
The Dynamic Behavior of a Data Dissemination Protocol
for Network Programming at Scale

Jonathan W. Hui
Computer Science Division

University of California at Berkeley
Berkeley, CA 94720

jwhui@cs.berkeley.edu

David Culler
Computer Science Division

University of California at Berkeley
Berkeley, CA 94720

culler@cs.berkeley.edu

ABSTRACT
To support network programming, we present Deluge, a reli-
able data dissemination protocol for propagating large data
objects from one or more source nodes to many other nodes
over a multihop, wireless sensor network. Deluge builds from
prior work in density-aware, epidemic maintenance proto-
cols. Using both a real-world deployment and simulation,
we show that Deluge can reliably disseminate data to all
nodes and characterize its overall performance. On Mica2-
dot nodes, Deluge can push nearly 90 bytes/second, one-
ninth the maximum transmission rate of the radio supported
under TinyOS. Control messages are limited to 18% of all
transmissions. At scale, the protocol exposes interesting
propagation dynamics only hinted at by previous dissemi-
nation work. A simple model is also derived which describes
the limits of data propagation in wireless networks. Finally,
we argue that the rates obtained for dissemination are inher-
ently lower than that for single path propagation. It appears
very hard to significantly improve upon the rate obtained by
Deluge and we identify establishing a tight lower bound as
an open problem.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless Communication; C.2.2
[Computer-Communication Networks]: Network Pro-
tocols

General Terms
Design, Experimentation, Measurement, Performance, Reli-
ability

Keywords
Wireless Sensor Networks, Dissemination Protocols, Net-
work Programming, Wireless Networks

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SenSys’04,November 3–5, 2004, Baltimore, Maryland, USA.
Copyright 2004 ACM 1-58113-879-2/04/0011 ...$5.00.

1. INTRODUCTION
Wireless sensor networks (WSNs) represent a new class

of computing with large numbers of resource-constrained
computing nodes cooperating on essentially a single appli-
cation. WSNs must often operate for extended periods of
time unattended, where evolving analysis and environments
can change application requirements, creating the need al-
ter the network’s behavior by introducing new code. Unlike
the traditional method of programming a node over a ded-
icated link, the embedded nature of these systems requires
the propagation of new code over the network. As WSN re-
search matures, growing testbeds sized at tens of thousands
of nodes are now on the horizon, making code propagation
over the network a necessity in the debugging and testing
cycle. These factors suggest that network programming (the
programming of nodes by disseminating code over the net-
work) is required for the success of WSNs. Specifically, we
consider the propagation of complete binary images. While
virtual machines can provide low-cost retasking with the use
of virtual programs, it is still necessary to have the option
of reprogramming nodes with a new binary image since the
virtual machine itself may need changes [6].

The core service required to enable network programming
is the dissemination of a program image over a multihop
WSN and presents several problems. First, program images
are much larger than the data objects that previous dissem-
ination protocols consider. This is an issue because a sensor
node operates on a constrained storage hierarchy where a
communication packet (36 bytes) << RAM (4K) << pro-
gram size (128K) < external flash (512K). Second, the dis-
semination must tolerate node densities which can vary by
factors of a thousand or more. For example, collectively pro-
gramming all nodes before deployment could put thousands
of nodes within communication range, making suppression
of protocol messages essential. Third, complete reliability
is required since every byte must be correctly received by
all nodes that need reprogramming, even in the presence of
high loss rates and evolving link qualities common to WSNs.
Fourth, propagation must be a continuous effort to ensure
that all nodes receive the newest code since network mem-
bership is not static: nodes come and go due to temporary
disconnections, failure, and network repopulation. Finally,
the dissemination process should require a minimal amount
of time, reducing any service interruptions to a deployed
application and the debugging and testing cycle.

This paper provides four main contributions. First, we
present Deluge, a reliable data dissemination protocol for



disseminating a large data object (i.e. larger than can fit
into RAM) from one or more source nodes to many other
nodes over a multihop wireless network. Deluge’s density-
aware, epidemic properties help achieve reliability in unpre-
dictable wireless environments and robustness when node
densities can vary by factors of a thousand or more. Repre-
senting the data object as a set of fixed-size pages provides
a manageable unit of transfer which allows for spatial mul-
tiplexing and supports efficient incremental upgrades. Sec-
ond, we characterize the propagation dynamics of Deluge
using a real-world deployment and simulation. In a real de-
ployment, Deluge can disseminate data with 100% reliability
at nearly 90 bytes/second, one-ninth the maximum trans-
mission rate of the radio supported under TinyOS. Under
simulation, propagation of large data objects in large net-
works exposes interesting propagation behavior only hinted
at in previous dissemination work. Third, we develop a sim-
ple model of Deluge’s propagation behavior and use it to
identify different factors which limit the overall bandwidth
of any multihop communication protocol. Finally, we ar-
gue that dissemination is inherently slower than single path
propagation and identify establishing a tight lower bound
as an open problem. It appears very hard to significantly
improve upon the rate obtained by Deluge.

