
Efficient E-matching for SMT Solvers

Leonardo de Moura and Nikolaj Bjørner

Microsoft Research, One Microsoft Way, Redmond, WA, 98074, USA
{leonardo, nbjorner}@microsoft.com

Abstract. Satisfiability Modulo Theories (SMT) solvers have proven
highly scalable, efficient and suitable for integrating theory reasoning.
However, for numerous applications from program analysis and verifi-
cation, the ground fragment is insufficient, as proof obligations often
include quantifiers. A well known approach for quantifier reasoning uses
a matching algorithm that works against an E-graph to instantiate quan-
tified variables. This paper introduces algorithms that identify matches
on E-graphs incrementally and efficiently. In particular, we introduce an
index that works on E-graphs, called E-matching code trees that combine
features of substitution and code trees, used in saturation based theo-
rem provers. E-matching code trees allow performing matching against
several patterns simultaneously. The code trees are combined with an
additional index, called the inverted path index, which filters E-graph
terms that may potentially match patterns when the E-graph is updated.
Experimental results show substantial performance improvements over
existing state-of-the-art SMT solvers.

1 Introduction

SMT solvers based on a DPLL(T) [1] framework have proven highly scalable,
efficient and suitable for integrating theory reasoning. However, for numerous
applications from program analysis and verification, an integration of decision
procedures for the ground fragment is insufficient, as proof obligations often
include quantifiers for capturing frame conditions over loops, summarizing aux-
iliary invariants over heaps, and for supplying axioms of theories that are not
already equipped with ground decision procedures. A well known approach for
incorporating quantifier reasoning with ground decision procedures is used in the
Simplify theorem prover [2]. Simplify uses an E-matching algorithm that works
against an E-graph to instantiate quantified variables, where the E-matching
problem is defined as:
input: A set of ground equations E, a ground term t and a term p possibly
containing variables.
output: The set of substitutions θ, modulo E, over the variables in p, such that
E |= t ≃ θ(p). Two substitutions are equivalent if their right hand sides are
pairwise congruent modulo E.

The E-graph, which maintains congruence relations, is modified during a
backtracking search. Each modification to the E-graph may enable new instanti-
ations. E-matching is also used in the several other state-of-the-art SMT solvers:

CVC3 [3], Fx7 [4], Verifun [5], Yices [6], Zap [7]. The Stanford Pascal Verifier [8]
already included patterns for generating ground instances of axioms. These ap-
proaches are also tightly coupled with software verification applications, as found
in for instance ESC/Java [9] and Boogie [10, 11].

This paper introduces algorithms that identify matches on E-graphs effi-
ciently and incrementally. In particular, we introduce an index that works on E-
graphs, called E-matching code trees that combines features of substitution and
code trees, used in saturation based theorem provers. E-matching code trees al-
low performing matching against several patterns simultaneously. The code trees
are combined with an additional index, called the inverted path index, which fil-
ters E-graph terms that may potentially match patterns after modifications in
the E-graph. The choice and design of these indices reflect upon measured run-
time overheads. While E-matching is in theory NP-hard [12], and the number
of matches can be exponential in the size of the E-graph, the practical overhead
of using E-matching for quantifier instantiation turns out to be searching and
maintaining sets of patterns that can efficiently retrieve new matches as soon as
E-graph operations introduce them.

Quantifier reasoning is native to saturation based theorem provers where
resolution and superposition are the main mechanisms for producing inferences.
However, few implementations and experiments have been reported in these sys-
tems for reasoning in the context of theories, despite long running attention [13].
Theory resolution [14] provides a framework for adding theory reasoning (as for
instance, unification modulo associativity and commutativity) to such systems.
In practice, some decision procedures are included in SNARK, including Allen’s
Interval Temporal Logic and theories used in the Amphion system [15]. Re-
cently [16] investigated an integration of CVC-lite and SPASS, and combinations
with super-position calculi and DPLL and BDDs are investigated in haRVey [17].

2 Background

Let Σ be a signature consisting of a set of function symbols, and V be a set of
variables. Each function symbol f is associated with a nonegative integer, called
the arity of f , denoted arity(f). If arity(g) = 0, then g is a constant symbol.
The set of terms T (Σ,V) is the smallest set containing all constant and variable
symbols such that f(t1, . . . , tn) ∈ T (Σ,V) whenever f ∈ Σ, arity(f) = n, and
t1 . . . tn ∈ T (Σ,V). A f-application is a term of the form f(t1, . . . , tn). The set of
ground terms is defined as T (Σ, ∅). In our context, the set of non ground terms
is called patterns. We use p, f(p1, . . . , pn), and x, y, z to range over patterns,
and t, f(t1, . . . , tn), and a, b, c to range over ground terms.

In our context, a substitution is a mapping from variables to ground terms.
Given a substitution β, we denote by β(p) the ground term obtained by replacing
every variable x in the pattern p by β(x).

