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Abstract The purpose of this paper is to provide a
comprehensive presentation and interpretation of the
Ensemble Kalman Filter (EnKF) and its numerical
implementation. The EnKF has a large user group,
and numerous publications have discussed applications
and theoretical aspects of it. This paper reviews the
important results from these studies and also presents
new ideas and alternative interpretations which further
explain the success of the EnKF. In addition to pro-
viding the theoretical framework needed for using the
EnKF, there is also a focus on the algorithmic for-
mulation and optimal numerical implementation. A
program listing is given for some of the key subrou-
tines. The paper also touches upon specific issues such
as the use of nonlinear measurements, in situ profiles
of temperature and salinity, and data which are
available with high frequency in time. An ensem-
ble based optimal interpolation (EnOI) scheme is
presented as a cost-effective approach which may serve
as an alternative to the EnKF in some applications. A
fairly extensive discussion is devoted to the use of time
correlated model errors and the estimation of model
bias.

Keywords Data assimilation - Ensemble Kalman Filter

1 Introduction

The Ensemble Kalman Filter has been examined and
applied in a number of studies since it was first intro-
duced by Evensen (1994b). It has gained popularity
because of its simple conceptual formulation and rela-
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tive ease of implementation, e.g., it requires no deriva-
tion of a tangent linear operator or adjoint equations,
and no integrations backward in time. Further, the
computational requirements are affordable and compa-
rable with other popular sophisticated assimilation
methods such as the representer method by Bennett
(1992); Bennett et al. (1993, 1996); Bennett and Chua
(1994) and the 4DVAR method which has been much
studied by the meteorological community (see, e.g.,
Talagrand and Courtier 1997, 1987; Courtier and
Talagrand 1987; Courtier et al. 1994).

This paper gives a comprehensive presentation of
the Ensemble Kalman Filter (EnKF), and it may serve
as an EnKF reference document. For a user of the
EnKF it provides citations from hopefully all previous
publications where the EnKF has been examined or
used. It also provides a detailed presentation of the
method in terms of both theoretical aspects and practical
implementation. For experienced EnKF users it will
provide a better understanding of the EnKF through the
presentation of a new and alternative interpretation and
implementation of the analysis scheme.

In the next section, an overview is given of previous
works involving the EnKF. Further, in Section 3, an
overview of the theoretical formulation of the EnKF will
be given. Thereafter the focus will be on implementation
issues, starting with the generation of the initial ensem-
ble in Section 4.1 and the stochastic integration of the
ensemble members in Section 4.2. The major discussion
in this paper relates to the EnKF analysis scheme, which
is given in Section 4.3. Section 5 discusses particular
aspects of the numerical implementation. Appendix A
presents an approach for examining the consistency of
the EnKF based on comparisons of innovations and
predicted error statistics. In Appendix B an optimal
interpolation algorithm is presented. It uses a stationary
ensemble but is otherwise similar to the EnKF, and it
can thus be denoted Ensemble Optimal Interpolation
(EnOI). In Appendix C we have given an algorithm
which is currently used for assimilation of observations
of subsurface quantities. In Appendix D the Ensemble
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Kalman Smoother (EnKS) is presented in terms of the
terminology developed in this paper. It is illustrated how
the smoother solution can be very efficiently computed
as a reanalysis following the use of the EnKF. In
Appendix E we have reviewed and detailed the presen-
tation of the algorithm used for the generation of
pseudorandom fields. Finally, in Appendix F an exam-
ple is given illustrating the EnKF and EnKS with a
simple stochastic scalar model. This illustrates the use of
time-correlated model errors and how these can be
estimated. The use of the EnKF and EnKS for estima-
tion of model bias is given in Appendix G.

2 Chronology of ensemble assimilation developments

This section attempts to provide a complete overview of
the developments and applications related to the EnKF.
In addition, it also points to other recently proposed
ensemble-based methods and some smoother applica-
tions.

2.1 Applications of the EnKF

Applications involving the EnKF are numerous and
include the initial work by Evensen (1994b) and an
additional example in Evensen (1994a), which showed
that the EnKF resolved the closure problems reported
from applications of the Extended Kalman Filter
(EKF).

An application with assimilation of altimeter data for
the Agulhas region was discussed in Evensen and van
Leeuwen (1996) and later in a comparison with the
Ensemble Smoother (ES) by van Leeuwen and Evensen
(1996).

An example with the Lorenz equations was presented
by Evensen (1997), where it was shown that the EnKF
could track the phase transitions and find a consistent
solution with realistic error estimates even for such a
chaotic and nonlinear model.

Burgers et al. (1998) reviewed and clarified some
points related to the perturbation of measurements in
the analysis scheme, and also gave a nice interpretation
supporting the use of the ensemble mean as the best
estimate.

Houtekamer and Mitchell (1998) introduced a vari-
ant of the EnKF where two ensembles of model states
are integrated forward in time, and statistics from one
ensemble are used to update the other. The use of two
ensembles was motivated by claiming that this would
reduce possible inbreeding in the analysis. This has,
however, led to some dispute, discussed in the comment
by van Leeuwen (1999a) and the reply by Houtekamer
and Mitchell (1999).

Miller et al. (1999) included the EnKF in a compar-
ison with nonlinear filters and the Extended Kalman
Filter, and concluded that it performed well, but could
be beaten by a nonlinear and more expensive filter in

difficult cases where the ensemble mean is not a good
estimator.

Madsen and Caidizares (1999) compared the EnKF
and the reduced rank square root implementation of the
Extended Kalman filter with a 2-D storm surge model.
This is a weakly nonlinear problem, and good agreement
was found between the EnKF and the extended Kalman
filter implementation.

Echevin et al. (2000) studied the EnKF with a coastal
version of the Princeton Ocean Model and focused in
particular on the horizontal and vertical structure of
multivariate covariance functions from sea-surface
height. It was concluded that the EnKF could capture
anisotropic covariance functions resulting from the im-
pact of coastlines and coastal dynamics, and had a
particular advantage over simpler methodologies in such
areas.

Evensen and van Leeuwen (2000) rederived the
EnKF as a suboptimal solver for the general Bayesian
problem of finding the posterior distribution given
densities for the model prediction and the observations.
From this formulation the general filter, could be
derived and the EnKF could be shown to be a subop-
timal solver of the general filter, where the prior densities
are assumed to be Gaussian distributed.

Hamill and Snyder (2000) constructed a hybrid
assimilation scheme by combining 3DVAR and the
EnKF. The estimate is computed using the 3DVAR
algorithm but the background covariance is a weighted
average of the time evolving EnKF error covariance and
the constant 3DVAR error covariance. A conclusion
was that with increasing ensemble size the best results
were found with larger weight on the EnKF error
covariance.

Hamill et al. (2000) report from working groups in a
workshop on ensemble methods.

Keppenne (2000) implemented the EnKF with a two-
layer shallow-water model and examined the method in
twin experiments assimilating synthetic altimetry data.
He focused on the numerical implementation on parallel
computers with distributed memory, and found the ap-
proach efficient for such systems. He also examined the
impact of ensemble size and concluded that realistic
solutions could be found using a modest ensemble size.

Mitchell and Houtekamer (2000) introduced an
adaptive formulation of the EnKF, where the model er-
ror parameterization was updated by incorporating
information from the innovations during the integration.

Park and Kaneko (2000) presented an experiment
where the EnKF was used to assimilate acoustic
tomography data into a barotropic ocean model.

van Loon et al. (2000) used the EnKF for assimila-
tion of ozone data into an atmospheric transport
chemistry model.

Greonnevik and Evensen (2001) examined the EnKF
for use in fish stock assessment, and also compared it
with the Ensemble Smoother (ES) by van Leeuwen and
Evensen (1996) and the more recent Ensemble Kalman
Smoother (EnKS) by Evensen and van Leeuwen (2000).



Heemink et al. (2001) have been examining different
approaches which combine ideas from RRSQRT filter-
ing and the EnKF to derive computationally more effi-
cient methods.

Houtekamer and Mitchell (2001) have continued the
examination of the two-ensemble approach and intro-
duced a technique for computing the global EnKF
analysis in the case with many observations, and also a
method for filtering of eventual long range spurious
correlations caused by a limited ensemble size. As will be
seen below, the current paper presents a much more
efficient way to compute the global analysis and also
argues against filtering of covariances.

Pham (2001) reexamined the EnKF in an application
with the Lorenz attractor and compared results with
those obtained from different versions of the Singular
Evolutive Extended Kalman (SEEK) filter and a particle
filter. Ensembles with very few members were used
and this favored methods like the SEEK where the
“ensemble” of EOFs is selected as a best-possible rep-
resentation of the model attractor.

Verlaan and Heemink (2001) applied the RRSQRT
and EnKF filters in test examples with the purpose of
classifying and defining a measure of the degree of
nonlinearity of the model dynamics. Such an estimate
may have an impact on the choice of assimilation
method.

Hansen and Smith (2001) proposed a method for
producing analysis ensembles based on integrated use of
the 4DVAR method and the EnKF. A probabilistic
approach was used and lead to high numerical cost, but
an improved estimate could be found compared to
4DVAR and the EnKF used separately.

Hamill et al. (2001) examined the impact of ensemble
size on noise in distant covariances. They evaluated the
impact of using an inflation factor, as introduced by
Anderson and Anderson (1999), and also the use of a
Schur product of the covariance with a correlation
function to localize the background covariances, as
previously discussed by Mitchell (2001). The inflation
factor is used to replace the forecast ensemble according
to:

wj:p(lpj_lp)"i_lpv (1)

with p slightly greater than 1 (typically 1.01). The pur-
pose is to account for a slight underrepresentation of
variance due to the use of a small ensemble.

Bishop et al. (2001) used an implementation of the
EnKF in an observation system simulation experiment.
Ensemble-predicted error statistics were used to deter-
mine the optimal configuration of future targeted
observations. The application typically looked at a case
where additional targeted measurements could be de-
ployed over the next few days and the deployment could
be optimized to minimize the forecast errors in a selected
region. The methodology was named Ensemble Trans-
form Kalman Filter and it was further examined by
Majumdar et al. (2001).
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Reichle et al. (2002) give a nice discussion of the
EnKF in relation to the optimal representer solution.
They find good convergence of the EnKF toward the
representer solution, with the difference being caused by
the Gaussian assumptions used in the EnKF at analysis
steps. These are avoided in the representer method,
which solves for the maximume-likelihood smoother
estimate.

Bertino et al. (2002) applied the EnKF and the Re-
duced Rank Square Root (RRSQRT) filter with a model
for the Odra estuary. The two methods were compared
and used to assimilate real observations to assess the
potential for operational forecasting in the lagoon. This
is a relatively linear model and the EnKF and the
RRSQRT filter provided similar results.

Eknes and Evensen (2002) examined the EnKF with a
1-D three component marine ecosystem model with fo-
cus on sensitivity to the characteristics of the assimilated
measurements and the ensemble size. It was found that
the EnKF could handle strong nonlinearities and
instabilities which occur during the spring bloom.

