, its semantic
type is first checked and then its signature is extracted from
the corresponding database. Once the signature of the
query image is obtained, similarity scores between the
query image and images in the database with the same
semantic type are computed and sorted to provide the list of
images that appear to have the closest semantics.

3 THE IMAGE SEGMENTATION METHOD

In this section, we describe the image segmentation
procedure based on the k-means algorithm [8] using color
and spatial variation features. For general-purpose images
such as the images in a photo library or on the World Wide
Web (WWW), automatic image segmentation is almost as
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difficult as automatic image semantic understanding. The

segmentation accuracy of our system is not crucial because

an integrated region-matching (IRM) scheme is used to

provide robustness against inaccurate segmentation.
To segment an image, SIMPLIcity partitions the image into

blocks with 4� 4 pixels and extracts a feature vector for each

block. The k-means algorithm is used to cluster the feature

vectors into several classes with every class corresponding to

one region in the segmented image. Since the block size is

small and boundary blockyness has little effect on retrieval,

we choose blockwise segmentation rather than pixelwise

segmentation to lower computational cost significantly.
Suppose observations are fxi : i � 1; . . . ; Lg. The goal of

the k-means algorithm is to partition the observations into

k groups with means x̂1; x̂2; . . . ; x̂k such that

D�k� �
XL
i�1

min
1�j�k

�xi ÿ x̂j�2 �1�

is minimized. The k-means algorithm does not specify how

many clusters to choose. We adaptively choose the number

of clusters k by gradually increasing k and stop when a

criterion is met. We start with k � 2 and stop increasing k if

one of the following conditions is satisfied.

1. The distortion D�k� is below a threshold. A low D�k�
indicates high purity in the clustering process. The
threshold is not critical because the IRM measure is
not sensitive to k.

2. The first derivative of distortion with respect to k,
D�k� ÿD�kÿ 1�, is below a threshold with compar-
ison to the average derivative at k � 2; 3. A lowD�k� ÿ
D�kÿ 1� indicates convergence in the clustering
process. The threshold determines the overall time
to segment images and needs to be set to a near-zero
value. It is critical to the speed, but not the quality of
the final image segmentation. The threshold can be
adjusted according to the experimental runtime.

3. The number k exceeds an upper bound. We allow an
image to be segmented into a maximum of
16 segments. That is, we assume an image has less
than 16 distinct types of objects. Usually, the

segmentation process generates much less number
of segments in an image. The threshold is rarely met.

Six features are used for segmentation. Three of them are
the average color components in a 4� 4 block. The other three
represent energy in high frequency bands of wavelet trans-
forms [3], that is, the square root of the second order moment
of wavelet coefficients in high frequency bands. We use the
well-known LUV color space, where L encodes luminance
and U and V encode color information (chrominance). The
LUV color space has good perception correlation properties.
The block size is chosen to be 4� 4 to compromise between
the texture detail and the computation time.

To obtain the other three features, we apply either the
Daubechies-4 wavelet transform or the Haar transform to
the L component of the image. We use these two wavelet
transforms because they have better localization proper-
ties and require less computation compared to Daube-
chies' wavelets with longer filters. After a one-level
wavelet transform, a 4� 4 block is decomposed into four
frequency bands, as shown in Fig. 2. Each band contains
2� 2 coefficients. Without loss of generality, suppose the
coefficients in the HL band are fck;l; ck;l�1; ck�1;l; ck�1;l�1g.
One feature is then computed as

f � 1

4

X1

i�0

X1

j�0

c2
k�i;l�j

 !1
2

:

The other two features are computed similarly from the
LH and HH bands. The motivation for using these features is
their reflection of texture properties. Moments of wavelet
coefficients in various frequency bands have proven effective
for discerning texture [25]. The intuition behind this is that
coefficients in different frequency bands signal variations in
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Fig. 2. Decomposition of images into frequency bands by wavelet
transforms.



different directions. For example, the HL band shows
activities in the horizontal direction. An image with vertical
strips thus has high energy in the HL band and low energy in
the LH band. This texture feature is a good compromise
between computational complexity and effectiveness.

Examples of segmentation results for both textured and
nontextured images are shown in Fig. 3. Segmented regions
are shown in their representative colors. It takes about one
second on average to segment a 384� 256 image on a
Pentium Pro 450MHz PC using the Linux operating system.
We do not apply postprocessing to smooth region bound-
aries or to delete small isolated regions because these errors
rarely cause degradation in the performance of our retrieval
system, which is designed to tolerate inaccurate segmenta-
tion. Additionally, postprocessing usually costs a large
amount of computation.

4 THE IMAGE CLASSIFICATION METHODS

The image classification methods described in this section
have been developed mainly for searching picture libraries
such as Web images. We are initially interested in
classifying images into the classes textured versus non-
textured, graph versus photograph, and objectionable
versus benign. Karu et al. provided an overview of
texture-related research [10]. Other classification methods
such as city versus landscape [26] and with people versus
without people [1] were developed elsewhere.