A binary relation R over T is an equivalence relation if it is reflexive, symmet-
ric, and transitive. An equivalence relation induces a partition of T into equiv-
alence classes. Given a binary relation R, its equivalence closure is the smallest

equivalence relation that contains R. A binary relation R on T (Σ, ∅) is mono-
tonic if 〈f(t1, . . . , tn), f(t′

1
, . . . , t′n)〉 ∈ R whenever f ∈ Σ and 〈ti, t′i〉 ∈ R for all

i in 1 . . . n. A congruence relation is a monotonic equivalence relation. Given a
binary relation R on T (Σ, ∅), its congruence closure is the smallest congruence
relation that contains R.

An E-graph data-structure maintains the congruence closure of a binary re-
lation E = {(t1, t′1), . . . , (tk, t′k)} given incrementally (on-line) as a sequence of
operations union(t1, t

′

1
), . . . , union(tk, t′k). Each equivalence class is represented

by its representative. For each term t in the E-graph, find(t) denotes the rep-
resentative of the equivalence class that contains t, class(t) denotes the equiva-
lence class that contains t, appsf (t) denotes the set of terms f(t1, . . . , tn) such
that f(t1, . . . , tn) ∈ class(t), apps(f) denotes the set of all f -applications in
the E-graph, parents(t) denotes the set of terms f(. . . , t′, . . .) in the E-graph
such that t′ ∈ class(t), parentsf (t) is a subset of parents(t) which contains only
f -applications, and parentsf.i(t) is a subset of parentsf (t) which contains only f -
applications where the i-th argument ti is in class(t). The set ancestors(t) is the
smallest set such that parents(t) ⊆ ancestors(t), and ancestors(tp) ⊆ ancestors(t)
whenever tp ∈ ancestors(t). We suppress references to E-graphs from the above
functions, as there is always only one E-graph during proof search.

2.1 SMT solvers

Modern SMT solvers combine boolean satisfiability solvers based on the Davis-
Putnam-Logemann-Loveland (DPLL) procedure, and T -solvers capable of de-
ciding the satisfiability of conjunctions of T -atoms. In this paper, T -atoms are
equalities between ground terms, and quantified formulas. A T -solver maintains
a state that is an internal representation of the atoms asserted so far. This solver
must provide operations for updating the state by asserting new atoms, checking
whether the state is consistent, and backtracking. The solver maintains a stack
of checkpoints that mark consistent states to which the solver can backtrack.

Most SMT solvers incorporate quantifier reasoning using E-matching. Se-
mantically, the formula ∀x1, . . . , xn.F is equivalent to the infinite conjunction∧

β β(F) where β ranges over all substitutions over the x’s. In practice, solvers
use heuristics to select from this infinite conjunction those instances that are
“relevant” to the conjecture. The key idea is to treat an instance β(F) as rel-
evant whenever it contains enough terms that are represented in the current
E-graph. That is, non ground terms p from F are selected as patterns, and β(F)
is considered relevant whenever β(p) is in the E-graph. An abstract version of the
E-matching algorithm is shown in Fig. 1. The set of relevant substitutions for a
pattern p can be obtained by taking

⋃
t∈E match(p, t, ∅). The abstract matching

procedure returns all substitutions that E-match a pattern p with term t. That
is, if β ∈ match(p, t, ∅) then E |= β(p) = t, and conversely, if E |= β(p) = t, then
there is a β′ congruent (when interpreted as a set of equalities) to β such that
β′ ∈ match(p, t, ∅). In [18], this claim is justified in more detail by observing that
the abstract matcher may be viewed as a congruence proof search procedure.

match(x, t, S) = {β ∪ {x 7→ t} | β ∈ S, x 6∈ dom(β)} ∪

{β | β ∈ S,find(β(x)) = find(t)}

match(c, t, S) = S if c ∈ class(t)

match(c, t, S) = ∅ if c 6∈ class(t)

match(f(p1, . . . , pn), t, S) =
[

f(t1,...,tn)∈class(t)

match(pn, tn, . . . ,match(p1, t1, S))

Fig. 1. E-matching (abstract) algorithm.

3 E-matching Abstract Machine

It is usual in automated deduction to compile terms into code that can be effi-
ciently executed at retrieval time. The compiler produces code for a real machine,
or for a virtual machine as in the case of Prolog’s WAM [19]. In this section,
we propose an abstract machine for E-matching, its instructions, compilation
process, and interpretation. Memory of the abstract machine is divided in the
following way:

– register pc for storing the current instruction.
– an array of registers reg[] for storing ground terms.
– a stack bstack for backtracking.

The basic instruction set of our abstract machine consists of: init, bind, check,
compare, choose, yield, and backtrack. The semantics of these instructions, shown
in Fig. 2, corresponds closely to the steps used by the abstract matching pro-
cedure; so if a pattern p is compiled into a code sequence starting with the
instruction instr , then the set match(p, t, ∅) is retrieved by storing t in reg[0],
setting pc to instr , and executing the instruction stored in pc. This claim is
justified in more detail in [18], by observing, for instance, that the compare in-
struction handles repeated variable occurrences in a pattern. At the moment
choose is not relevant, it will be used when we discuss the case of matching
against many patterns simultaneously. The instruction bind creates a backtrack-
ing point, the idea is to try all f -applications in the equivalence class of the
term stored in reg[i]. The effect of the backtrack instruction is to pop the top of
the backtracking stack, bstack, and perform the instruction stored in top. The
abstract machine terminates when the backtracking stack bstack is empty. For
convenience, we define the function cont on instructions. On all above instruc-
tions but yield, cont returns next; for example, cont(check(i, t,next)) = next . The
pattern f(x1, g(x1, a), h(x2), b) can be compiled in the following code sequence:

init(f, check(4, b, bind(2, g, 5, compare(1, 5, check(6, a, bind(3, h, 7, yield(1, 7)))))))