Allen et al. (2002) take the Eknes and Evensen (2002)
work one step further by applying the method with a 1-
D version of ERSEM for a site in the Mediterranean
Sea. They showed that even with such a complex model
it is possible to find an improved estimate by assimilat-
ing in situ data into the model.

Haugen and Evensen (2002) applied the EnKF to
assimilate sea-level anomalies and sea-surface tempera-
ture data into a version of the Miami Isopycnic Coor-
dinate Ocean Model (MICOM) by Bleck et al. (1992)
for the Indian Ocean. The paper provided an analysis of
regionally dependent covariance functions in the tropics
and subtropics and also the multivariate impact of
assimilating satellite observations.

Mitchell et al. (2002) examined the EnKF with a
global atmospheric general circulation model with sim-
ulated data resembling realistic operational observa-
tions. They assimilated 80 000 observations a day. The
system was examined with respect to required ensemble
size, and the effect of localization (local analysis at a
grid point using only nearby measurements). It was
found that severe localization could lead to imbalance,
but with large enough ratio of influence for the
measurements, this was not a problem, and no digital
filtering was required. In the experiments they also in-
cluded model errors and demonstrated the importance
of this to avoid filter divergence. This work is a signi-
ficant step forward and it shows promising results with
respect to using the EnKF with atmospheric forecast
models.

Crow and Wood (2003) demonstrated that the EnKF
is an effective and a computationally competitive strat-
egy for the assimilation of remotely sensed brightness
temperature measurements into land-surface models.

Brusdal et al. (2003) discussed a similar application
to Haugen et al. (2002), but focused on the North
Atlantic. In addition, this paper included an extensive
comparison of the theoretical background of the EnKF,
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EnKS, and the SEEK filter, and also compared results
from these methods.

Natvik and Evensen (2003a,b) presented the first
realistic 3-D application of the EnKF with a marine
ecosystem model. These papers proved the feasibility of
assimilating SeaWiFS ocean color data to control the
evolution of a marine ecosystem model. In addition,
several diagnostic methods were introduced which can
be used to examine the statistical and other properties of
the ensemble.

Keppenne and Rienecker (2003) implemented a
massively parallel version of the EnKF with the Posei-
don isopycnic coordinate ocean model for the tropical
Pacific. They demonstrated the assimilation of in situ
observations and focused on the parallelization of the
model and analysis scheme for computers with distrib-
uted memory. They also showed that regionalization of
background covariances has negligible impact on the
quality of the analysis.

Several of the most recent publications cited above
have proved the feasibility of the ensemble-based
methods for real oceanographic problems.

2.2 Other ensemble-based filters

The EnKF can also be related to some other sequential
filters such as the Singular Evolutive Extended Kalman
(SEEK) filter by Pham et al. (1998), Brasseur et al.
(1999), Carmillet et al. (2001) (see also Brusdal et al.
2003, for a comparison of the SEEK and the EnKF);
the Reduced Rank Square Root (RRSQRT) filter by
Verlaan and Heemink (2001); and the Error Subspace
Statistical Estimation (ESSE) by Lermusiaux and Rob-
insin (1999a,b) and Lermusiaux (2001), which can be
interpreted as an EnKF where the analysis is computed
in the space spanned by the EOFs of the ensemble.

Anderson (2001) proposed a method denoted the
Ensemble Adjustment Kalman Filter, where the analysis
is computed without adding perturbations to the
observations. If observations are not perturbed in the
EnKF this still gives the correct mean of the analyzed
ensemble, but results in a too low variance, as explained
by Burgers et al. (1998). This is accounted for in the
EAKF by deriving a linear operator which replaces the
traditional gain matrix and results in an updated
ensemble which is consistent with theory. A drawback
may be the required inversion of the measurement error
covariance when this is nondiagonal. This method be-
comes a variant of the square root algorithm used by
Bishop et al. (2001). It is demonstrated that for small
ensembles (1020 members) the EAKF performs better
than the EnKF.

Whitaker and Hamill (2002) proposed another ver-
sion of the EnKF where the perturbation of observa-
tions are avoided. The scheme provides a better estimate
of the analysis variance by avoiding the sampling errors
of the observation perturbations. The scheme was tested
for small ensemble sizes (10-20 members), where it had a

clear benefit on the results when compared to the EnKF,
which has larger sampling errors with such small
ensemble sizes. The scheme is based on a redefinition of
the Kalman gain derived from the equation

P: = (I- KH)P'(I- HK") + KRK"
— (I- KH)P/, (2)

where the term KRK' =0 without perturbations of
measurements. A solution of this equation is:

K=PH [(\/HPfHT + R)l} '
x [VHP'H + R + \/Er. 3)

An explanation of the terms in these equations is given
in Section 3. This is essentially a Monte Carlo imple-
mentation of the square root filter and was named
EnSRF.

A summary of the square root filters by Bishop et al.
(2001), Anderson (2001), and Whitaker and Hamill
(2002) has been given by Tippet et al. (2003), and see
also the general discussion of ensemble methods in a
“local least-squares framework™ given by Anderson
(2003).

2.3 Ensemble smoothers

Some publications have focused on the extension of the
EnKF to a smoother formulation. The first formulation
was given by van Leeuwen and Evensen (1996), who
introduced the Ensemble Smoother (ES). This method
was later examined in Evensen (1997) with the Lorenz
attractor; applied with a QG model to find a steady
mean flow by van Leeuwen (1999b) and for the time-
dependent problem in van Leeuwen (2001); and for fish
stock assessment by Grennevik and Evensen (2001).
Evensen and van Leeuwen (2000) reexamined the
smoother formulation and derived a new algorithm with
better properties named the Ensemble Kalman
Smoother (EnKS). This method has also been examined
in Grennevik and Evensen (2001) and Brusdal et al.
(2003).

2.4 Nonlinear filters and smoothers

Another extension of the EnKF relates to the derivation
of an efficient method for solving the nonlinear filtering
problem, i.e., taking non-Gaussian contributions in the
predicted error statistics into account when computing
the analysis. These are discarded in the EnKF (see
Evensen and van Leeuwen, 2000), and a fully nonlinear
filter is expected to improve the results when used with
nonlinear dynamical models with multi-modal behavior
where the predicted error statistics are far from Gauss-
ian. Implementations of nonlinear filters based on either
kernel approximation or particle interpretations have



been proposed by Miller et al. (1999), Anderson and
Anderson (1999), Pham (2001), Miller and Ehret (2002),
and van Leeuwen (2003), although more research is
needed before these can claimed to be practical for
realistic high-dimensional systems.

3 Sequential data assimilation

This section gives a brief introduction to sequential data
assimilation methodologies such as the Kalman Filter
(KF) and the Extended Kalman Filter (EKF) and out-
lines the general theory of the EnKF.

3.1 A variance-minimizing analysis

The Kalman Filter is a sequential filter method, which
means that the model is integrated forward in time and,
whenever measurements are available, these are used to
reinitialize the model before the integration continues.
We neglect the time index and denote a model forecast
and analysis as ¢/ and y*, respectively, and the mea-
surements are contained in d. Further, the respective
covariances for model forecast, analysis and measure-
ments are denoted P/, P* and R. The analysis equation
is then:

W' =y + PH'(HP'H" + R)"'(d— Hy'), (4)
with the analysis error covariances given as
P'=P — P'H (HP'H" + R)"'HP'. (5)

Here H is the measurement operator relating the true
model state Y’ to the observations d allowing for mea-
surement errors e, i.e.

d=Hy' +e. (6)

The reinitialization, Y, is determined as a weighted
linear combination of the model prediction, ¥/, and
covariances, P/ H', corresponding to each of the mea-
surements in d. The weights are determined by the error
covariance for the model prediction projected onto the
measurements, the measurement error covariance, and
the difference between the prediction and measurements
(i.e., the innovation).

The error covariances for the measurements, R, need
to be prescribed based on our best knowledge about the
accuracy of the measurements and the methodologies
used to collect them. The error covariances for the
model prediction are computed by solving an equation
for the time evolution of the error covariance matrix of
the model state.

A derivation of these equations can be found in
several publications (see, e.g., Burgers et al. 1998). Note
that these equations are often expressed using the
so-called Kalman gain matrix

K=PH' (HPPH" + R)". (7)
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3.2 The Kalman Filter

Given a linear dynamical model written on discrete form
as:

Vi = Fiy, (8)
the error covariance equation becomes
Py = FPF' +Q, 9)

where the matrix @ is the error covariance matrix for the
model errors. The model is assumed to contain errors,
e.g., due to neglected physics and numerical approxima-
tions. The Eqgs. (8) and (9) are integrated to produce the
forecasts /' and P, used in the analysis Eqs. (4) and (5).

3.3 The Extended Kalman Filter

With a nonlinear model

Vier = W), (10)

the error covariance equation is still Eq. (9) but with F
being the tangent linear operator (Jacobian) of f(¥).
Thus, in the Extended Kalman Filter (EKF), a linearized
and approximate equation is used for the prediction of
error statistics.

3.4 The Ensemble Kalman Filter

The ensemble Kalman filter as proposed by Evensen
(1994b) and later clarified by Burgers et al. (1998) is now
introduced. We will adapt a three-stage presentation
starting with the representation of error statistics using
an ensemble of model states, then an alternative to the
traditional error covariance equation is proposed for the
prediction of error statistics, and finally a consistent
analysis scheme is presented.

3.4.1 Representation of error statistics

The error covariance matrices for the forecast and the
analyzed estimate, P’ and P?, are defined in the Kalman
filter in terms of the true state as

: T
Pr= (' =y -y,

T
P= =y =y,
where the overline denotes an expectation value, i is the
model state vector at a particular time and the super-
scripts f, a, and ¢ represent forecast, analyzed, and true
state, respectively. However, the true state is not known,

and we therefore define the ensemble covariance matri-
ces around the ensemble mean, i,

Pl Pl= (=) )"
e AR

(11)
(12)

(13)
(14)
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where now the overlines denote an average over the
ensemble. Thus, we can use an interpretation where the
ensemble mean is the best estimate and the spreading
of the ensemble around the mean is a natural definition
of the error in the ensemble mean.

Since the error covariances as defined in Egs. (13)
and (14) are defined as ensemble averages, there will
clearly exist infinitively many ensembles with an error
covariance equal to P/ and P°. Thus, instead of
storing a full covariance matrix, we can represent the
same error statistics using an appropriate ensemble of
model states. Given an error covariance matrix, an
ensemble of finite size will always provide an approx-
imation to the error covariance matrix. However, when
the size of the ensemble N increases, the errors in the
Monte Carlo sampling will decrease proportional to
1/VN.