Deluge builds off Trickle, a protocol for maintaining code
updates in WSNs [8]. In Trickle, nodes stay up-to-date by
occasionally broadcasting a code summary to their neigh-
bors. Trickle’s key contribution is the use of suppression and
dynamic adjustment of the broadcast rate to limit transmis-
sions among neighboring nodes. A node suppresses its own
broadcast if it recently overhears a similar code summary.
When nodes are not up-to-date, the broadcast rate is re-
duced, but is otherwise increased up to a specified limit.
These techniques allow Trickle to scale to thousand-fold
changes in network density, disseminate updates quickly,
and consume minimal resources in the quiescent state. While
Trickle addresses single packet dissemination, Deluge ex-
tends it to support large data objects.

In Section 2 of this paper, we review related work. We
describe the protocol formally in Section 3 and discuss our
evaluation methodology in Section 4. In Section 5, we present
Deluge’s overall performance and characterize Deluge’s prop-
agation dynamics. Section 6 presents the current status of
Deluge. Section 7 discusses future directions, and this paper
concludes with Section 8.

2. RELATED WORK
The problem we address is an important special case of

reliable data dissemination. The main differences include
the dissemination of data over lossy local links, a constrained
storage hierarchy, and the need to retain the most recent
copy in order to disseminate data to additional nodes as
they become connected over time.

For data dissemination in wireless networks, naive retrans-
mission of broadcasts can lead to the broadcast storm prob-
lem, where redundancy, contention, and collisions impair
performance and reliability [9]. The authors discuss the need
to have a controlled retransmission scheme and propose sev-
eral schemes, such as probabilistic and location-based meth-
ods. The experiments conducted by Ganesan et al. identify
several interesting effects at the link-layer, notably highly
irregular packet reception contours, the likeliness of asym-
metric links, and the complex propagation dynamics of sim-

ple protocols [2]. Scalable Reliable Multicast (SRM) is a reli-
able multicast mechanism built for wired networks [4], using
communication suppression techniques to minimize network
congestion and request implosion at the server.

Demers et al. propose an epidemic algorithm based on
randomly chosen point-to-point interactions for managing
replicated databases that is robust to unpredictable com-
munication failures [1]. SPIN-RL is an epidemic algorithm
designed for broadcast networks that makes use of a three-
phase (advertisement-request-data) handshaking protocol be-
tween nodes to disseminate data [5]. The epidemic property
is important since WSNs experience high loss rates, asym-
metric connectivity, and transient links due to node fail-
ures and repopulation. However, their results show control
message redundancy at over 95% as it only considers the
suppression of redundant request messages, and SPIN-RL
does not perform as well as naive flooding for lossy network
models. Trickle builds upon this approach by proposing
SRM-like suppression mechanisms to minimize redundant
transmission of control messages and occasional advertise-
ments to increase reliability, allow for quick propagation,
and consume few resources in the steady state [8]. However,
Trickle only provides a mechanism for determining when
nodes should propagate code. Deluge builds directly off
Trickle, adding support for the dissemination of large data
objects with a three-phase protocol similar to SPIN-RL.

Because reliability is of top priority, Deluge also borrows
ideas from prior work in reliable data transfer protocols.
Pump Slowly, Fetch Quickly (PSFQ) [16] and Reliable Multi-
Segment Transport (RMST) [10] are selective NACK-based
reliable transport protocols designed for WSNs. Because
the cost of end-to-end repair is exponential with the path
length, both protocols emphasize hop-by-hop error recovery
where loss detection and recovery is limited to a small num-
ber of hops (ideally one). Like PSFQ and RMST, Deluge
uses a selective NACK-based approach and error recovery is
limited to a single hop. However, these approaches do not
consider methods for adapting to spatial node density.

Research activity directed at network programming for
WSNs has been limited. TinyOS [15] has included lim-
ited support for network programming via XNP [3]. How-
ever, XNP only provides a single-hop solution, requiring all
nodes to be within bidirectional communication range of the
source. Additionally, repairs are done on a whole file basis,
requiring expensive scans through external flash to discover
missing data.