In the rest of the paper, we represent code sequences using labeled instructions.
A labeled instruction will be written as a pair of the form n : instr , where n is

init(f,next) assuming reg[0] = f(t1, . . . , tn)
reg[1] := t1; . . . ; reg[n] := tn

pc := next

bind(i, f, o,next) push(bstack, choose-app(o,next, appsf (reg[i]), 1))
pc := backtrack

check(i, t,next) if find(reg[i]) = find(t) then pc := next

else pc := backtrack

compare(i, j, next) if find(reg[i]) = find(reg[j]) then pc := next

else pc := backtrack

choose(alt,next) if alt 6= nil then push(bstack, alt)
pc := next

yield(i1, . . . , ik) yield substitution {x1 7→ reg[i1], . . . , xk 7→ reg[ik]}
pc := backtrack

backtrack if bstack is not empty then
pc := pop(bstack)

else stop

choose-app(o,next, s, j) if |s| ≥ j then
let f(t1, . . . , tn) be the jth term in s.

reg[o] := t1; . . . ; reg[o + n − 1] := tn

push(bstack, choose-app(o,next, s, j + 1))
pc := next

else pc := backtrack

Fig. 2. Semantics of abstract machine instructions.

the label/address, and instr is the instruction itself. Using labeled instructions,
the code sequence above is represented as:

init(f, n1), n1 : check(4, b, n2), n2 : bind(2, g, 5, n3), n3 : compare(1, 5, n4),

n4 : check(6, a, n5), n5 : bind(3, h, 7, n6), n6 : yield(1, 7)

In the function compile(W, V, o), W (working set) is a mapping from register
indices to patterns, V (variables) is mapping from variables to register indices,
and o (offset) contains the value of the next available register index. The elements
of the working set W can be processed in any order, but in our implementation
an entry i 7→ f(p1, . . . , pn) is only processed when W does not contain an entry
i 7→ t or i 7→ xk. The idea is to give preference to instructions that do not
produce backtracking points.

4 E-matching Code Trees

The time spent on matching patterns with shared structures can be minimized
by combining different code sequences in a code tree. Code trees were intro-
duced in [20] in the context of saturation based theorem provers. They are used
for forward subsumption and forward demodulation in the Vampire theorem

compile(f(p1, . . . , pn)) = init(f, compile({1 7→ p1, . . . , n 7→ pn}, ∅, n + 1))

compile({i 7→ t} ∪ W,V, o) = check(i, t, compile(W, V, o)), when t is a ground term.

compile({i 7→ xk} ∪ W,V, o) = compile(W,V ∪ {xk 7→ i}, o), if xk 6∈ dom(V)

= compare(i, V (xk), compile(W, V, o)), otherwise.

compile({i 7→ f(p1, . . . , pn)} ∪ W,V, o) = bind(i, f, o, compile(W ′
, V, o + n)),

where W
′ = W ∪ {o 7→ p1, . . . , (o + n − 1) 7→ pn}

compile(∅, {x1 7→ i1, . . . , xk 7→ ik}, o) = yield(i1, . . . , ik)

Fig. 3. Algorithm for compiling patterns into code sequences.

init(f, n1)

n1 : choose(n9, n2), n2 : bind(2, g, 3, n3)

n3 : choose(n6, n4), n4 : check(3, a, n5), n5 : yield(1, 4)

n6 : choose(nil, n7), n7 : compare(1, 3, n8), n8 : yield(1, 4)

n9 : choose(nil, n10), n10 : check(2, b, n11), n11 : bind(1, h, 5, n12)

n12 : choose(n14, n13), n13 : yield(5, 6)

n14 : choose(nil, n15), n15 : bind(6, g, 7, n16), n16 : compare(5, 7, n17), n17 : yield(5, 8)

Fig. 4. Code tree for {f(x, g(a, y)), f(x, g(x, y)), f(h(x, y), b), f(h(x, g(x, y)), b)}.

prover [21]. The code trees presented in this section are similar to substitution
trees [22], also used in saturation based theorem provers. The key advantage of
using code and substitution trees is that matching work common to multiple
patterns is “factored out.” This advantage results in substantial speedups over a
naive approach that would repeatedly match a term against each pattern. A code
tree for a small set of patterns is shown in Fig. 4. Each line can be viewed as node
(or code block) in the tree, indentation is used to suggest a parent-child relation-
ship between nodes, the instruction choose is used to create branches/choices in
the tree. The node starting at label n1 (n9) contains the instruction(s) common
for matching the first and second (third and fourth) patterns. In E-matching
code trees, the yield instruction must also store the quantifier that should be
instantiated with the yielded substitution, this information is suppressed to sim-
plify the exposition. Our code trees are also very similar to context trees [23].
The main differences with other code, substitution, and context trees, include
the use of a stack to handle both backtracking and the branching that arize from
matching in the context of an E-graph.