4.1 Textured versus Nontextured Classification

In this section, we describe the algorithm to classify images
into the semantic classes textured or nontextured. A textured
image is defined as an image of a surface, a pattern of
similarly-shaped objects, or an essential element of an
object. For example, the structure formed by the threads of a
fabric is a textured image. Fig. 4 shows some sample

textured images. As textured images do not contain isolated
objects or object clusters, the perception of such images
focuses on color and texture, but not shape, which is critical
for understanding nontextured images. Thus, an efficient
retrieval system should use different features to depict
these two types of images. To our knowledge, the problem
of distinguishing textured images and nontextured images
has not been explored in the literature.

For textured images, color and texture are much more
important perceptually than shape since there are no
clustered objects. As shown by the segmentation results in
Fig. 3, regions in textured images tend to scatter in the
entire image, whereas nontextured images are usually
partitioned into clumped regions. A mathematical descrip-
tion of how evenly a region scatters in an image is the
goodness of match between the distribution of the region
and a uniform distribution. The goodness of fit is measured
by the �2 statistics.

We partition an image evenly into 16 zones,
fZ1; Z2; . . . ; Z16g. Suppose the image is segmented into
regions fri : i � 1; . . . ;mg. For each region ri, its percen-
tage in zone Zj is pi;j,

P16
j�1 pi;j � 1, i � 1; . . . ;m. The

uniform distribution over the zones should have
probability mass function qj � 1=16, j � 1; . . . ; 16. The
�2 statistics for region i, �2

i , is computed by

�2
i �

X16

j�1

�pi;j ÿ qj�2
qj

�
X16

j�1

16 pi;j ÿ 1

16

� �2

: �2�

The classification of textured or nontextured image is
performed by thresholding the average �2 statistics for all
the regions in the image, ��2 � 1

m

Pm
i�1 �

2
i . If ��2 < 0:32, the

image is labeled as textured; otherwise, nontextured. We
randomly chose 100 textured images and 100 nontextured
images and computed ��2 for them. The histograms of ��2 for
the two types of images are shown in Fig. 5. It is shown that
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Fig. 4. Sample textured images. (a) Surface texture. (b) Fabric texture. (c) Artificial texture. (d) Pattern of similarly-shaped objects.



the two histograms differ prominently when ��2 is slightly

away from the decision threshold 0:32.

4.2 Graph versus Photograph Classification
An image is a photograph if it is a continuous-tone image. A
graph image is an image containing mainly text, graph, and
overlays. We have developed a graph-photograph classifi-
cation method. This method is important for retrieving
general-purpose picture libraries.

The classifier partitions an image into blocks and
classifies every block into either of the two classes. If the
percentage of blocks classified as photograph is higher than
a threshold, the image is marked as photograph; otherwise,
text. The algorithm we used to classify image blocks is
based on a probability density analysis of wavelet coeffi-
cients in high frequency bands. For every block, two feature
values, which describe the distribution pattern of the
wavelet coefficients in high frequency bands, are evaluated.
Then, the block is marked as a corresponding class
according to the two feature values.

We tested the classification method on a database of
12,000 photographic images and a database of 300 ran-
domly downloaded graph-based image maps from the
Web. We achieved 100 percent sensitivity for photographic
images and higher than 95 percent specificity.

5 THE IRM SIMILARITY MEASURE

In this section, the integrated region matching (IRM)
measure of image similarity is described. IRM measures
the overall similarity between images by integrating
properties of all the regions in the images. An advantage
of the overall similarity measure is the robustness against
poor segmentation (Fig. 6), an important property lacked in
previous work [2], [11].

Mathematically, defining a similarity measure is equiva-
lent to defining a distance between sets of points in a high-
dimensional space, i.e., the feature space. Every point in the
space corresponds to the feature vector or the descriptor of
a region. Although distance between two points in a feature
space can be easily defined by various measures, such as
the Euclidean distance, it is not obvious how to define a
distance between two sets of feature points. The distance
should be sufficiently consistent with a person's concept of
semantic ªclosenessº of two images.

We argue that a similarity measure based on region
segmentation of images can be tolerant to inaccurate image
segmentation if it takes all the regions in an image into
consideration. To define the similarity measure, we first
attempt to match regions in two images. Being aware that
the segmentation process cannot be perfect, we ªsoftenº the
matching by allowing one region of an image to be matched
to several regions of another image. Here, a region-to-region
match is obtained when the regions are significantly similar
to each other in terms of the features extracted.

The principle of matching is that the most similar region

pair is matched first. We call this matching scheme integrated

region matching (IRM) to stress the incorporation of regions in

the retrieval process. After regions are matched, the similarity

measure is computed as a weighted sum of the similarity

between region pairs, with weights determined by the

matching scheme. Fig. 7 illustrates the concept of IRM in a

3D feature space. The features we extract on the segmented

regions are of high dimensions. The problem is more complex

in a high-dimensional feature space.
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Fig. 5. The histograms of average �2's over 100 textured images and

100 nontextured images.