Multihop Over-the-Air Programming (MOAP) presents a
more comprehensive approach to network programming, sup-
porting multihop networks [11]. Deluge shares many ideas
with MOAP, including the use of NACKs, unicast requests,
broadcast data transmission, and windowing to efficiently
manage which segments are required. However, Deluge con-
siders additional key design options. For example, MOAP
does not fragment the image, requiring nodes to receive the
entire code image before re-broadcasting, preventing the use
of spatial multiplexing to leverage the full capabilities of the
network. Additionally, MOAP does not deal with the ad-
verse effects of asymmetric links.

3. DELUGE
Deluge is an epidemic protocol and operates as a state-

machine where each node follows a set of strictly local rules
to achieve a desired global behavior: the quick, reliable dis-



semination of large data objects to many nodes. In its most
basic form, each node occasionally advertises the most re-
cent version of the data object it has available to whatever
nodes that can hear its local broadcast. If S receives an
advertisement from an older node, R, S responds with its
object profile. From the object profile, R determines which
portions of the data need updating and requests them from
any neighbor that advertises the availability of the needed
data, including S. Nodes receiving requests then broadcast
any requested data. Nodes then advertise newly received
data in order to propagate it further.

While the basic form is quite simple, Deluge considers
many subtle issues to achieve high performance. The first
is its density-aware capability, where redundant advertise-
ment and request messages are suppressed to minimize con-
tention. Note that while suppression can increase perfor-
mance by avoiding congestion collapse, its necessary back-
offs introduce latency. Second, protocols for WSNs must be
robust to asymmetric links, where a link in one direction can
have a significantly different loss rate in the other direction.
Deluge’s three-phase handshaking protocol helps ensure that
a bi-directional link exists before transferring data. Addi-
tionally, if a node has not completely received its data after
making k requests, it searches for a new neighbor to request
data, rather than hanging on to a bad link. However, it
may continue making requests if sufficient progress is being
made. Third, Deluge dynamically adjusts the rate of ad-
vertisements to allow quick propagation when needed while
consuming few resources in the steady state. Fourth, Deluge
attempts to minimize the set of nodes concurrently broad-
casting data within a given cell. Finally, Deluge emphasizes
the use of spatial multiplexing to allow parallel transfers of
data.

In the remainder of this section, we describe in detail how
Deluge represents the large data object and present a formal
description of the Deluge protocol.

3.1 Data Representation
To manage the large size, Deluge divides the data object

into fixed-size pages. The page is the basic unit of transfer
and provides three advantages: (i) it limits the amount of
state a receiver must maintain while receiving data, (ii) it
enables efficient incremental upgrades from prior versions
and (iii) allows for spatial multiplexing. In this section, we
discuss the first two in detail and save our discussion of the
last for Section 3.2.

The data object of size Sobj is divided into packets of a
fixed size Spkt. To ensure receipt of all packets, the node
must keep track of which packets are needed to complete
the object. However, because the packet size is generally
much smaller than the object, simply maintaining a bit-
vector consumes an unacceptably large amount of RAM.
Instead, Deluge fragments the data object into P pages each
of size Spage = N ·Spkt, where N is a fixed number of packets,
as shown in Figure 1. By requiring a node to dedicate itself
to receiving a single page at a time, the bit-vector need only
be N bits in length.

Both packets and pages include 16-bit cyclic redundancy
checks (CRCs). If a packet or a page fails the CRC, all data
represented by the CRC is discarded and must be received
again. Redundant data integrity checks at both the packet
and page level help ensure that data is correctly received
by all nodes and is especially important due to Deluge’s epi-

0

0

1 2 3 4

1 2 3 4 5 N
Page

Object
P

objS

pageS

5
Packet

43

pktS

Figure 1: Data Management Hierarchy.

demic nature: a single node with corrupt data can propagate
erroneous data to other nodes.

In many cases, an upgrade may only contain a few mi-
nor changes to localized areas within the data object. Thus,
nodes need only those pages which have changed in order to
match the newer version. To support this, we assume that
updates to the overall data object are serialized. A version
number is used to distinguish between different updates and
must be monotonically increasing to produce a total order
for all updates. A node compares version numbers to deter-
mine whether it should request new data.

Upgrading from a prior version requires knowing which
pages have changed. Because data from recent deployments
show that nodes can fade out of connectivity for a signifi-
cant amount of time [12], it is necessary to allow efficient up-
grades from a version which is more than one version behind.
This implies that knowledge about when pages were last
changed is needed. Deluge represents the set of p pages for
a given version, v, by an age vector, a =< a0, a1, . . . , ap−1 >,
which describes how “old” each page is. More specifically,
the contents of page i at version v last changed at version
v − ai. A complete description of the object is defined by
the tuple (v,a), called the object profile, and is stored in
non-volatile storage along with the data it represents. A
node receiving an object profile for a newer version uses
the age-vector to determine which pages need updating. In
the current implementation, the page age is specified by a
nibble, limiting the communication of an object profile to
several packets. However, this tradeoff forces nodes sixteen
or more versions behind require the transfer of all pages in
the object regardless of their age.