Suppose now that we have N model states in the
ensemble, each of dimension n. Each of these model
states can be represented as a single point in an n-
dimensional state space. All the ensemble members to-
gether will constitute a cloud of points in the state space.
Such a cloud of points in the state space can, in the limit
when N goes to infinity, be described using a probability
density function

dN
where dN is the number of points in a small unit volume
and N is the total number of points. With knowledge
about either ¢ or the ensemble representing ¢, we can
calculate whichever statistical moments (such as mean,
covariances, etc.) we want whenever they are needed.
The conclusion so far is that the information con-
tained by a full probability density function can be ex-
actly represented by an infinite ensemble of model states.

(15)

3.4.2 Prediction of error statistics

The EnKF was designed to resolve two major problems
related to the use of the EKF with nonlinear dynamics in
large state spaces. The first problem relates to the use of
an approximate closure scheme in the EKF, and the
other to the huge computational requirements associ-
ated with the storage and forward integration of the
error covariance matrix.

The EKF applies a closure scheme where third- and
higher-order moments in the error covariance equation
are discarded. This linearization has been shown to be
invalid in a number of applications, e.g., Evensen (1992)
and Miller et al. (1994). In fact, the equation is no longer
the fundamental equation for the error evolution when
the dynamical model is nonlinear. In Evensen (1994b) it
was shown that a Monte Carlo method can be used to
solve an equation for the time evolution of the proba-
bility density of the model state, as an alternative to
using the approximate error covariance equation in the
EKF.

For a nonlinear model where we appreciate that the
model is not perfect and contains model errors, we can
write it as a stochastic differential equation (on contin-
uous form) as:

dy = fiy)dt + g()dq. (16)

This equation states that an increment in time will yield
an increment in ¥, which in addition, is influenced by a
random contribution from the stochastic forcing term,

g()dq, representing the model errors. The dg describe a

vector Brownian motion process with covariance Qdt.
Because the model is nonlinear, g is not an explicit
function of the random variable dg, so the Ito inter-
pretation of the stochastic differential equation has to be
used instead of the Stratonovich interpretation (see
Jazwinski 1970)

When additive Gaussian model errors forming a
Markov process are used, one can derive the Fokker—
Planck equation (also named Kolmogorov’s equation)
which describes the time evolution of the probability
density ¢(y) of the model state,

3(fid) d(gQg"),
+Z<f 2Z vy,

where f; is the component number i of the model oper-
ator fand gQg’ is the covariance matrix for the model
errors.

This equation does not apply any important
approximations and can be considered as the funda-
mental equation for the time evolution of error statistics.
A detailed derivation is given in Jazwinsky (1970). The
equation describes the change of the probability density
in a local “volume” which is dependent on the diver-
gence term describing a probability flux into the local
“volume” (impact of the dynamical equation) and the
diffusion term which tends to flatten the probability
density due to the effect of stochastic model errors. If
Eq. (17) could be solved for the probability density
function, it would be possible to calculate statistical
moments like the mean state and the error covariance
for the model forecast to be used in the analysis scheme.

The EnKF applies a so-called Markov Chain Monte
Carlo (MCMC) method to solve Eq (17). The proba-
bility density can be represented using a large ensemble
of model states. By integrating these model states for-
ward in time according to the model dynamics described
by the stochastic differential Eq. (16), this ensemble
prediction is equivalent to solving the Fokker—Planck
equation using an MCMC method. This procedure
forms the backbone for the EnKF.

A linear model for a Gauss—Markov process in which
the initial condition is assumed to be taken from a
normal distribution will have a probability density
which is completely characterized by its mean and
covariance for all times. One can then derive exact
equations for the evolution of the mean and the
covariance as a simpler alternative than solving the full
Kolmogorov’s equation. Such moments of Kolmogorov’s

(17)



equation, including the error covariance Eq. (9), are
easy to derive, and several methods are illustrated by
Jazwinski (1970, examples 4.19—4.21). This is actually
what is done in the KF and EKF.

For a nonlinear model, the mean and covariance
matrix will not in general characterize ¢(\, ). They do,
however, determine the mean path and the dispersion
about that path, and it is possible to solve approximate
equations for the moments, which is the procedure
characterizing the extended Kalman filter.

An alternative to the approximate stochastic dynamic
approach for solving Kolmogorov’s equation and pre-
dicting the error statistics is to use Monte Carlo meth-
ods. A large cloud of model states (points in state space)
can be used to represent a specific probability density
function. By integrating such an ensemble of states
forward in time, it is easy to calculate approximate
estimates for moments of the probability density func-
tion at different time levels. In this context the Monte
Carlo method might be considered a particle method in
the state space.

3.4.3 An analysis scheme

The KF analysis scheme is using the definitions of P
and P* as given by Egs. (11) and (12). We will now give
a derivation of the analysis scheme where the ensemble
covariances are used as defined by Eqgs. (13) and (14).
This is convenient, since in practical implementations
one is doing exactly this, and it will also lead to a con-
sistent formulation of the EnKF.

As will be shown later, it is essential that the obser-
vations are treated as random variables having a distri-
bution with mean equal to the first-guess observations
and covariance equal to R. Thus, we start by defining an
ensemble of observations

d=d+e, (18)

where j counts from 1 to the number of model state
ensemble members N. It is ensured that the simulated
random measurement errors have mean equal to zero.
Next, we define the ensemble covariance matrix of the
measurements as

R, = e, (19)

and, of course, in the limit of an infinite ensemble
this matrix will converge toward the prescribed error
covariance matrix R used in the standard Kalman
filter.

The following discussion is valid both using an ex-
actly prescribed R and an ensemble representation R, of
R. The use of R, introduces an additional approxima-
tion which becomes convenient when implementing the
analysis scheme. This can be justified by the fact that the
actual observation error covariance matrix is poorly
known and the errors introduced by the ensemble rep-
resentation can be made less than the initial uncertainty
in the exact form of R by choosing a large enough
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ensemble size. Further, the errors introduced by using an
ensemble representation for R have less impact than the
use of an ensemble representation for P. R only appears
in the computation of the coefficients for the influence
functions P/ H” while P both appears in the computa-
tion of the coefficients and determines the influence
functions.

The analysis step for the EnKF consists of the fol-
lowing updates performed on each of the model state
ensemble members

W=y, + PIH'(HP/H" +R.)”'(d,— HY)).  (20)

With a finite ensemble size, this equation will be an
approximation. Further, if the number of measurements
is larger than the number of ensemble members, the
matrices HP{ H' and R, will be singular, and a pseudo
inversion must be used. Note that Eq. (20) implies that

W =y + P/H' (HP/H" + R,)"'(d— Hy'), (21)

where d = d is the first guess vector of measurements.
Thus, the relation between the analyzed and forecast
ensemble mean is identical to the relation between the
analyzed and forecasted state in the standard Kalman
filter in Eq. (4), apart from the use of P/* and R, instead
of P/ and R. Note that the introduction of an ensemble
of observations does not make any difference for the
update of the ensemble mean, since this does not affect
Eq. (21). o

If the mean, Y, is considered to be the best estimate,
then it is an arbitrary choice whether one updates the
mean using the first-guess observations d, or if one up-
dates each of the ensemble members using the perturbed
observations (Eq. 18). However, it will now be shown
that by updating each of the ensemble members using
the perturbed observations, one also creates a new
ensemble having the correct error statistics for the
analysis. The updated ensemble can then be integrated
forward in time till the next observation time.

Moreover, the error covariance, P;, of the analyzed
ensemble is reduced in the same way as in the standard
Kalman Filter. We now derive the analyzed error
covariance estimate resulting from the analysis scheme
given above, but using the standard Kalman filter form
for the analysis equations. First, note that Eqgs. (20) and
(21) are used to obtain:

Vi =" = (= KH)(y] — ') + Ke(d; — d),
where we have used the definition of the Kalman gain,

(23)

(22)

K, =P H'(HP'H" + R,)™".

The derivation is then as follows,

P = (=) =)
=(I- K.HP/(I-HK") + K.R.K"
=P — K.HP, - P H'K’ + K. (HP/H" + R,)K"
= (I- K.HP. (24)
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The last expression in this equation is the traditional
result for the minimum variance error covariance found
in the KF analysis scheme. This implies that the EnKF
in the limit of an infinite ensemble size will give exactly
the same result in the computation of the analysis as
the KF and EKF. Note that this derivation clearly
states that the observations d must be treated as ran-
dom wvariables to obtain the measurement error
covariance matrix R, into the expression. It has been
assumed that the distributions used to generate the
model state ensemble and the observation ensemble are
independent.

3.4.4 Summary

We now have a complete system of equations which
constitutes the ensemble Kalman filter (EnKF), and the
resemblance with the standard Kalman filter is main-
tained. This is also true for the forecast step. Each
ensemble member evolves in time according to the model
dynamics. The ensemble covariance matrix of the errors
in the model equations, given by

0, = dq,dqy, (25)

converges to @ in the limit of infinite ensemble size. The
ensemble mean then evolves according to the equation

Vi1 =)
=fl,) +n.l., (26)

where n.l. represents the terms which may arise if f is
non-linear. One of the advantages of the EnKF is that
the effect of these terms is retained, since each ensemble
member is integrated independently by the model.

The error covariance of the ensemble evolves
according to

P = FP'FT 4+ Q, + 1l (27)

where F is the tangent linear operator evaluated at the
current time step. This is again an equation of the same
form as is used in the standard Kalman filter, except of
the extra terms n.l. that may appear if f is nonlinear.
Implicitly, the EnKF retains these terms also for the
error covariance evolution.

For a linear dynamical model, the sampled P, con-
verges to P for infinite ensemble sizes and, independent
from the model, R, converges to R and Q, converges to
Q. Thus, in this limit, both algorithms, the KF and the
EnKF, are equivalent.

For nonlinear dynamics the so-called extended Kal-
man filter may be used and is given by the evolution
Egs. (26) and (27) with the n.l. terms neglected.
Ensemble-based filters include the full effect of these
terms and there are no linearizations or closure
assumptions applied. In addition, there is no need for a
tangent linear operator, such as F, or its adjoint, and this
makes these methods very easy to implement for prac-
tical applications.

This leads to an interpretation of the EnKF as a
purely statistical Monte Carlo method where the
ensemble of model states evolves in state space with
the mean as the best estimate and the spreading of the
ensemble as the error variance. At measurement times
each observation is represented by another ensemble,
where the mean is the actual measurement and the
variance of the ensemble represents the measurement
errors.

4 Practical formulation and interpretation

This section discusses the EnKF in more detail with
focus on the practical formulation and interpretation. It
is shown that an interpretation in the “ensemble space”
provides a better understanding of the actual algorithm
and also allows for very efficient algorithms to be
developed.

4.1 The initial ensemble

The initial ensemble should ideally be chosen to properly
represent the error statistics of the initial guess for the
model state. However, a modest mis-specification of the
initial ensemble normally does not influence the results
very much over time. The rule of thumb seems to be that
one needs to create an ensemble of model states by
adding some kind of perturbations to a best-guess esti-
mate, and then integrate the ensemble over a time
interval covering a few characteristic time scales of the
dynamical system. This will ensure that the system is in
dynamical balance and that proper multivariate corre-
lations have developed.