Fig. 6. Integrated Region Matching (IRM) is potentially robust to poor image segmentation.

Fig. 7. Region-to-region matching results are incorporated in the Integrated Region Matching (IRM) metric. A 3D feature space is shown to illustrate
the concept.



5.1 Integrated Region Matching (IRM)

Assume that Image 1 and 2 are represented by region sets
R1 � fr1; r2; . . . ; rmg and R2 � fr01; r02; . . . ; r0ng, where ri or
r0i is the descriptor of region i. Denote the distance
between region ri and r0j as d�ri; r0j�, which is written as
di;j in short. Details about features included in ri and the
definition of d�ri; r0j� will be discussed later. To compute
the similarity measure between region sets R1 and R2,
d�R1; R2�, we first match all regions in the two images.
Consider a scenario of judging the similarity of two
animal photographs. We usually compare the animals in
the images before comparing the background areas in the
images. The overall similarity of the two images depends
on the closeness in the two aspects. The correspondence
between objects in the images is crucial to evaluating
similarity since it would be meaningless to compare the
animal in one image with the background in another. Our
matching scheme aims at building correspondence be-
tween regions that is consistent with human perception.
To increase robustness against segmentation errors, a
region is allowed to be matched to several regions in
another image. A matching between ri and r0j is assigned
with a significance credit si;j, si;j � 0. The significance
credit indicates the importance of the matching for
determining similarity between images. The matrix

S �
s1;1 s1;2 . . . s1;n

s2;1 s2;2 . . . s2;n

. . . . . . . . . . . .
sm;1 sm;2 . . . sm;n

8>>>>>>>>>:
9>>>>>>>>>;; �3�

is referred to as the significance matrix.
A graphical explanation of the integrated matching

scheme is provided in Fig. 8. The figure shows that
matching between images can be represented by an edge
weighted graph in which every vertex in the graph
corresponds to a region. If two vertices are connected, the
two regions are matched with a significance credit
represented by the weight on the edge. To distinguish from
matching two sets of regions, we refer to the matching of
two regions as they are linked. The length of an edge can be
regarded as the distance between the two regions repre-
sented. If two vertices are not connected, the corresponding
regions are either in the same image or the significance
credit of matching them is zero. Every match between
images is characterized by links between regions and their
significance credits. The matching used to compute the
distance between two images is referred to as the admissible
matching. The admissible matching is specified by condi-
tions on the significance matrix. If a graph represents an
admissible matching, the distance between the two region
sets is the summation of all the weighted edge lengths, i.e.,

d�R1; R2� �
X
i;j

si;jdi;j: �4�

We call this distance the integrated region matching (IRM)
distance.

The problem of defining distance between region sets is
then converted to choosing the significance matrix S. A
natural issue to raise is what constraints should be put on
si;j so that the admissible matching yields good similarity
measure. In other words, what properties do we expect an

admissible matching to possess? The first property we want
to enforce is the fulfillment of significance. Assume that the
significance of ri in Image 1 is pi and r0j in Image 2 is p0j, we
require that Xn

j�1

si;j � pi; i � 1; . . . ;m �5�

Xm
i�1

si;j � p0j; j � 1; . . . ; n: �6�

For normalization, we have
Pm

i�1 pi �
Pn

j�1 p
0
j � 1. The

fulfillment of significance ensures that all the regions play a
role for measuring similarity. We also require an admissible
matching to link the most similar regions at the highest
priority. For example, if two images are the same, the
admissible matching should link a region in Image 1 only to
the same region in Image 2. With this matching, the distance
between the two images equals zero, which coincides with
our intuition. The IRM algorithm attempts to fulfill the
significance credits of regions by assigning as much
significance as possible to the region link with minimum
distance. We call this the ªmost similar highest priority
(MSHP)º principle. Initially, assume that di0;j0 is the
minimum distance, we set si0;j0 � min�pi0 ; p0j0 �. Without loss
of generality, assume pi0 � p0j0 . Then, si0;j � 0, for j 6� j0 since
the link between regions i0 and j0 has filled the significance
of region i0. The significance credit left for region j0 is
reduced to p0j0 ÿ pi0 . The updated matching problem is then
solving si;j, i 6� i0, by the MSHP rule under constraints:

Xn
j�1

si;j � pi 1 � i � m; i 6� i0 �7�X
i:1�i�m;i6�i0

si;j � p0j 1 � j � n; j 6� j0 �8�X
i:1�i�m;i 6�i0

si;j0 � p0j0 ÿ pi0 �9�

si;j � 0 1 � i � m; i 6� i0; 1 � j � n: �10�
We apply the previous procedure to the updated problem.
The iteration stops when all the significance credits pi and
p0j have been assigned. The algorithm is summarized as
follows:

1. Set L � fg, denote

M� f�i; j� : i � 1; . . . ;m; j � 1; . . . ; ng:

2. Choose the minimum di;j for �i; j� 2 MÿL. Label
the corresponding �i; j� as �i0; j0�.

3. min�pi0 ; p0j0 � ! si0;j0 .
4. If pi0 < p0j0 , set si0;j � 0, j 6� j0; otherwise, set si;j0 � 0,

i 6� i0.
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Fig. 8. Integrated region matching (IRM) allows a region in an image to
be matched with several regions in another image.