In general, to maintain a code tree C for a dynamically changing set of
patterns P , one has to implement operations for integrating and removing code
from the tree. In our context, patterns are added to the code tree when the
DPLL(T) engine asserts an atom that represents a quantified formula, and are

insert(init(f, n), f(p1, . . . , pm)) = try(n, {1 7→ p1, . . . , m 7→ pm}, nreg(init(f, n)), [init(f, n)], [])

try(choose(a, n), W, o, C, I) = ⊥, if C = []

= seq(C,firstfit(choose(a, n), W, o)), if I = [],

= branch(C, seq(I, choose(a, n)), W, o), otherwise.

try(yield(i1, . . . , ik), W, o, C, I) = ⊥, if C = [],

= branch(C, seq(I, yield(i1, . . . , in)),W, o), otherwise.

try(instr, W, o, C, I) = try(cont(instr), W, o, C, I ˆ[instr]), if compatible(instr, W) = ⊥,

= try(cont(instr), compatible(instr, W), C ˆ[instr], I), otherwise.

firstfit(choose(a, n), W, o) = choose(a, try(n, W, o, [], [])), if try(n, W, o, [], []) 6= ⊥,

= choose(firstfit(a, W, o), n), otherwise.

firstfit(nil, W, o) = choose(nil, compile(W, ∅, o))

seq([], fchild) = fchild

seq(check(i, t, n) : I, fchild) = check(i, t, seq(I, fchild))

seq(compare(i, j, n) : I, fchild) = compare(i, j, seq(I, fchild))

seq(bind(i, f, o, n) : I, fchild) = bind(i, f, o, seq(I, fchild))

branch(C, fchild, W, o) = seq(C, choose(choose(nil, compile(W, ∅, o)), fchild))

compatible(check(i, t, n), {i 7→ t
′} ∪ W) = W, if find(t) = find(t′)

compatible(compare(i, j, n), {i 7→ x, j 7→ x} ∪ W) = {i 7→ x} ∪ W

compatible(bind(i, f, o, n), {i 7→ f(p1, . . . , pm)} ∪ W) = W ∪ {o 7→ p1, . . . , (o + m − 1) 7→ pm}

compatible(instr, W) = ⊥, otherwise.

Fig. 5. Algorithm for insertion into an E-matching code tree.

removed when the DPLL(T) engine backtracks. This usage pattern simplifies the
insertion and removal operations. In our implementation, each function symbol
is mapped to a unique code tree headed by an init instruction. The algorithm
for insertion of new patterns into a code tree is shown in Fig. 5.

Function try(instr, W, o, C, I) traverses a code block accumulating instruc-
tions compatible (incompatible) with the working set W in the list C (I), it
returns ⊥ if the code block does not contain any instruction compatible with W .
A code block always terminates with a choose or yield instruction. When the code
block is fully compatible (i.e., I is empty), the insertion should continue in one
of its children. Like substitution trees, there may be several different ways to in-
sert a pattern. The algorithm presented uses a first fit (function firstfit) strategy
when selecting a child block. In our concrete implementation, all children are in-
spected and the one with the highest number of compatible instructions is used.
Function seq(C, fchild) returns a code block composed of the instructions in C,
whose first child is fchild, branch(C, fchild, W, o) returns a code block composed
of the instruction in C, and two children: fchild, and the code block produced

by the compilation of the working set W . Function compatible(instr, W) returns
⊥ if the instruction instr is not compatible with the working set W , otherwise
it returns an updated W by factoring in the effect of instr. Function nreg(c)
returns the maximum register index used in the code tree c plus one. The yield

instruction is always considered incompatible because, as mentioned before, each
one is associated with a different quantifier. The init instruction is always com-
patible because we use a different code tree for each root function symbol. In the
context of DPLL(T), removal of code trees follow a chronological backtracking
discipline, so it suffices to store old instructions from modified next fields in a
trail stack.

5 Incrementality

The operation union(t1, t2) has a potential side-effect of producing new matches.
For example, a term f(a, b) matches the pattern f(g(x), y) with a potentially
new substitution whenever the operation union(a, g(c)) is executed.

The Simplify theorem prover [2, page 409] uses two techniques to identify new
terms and patterns that become relevant for matching: mod-time optimization
and pattern-element optimization. Mod-time optimization is used to identify rel-
evant terms, and is based on the fact that the operation union(t1, t2) may change
the set of terms congruent to tp ∈ ancestors(t1)∪ancestors(t2). The time needed
to traverse the ancestors of a term t can be minimized by marking already visited
terms. Marks are removed after every round of matching. When experimenting
with this approach we found that most of the ancestors do not produce new
matches, and the overhead of traversing them is significant. Pattern-element op-
timization is used to identify relevant patterns. The main idea is to identify
when the operation union is not relevant for a pattern. A pair of function sym-
bols (f, g) is a parent-child pair (pc-pair) of a pattern p, if p contains a term of
the form:

f(. . . , g(. . .), . . .)