The perturbations can be created in different ways.
The simplest is to sample random numbers (for a scalar
model), random curves (for a 1-D model) or random
fields (for a model with 2 or higher dimensions), from a
specified distribution. In Appendix E there is an exam-
ple of a procedure for generating such random pertur-
bations.

4.2 The ensemble integration

The ensemble of model states is integrated forward in
time according to the stochastic Eq. (16). In a practical
implementation this becomes just a standard integration
of the numerical model but subject to a stochastic noise
which resembles the uncertainties in the model. Note
that the EnKF allows for a wide range of noise models.
Stochastic terms can be added to all poorly known
model parameters and one is not restricted to using
Gaussian distributed noise. Further, it is possible to use
time-correlated (red) noise by transforming it into white
noise, as is explained in the following section. A dif-
ferent noise model will change the form of the stochastic



Eq. (16) and also lead to a different form of the
Fokker-Planck Eq. (17). However, the Fokker—Planck
equation is never used explicitly in the algorithm and
the EnKF would still provide a Monte Carlo method
for solving it.

4.2.1 Simulation of model errors

The following equation can be used for simulating the
time evolution of model errors:

@ =0 +V1—olw_y. (28)

Here we assume that wy is a sequence of white noise
drawn from a distribution of smooth pseudorandom
fields with mean equal to 0 and variance equal to 1. Such
fields can be generated using the algorithm presented in
Appendix E. The coefficient « € [0,1) determines the
time decorrelation of the stochastic forcing, e.g., a =0
generates a sequence which is white in time, while o = 1
will remove the stochastic forcing and represent the
model errors with a random field which is constant in
time.

This equation ensures that the variance of the
ensemble of ¢,s is equal to 1 as long as the variance
of the ensemble of ¢;_;s is 1. Thus, this equation will
produce a sequence of time-correlated pseudorandom
fields with mean equal to zero and variance equal
to 1.

The covariance in time between ¢; and ¢;, determined
by Eq. (28), is

g, = o, (29)

Determination of o.. The factor o should be related to the
time step used and a specified time decorrelation length
7. The Eq. (28), when excluding the stochastic term,
resembles a difference approximation to

0q 1

- __ 30
5= 20 (30)
which states that ¢ is damped with a ratio e~! over a

time period ¢ = 7. A numerical approximation becomes

At
gk = (1—7>Qk1, (31)
where At is the time step. Thus, we define o as
At
o=1—-—, (32)
T
where © > Ar.

Physical model. Based on random walk theory (see
below), the physical model can be written as

i =fy) + VAtopy, (33)

where o is the standard deviation of the model error and
p is a factor to be determined. The choice of the sto-
chastic term is explained next.
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Variance growth due to the stochastic forcing. To explain
the choice of the stochastic term in Eq. (33) we will use a
simple random walk model for illustration, i.e.,

Vi =y + VAtopg,. (34)
This equation can be rewritten as:
k=1
Vi = Yo + VAiop Z‘Ii+1~ (35)
i=0

The variance can be found by squaring (35) and taking
the ensemble average, i.e.,

n—1 n—1 r
Y, = Yol + Ata®p? (Z qk+1> (Z Qk+1> (36)
k=0 k=0
n—1 n—1
=Yl +Ata?p? > D giqL, (37)
=0 i=0
n—1 n—1
= Yoty +A1a7p? Y > ol (38)
=0 i=0
n—1
= Yoo + Ata?p? (—n +2 Z(n — i)oci> (39)
i=0
— n—2a — no? + 20" t!
= Yol + Ata’p? : (40)

(1 -2’

where the expression (29) has been used. Note that n
here denotes the number of time steps and not the
dimension of the model state as in the remainder of this
paper. The double sum in Eq. (38) is just summing ele-
ments in a matrix and is replaced by a single sum
operating on diagonals of constant values. The sum-
mation in Eq. (39) has an explicit solution (Gradshteyn
and Ryzhik 1979, formula 0.113).

If the sequence of model noise ¢, is white in time
(x = 0), this equation implies an increase in variance
equal to ¢?p? when Eq. (34) is iterated n time steps of
length Az, over one time unit (nA¢ = 1). Thus, in this case
p = 1 is a natural choice, since this leads to the correct
increase in ensemble variance given by ¢°.

In the case with red model errors, the increase in
ensemble variance over one time unit will increase up to
a maximum of ¢?p?/At¢ in the case when o =1 (not
covered by Eq. 39).

The two Egs. (28) and (33) provide the standard
framework for introducing stochastic model errors when
using the EnKF. The formula (40) provides the mean
for scaling the perturbations in Eq. (33) when changing o
and/or the number of time steps per time unit, n, to
ensure that the ensemble variance growth over a time
unit remains the same.

Thus, the constraint that

n—2a — no? + 2a"t!
(1—ap

1 =p’At : (41)
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defines the factor

2:i (1*“)2
Atn — 20 — no? + 2o+’

p (42)
which ensures that the variance growth over time be-
comes independent of & and A¢ (as long as the dynamical
model is linear).

4.2.2 Estimation of model errors

When red model noise is used, correlations will develop
between the red noise and the model variables. Thus,
during the analysis it is also possible to consistently
update the model noise as well as the model state. This
was illustrated in an example by Reichle et al. (2002).
We introduce a new state vector which consists of
augmented with ¢. The two Egs. (28) and (33) can then
be written as

(4)-

During the analysis we can now compute covariances
between the observed model variable and the model
noise vector ¢ and update this together with the state
vector. This will lead to a correction of the mean of ¢ as
well as a reduction of the variance in the model noise
ensemble. Note that this procedure estimates the actual
error in the model for each ensemble member, given the
prescribed model error statistics.

The form of Eq. (28) ensures that, over time, ¢; will
approach a distribution with mean equal to zero and
variance equal to one, as long as we do not update ¢, in
the analysis scheme.

For an illustration of the use of time correlated model
errors and their estimation we refer to Appendix F.

Oy

<f(¢k_1) + \/Eapq/) * <WWH >

0
(43)

4.3 The EnKF analysis scheme

This section attempts to explain in some detail how the
EnKF analysis can be computed efficiently for practical
applications. In particular, it discusses how the filter can
be used to compute a global analysis at an affordable
cost, even with a very large number of measurements. It
presents a storage scheme which requires only one copy
of the ensemble to be kept in memory, and an efficient
algorithm for computation of the expensive final matrix
multiplication. The concept of a local analysis is dis-
cussed in Section 4.4. A discussion is also given on the
assimilation of nonlinear measurements in Section 4.5, a
problem which is solved by augmenting the model state
with the model’s measurement equivalents. Morcover,
this algorithm also allows for the efficient assimilation of
in situ measurements in a consistent manner where one
entirely relies on the ensemble predicted error statistics
(see Appendix C). Finally a discussion is given on

the assimilation of nonsynoptic measurements in
Section 4.6.

4.3.1 Definitions and the analysis equation

Define the matrix holding the ensemble members
v, € R,

A= (1,0, ) € RV, (44)

where N is the number of ensemble members and # is the
size of the model state vector. o

The ensemble mean is stored in each column of 4
which can be defined as

A= Aly, (45)

where 1y € RV*V is the matrix where each element is
equal to 1/N. We can then define the ensemble pertur-
bation matrix as

A=A4—-A4=A(-1y). (46)

The ensemble covariance matrix P, € R"*" can be de-
fined as

A/(A/)T
N—-1"~
Given a vector of measurements d € R”, with m being

the number of measurements, we can define the N vec-
tors of perturbed observations as

P, =

(47)

dj:d+€j, ‘]':],...7]\77 (48)
which can be stored in the columns of a matrix
D= (dl,dz,...,dN) S §Rm><N, (49)

while the ensemble of perturbations, with ensemble
mean equal to zero, can be stored in the matrix

Y= (e e, en) € RN, (50)

from which we can construct the ensemble representa-
tion of the measurement error covariance matrix

YY?

The standard analysis equation, expressed in terms of
the ensemble covariance matrices, is

A=A+ P.H'(HP.H + R, (D — HA).

(52)
Using the ensemble of innovation vectors defined as:
D' =D - HA (53)

and the definitions of the ensemble error covariance
matrices in Eqgs. (51) and (47) the analysis can be ex-
pressed as:

A=A+ AATH (HAATH + YY) ' D). (54)
The potential singularity of the inverse computation
requires the use of a pseudo inverse and the practical
implementation is discussed next.



4.3.2 Practical formulation and implementation

The traditional way of solving the analysis Eq. (54)
would involve the computation of the eigenvalue
decomposition directly from the m x m matrix,

HAATH + YY" = ZAZT, (55)

which has the inverse (or pseudo inverse if the matrix is
singular)

(HAATH" + YYT)™' = ZA~' 27 (56)

The cost of the eigenvalue decomposition is propor-
tional to m> and becomes unaffordable for large m.
Note, however, that the rank of ZAZ" is less than or
equal to N. Thus, A will have N or less non-zero ei-
genvalues and it may therefore be possible to use a more
efficient eigenvalue decomposition algorithm which
computes and stores only the first N columns of Z.

It is important to note that if different measurement
types are assimilated simultaneously, the observed
model variables need to be made nondimensional or
scaled to have similar variability. This is required to
ensure that the eigenvalues corresponding to each of the
measurement types have the same magnitude. The
standard approach for resolving this is to assimilate
different measurement types, which normally have un-
correlated errors, sequentially one dataset at a time. The
validity of this approach has been shown, e.g., by
Evensen and van Leeuwen (2000). This ensures that the
results are not affected by a poor scaling, which in the
worst case may result in the truncation of all eigenvalues
corresponding to measurements of one kind.

Alternative solution for large m. If the perturbations
used for measurements are chosen such that

HAYT =0, (57)

meaning that the ensemble perturbations and the mea-
surement errors are uncorrelated (equivalent to the
common assumption of uncorrelated forecast and mea-
surement errors), then the following is valid

HA'ATH" + YYT = (HA' + Y)(HA' + Y)". (58)

This is an important point since it means that the inverse
can be computed to a cost proportional to mN rather
than m?. This is seen by the following: first compute the
singular value decomposition (SVD) of the m x N ma-
trix

HA' +Y = UV (59)
The Eq. (58) then becomes
HAATH + YY" = UV vI'U" = UZsTUT.  (60)

Here the product =X will be identical to the upper left
N x N quadrant of A, which corresponds to the N
nonzero eigenvalues. Further, the N singular vectors
contained in U are also identical to the N first eigen-
vectors in Z. Thus, the inverse is again Eq. (56). The
numerical cost is now proportional to mN, which is a
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huge benefit when m is large. This procedure allows us to
efficiently compute the inversion for a global analysis in
most practical situations.