5. pi0 ÿmin�pi0 ; p0j0 � ! pi0 .
6. p0j0 ÿmin�pi0 ; p0j0 � ! p0j0 .
7. L� f�i0; j0�g ! L.
8. If

Pm
i�1 pi > 0 and

Pn
j�1 p

0
j > 0, go to Step 2; other-

wise, stop.

Consider an example of applying the integrated region

matching algorithm. Assume that m � 2 and n � 3. The

values of pi and p0j are: p1 � 0:4, p2 � 0:6, p01 � 0:2, p02 � 0:3,

p03 � 0:5.
The region distance matrix fdi;jg, i � 1; 2, j � 1; 2; 3, is

0:5 1:2 0:1
1:0 1:6 2:0

8>: 9>;:
The sorted di;j is

�i; j� : �1; 3� �1; 1� �2; 1� �1; 2� �2; 2� �2; 3�
di;j : 0:1 0:5 1:0 1:2 1:6 2:0:

�11�

The first two regions matched are regions 1 and 3. As the

significance of region 1, p1, is fulfilled by the matching,

region 1 in Image 1 is no longer in consideration. The

second pair of regions matched is then regions 2 and 1. The

region pairs are listed below in the order of being matched:

region pairs : �1; 3� �2; 1� �2; 2� �2; 3�
significance : 0:4 0:2 0:3 0:1:

�12�

The significance matrix is

0:0 0:0 0:4
0:2 0:3 0:1

8>: 9>;:
Now, we come to the issue of choosing pi. The value of pi

is chosen to reflect the significance of region i in the image.

If we assume that every region is equally important, then

pi � 1=m, where m is the number of regions. In the case that

Image 1 and Image 2 have the same number of regions, a

region in Image 1 is matched exclusively to one region in

Image 2. Another choice of pi is the percentage of the image

covered by region i based on the view that important

objects in an image tend to occupy larger areas. We refer to

this assignment of pi as the area percentage scheme. This

scheme is less sensitive to inaccurate segmentation than the

uniform scheme. If one object is partitioned into several

regions, the uniform scheme raises its significance impro-

perly, whereas the area percentage scheme retains its

significance. On the other hand, if objects are merged into

one region, the area percentage scheme assigns relatively

high significance to the region. The SIMPLIcity system uses

the area percentage scheme.

The scheme of assigning significance credits can also

take region location into consideration. For example, higher

significance may be assigned to regions in the center of an

image than to those around boundaries. Another way to

count location in the similarity measure is to generalize the

definition of the IRM distance to

d�R1; R2� �
X
i;j

si;jwi;jdi;j: �13�

The parameter wi;j is chosen to adjust the effect of region i

and j on the similarity measure. In the SIMPLIcity system,

regions around boundaries are slightly down-weighted by

using this generalized IRM distance.

5.2 Distance between Regions

Now, we discuss the definition of distance between a region

pair, d�r; r0�. The SIMPLIcity system characterizes a region by

color, texture, and shape. The feature extraction process is

shown in Fig. 9. We have described the features used by the

k-means algorithm for segmentation. The mean values of

these features in one cluster are used to represent color

and texture in the corresponding region. These features

are denoted as: f1, f2, and f3 for the averages in L, U,

V components of color, respectively; f4, f5, and f6 for the

square roots of the 2nd-order moment of wavelet coefficients

in the HL band, the LH band, and the HH band, respectively.

To describe shape, normalized inertia [6] of order 1 to 3

are used. For a region H in k-dimensional Euclidean space

<k, its normalized inertia of order 
 is

l�H; 
� �
R
H kxÿ x̂k
dx
�V �H��1�
=k

; �14�

where x̂ is the centroid of H and V �H� is the volume of H.

Since an image is specified by pixels on a grid, the discrete

form of the normalized inertia is used, that is,

l�H; 
� �
P

x:x2H kxÿ x̂k

�V �H��1�
=k

; �15�

where V �H� is the number of pixels in region H. The

normalized inertia is invariant with scaling and rotation.

The minimum normalized inertia is achieved by spheres.

Denote the 
th order normalized inertia of spheres as L
 .