A pair (not necessarily distinct) of function symbols (f, g) is a parent-parent pair
(pp-pair) of a pattern p, if p contains two distinct occurrences of the variable x

of the form:
f(. . . , x, . . .), g(. . . , x, . . .)

A union(t1, t2) is pc-relevant for some pc-pair (f, g) of a pattern p whenever

(parentsf (t1) 6= ∅ ∧ appsg(t2) 6= ∅) ∨ (parentsf (t2) 6= ∅ ∧ appsg(t1) 6= ∅)

A union(t1, t2) is pp-relevant for some pp-pair (f, g) of a pattern p whenever

(parentsf (t1) 6= ∅ ∧ parentsg(t2) 6= ∅) ∨ (parentsf (t2) 6= ∅ ∧ parentsg(t1) 6= ∅)

Assuming that any ground term occurring in a pattern is viewed as a constant
symbol, then a union(t1, t2) cannot produce new instances for a pattern p if
it is not relevant for any pc-pair or pp-pair of p. The cost of this optimization

is minimized using approximated sets, as they are called in [2], these are also
known as Bloom filters [24], which are like real sets except that membership and
overlap tests may return false positives. Each equivalence class representative
t is associated with two approximated sets of function symbols: funs(t) and
pfuns(t), where funs(t) is the approximated set of function symbols in class(t),
and pfuns(t) is the approximated set of functions symbols in parents(t).

5.1 Inverted path index

{4}

{4}

f

1

{1, 3} {2}

f

1 2

f h

1 2

Fig. 6. Inverted path index for pc-pair (f, g)
and patterns f(f(g(x), a), x), h(c, f(g(y), x)),
f(f(g(x), b), y), f(f(a, g(x)), g(y)).

Even with mod-time and pattern-
element optimizations, many of
the matches found are redun-
dant. In this section, we propose
a new technique to identify new
terms and patterns that become
relevant for matching.

An inverted path string over
a signature Σ is either the
empty string Λ, or f.i.π, where
π is an inverted path string,
f ∈ Σ, and i is an integer. In-
tuitively, we can view inverted
path strings as a child-to-root
path. For example, the inverted
path string g.1.f.2 is a path to
term f(a, g(h(x), c)) from sub-
term h(x).

Given a set of terms T and an inverted path string π, collect(π, T) is the
set of ancestor terms reached from T following the path π. This set comprises
a super-set of terms that participate in new E-matches after a union operation.
We furthermore seek a sufficiently tight set to avoid redundant E-matching calls.

The function collect can be formalized as:

collect(Λ, T) = T

collect(f.i.π, T) = collect(π, {f(t1, . . . , tn) | f(t1, . . . , tn) ∈ parentsf.i(t), t ∈ T })

For example, suppose pfuns(t1) = {f}, funs(t2) = {g}, and h(x, f(g(y), a)) is
a pattern. Then, collect(h.2.f.1, {t1}) contains all terms that may produce new
instances for h(x, f(g(y), a)) after executing union(t1, t2). Collecting the set of
potentially useful candidates for matching per pattern is wasteful when a set
of patterns share the same pc/pp-pairs and furthermore share portions of the
inverted paths. We therefore share repeated prefixes from inverted path strings
in an inverted path index, which has the form of a trie τ . The nodes of τ consist
of a list of branches pointing to children together with a set of patterns (corre-
sponding to a code tree) that share the path down to the node. Thus, a node
is of the form 〈[f1.i1.τ1, . . . , fk.ik.τk], P 〉, where τj are nodes, fj .ij are different

function, integer pairs, and P is a set of patterns. An example of an inverted
path index is given in Fig. 6. Adapting a definition of collect to inverted path
indices is immediate:

collect(〈[f1.i1.τ1, . . . fk.ik.τk], P 〉, T) = {(P, T) | P 6= ∅} ∪
k⋃

j=1

collect(τj , {fj(t1, . . . , tn) | fj(t1, . . . , tn) ∈ parentsfj .ij
(t), t ∈ T })

Inverted path indices are particularly useful in situations where one has, for
example, different instances of frame axioms using similar patterns: f(t1, y, g(z)),
. . . , f(tn, y, g(z)).

6 Additional instructions

6.1 Multi-patterns

Sometimes it makes sense to instantiate a set of quantified variables only when
a set of patterns, called multi-pattern is matched. In order to support multi-
patterns, a new kind of instruction has been added: continue. The semantics of
this instruction is given in Fig. 7. The instruction continue(f, o,next) chooses
an f -application and updates the registers from o to o + arity(f) − 1 with its
arguments. For example, the multi-pattern 〈f(x, a, y), g(z, x)〉 is compiled in the
following code sequence:

init(f, n1), n1 : check(2, a, n2), n2 : continue(g, 4, n3), n3 : compare(1, 5, n4),

n4 : yield(1, 3, 4)