Update costs. As soon as the inversion just discussed has
been completed, the analysis can be computed from

A=A+ A HA) UAN'U'D . (61)

The matrix A~! will have nonzero elements only on the
diagonal. If we use the pseudo inverse taking into ac-
count e.g., 99% of the variance, only the first few p < N,
terms will be nonzero since the rank of the inverted
matrix is p < N from Eq. (58). This can be exploited
using the following scheme:

X =A0" e RV mp, (62)
X, =XxXiD RN mNp, (63)
X;=UX, c®R"Y mNp, (64)
X, = (HA)'X; eRVY mNN, (65)
A=A+ A'X, RN aNN, (66)

where the last two columns denote the dimension of the
resulting matrix and the number of floating point
operations needed to compute it. Sincep < Nand m < n
for all practical applications, the dominant cost is now
the last computation, which is nN?, and which is inde-
pendent of m. All the steps including the singular value
decomposition have a cost which is linear in the number
of measurements rather than quadratic. A practical ap-
proach for performing this last multiplication will be
discussed later.

If we use a full rank matrix, HP,H' + R, where R is
not represented using an ensemble of perturbations, the
computation of the analysis will be significantly more
expensive. First, the full matrix HP,H' = (HA')(HA')"
must be constructed to a cost of m>N, followed by the
eigenvalue decomposition Eq. (55), which requires an-
other O(m?) floating point operations. In this case, the
steps (63) and (64) also come at a cost of m*>N. Thus, the
introduction of low rank by representing the measure-
ment error covariance matrix with an ensemble of per-
turbations leads to a significant saving by transforming
all the m*>N operations to be linear in m.

4.3.3 The case with m < N.

The algorithm described above is optimized for the case
when m > N. In the case when m < N, a small modifi-
cation is appropriate. First, note that even if the eigen-
value factorization in Eq. (55) now becomes less
expensive than the singular value decomposition in Eq.
(59), the construction of the full matrix HA'(HA')" is
even more expensive (requires m*>N floating point oper-
ations). Thus, it is still beneficial to use the ensemble
representation, Y, for the measurement error statistics
and to compute the SVD using the algorithm described
above.
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It was shown above that the dominant cost is asso-
ciated with the final computation in Eq. (66) which is
nN?. This can now be reduced by a reordering of the
multiplications in Eq. (61). After X3 is computed, the
equation is

A= A+ A'(HA)" X3, (67)

where the matrix dimensions in the last term can be
written as (n x N)(N x m)(m x N). Computing the
multiplications from left to right requires 2nmN opera-
tions, while computing them from right to left requires
(m + n)N? operations. Thus, for a small number of
measurements when 2nmN < (m +n)N? it is more
efficient to compute the influence functions
A'(HA" = P,H" first, and then add these to the
forecast ensemble using the coefficients contained in Xj3.

4.3.4 Remarks on analysis equation

The Eq. (66) expresses the analysis as a first guess plus a
combination of ensemble perturbations, i.e., 4’X;. From
the discussion above we could also write the analysis
equation as:

A*=A+ A (HA)' X3 = A+ P.H (N — 1)X;. (68)

This is the standard notation used in Kalman filters
where one measures the error covariance matrix to
compute the influence functions, one for each measure-
ment, which are added to the forecast.

Note also that the Eq. (66) can be written as

A=A+ (A—-A)X, (69)
=A+AI-1y)X, (70)
= A(I + X4) (71)
= AX;, (72)

where we have used 1yX; =0. Obviously, the first
observation to make is that the analyzed ensemble be-
comes a weakly nonlinear combination of the predicted
ensemble. The notation “weakly nonlinear combina-
tion” is used since the X5 matrix depends on the forecast
ensemble only through the projection of A4 onto the
measurements, i.e., AH. It then becomes of interest to
examine X5 to study the properties of this particular
combination. Each column of X5 will hold the coeffi-
cients defining the corresponding new ensemble member.
For this estimate to be unbiased, the sum of each col-
umn of X5 should be equal to 1, which is actually a good
test for the numerical coding leading to Xs. Also, one
can in most applications expect that Xs is diagonal
dominant since the diagonal holds the coefficient for the
first-guess ensemble member, while all off-diagonal ele-
ments introduce corrections imposed by the measure-
ments. By examining the rows of the matrix X5, one can
determine if some ensemble members appear to be more
important than others. Note that the off-diagonal ele-
ments in X5 will also have negative values.

Computation of the mean of the analyzed ensemble
can be written as follows:

_ 1 &
WWZW, (73)
=
1 N N
N (74)
j=1 i=1
1 N N
S (79
i=1 j=1

1 N

N
= ]VZ Yy, where y; = Z;Xij'
=

—1

(76)

Thus, the sum, y;, of the elements in each row in Xj
defines the coefficients for the combination of forecast
members defining the mean of the analysis. The y; values
therefore also determine which of the ensemble members
contributes most strongly to the analysis.

If we compute an SVD decomposition of the forecast
ensemble, the Eq. (66) can be written as

A* = AX;, (77)
= UV’ Xs, (78)
= UX;. (79)

Thus, it is possible to visualize the analysis as a combi-
nation of orthogonal singular vectors. This procedure
may be useful, since it allows us to reject possible
dependent ensemble members and possibly add new
orthogonal members if these are needed. In particular, it
can be used to examine how linearly independent the
ensemble of model states is.

Some interesting conclusions which can be drawn are:

1. The covariances are only indirectly used to create
the matrix HPH', which includes covariances only
between the observed variables at the locations of the
observations. The actual covariances are never com-
puted when the SVD algorithm in Section 4.3.2 is
used, although they are used implicitly.

2. The analysis is not really computed as a combination
of covariance functions. It is, in fact, computed as a
combination of the forecast ensemble members. Each
of these members can be considered as drawn from an
infinite sample of dynamically consistent model states
where the correct multivariate correlations are pres-
ent in each ensemble member.

3. The covariances are important only for computing the
best possible combination, i.e., the matrix Xs. As long
as the ensemble-based X5 is a good approximation,
the accuracy of the final analysis will be determined by
how well the error space spanned by the ensemble
members represents the true error space of the model.

Clearly, from Eq. (72), the analysis becomes a combi-
nation of model states even if Eq. (68) is used for the
actual computation, since these two equations are
identical.



For a linear model a linear combination of model
solutions is also a solution of the model. Thus, for a
linear model, any choice of X5 will produce an ensemble
of analyzed model states which is also a solution of the
linear model.

If Eq. (68) is used for the computation of the analysis
but with filtering applied to the covariance functions,
one actually introduces spurious or nondynamical
modes in the analysis. Based on these points, it is not
wise to filter covariance functions, as has been proposed
in a number of studies, e.g., by Mitchell (2001).

4.4 Local analysis

To avoid the problems associated with a large m, many
operational assimilation schemes have made an
assumption that only measurements located within a
certain distance from a grid point will impact the anal-
ysis in this grid point. This allows for an algorithm
where the analysis is computed grid point by grid point.
Only a subset of observations which are located near the
current grid point is used in the analysis for this par-
ticular grid point. This algorithm is approximative and it
does not solve the original problem posed. Further, it is
not clear how serious the approximation is.

Such an approach is not needed for handling a large
m in the EnKF if the algorithm just described is used.
However, there are other arguments for computing local
analyses grid point by grid point. The analysis in the
EnKF is computed in a space spanned by the ensemble
members. This is a subspace which is rather small
compared to the total dimension of the model state.
Computing the analysis grid point by grid point implies
that a small model state is solved for in a relatively large
ensemble space. Further, the analysis will use a different
combination of ensemble members for each grid point,
and this also allows for a larger flexibility in the scheme
to reach different model solutions.

For each horizontal grid point, we can now compute
the corresponding Xs using only the selected measure-
ments contributing to that particular grid point and
update the ensemble for that particular grid point. The
analysis at grid point (i, /), i.e., A;; then becomes:

AG = Ay Xs i)

(80)
(81)

where X; is the global solution while X (; ;) becomes the
solution for a local analysis corresponding to grid point
(i,j) where only the nearest measurements are used in
the analysis. Thus, it is possible to compute the global
analysis first, and then add the corrections from the local
analysis if these are significant.

The quality of the EnKF analysis is clearly connected
to the ensemble size used. We expect that a larger
ensemble is needed for the global analysis than the local
analysis to achieve the same quality of the result. That is,
in the global analysis a large ensemble is needed
to properly explore the state space and to provide a

= A(ij)Xs + A (Xs i) — Xs),
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consistent result for the global analysis which is as good
as the local analysis. We expect this to be application-
dependent. Note also that the use of a local analysis
scheme is likely to introduce nondynamical modes,
although the amplitudes of these will be small if a large
enough influence radius is used when selecting mea-
surements.

In dynamical models with large state spaces, the local
analysis allows for the computation of a realistic analysis
result while still using a relatively small ensemble of
model states. This also relates to the discussions on
localization and filtering of long range correlations by
Mitchell et al. (2002).

4.5 Nonlinear measurement operators

The expression D' = D — HA is just the difference be-
tween the ensemble of measurements and the ensemble
of observed model states. If the observations are non-
linear functions of the model state, this matrix formu-
lation using H becomes invalid. The traditional solution
is to linearize and iterate. It is possible to augment the
model state with a diagnostic variable which is the model
prediction of the measurement. Thus, ifd = h(y),...) + €,
then a new model state can be defined for each ensemble
member as:

=W ). (82)
By defining the new ensemble matrix as:
2 = (@17$27"'7$N) € %ﬁXNa (83)

with n being the n plus the number of measurement
equivalents added to the original model state, the anal-
ysis can be written:

o [ -1
A=A+ AATH (HA’A’THT + YYT) D, (34)
where the now linear innovations (with H being a direct
and linear measurement functional) becomes

D=D-HA. (85)

From this expression, where the ensemble members have
been augmented with the observation equivalent, we can
compute the following using a linear (direct) measure-
ment functional: the innovation D’; the model-predicted
error_ covariance of the observation’s equivalents
HA'A'"H"; and the covariance between the observations
and all prognostic model variables from 4’4" H” .

The analysis is a combination of model-predicted
error covariances between the observation equivalents
h(\,...) and all other model variables. Thus, we have a
fully multivariate analysis scheme.

4.6 Assimilation of “‘nonsynoptic”’ measurements

In some cases, measurements occur with high frequency
in time. An example is along-track satellite data. It is not
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practical to perform an analysis every time there is a
measurement. Further, the normal approach of assimi-
lating, at one time instant, all data collected within a
time interval, is not optimal. Based on the theory from
Evensen and van Leeuwen (2000), it is possible to
assimilate the nonsynoptic measurements at one time
instant by exploiting the time correlations in the
ensemble. Thus, a measurement collected at a previous
time allows for the computation of the HA at that time
and thereby also the innovations. By treating these as
augmented model variables, Eq. (84) can again be used
but with the h(i/,...) now denoting the measurements
collected at earlier times.

5 Numerical implementation of the EnKF

The algorithm as explained in the previous sections
provides an optimal approach for computing the EnKF
analysis. The following provides a basis explaining
the implementation of the EnKF analysis scheme. It
assumes access to the BLAS and EISPACK libraries,
where highly optimized numerical subroutines are
available for most computer systems and which can be
obtained for free from the archive at www.netlib.no.