We define shape features as l�H; 
� normalized by L
 :

f7 � l�H; 1�=L1 ; f8 � l�H; 2�=L2 ; f9 � l�H; 3�=L3: �16�
The computation of shape features is skipped for textured

images because in this case region shape is not perceptually

important. The region distance d�r; r0� is defined as

d�r; r0� �
X6

i�1

wi�fi ÿ f 0i�2: �17�

For nontextured images, d�r; r0� is defined as

d�r; r0� � g�ds�r; r0�� � dt�r; r0�; �18�
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Fig. 9. Feature extraction in the SIMPLIcity system. (* The computation

of shape features is omitted for textured images.)



where ds�r; r0� is the shape distance computed by

ds�r; r0� �
X9

i�7

wi�fi ÿ f 0i�2 �19�

and dt�r; r0� is the color and texture distance defined equally
as the distance between textured image regions, i.e.,

dt�r; r0� �
X6

i�1

wi�fi ÿ f 0i�2: �20�

The function g�ds�r; r0�� is a converting function to ensure
a proper influence of the shape distance on the total
distance. In our system, it is defined as

g�d� �
1 d � 0:5
0:85 0:2 < d � 0:5
0:5 d < 0:2:

8<: �21�

It is observed that, when ds�r; r0� � 0:5, the two regions
bear little resemblance and, hence, distinguishing the extent
of similarity by ds�r; r0� is not meaningful. Thus, we set
g�d� � 1 for d greater than the threshold 0:5. When ds�r; r0�
is very small, we intend to keep the influence of color and
texture. Therefore, g�d� is bounded away from zero. We
define g�d� as a piecewise constant function instead of a
smooth function for simplicity. Because rather simple shape
features are used in our system, we emphasize color and
texture more than shape. As demonstrated by the definition
of d�r; r0�, the shape distance serves as a ªbonus.º If two
regions match very well in shape, their color and texture
distance is attenuated by a smaller weight to provide the
final distance.

5.3 Characteristics of IRM

To study the characteristics of the IRM distance, we
performed 100 random queries on our COREL photograph
data set. Based on the 5:6 million IRM distances obtained,
we estimated the distribution of the IRM distance. The
empirical mean of the IRM is 44:30, with a 95 percent
confidence interval of �44:28; 44:32�. The standard deviation
of the IRM is 21:07. Fig. 10 shows the empirical probability
distribution function (pdf) and the empirical cumulative
distribution function (cdf).

Based on this empirical distribution of the IRM, we may
give more intuitive similarity distances to the end user than
the distances themselves using the similarity percentile. As

shown in the empirical cumulative distribution function, an
IRM distance of 15 represents approximately 1 percent of
the images in the database. We may notify the user that
two images are considered to be very close when the
IRM distance between the two images is less than 15.
Likewise, we may advise the user that two images are
considerably different when the IRM distance between the
two images is greater than 50.

6 EXPERIMENTS

The SIMPLIcity system has been implemented with
a general-purpose image database including about
200; 000 pictures, which are stored in JPEG format with
size 384� 256 or 256� 384. The system uses no textual
information in the matching process because we try to
explore the possible advances of CBIR. In a real-world
application, however, textual information is often used as a
helpful addition to CBIR systems. Two classification
methods, graph-photograph and textured-nontextured,
have been used in our experiments. Adding more classifica-
tion methods into the system may introduce problems to
the accuracy of the retrieval.

For each image, the features, locations, and areas of all its
regions are stored. Images of different semantic classes are
stored in separate databases. Because the EMD-based color
histogram system [18] and the WBIIS system are the only
other systems we have access to, we compare the accuracy
of the SIMPLIcity system to these systems using the same
COREL database. WBIIS had been compared with the
original IBM QBIC system and found to perform better [28].
It is difficult to design a fair comparison with existing
region-based searching algorithms such as the Blobworld
system and the NeTra system which depends on additional
information to be provided by the user during the process.
As a future work, we will try to compare our system with
other existing systems such as the VisualSeek system
developed by Columbia Univerisity.

With the Web, online demonstration has become a
popular direction in letting user evaluate CBIR systems.
An online demonstration is provided.1 Readers are encour-
aged to compare the performance of SIMPLIcity with other
systems. A list of online image retrieval demonstration
Web sites can be found on our site.
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Fig. 10. The empirical pdf and cdf of the IRM distance.



The current implementation of the SIMPLIcity system
provides several query interfaces: a CGI-based Web access
interface, a JAVA-based drawing interface, and a CGI-based
Web interface for submitting a query image of any format
anywhere on the Internet.

6.1 Accuracy

We evaluated the accuracy of the system in two ways. First,
we used a 200,000-image COREL database to compare with
existing systems such as EMD-based color histogram and
WBIIS. Then, we designed systematic evaluation methods to
judge the performance statistically. The SIMPLIcity system
has demonstrated much improved accuracy over the other
systems.

6.2 Query Comparison

We compare the SIMPLIcity system with the WBIIS
(Wavelet-Based Image Indexing and Searching) system
[28] with the same image database. In this section, we
show the comparison results using query examples. Due to
the limitation of space, we show only two rows of images
with the top 11 matches to each query. At the same time, we
provide the number of related images in the top 29 matches
(i.e., the first screenful) for each query. We chose the
numbers ª11º and ª29º before viewing the results. In the
next section, we provide numerical evaluation results by
systematically comparing several systems.