In our experiments, we observed that a considerable amount of time was spent
matching multi-patterns. The problem is that the instruction continue(f, o,next)
is re-executed too many times when the number of f -applications in the E-graph
is significant. Considering the code sequence above, a g-application chosen by the
continue instruction is only useful to yield an instance if the compare instruction
succeeds, that is, the second argument of the chosen g-application is in the same
equivalence class of the term stored in register 1. Based on this observation, we
added another instruction for compiling multi-patterns: join. The semantics of
this instruction is given in Fig. 7. The instruction join(i, π, o,next) chooses a can-
didate from a set of terms reachable from the term stored in register i following
the inverted path string π. When a multi-pattern 〈p1, . . . , pn〉 is compiled, if pi

contains a variable x that also occurs in pj for j < i, then a join can be used
instead of a continue instruction, and π is the path from x to pi. If there is more
than one variable, then we select the one with the shallowest path. Using the
join instruction the multi-pattern 〈f(x, a, y), g(z, x)〉 is compiled in the following
code sequence:

init(f, n1), n1 : check(2, a, n2), n2 : join(1, g.2, 4, n3), n3 : yield(1, 3, 4)

The instruction compare(1, 5, n4) is unnecessary, since the join will only select
g-applications which the second argument is in the same equivalence class of the
term stored in register 1.

continue(f, o,next) push(bstack, choose-app(o,next, apps(f), 1))
pc := backtrack

join(i, π, o,next) push(bstack, choose-app(o,next, collect(π, {reg[i]}), 1))
pc := backtrack

filter(i, fs, next) if fs ∩ funs(reg[i]) 6= ∅ then pc := next

else pc := backtrack

Fig. 7. Semantics of additional instructions

6.2 Filters

Consider the pattern f(g(x), h(y)); it is compiled in the following sequence of
instructions:

init(f, 2, n1), n1 : bind(1, g, 3, n2), n2 : bind(2, h, 4, n3), n3 : yield(3, 4)

Suppose we are trying to match term f(a, b), and class(a) contains n g-applica-
tions, but class(b) does not contain any h-application. In this scenario, a lot of
wasteful work is performed when interpreting the instructions above, the second
bind will fail n times. We address this problem by introducing a new instruction
that performs forward pruning: filter. The semantics of this new instruction is
shown in Fig. 7. The idea of the new instruction is to use the approximated
set funs(t) to quickly test whether the equivalence class of a term t contains
an f -application or not. Using the new instruction, the pattern f(g(x), h(y)) is
compiled as:

init(f, n1), n1 : filter(1, {g}, n2), n2 : filter(2, {h}, n3), n3 : bind(1, g, 3, n4),

n4 : bind(2, h, 4, n5), n5 : yield(3, 4)

The filter instruction is also used for saving unnecessary backtracking prior to a
sequence of choose instructions each followed by a bind to a function in fs .

7 Implementation issues

Relevancy Simplify retains some of the structure of the input formula as an
and-or tree. It then implements a tableau style search: to refute a disjunction,
each disjunct is refuted independently. Refuting a conjunction only requires re-
taining each conjunct. In tableau form, the proof rules used by Simplify are:

∨
{ℓ1, . . . ℓk}

ℓ1 | . . . | ℓk

¬
∨
{ℓ1, . . . , ℓk}

¬ℓ1, . . . ,¬ℓk

¬¬ℓ

ℓ

The tableau search has the side-effect of eliminating irrelevant literals from the
scope of a branch. DPLL(T) based solvers do not have this property, as the
search assigns a boolean value to potentially all atoms appearing in a goal. For

example, when clausifying ℓ1 ∨ (ℓ2 ∧ ℓ3) using a Tseitin [25] style algorithm we
obtain the set of clauses:

{ℓ1, ℓaux}, {ℓaux,¬ℓ2,¬ℓ3}, {ℓ2,¬ℓaux}, {ℓ3,¬ℓaux}

Now, suppose that ℓ1 is assigned true. In this case, ℓ2 and ℓ3 are clearly irrelevant
and truth assignments to ℓ2 and ℓ3 need not be used, but the Tseitin encoding,
which creates a set of clauses, makes the act of discovering this difficult.

The advantage of using relevancy is profound if literals that are pruned from
the scope of a branch may produce new quantifier instantiations. We have there-
fore retained some of the traits of relevancy in our DPLL(T) solver. Our solution
does not change how the SAT solver works with respect to case-split heuristics,
unit propagation, conflict resolution, etc. Instead, we convert to CNF using a
variation of Tseitin algorithm, keep the input formula, and map every (Tseitin)
auxiliary variable to a node in the original formula.

Initially, only the auxiliary variable corresponding to the root in the original
formula is marked as relevant. Relevancy is then propagated to subformulas
using the following rules, which effectively simulate the tableau rules. Assume ℓ

is marked as relevant. First let ℓ be shorthand for
∨
{ℓ1, . . . , ℓk}, if ℓ is assigned

true, then the first child ℓi that gets assigned true is marked relevant. If ℓ is
assigned false, then all children are marked relevant. If ℓ is shorthand for ¬ℓ′,
then ℓ′ is marked as relevant as well.

Congruent terms If two terms f(t1, . . . , tn) and f(t′
1
, . . . , t′n) are congruent,

then it is wasteful to try to match both of them, since the set of substitutions
produced for each of them will be equivalent. Therefore, it suffices to consider
only one term from each set of congruent applications for the bind, continue and
join instructions, and when considering new candidates for matching.