5.1 Storing the ensemble on disk

For most practical applications one will not want to
keep the whole ensemble in memory during the ensemble
integrations. Rather, an approach where ensemble
members are kept in a file residing on disk is convenient.
This allows for the system to read a particular member
from file, integrate it forward in time, and then store it
on disk again following the integration. An approach
where each member is stored in a record in a direct
Fortran file is most convenient. This allows us to read
and write specific records containing individual ensem-
ble members.

5.2 Analysis implementation

The algorithm for the analysis exploits that we can
compute once and store all innovations, measurement
perturbations and the measurements of the ensemble.
Thus, we start with the following:

1. Read the whole ensemble forecast into A.

2. Compute the matrix HA.

3. Compute the measurement perturbations Y.

4. Compute the innovations D'.

5. Compute HA and subtract it from HA to get HA'
(requires H to be linear).

The following subroutine can then be used without any
modification to compute the analysis for all kinds of
model states.

subroutine analysis (A, D, E, S, ndim, nrens, nrobs)
! Computes the analysed ensemble in the EnKF
! Written by G. Evensen (Geir.Evensen(@nersc.no)
' This routine uses subroutines from BLAS and EISPACK
land calls the additional multiplication routine multa.
use m_multa
implicit none

! Dimension of model state
integer, intent(in) :: ndim
! Number of ensemble members
integer, intent(in) :: nrens
! Number of observations
integer, intent(in) :: nrobs
! Ensemble matrix
real, intent(inout) :: A(ndim, nrens)
! Matrix holding innovations
real, intent(in) :: D(nrobs, nrens)
! Matrix holding HA'
real, intent(in) = S(nrobs, nrens)
! Matrix holding observation perturbations

real, intent(in) :: E(nrobs, nrens)

! Local variables
real, allocatable, dimension (:,:) :: &
X1,X2, U, X4, Reps
real, allocatable, dimension (:) ::&
sig, work
real ES(nrobs, nrens), X3(nrobs, nrens), V(nrens, nrens)
real sigsum, sigsum |

integer ierr, nrsigma, 1, j, Iwork, nrmin, iblkmax

| L O O I O

! Do nothing if only one measurement
if (nrobs= =1) then
print %, analysis: no support for nrobs=1’
return
endif

rrrrrrrrrrrrrrrrrrrrrrrrrrrrr

! Minimum of nrobs and nrens
nrmin =min (nrobs, nrens)

| O O I O

! Compute HA’ + E
ES=S+E
EEERRERRERRERRRERERRRRRERRRERER



! Compute SVD of HA’ + E— > U and sig, using Eispack

allocate (U(nrobs, nrmin))

allocate (sig(nrmin))

lwork =2 * max(3 % nrens + nrobs, 5 x nrens)
allocate (work(lwork))

sig=0.0

call dgesvd (’S’, N, nrobs, nrens, ES, nrobs, sig, &

U, nrobs, V, nrens, work, lwork, ierr)

deallocate(work)

if (ierr/ = 0)then
print %, “ierr from call dgesvd =", ierr
stop

endif

rrrrrrrrrrrrrrrrrrrrrrrrrrrrr

I Convert to eigenvalues
do i =1, nrmin
sig (1) = sig (1) * *2
enddo
SERREREERE RN R EREEREREERE

I Compute number of significant eigenvalues
sigsum = sum(sig (1 : nrmin))
sigsuml = 0.0
nrsigma = 0
do i = 1,nrmin
if (sigsuml /sigsum < 0.999) then
nrsigma = nrsigma + 1
sigsum]1 = sigsum1 + sig(i)
sig(i) = 1.0/sig(i)
else
sig(i : nrmin) = 0.0
exit
endif
enddo
RS EREERERERREERRRERRRERRERREE

! Compute X1

allocate (X1(nrmin, nrobs))

do j =1, nrobs

doi=1, nrmin

X1(@, j) = sigi) = U(j, 1)

enddo

enddo

deallocate(sig)
SERREREERE RN ERERREREEREREERE
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I Compute X2 = X1 xD
allocate (X2(nrmin, nrens))
call dgemm(’n’ , 'n’ , nrmin, nrens, nrobs, 1.0, X1, &
nrmin, D, nrobs, 0.0, X2, nrmin)
deallocate(X1)

| L O I O

! Compute X3 = U % X2
call dgemm(’n’, ’'n’, nrobs, nrens, nrmin, 1.0, U, &
nrobs, X2, nrmin, 0.0, X3, nrobs)
deallocate(U)
deallocate(X2)

| O O I O

! Compute final analysis
if(2 * ndim * nrobs > nrens * (nrobs + ndim)) then
! Case with nrobs ’large’
' Compute X4 = (HA’)'T %« X3
allocate (X4(nrens, nrens))
call dgemm(’t’, 'n’, nrens, nrens, nrobs, 1.0, &
S, nrobs, X3, nrobs, 0.0, X4, nrens)
I Compute X5 = X4 + 1 (stored in X4)
doi=1, nrens
X4(1,1) = X4(i,i) + 1.0
enddo
' Compute A =Ax*xX5
iblkmax = min (ndim, 200)
call multa(A, X4, ndim, nrens, iblkmax)
deallocate (X4)
else
! Case with nrobs ’small’
! Compute representers Reps = A’ * ST
allocate (Reps(ndim, nrobs))
call dgemm(’n’, ’t’, ndim, nrobs, nrens, 1.0, A, &
ndim, S, nrobs, 0.0, Reps, ndim)
I Compute A = A + Reps = X3
call dgemm(’n’, 'n’, ndim, nrens, nrobs, 1.0, &
Reps, ndim, X3, nrobs, 1.0, A, ndim)
deallocate(Reps)
endif
end subroutine analysis

5.3 Final update

The most demanding step in the EnKF analysis is the
final step when evaluating the analysis ensemble from
Eq. (72), i.e.,
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A= AXs, (86)
with
Xs =1+ Xq € RV, (87)

Here the largest matrix to be held in memory is the
ensemble matrix 4 € ®*N. Further, the number of
floating point operations (a multiply and add) is nN?
which is likely to be several orders of magnitude more
than for the previous steps in the algorithm.

This matrix multiplication can easily be computed
while overwriting row by row of A4 using the subroutine
multa listed below, which requires only one copy of the
ensemble to be kept in memory. This subroutine has
been found to perform the multiplication very efficiently.
It uses optimized BLAS routines and includes a block
representation where only a small part of the model state
needs to be held as an additional copy in memory during
the multiplication.

module m_multa
contains
subroutine multa (A, X, ndim, nrens, iblkmax)

implicit none

integer, intent(in) :: ndim
integer, intent(in) :: nrens
integer, intent(in) :: iblkmax

real, intent(in) :: X(nrens, nrens)
real, intent(inout) :: A(ndim, nrens)

real v(iblkmax, nrens) ! Automatic work array

integer ia, ib
do ia = 1, ndim, iblkmax
ib = min(ia + iblkmax — 1, ndim)
v(l:ib —ia+ 1,1 :nrens) = A(ia : ib, 1 : nrens)
call dgemm(’n’, 'n’, ib —ia + 1, nrens, nrens, &
1.0,v(1,1), iblkmax, &
X(1,1), nrens, &
0.0, A(ia, 1), ndim)
enddo
end subroutine multa

end module m_multa

5.3.1 Remark 1

Note that this routine does not care about the order in
which the elements in A are stored for each ensemble
member. Thus, in the call to multa, A can be a multi
dimensional matrix e.g., A(nx,ny,nz,nrens) holding
an ensemble of a univariate three-dimensional model
state. A multivariate model state can be stored in a
structure or type declaration, and still be input to
multa.

5.3.2 Remark 2

In principle, the multiplication has a serious drawback
caused by the stride ndim copies. Here the routine relies
on BLAS for the inner matrix multiplication, since the
BLAS routines have already been designed to optimize
cache performance. The variable iblkmax is used only
for storage considerations and a typical value of 200
seems to work well. This routine also opens for a pos-
sible block representation of the model state.

5.4 A block algorithm for large ensemble matrices

It is still possible to use the EnKF even if the whole
ensemble does not fit in memory. In this case, a block al-
gorithm can be used for the final update, using additional
reads and writes to file. The algorithm goes as follows:

1. Read each individual ensemble member into a vector
one at the time while computing and storing the col-
umns of HA.

2. Compute the measurement perturbations Y.

3. Compute the innovations D'

4. Compute HA and subtract it from HA to obtain HA'.

Use the algorithm described in the analysis subroutine
to compute Xs. So far, we have only kept one full model
state in memory at the time. It remains to solve the
Eq. (86). Using the block algorithm just discussed, it is
possible to perform this computation without keeping
all of the ensemble in memory at once. A proposed
strategy is to store the ensemble in several files, say one
file for the temperature, one for the salinity, etc. Then
the analysis can be performed sequentially on the indi-
vidual blocks, at the cost of one additional read and
write of the whole ensemble.

Appendix A: Consistency checks on error statistics

The EnKF provides error statistics for the results. To
validate the predicted error statistics it is possible to
compare statistics computed from the innovation se-
quence with the predicted error statistics.

If the model forecast is written as:

W=y +q, (88)
i.e., it is given as the truth plus an error, and the mea-
surements are written as:

d=H)' +e, (89)
the innovation becomes:
d— H}/ =e¢— Hy. (90)

By squaring this equation and taking the expectation we
obtain the expression
(d— HY/)(d—Hy/)" =R+ HP'H", (91)

where correlations between the forecast error and the
measurement error have been neglected.




Thus, it is possible to compute the variance of the
innovation sequence in time, subtract the measurement
variance and compare this with the predicted error vari-
ance from the ensemble. This provides a solid consistency
test on the prescribed error statistics used in the EnKF.

Appendix B: Ensemble Optimal Interpolation (EnOl)

Traditional optimal interpolation (OI) schemes have
estimated or prescribed covariances using an ensemble
of model states which has been sampled during a long
time integration. Normally, the estimated covariances
are fitted to simple functional forms which are used
uniformly throughout the model grid.

Based on the discussion in this paper it is natural to
derive an OI scheme where the analysis is computed in
the space spanned by a stationary ensemble of model
states sampled, e.g., during a long time integration. This
approach is denoted Ensemble OI (EnOI).

The EnOlI analysis is computed by solving an equa-
tion similar to (54) but written as:

W=+ ad' ATH («HA'A"H” + YY) (d — Hy).
(92)

The analysis is now computed for only one single model
state, and a parameter « € (0, 1] is introduced to allow
for different weights on the ensemble versus measure-
ments. Naturally, an ensemble consisting of model states
sampled over a long time period will have a climato-
logical variance which is too large to represent the actual
error in the model forecast, and o is used to reduce the
variance to a realistic level.