For each query example, we manually examine the
precision of the query results. The relevance of image
semantics depends on the point-of-view of the reader. We
use our judgments here to determine the relevance of
images. In each query, we decide the relevance to the query
image before viewing the query results. We admit that our
relevance criteria, specified in the caption of Fig. 11, may be
very different from the criteria used by a user of the system.

As WBIIS forms image signatures using wavelet coeffi-
cients in the lower frequency bands, it performs well with
relatively smooth images, such as most landscape images.
For images with details crucial to semantics, such as
pictures with people, the performance of WBIIS degrades.
In general, SIMPLIcity performs as well as WBIIS for
smooth landscape images. One example is shown in
Fig. 11a. The query image is the image at the upper-left
corner. The underlined numbers below the pictures are the
ID numbers of the images in the database. The other two
numbers are the value of the similarity measure between
the query image and the matched image, and the number of
regions in the image. To view the images better or to see
more matched images, users can visit the demonstration
Web site and use the query image ID to repeat the retrieval.

SIMPLIcity also gives higher precision within the best 11
or 29 matches for images composed of fine details. Retrieval
results with a photo of a hamburger as the query are shown
in Fig. 11b. The SIMPLIcity system retrieves 10 images with
food out of the first 11 matched images. The WBIIS system,
however, does not retrieve any image with food in the first
11 matches. It is often impossible to define the relevance
between two given images. For example, the user may be
interested in finding other hamburger images and not food
images. Returning food images is not likely to be more
helpful to the user than returning other images. The top
match made by SIMPLIcity is also a photo of hamburger
which is also perceptually very close to the query image.

WBIIS misses this image because the query image contains
important fine details which are smoothed out by the
multilevel wavelet transform in the system. The smoothing
also causes a textured image (the third match) to be
matched. Such errors are observed with many other image
queries. The SIMPLIcity system, however, classifies images
first and tries to prevent images classified as textured
images to be matched to images classified as nontextured
images. The method relies on highly accurate classifiers. In
practice, a classifier can give wrong classification results,
which lead to wrong retrieval.

Another three query examples are compared in Figs. 11c,
11d, and 11e. The query images in Figs. 11c and 11d are
difficult to match because objects in the images are not
distinctive from the background. Moreover, the color
contrast for both images is small. It can be seen that the
SIMPLIcity system achieves better retrieval, based on the
relevance criteria we have used. For the query in Fig. 11c,
only the third matched image is not a picture of a person. A
few images, the first, fourth, seventh, and eighth matches,
depict a similar topic as well, probably about life in Africa.
The query in Fig. 11e also shows the advantages of
SIMPLIcity. The system finds photos of similar flowers
with different sizes and orientations. Only the ninth match
does not have flowers in it.

For textured images, SIMPLIcity and WBIIS often per-
form equally well. However, SIMPLIcity captures high
frequency texture information better. An example of
textured image search is shown in Fig. 12. The granular
surface in the query image is matched more accurately by
the SIMPLIcity system. We performed another test on this
query using SIMPLIcity system without the image classifi-
cation component. As shown in Fig. 12, the degraded
system found several nontextured pictures (e.g., sunset
scenes) for this textured query picture.

Typical CBIR systems do not perform well when the
image databases contain both photographs and graphs.
Graphs, such as clip art pictures and image maps, appear
frequently on the Web. The semantics of clip art pictures are
typically more abstract and significantly different from
photos with similar low-level visual features, such as the
color histogram. For image maps on the Web, an indexing
method based on Optical Character Recognition (OCR) may
be more efficient than CBIR systems based on visual
features. SIMPLIcity classifies picture libraries into graphs
and photographs using image segmentation and statistical
hypothesis testing before the feature indexing step. Fig. 13
shows the result of a clip art query. All the best 11 matches
of this 200,000-picture database are clip art pictures, many
with similar semantics.

6.3 Systematic Evaluation

6.3.1 Performance on Image Queries

To provide numerical results, we tested 27 sample images
chosen randomly from nine categories, each containing
three of the images. Image matching is performed on the
COREL database of 200,000 images. A retrieved image is
considered a match if it belongs to the same category of the
query image. The categories of images tested are listed in
Table 1a. Most categories simply include images containing
the specified objects. Images in the ªsports and public
eventsº class contain people in a game or public event, such
as a festival. Portraits are not included in this category. The
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ªlandscape with buildingsº class refers to outdoor scenes

featuring man-made constructions such as buildings and

sculptures. The ªbeachº class refers to scenery at coasts or

river banks. For the ªportraitº class, an image has to show

people as the main feature. A scene with human beings as a

minor part is not included.
Precision was computed for both SIMPLIcity and WBIIS.