Eager vs. Lazy instantiation Finding the right instantiations prior to case
splits can have the effect of pruning the search space dramatically. On the other
hand, eager instantiation of quantifiers that are not helpful in closing branches
may amplify the search space. A bi-polar approach to instantiation tactics does
not seem to work in general; we found that benchmarks where patterns were
supplied by the tools generating the quantified formulas worked best with eager
instantation, whereas benchmarks that do not include patterns cannot be solved
by eagerly instantiating all quantifiers whenever some subterm can be matched.
We therefore collect run-time statistics for when quantifiers are useful for closing
branches. Useful quantifiers are promoted to eager instantations, while quanti-
fiers that were not useful are demoted to a lazy instantiation round when other
options have been exhausted. The detailed description of the priority queues
used for this scheme is elaborated upon in [18].

Deleting clauses Quantifier instantiation has a side-effect of producing new
clauses containing new atoms into the search space. Retaining these clauses over

backtracking is useless if the new clauses were not helpful in closing the branch.
A two-tiered [26] combination of SAT solvers address this problem by using
different solvers after (a lazy) quantifier instantiation. Work that was poten-
tially useful for other branches has to be reproduced using other means. In our
implementation, we use a single SAT solver, but delete clauses generated from
quantifier instantiation when backtracking. Conflict clauses and their literals are
on the other hand not deleted.

8 Experiments

The experiments were conducted using a 32bit Pentium 4 processor running at
3.6Ghz, 2Gb of memory, and 2Mb of cache. The timeout was set to 10 min-
utes. We compared our prover, Z3, against CVC3 1.0, Simplify, Yices 1.0, and
Zap 2.0. The comparison used more than 3000 publically available benchmarks.
It includes the SMT-LIB [27] AUFLIA/simplify, ESC/Java, and Boogie bench-
marks.1 The first set is in SMT-LIB format, and the other two in Simplify format.
The most challenging benchmarks from the SMT-LIB AUFLIA benchmarks were
derived from the ESC/Java benchmarks. At the time of writing, the SMT-LIB
format did not have a standard for specifying patterns for quantified formulas.
Most of the benchmarks use linear arithmetic. Fig. 8, 9 and 10 compare Z3 with
the other provers, the choice of prover/benchmark set is based on the limitations
of the input format accepted by each prover. Each point on the plots represents
a benchmark. On each plot the y-axis is the CPU time, in seconds, taken by our
prover, and x-axis is for the other prover. Points below the diagonal are then
benchmarks where our prover is faster. Points on the rightmost vertical edge are
problems where a solver ran out of memory or time. Fig. 11 contains a summary
of the experimental results. It also includes a Boogie (non trivial) program ver-
ification task: an s-expression simplification module which contains 500 lines of
code and 32 procedures. The default quantifier instantiation strategy in Z3 uses:
code trees, inverted path index, and eager instantiation. The table includes other
five different settings for Z3: lazy quantifier instantiation (lazy), lazy quantifier
instantiation without code trees (lazy wo. code trees), eager instantiation with-
out any support for incremental E-matching (eager wo. inc.), eager instantiation
using the mod-time optimization (eager mod-time), eager instantiation using in-
verted path index but without code tress (eager wo. code trees). For each set of
benchmarks, the table contains the number of successfully proved instances, and
the total time in seconds spent on instances where the solver did not timeout.
As can be seen, the Z3 default strategy is very effective. E-matching code trees
and the inverted path index are particularly useful in non trivial instances such
as the s-expression simplifier.

1 The benchmarks are also available at http://research.microsoft.com/˜leonardo/CADE07

timeout+abort

 100

 10

 1

 0.1

600 secs 100 10 1 0.1< 0.01

CVC3 1.0

(a) Z3 vs. CVC3 1.0

timeout+abort

 100

 10

 1

 0.1

600 secs 100 10 1 0.1< 0.01

Yices 1.0

(b) Z3 vs. Yices 1.0

Fig. 8. SMT-LIB Benchmarks

timeout+abort

 100

 10

 1

 0.1

600 secs 100 10 1 0.1< 0.01

Simplify

(a) Z3 vs. Simplify

timeout+abort

 100

 10

 1

 0.1

600 secs 100 10 1 0.1< 0.01

Zap

(b) Z3 vs. Zap 2.0

Fig. 9. ESC/Java Benchmarks

9 Conclusion

We have introduced an abstract machine for E-matching. It combines two in-
dices: the E-matching code trees which could efficiently handle matching a term
against a large set of patterns simultaneously, and inverted path indexing, which
narrowly and efficiently finds a superset of terms that will match a set of patterns.
Other results of the paper are a new approach for handling multi-patterns, and
the use of filters inside of an E-matching procedure. Simple and useful heuris-
tics for handling quantifiers in SMT solvers were also presented. Experimental
results show that our new solver outperforms the most competitive SMT solvers
that support quantifiers. Possible extensions to the approach include using con-
text trees [23] for additional sharing, adding instructions to optimize for large
alphabets, and extending inverted path indexing to a perfect filter for linear
patterns.