The practical implementation introduces o in Eq.(59),
which is now written as:

VoHA + Y = UV, (93)

and the coefficient matrix X4 in Eq.(65) is further scaled
with o before Xs is computed.

The EnOI method allows for the computation of a
multivariate analysis in dynamical balance, just like the
EnKF. However, a larger ensemble may be useful to
ensure that it spans a large enough space to properly
represent the correct analysis.

The EnOI can be an attractive approach to save
computer time. Once the stationary ensemble is created,
only one single model integration is required in addition
to the analysis step where the final update cost is reduced
to @ (nN) floating point operations because only one
model state is updated. The method is numerically ex-
tremely efficient but it will always provide a suboptimal
solution compared to the EnKF. In addition it does not
provide consistent error estimates for the solution.

Appendix C: Assimilation of in situ measurements

The direct assimilation of in situ observations such as
temperature and salinity profiles is problematic in ocean
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models unless both temperature and salinity are known
simultaneously or the correct temperature-salinity cor-
relation is known. Thus, using simple assimilation
schemes, it is not known, a priori, how to update the
water-mass properties in a consistent manner, see, €.g.,
Troccoli et al. (2002) and Thacker and Esenkov (2002).

From the interpretation of the EnKF analysis as a
combination of valid model states, and the discussion on
nonlinear measurement functionals in the EnKF, it is
possible to compute a consistent analysis even if only
temperature (or salinity) is observed. The algorithm
applies a definition of a measurement functional which
interpolates the model temperature (or salinity) to the
measurement location in depth. The model state is then
augmented with the observation equivalents for each
independent in situ measurement. Innovations and co-
variances between the measurement equivalents can then
be evaluated and the standard analysis equations can be
used to compute the analysis. This approach ensures
that the model update in the vertical and horizontal is
performed consistently with the error statistics predicted
by the ensemble.

In order to obtain a variable’s value at a specific
depth, an interpolation algorithm is needed. We use a
second-order spline to interpolate in the vertical. It is
important to note that when interpolating values be-
tween different layers the interpolating spline should not
pass exactly through the mean of the variable at the
center of each layer. Instead, a criterion is used where
the mean value computed by integrating the spline
function across the layer is equal to the mean of the
variable in that layer. The details of the algorithm fol-
lows.

Appendix C.1: Upper layer

Layer one is divided into upper and lower parts where
the spline polynomial, used to represent the variable to
be interpolated is defined as:

Al = {co for x € [0,1h)

a1x2 +bix+c forxe [%hl,hl]. (94)

Here 4; is the location of the lower interface of layer i.
Conditions are specified at x = %hl for continuity of the
function and the derivative, i.e.,

fl(%hl) — o, (95)
and

ofix)| _

. %hl_o, (96)

and in addition the integral over layer 1 should satisfy

hy

1 1 7 3 1
—/fl(x) =Co—+alﬁh%+b1—h1 +c15=u,

hy 2 8 2 ®7)

0
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with #; being the model-predicted layer variable in layer
one.

Appendix C.2: Interior layers

Within each interior layer, i, a function of the form
fi(x) = aix® + bix + ¢, (98)

is used to represent the model variables. For each interior
layer there are three conditions which determine the three
unknowns in each layer, i.e., continuity at layer interfaces

filhi=1) = fim1(hiy), (99)
continuity of derivatives at layer interfaces
ofi Ofi—

ox | ox |,

and a condition for the mean of the variable becomes
after some manipulations

h_hll/f

-1

( Do+ b+ R

1
+bis

) (hl +/’ll‘_1) +Ci = ﬁi.

(101)

Appendix C.3: Closing the system

A final condition is obtained by setting the variable at
the sea floor equal to the mean of the variable in the
bottom layer,

Si(hi) = u.

Thus, the system is closed.

(102)

Appendix d: Ensemble Kalman Smoother (EnKS)

In light of the discussion in this paper it is also possible
to derive an efficient implementation of the EnKS. The
EnKS, as described in Evensen and van Leeuwen (2000),
updates the ensemble at prior times every time new
measurements are available. The update exploits the
space—time correlations between the model forecast at
measurement locations and the model state at a prior
time. It allows for a sequential processing of the mea-
surements in time. Thus, every time a new set of mea-
surements becomes available, the ensemble at the
current and all prior times can be updated.

Similar to the analysis Eq. (54) the analysis for a
prior time ¢ which results from the introduction of a new
measurement vector at time ¢ > ¢ can be written as

A=A+ A AT (HH"
(HA'(t)A" (t)H" +YYXT) "' D'(). (103)

This equation is updated repetitively every time a new
set of measurements are introduced at future times z.

The EnKS analysis can best be computed using the
formulation discussed in the previous sections, and in
particular using the definition of X5 in Eq. (87). It is
easily seen that the matrix of coefficients Xs(¢) corre-
sponding to the measurements at time ¢, is also used on
the analysis ensemble at the prior times ¢ to update the
smoother estimate at time ¢’

Thus, the smoother estimate at a time ¢ where
ti1 <t <t; <, using data from the future data times,
e, (fi,tip1,. .. 1), 18 just

A(IIEnKS( HX5

As long as the previous ensemble files have been stored,
it is straightforward to update them with new informa-
tion every time a new set of measurements is available
and the matrix X5 corresponding to these measurements
has been computed. This discussion has assumed that
a global analysis is used. The local analysis becomes
a little less practical since there is an X5 matrix for each
grid point.

The product in Eq. (104) has an important property.
The multiplication of the ensemble with X5 will always
result in a new ensemble with a different mean and a
smaller variance. Thus, each consecutive update through
the repetitive multiplication in (104) will lead to slight
reduction of variance and slight change of mean. Even-
tually, there will be a convergence with only negligible
updates of the ensemble when measurements are taken
further into the future than the actual decorrelation time.

= Apnxr(? (104)

Appendix E: Generating pseudorandom fields

Here a procedure is given which can be used to compute
smooth pseudo random fields with mean equal to zero,
variance equal to one, and a specified covariance which
determines the smoothness of the fields. The algorithm
follows the presentation in the appendix of Evensen
(1994a), and additional details and explanations are
given by Natvik (2001).

Let ¢ = g(x,y) be a continuous field, which may be
described by its Fourier transform

q(x,y) = 7 /OO q(k)e

-0 —00

kXK. (105)

Now, we are using an N x M grid. Further, we define
k = (x1,7,), where [ and p are counters and x; and y,, are
wave numbers in the N and M directions, respectlvely
We now obtain a discrete version of Eq. (105),

Zq Kb, Vp

where x, = nAx and y, = mAy. For the wavenumbers,
we have

2711 2nl
XN NAX

G (s ) il im) A, (106)

K| = (107)
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Yp = e MAY (108)
(2m)°
Ak = AkAy = ——. 1
*OT = NMAxAy (109)
We define (assume) the following form of g(k):
3 —_C 34/ g,
Ki,Y,) = e T[0Tl 110
q( i l)p) \/H ( )
where ¢, , € [0, 1] is a random number which introduces

a random phase shift. (The exponential function may be
written as a sum of sine and cosine terms). Note that
increasing wavenumbers x; and 7, will give an expo-
nentially decreasing contribution to the expression
above. Now, Eq. (110) may be inserted into Eq. (106),
and we obtain:

q(xi’Hle)
= Z

We want Eq. (111) to produce real fields only. Thus,
when the summation over /,p is performed, all the
imaginary contributions must add up to zero. This is
satisfied whenever

(% +I]) /O- an(/)]pe (le/r+/py»)x>Ak

(111)

q(k1,7,) =4 (k-1,7-); (112)
where the star denotes complex conjugate, and
Im §(x,7) = 0. (113)

The formula (111) can be used to generate an ensemble
of pseudorandom fields with a specific covariance
determined by the parameters ¢ and ¢. An expression for
the covariance is given by:

q(x1,71)q(x2,12)

= 37 G171, 7, ) @CTT T ) (AK)2, (114)
Lprs

By using Eq. (112), and by noting that the summation
goes over both positive and negative » and s, we may
insert the complex conjugate instead, i.e.,

q(x1,31)q(x2,¥)

- Z Klv?p

Lp,r,s

= Z AkcZe (¥

Lpyrs

Kr, /5) (lel—l€yxz+"y'pJ/1—‘/sy2)(Ak)2

+” +12492)/0? 2nt((),p )

~ ei(lc,xlflcrxfr",'pyl 7ysyz).

(115)

We assume that the fields are J- correlated in wave
space. That is, we assume that there is a distance
dependence only (isotropy), and we may set / = » and
p =s, and the above expression becomes

q(xl 'Vl )q<x2ay2)

= Ak¢? Z

(53 +73)/ 0 é [1e1Ge1=x2)+3, (01 —yv)]

(116)
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From this equation, the variance at (x,y) is

(e )q(x,y) = Ak Y e 209/
Lp

Now, we require the variance to be equal to 1. Further,
we define a decorrelation length r;,, and we require the
covariance corresponding to 7, to be equal to e~!. For
the variance, we get the equation:

(117)

1_Akczze (+9p)/ (118)
which means that
1
2 _
N (119)

If we let x; —x; =7, and y; —» =0, we must have a
covariance equal to e~! between these points, i.e.,

20,2Y/52
-1 :AkCZE :6—2(1c/+yp)/(r P

=Akc? Z e 2 +7)/0? cos (k).

(120)
By inserting for ¢? from Eq. (119), we obtain:
—2(kK2+92)/a?
e NI cos(Kyr
PR, (crrs) (121)

—2(k2+92) /a2
le’p e 1ip

This is a nonlinear scalar equation for ¢, which may be
solved using some numerical routine. One can thereafter
find a value for ¢ from Eq. (119).

Once the values for ¢ and ¢ have been determined,
Eq. (111) may be used to create an ensemble of pseudo-
random fields with variance 1 and covariance determined
by the decorrelation length ;. An efficient approach for
finding the inverse transform in Eq. (111) is to apply a
two-dimensional fast Fourier transform (FFT). The
inverse FFT is calculated on a grid which is a few char-
acteristic lengths larger than the computational domain
to ensure nonperiodic fields in the subdomain corre-
sponding to the computational domain (Evensen, 1994a).

To summarize, we are now able to generate (sample)
two-dimensional pseudorandom fields with variance
equal to 1 and a prescribed covariance (isotropic as a
function of grid indices). The simple formulas used in
Section 2 (i.e., using Eq. 28 with a choice of «) can be
used to introduce correlations between the fields.