Recall was not calculated because the database is large and it

is difficult to estimate the total number of images in one

category, even approximately. In the future, we will develop a

large-scale sharable test database to evaluate the recall.
To account for the ranks of matched images, the average

of the precision values within k retrieved images,

k � 1; . . . ; 100, is computed. That is, �p � 1
100

P100
k�1

nk
k and nk

is the number of matches in the first k retrieved images.

This average precision is called the ªweighted precisionº
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Fig. 11. Comparison of SIMPLIcity and WBIIS. The query image is the upper-left corner image of each block of images. Due to the limitation of

space, we show only two rows of images with the top 11 matches to each query. More matches can be viewed from the online demonstration site.

(a) Natural out-door scene, (b) food, (c) people, (d) portrait, and (e) flower.



because it is equivalent to a weighted percentage of
matched images with a larger weight assigned to an image
retrieved at a higher rank. For instance, a relevant image
appearing earlier in the list of retrieved images would
enhance the weighted precision more significantly than if it
appears later in the list.

For each of the nine image categories, the average
precision and weighted precision based on the three sample
images are plotted in Fig. 14. The image category identifica-
tion number is indicated in Table 1a. Except for the tools
and toys category, in which case the two systems perform
about equally well, SIMPLIcity has achieved better results
than WBIIS measured in both ways. For the two categories
of landscape with buildings and vehicle, the difference
between the two systems is quite significant. On average,
the precision and the weighted precision of SIMPLIcity are
higher than those of WBIIS by 0:227 and 0:273, respectively.

6.3.2 Performance on Image Categorization

The SIMPLIcity system was also evaluated based on a subset
of the COREL database, formed by 10 image categories
(shown in Table 1b), each containing 100 pictures. Within this
database, it is known whether any two images are of the same
category. In particular, a retrieved image is considered a
match if and only if it is in the same category as the query. This
assumption is reasonable since the 10 categories were chosen
so that each depicts a distinct semantic topic. Every image in
the subdatabase was tested as a query and the retrieval ranks
of all the rest images were recorded. Three statistics were

computed for each query: 1) the precision within the first
100 retrieved images, 2) the mean rank of all the matched
images, and 3) the standard deviation of the ranks of matched
images.

The recall within the first 100 retrieved images is identical
to the precision in this special case. The total number of
semantically related images for each query is fixed to be 100.
The average performance for each image category is
computed in terms of the three statistics: p (precision), r (the
mean rank of matched images), and� (the standard deviation
of the ranks of matched images). For a system that ranks
images randomly, the average p is about 0:1, and the average r
is about 500. An ideal CBIR system should demonstrate an
average p of 1 and an average r of 50.

Similar evaluation tests were carried out for the state-of-
the-art EMD-based color histogram match. We used
LUV color space and a matching metric similar to the
EMD described in [18] to extract color histogram features
and match in the categorized image database. Two different
color bin sizes, with an average of 13.1 and 42.6 filled color
bins per image, were evaluated. We call the one with less
filled color bins the Color Histogram 1 system and the other
the Color Histogram 2 system. Fig. 15 shows the perfor-
mance when compared to the SIMPLIcity system. Clearly,
both of the two color histogram-based matching systems
perform much worse than the SIMPLIcity region-based
CBIR system in almost all image categories. The perfor-
mance of the Color Histogram 2 system is better than that of
the Color Histogram 1 system due to more detailed color
separation obtained with more filled bins. However, the
Color Histogram 2 system is so slow that it is practically
impossible to obtain matches on databases with more than
50,000 images. For this reason, we cannot evaluate this
system using the COREL database of 200,000 images and the
27 sample query images described in the previous section.
SIMPLIcity runs at about twice the speed of the relatively
fast Color Histogram 1 system and still provides much
better searching accuracy than the extremely slow Color
Histogram 2 system.

6.4 Robustness

We have performed extensive experiments on the robustness
of the system. Figs. 17 and 18 summarize the results. The
graphs in the first row show the changes in ranking of the
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Fig. 12. SIMPLIcity gives better results than the same system without the classification component. The query image is a textured image.

Fig. 13. SIMPLIcity does not mix clip art pictures with photographs. A
graph-photograph classification method using image segmentation and
statistical hypothesis testing is used. The query image is a clip art
picture.



target image as we increase the significance of image
alterations. The graphs in the second row show the the
changes in IRM distance between the altered image and the
target image as we increase the significance of image
alterations.

The system is fairly robust to image alterations such as
intensity variation, sharpness variation, intentional color
distortions, other intentional distortions, cropping, shifting,
and rotation. Fig. 16 shows some query examples, using the
200,000-image COREL database. On average, the system is
robust to approximately 10 percent brightening, 8 percent
darkening, blurring with a 15� 15 Gaussian filter, 70 percent
sharpening, 20 percent more saturation, 10 percent less
saturation, random spread by 30 pixels, and pixelization by
25 pixels. These features are important to biomedical image
databases because usually visual features of the query image
are not identical to the visual features of those semantically-
relevant images in the database because of problems such as
occlusion, difference in intensity, and difference in focus.