timeout+abort

 100

 10

 1

 0.1

600 secs 100 10 1 0.1< 0.01

Simplify

(a) Z3 vs. Simplify

timeout+abort

 100

 10

 1

 0.1

600 secs 100 10 1 0.1< 0.01

Zap

(b) Z3 vs. Zap 2.0

Fig. 10. Boogie Benchmarks

ESC/Java Boogie S-expr Simplifier

valid time # valid time # valid time

Simplify 2331 499.03 903 1851.29 18 10985.80

Zap 2222 6297.04 901 2612.64 22 777.78

Z3 (lazy) 2331 212.81 907 157.2 32 2904.27

Z3 (lazy wo. code trees) 2331 224.14 907 240.44 28 2369.00

Z3 (eager wo. inc.) 2331 1495.07 907 229.2 10 2410.52

Z3 (eager mod-time) 2331 85.1 907 39.79 32 1341.38

Z3 (eager wo. code trees) 2331 48.28 907 26.85 32 654.62

Z3 (default) 2331 45.22 907 18.47 32 194.54

Fig. 11. Experimental results: summary.

References

1. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T):
Fast decision procedures. In: CAV 04. LNCS 3114 (2004) 175–188

2. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program check-
ing. J. ACM 52(3) (2005) 365–473

3. Barrett, C., Berezin, S.: CVC Lite: A New Implementation of the Cooperating
Validity Checker. In: CAV ’04. LNCS 3114 (2004)

4. Moskal, M., Lopuszański, J.: Fast quantifier reasoning with lazy proof explication.
http://nemerle.org/~malekith/smt/smt-tr-1.pdf (2006)

5. Flanagan, C., Joshi, R., Saxe, J.B.: An explicating theorem prover for quantified
formulas. Technical Report HPL-2004-199, HP Laboratories, Palo Alto (2004)

6. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In:
CAV’06. LNCS 4144, Springer-Verlag (2006) 81–94

7. Ball, T., Lahiri, S.K., Musuvathi, M.: Zap: Automated theorem proving for soft-
ware analysis. In: LPAR 2005. LNCS 3835 (2005) 2–22

8. Nelson, G.: Techniques for program verification. Technical Report CSL81-10,
Xerox Palo Alto Research Center (1981)

9. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for java. In: PLDI. (2002) 234–245

10. DeLine, R., Leino, K.R.M.: BoogiePL: A typed procedural language for checking
object-oriented programs. Technical Report 2005-70, Microsoft Research (2005)

11. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: An
overview. In: CASSIS 2004. LNCS 3362, Springer (2005) 49–69

12. Kozen, D.: Complexity of finitely presented algebras. In: STOC. (1977) 164–177
13. Slagle, J.R.: Automatic theorem proving with built-in theories including equality,

partial ordering, and sets. J. of the ACM 19(1) (1972) 120–135
14. Stickel, M.E.: Automated deduction by theory resolution. J. Autom. Reasoning

1(4) (1985) 333–355
15. Baalen, J.V., Roach, S.: Using decision procedures to accelerate domain-specific

deductive synthesis systems. LNCS 1559 (1999) 61–82
16. Waldmann, U., Prevosto, V.: SPASS+T. In: ESCoR. (2006) 18–33
17. Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: On a rewriting approach to

satisfiability procedures: Extension, combination of theories and an experimental
appraisal. In Gramlich, B., ed.: FroCos. Volume 3717 of Lecture Notes in Computer
Science., Springer (2005) 65–80

18. de Moura, L., Bjørner, N.: Efficient E-matching for SMT solvers. Technical report,
Microsoft Research (2007) to appear.

19. Aı̈t-Kaci, H.: Warren’s abstract machine: a tutorial reconstruction. MIT Press,
Cambridge, MA, USA (1991)

20. Voronkov, A.: The anatomy of vampire implementing bottom-up procedures with
code trees. J. Autom. Reasoning 15(2) (1995) 237–265

21. Riazanov, A., A.Voronkov: Vampire 1.1 (system description). In: IJCAR ’01. LNAI
2083 (2001) 376–380

22. Graf, P., Meyer, C.: Advanced indexing operations on substitution trees. In
McRobbie, M.A., Slaney, J.K., eds.: CADE. LNCS 1104, Springer (1996) 553–567

23. Ganzinger, H., Nieuwenhuis, R., Nivela, P.: Context trees. In Goré, R., Leitsch,
A., Nipkow, T., eds.: IJCAR’01. LNCS 2083, Springer (2001) 242–256

24. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7) (1970) 422–426

25. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Au-
tomation of Reasoning 2: Classical Papers on Computational Logic 1967-1970,
Springer-Verlag (1983) 466–483

26. Leino, K.R.M., Musuvathi, M., Ou, X.: A two-tier technique for supporting quan-
tifiers in a lazily proof-explicating theorem prover. In: TACAS 05. LNCS 3440
(2005)

27. Ranise, S., Tinelli, C.: The Satisfiability Modulo Theories Library (SMT-LIB).
www.SMT-LIB.org (2006)