Appendix F: An example with a scalar model

A simple example is now presented to illustrate some of
the properties of the EnKF and EnKS. There are al-
ready a large number of applications of the EnKF using
different physical models, as cited in Section 2. Thus, in
the following example the focus will be on the stochastic
behaviour of the EnKF and EnKS rather than the im-
pact of a dynamical model on the evolution of error
statistics.
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The model considered is the linear scalar version of
the model described by Eq. (43), with /() = ¢, i.e.,

)+ ()

(fIk) _ ( oG k—1
Y Vi1 + VAtopgy
(122)

Two experiments will be discussed, which both use the
following parameter settings:

1. The time interval is from 0 to 10 time units;

2. the ensemble size is 1000, which is large enough
to eliminate any visible effects of using a finite
ensemble;

3. the time step is df = 0.1, which splits the time interval
into 100 subintervals;

4. the initial ensemble is sampled from .47(0.0,1.0), it
has mean zero and variance equal to one;

5. the model errors are sampled from .47(0.0,1.0),
indicating that the model error variance will increase
with 1.0 when the ensemble is integrated over one
time unit;

. the measurements are sampled from .47(0.0,0.5);

7. there are five measurement times distributed equally

over the time interval.

[®)

The two experiments use different values for the coeffi-
cient o which denote the time correlation of the model
errors. In case A, o = 0.00, which implies white noise,
while in case B a strong time correlation is imposed
using o = 0.95, which results in approximately 2 time
units as the decorrelation time from Eq. (32). The factor
p is computed using the formula (42) to ensure that the
two cases have similar error variance growth in the
stochastic model.

In all the cases both the EnKF and EnKS solutions
are computed, and the procedure for estimation of
model noise discussed in Section 4.2.2 is used.

The EnKF and EnKS results from Case A are shown
in Fig. 1. The thick line shows the ensemble mean which
represents the EnKF estimate. At the measurement
locations, represented by the circles, there are disconti-
nuities in the estimate due to the analysis updates.
During the integration between the measurement loca-
tions the ensemble mean satisfies the dynamical part of
the model equation, i.e., the time derivative of the
solution is zero.

The two dotted lines represent the ensemble mean
with the ensemble standard deviation respectively added
and subtracted and thus indicate the ensemble spread
around the mean. The ensemble standard deviation is
reduced at every measurement time, and increases
according to the stochastic forcing term during the
integration between the measurements.

The thick dashed line is the EnKS solution, which is
computed using the procedure outlined in Appendix D.
Clearly, this provides a continuous curve which is a
more realistic estimate than the EnKF solution. Note
that, due to the use of white noise this curve will have
discontinuous time derivatives at the measurement

[
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Fig. 1 Case A. Results using o = 0.0. The thick solid and dashed
curves are, respectively, the EnKF and EnKS estimates, while the thin
dotted and dash-dot curves represent, respectively, the ensemble
standard deviations around the EnKF and the EnKS estimates. The
circles denote measurements

Fig. 2 Case B. Results using o = 0.95. The thick solid and dashed
curves are respectively, the EnKF and EnKS estimates, while the #in
dotted and dash-dot curves represent, respectively, the ensemble
standard deviations around the EnKF and the EnKS estimates. The
circles denote measurements

locations, a property also found in the representer
solutions by Bennett (1992, 2002) when white model
errors are used.

The thin dash-dot lines indicate the ensemble stan-
dard deviation for the EnKS. Clearly, there is an impact
backward in time from the measurements and the
overall error estimate is smaller than for the EnKF. The
minimum errors are found at the measurement locations
as expected, and after the last measurement the EnKF
and EnKS solutions are identical, in agreement with the
theory from Evensen and van Leeuwen (2000).

In Fig. 2 the results from case B are presented. We
have used the same format and line styles as was used in
Fig. 1. There are several features to note from this
experiment.
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Fig. 3 Case B. The thick solid line is the EnKF estimate of the model
noise. The dotted lines show the standard deviation of the model noise
ensemble around the EnKF estimate of the model noise. The dashed
line is the EnKF estimate as shown in Fig. 2

The EnKF solution now sometimes shows a positive
or negative trend during the integration between the
measurements. This is caused by the assimilation up-
dates of the model noise which introduces a ““bias” in the
stochastic forcing. An explanation for this can be found
by examining Fig. 3 which plots the EnKF solution as
the dashed line, the EnKF estimate for the model noise
as the thick solid line, and the standard deviation of the
model noise is plotted as the dotted lines. It is clearly
seen that the model noise is being updated at the
assimilation steps, e.g., the second measurement indi-
cates that the solution is around —1. This leads to an
update of the model ensemble toward the measurement,
as well as an introduction of a negative bias in the sys-
tem noise. This is the negative bias which previously
should have been used in the model to achieve a better
prediction of this particular measurement. In the con-
tinued integration this bias starts working until it is
corrected to become a positive bias at the next assimi-
lation step. Note that during the integration between the
measurements the bias slowly relaxes back toward zero
as was discussed in Section 4.2.2.

The EnKS solution in case B is smoother than in
case A and there are no longer discontinuous time
derivatives at the measurement locations. Further, the
standard deviation for the EnKS is smoother and indi-
cates that the impact of the measurements is carried
further backward in time.

The estimated EnKS system noise is presented as the
thick solid line in Fig. 4 and also here the time deriva-
tives are continuous at the measurement locations. In
fact, this estimated model noise is the forcing needed to
reproduce the EnKS solution when a single model is
integrated forward in time starting from the initial con-
dition estimated by the EnKS. That is, the solution of

V= + \/Eaqu
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Fig. 4 Case B. The thick solid line is the EnKS estimate of the model
noise. The dotted lines show the standard deviation of the model noise
ensemble around the EnKS estimate of the model noise. The dashed
line is the EnKS estimate as shown in Fig. 2. The dash-dot-dot line is
the EnKS estimate computed from the forward model (123) but with
a number 0.1 subtracted from the result to make it possible to
distinguish the two curves

with ¢, and v, being the EnKS estimated model noise
and initial condition, respectively, will exactly reproduce
the EnKS estimate.

This is illustrated by the two similar curves in Fig. 4,
i.e., the dashed curve which is the EnKS estimate, and
the dash-dot-dot curve which is the solution of the
model forced by the estimated EnKS model noise (note
that the curves are nearly identical and a number 0.1 was
subtracted to make it easier to distinguish the curves).
Obviously, the estimated model noise is the same as is
computed and used in the forward Euler Lagrange
equation in the representer method (Bennett, 1992,
2002). This points to the similarity between the EnKS
and the representer method, which for linear models will
give identical results when the ensemble size becomes
infinite.

Appendix G: Bias and parameter estimation

The estimation of poorly known model parameters or
biases in dynamical models has been discussed by, e.g.,
Evensen at al. (1998) and the references cited therein.
The following examples will illustrate how the EnKF
and EnKS may be used for parameter and bias estima-
tion.

Note first, that the distinction between model bias
and time correlated model errors is not clear. As an
example, one can envisage an ocean model which over-
estimates a variable during summer and underestimates
it during winter. This could happen if a constant is used
to represent a process which changes slowly on the
seasonal time scale. In a multiyear simulation, the poor
representation of this process should be interpreted as a
time-correlated model error. However, if the model is
used only for short simulations, one could also consider
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this error to be a model bias since it appears to be
constant on short time scales.

The following model system based on Eq. (122) will
now be examined in two examples to illustrate the im-
pact of a model bias,

9k xqgk—1
B | = Bi-r
v Vi1 + (0 + B AL+ VAiopgy
V1= 2wy
+ 0 (124)
0

In the dynamical model we have now included a “‘trend
term”, u, which states that the model solution as pre-
dicted by the deterministic model should have the slope #.
In the examples below n = 1.0, while the measurements
are simulated under the assumption that # = 0.0. We
have also included an unknown bias parameter f3,, which
will be estimated to correct for the model bias introduced
by the trend term. An additional equation is introduced
for the bias f3;, stating that it should be stationary in time.

Two examples will be discussed next. In both of them
we set the following parameters in addition to the ones
used in cases A and B:

1. The trend term 5 = 1.0, i.e., the model always pre-
dicts a slope equal to one;

2. the initial condition is ¥, € A47(2.0,1.0) (2.0 is chosen
instead of 0.0 to make it easier to interpret the plots);

3. the measurements are sampled from .47(2.0,0.5);

4. the model error has a time correlation given by
o = 0.99, indicating strong correlation in time with
approximately 10 days decorrelation time;

5. the time interval is from 0 to 50 time units, with the
same At as before;

6. the total number of measurements is 25 which gives
the same measurement density in time as before.

In case C we will not attempt to estimate any bias term
and the initial statistics for f is .47(0.0,0.0), i.e., zero
mean and variance. The purpose is to examine how a
time-correlated model error can correct for the model
bias. The results from case C are shown in Fig. 5 for the
EnKF (upper plot), and EnKS (lower plot) respectively.
In the EnKF case it is seen how the model trend term
with # = 1.0 introduces a positive drift during the
ensemble integration, resulting in an overestimate at
measurement times. The estimated model error has a
negative trend and varies around —1, thus it partly
compensates for the positive model bias. However, the
nature of the stocastic forcing is to relax back towards
zero between the measurement updates and it will not
converge towards a fixed value. For the EnKS the situ-
ation is similar. The estimate smooths the measurements
very well, and the estimated model error is varying
around —1 to compensate for the positive trend term in
the model. Thus, the use of time-correlated model errors
may compensate for possible model biases.
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Fig. 5 Case C. The upper plot shows the EnKF estimate as the thick
solid line and the estimated model error as the dashed line. The lower
plot shows the EnKS estimate as the thick solid line while the dotted
lines indicate the standard deviation of the estimate. The estimated
model error is plotted as the dashed line

In case D we set the statistics for f§ to be .47(0.0,2.0),
i.e., our first guess of the model bias is zero, but we
assume that the error in this guess has variance equal to
2.0. The results from case D are given in Fig. 6 for the
EnKF (upper plot) and EnKS (lower plot) respectively.

In the EnKF case, the estimated model bias term
converges toward a value 5, = —0.845. Thus, it accounts
for, and corrects, 84.5% of the model bias introduced by
the trend term 5. The estimate will always be located
somewhere between the first guess, f, = 0.0, and the bias
which is —1.0. A better fit to —1 can be obtained by using
a larger variance on the first guess of f§ or by assimilating
additional measurements. The model error term now
varies around 0.0 possibly with a small negative trend
which accounts for the uncorrected 15.5% of the bias.

In the EnKS case, the estimated bias is a constant
through-out the time interval. This is obvious since there
is no dynamical evolution of f;, thus f, is constructed
from:

25
Be=Bo [ [ Xs(0), k. (125)
i=1



Fig. 6 Case D. Same as Fig. 5 but with the additional dash-dot line
showing the estimated bias for the EnKF and the EnKS
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Fig. 7 Case D. The time evolution of the bias estimates from the
EnKF (solid line) and the EnKS (dashed line), with the error standard
deviations for the EnKF (dotted line) and the EnKS (dash-dot line)

The value for f is also equal to the final value obtained
by the EnKF. Thus, there is no improvement obtained
in the estimate for f by using the EnKS (see Fig. 7).
Figure 7 also illustrates the convergence over time of the
bias estimates and their error bars. Also in the EnKS the
model error is varying around zero but with a weak
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negative trend. Thus, it is possible to use the EnKF and
EnKS for parameter and bias estimation in dynamical
models.
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