6.4.1 Speed

The algorithm has been implemented on a Pentium III
450MHz PC using the Linux operating system. To compute
the feature vectors for the 200; 000 color images of
size 384� 256 in our general-purpose image database
requires approximately 60 hours. On average, one second is
needed to segment an image and to compute the features of all
regions. The speed is much faster than other region-based

methods. Fast indexing has provided us with the capability of
handling external queries and sketch queries in real time.

The matching speed is very fast. When the query image
is in the database, it takes about 1:5 seconds of CPU time on
average to sort all the images in the 200,000-image database
using the IRM similarity measure. If the query image is not
already in the database, one extra second of CPU time is
spent to extract the feature from the query image.

7 CONCLUSIONS AND FUTURE WORK

In this work, we experimented with the idea that images
can be classified into global semantic classes, such as
textured or nontextured, graph or photograph, and that
much can be gained if the feature extraction scheme is
tailored to best suit each class. For the purpose of searching
general-purpose image databases, we have developed a
series of statistical image classification methods, including
the graph-photograph, textured-nontextured classifiers. We
have explored the application of advanced wavelets in
feature extraction. We have developed an image region
segmentation algorithm using wavelet-based feature
extraction and the k-means statistical clustering algorithm.
Finally, we have developed a measure for the overall
similarity between images, i.e., the Integrated Region
Matching (IRM) measure, defined based on a region-
matching scheme that integrates properties of all the
regions in the images, resulting in a simple querying
interface. The advantage of using such a soft matching is the
improved robustness against poor segmentation, an im-
portant property overlooked in previous work.

The application of SIMPLIcity to a database of about
200,000 general-purpose images shows more accurate and
much faster retrieval compared with the existing algorithms.
An important feature of the algorithms implemented in
SIMPLIcity is that it is fairly robust to intensity variations,
sharpness variations, color distortions, other distortions,
cropping, scaling, shifting, and rotation. The system is also
easier to use than other region-based retrieval systems.

The system has several limitations:

1. Like other CBIR systems, SIMPLIcity assumes that
images with similar semantics share some similar
features. This assumption may not always hold.

2. The shape matching process is not ideal. When
an object is segmented into many regions, the
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TABLE 1
COREL Categories of Images Tested

(a) Test 1. (b) Test 2.

Fig. 14. Comparison of SIMPLIcity and WBIIS: average precision and

weighted precision of nine image categories.



IRM distance should be computed after merging the
matched regions.

3. The statistical semantic classification methods do not
distinguish images in different classes perfectly.
Furthermore, an image may fall into several seman-
tic classes simultaneously.

4. The querying interfaces are not powerful enough to
allow users to formulate their queries freely. For
different user domains, the query interfaces should
ideally provide different sets of functions.

A limitation of our current evaluation results is that they

are based mainly on precision or variations of precision. In

practice, a system with a high overall precision may have a

low overall recall. Precision and recall often trade off

against each other. It is extremely time-consuming to

manually create detailed descriptions for all the images in

our database in order to obtain numerical comparisons on

recall. The COREL database provides us rough semantic

labels on the images. Typically, an image is associated with
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Fig. 15. Comparing SIMPLIcity with color histogram methods on average precision p, average rank of matched images r, and the standard deviation
of the ranks of matched images �. The lower numbers indicate better results for the last two plots (i.e., the r plot and the � plot). Color Histogram 1
gives an average of 13.1 filled color bins per image, while Color Histogram 2 gives an average of 42.6 filled color bins per image. SIMPLIcity
partitions an image into an average of only 4.3 regions.

Fig. 16. The robustness of the system to image alterations. Due to space, only the best five matches are shown. The first image in each example is

the query image. Database size: 200,000 images.



one keyword about the main subject of the image. For
example, a group of images may be labeled as ªflowerº and
another group of images may be labeled as ªKyoto, Japan.º
If we use the descriptions such as ªflowerº and ªKyoto,
Japanº as definitions of relevance to evaluate CBIR systems,
it is unlikely that we can obtained a consistent performance
evaluation. A system may perform very well on one query
(such as the flower query), but very poorly on another (such
as the Kyoto query). Until this limitation is thoroughly
investigated, the evaluation results reported in the compar-
isons should be interpreted cautiously.

A statistical soft classification architecture can be devel-

oped to allow an image to be classified based on its

probability of belonging to a certain semantic class. We

need to design more high-level classifiers. The speed can be

improved significantly by adopting a feature clustering

scheme or using a parallel query processing scheme. We

need to continue our effort in designing simple but capable

graphical user interfaces. We are planning to build a

sharable testbed for statistical evaluation of different

CBIR systems. Experiments with a WWW image database

or a video database could be another interesting study.
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Fig. 17. The robustness of the system compared to image alterations. Six query images were randomly selected from the database. Each curve

represents the robustness on one of the six images.

Fig. 18. The robustness of the system compared to image alterations.
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