3.2 The Protocol
A node operates in one of three states at any time: MAIN-

TAIN, RX, or TX. The set of local rules an individual node
follows is a function of its current state and specify what
actions and state transitions to take in response to events.
We formally describe the set of local rules and discuss how
each of these rules contribute to the desired global behavior.

3.2.1 Maintenance
A node in the MAINTAIN state is responsible for ensur-

ing that all nodes within communication range have (i) the
newest version of the object profile and (ii) all available data
for the newest version. To maintain this property, each node
occasionally advertises a summary representing the current
version of its object profile and the set of pages from the ob-
ject which are available for transmission. We define a page i
as complete if every packet for that page has been correctly
received. Page i is available only if it is complete and all



pages in the range [0, i) are also complete. Thus, the sum-
mary need only contain two integers {v, γ}, where v is the
version number and γ is the largest numbered page available
for transfer.

Ideally, the transmit rate of advertisements in a given
cell should be independent of the spatial node density, al-
low quick propagation, and consume few resources in the
steady state. This should hold even when thousands of
nodes are within communication range, a scenario represen-
tative of programming nodes prior to deployment. Deluge
uses Trickle to control the transmission of potentially redun-
dant messages. Trickle divides time into a series of rounds
and nodes choose whether or not to broadcast an advertise-
ment in each round. The duration of round i is specified by
τm,i and is bounded by τl and τh. In each round, a node
maintains a random value ri in the range [

τm,i

2
, τm,i]. The

local rules for a node with summary φ are as follows:

M.1 During round i with start time ti = ti−1 + τm,i−1,
broadcast an advertisement with summary φ at time
ti + ri, only if less than k advertisements with sum-
mary φ′ = φ have been received since time ti.

M.2 If any overheard packet indicates an inconsistency
among neighboring nodes (i.e. advertisements with
φ′ 6= φ, any requests, or any data packets) were over-
heard during round i, set τm,i to τl and begin a new
round.

M.3 At the beginning of a round i, if no overheard packet
indicates an inconsistency among neighbors during
the previous round, set τm,i to min(2 · τm,i−1, τh).

Trickle is density-aware in that the threshold k bounds
the number of advertisements made in a given cell by sup-
pressing the transmission of redundant advertisements. In
a lossless, single-cell network model, an advertisement with
a summary φ′ = φ is only transmitted at most k times
in a period

τm,i

2
, independent of the density. In a lossy,

multi-cell model, the number of transmissions is bounded
by O(log(n)), where n is the number of nodes in the cell [8].
The lower bound of

τm,i

2
for ri is required due to the short-

listen problem. In an unsynchronized network, a small value
of ri reduces the likelihood of overhearing similar advertise-
ments and results in redundant transmissions. The dynamic
adjustment of τm,i in the range [τl, τh] allows quick propaga-
tion during an upgrade and low resource consumption in the
steady state by decreasing and increasing the advertisement
rate respectively.

With the advertisement service, a node can determine if
any of its neighbors have an old object profile. If so, a node
must broadcast the new object profile. The local rule gov-
erning this process for a node with version v are as follows:

M.4 During round i, transmit the object profile for ver-
sion v at time ti + ri only if an advertisement with
version v′ < v was received at or after time ti and
less than k attempts to update the object profile to
version v have been overheard.

This method for updating object profiles is a form of con-
trolled flood, providing a reliable approach which is density-
aware. By following the rounds defined by the advertise-
ment service and upgrading an object profile only if less
than k redundant upgrade attempts have been transmitted,

we keep Trickle’s beneficial properties of low redundancy
and quick propagation while its epidemic property helps to
ensure eventual propagation to all nodes.

The local rules defined so far ensure eventual consistency
of object profiles, allowing nodes to learn about a newer
version and determine which pages need updating in order to
match the newer version. We now discuss the method used
to initiate the reception or transmission of new pages. We
first present the remaining local rules and then discuss their
contribution to the overall behavior of Deluge. In Deluge,
nodes request data from a single node S at a time. The local
rules for a node with with summary φ = {v, γ}:

M.5 On receiving an advertisement with v′ = v and γ′ >
γ, transition to RX unless (i) a request for a page
p ≤ γ was previously received within time t = 2 ·τm,i

or (ii) a data packet for page p ≤ γ+1 was previously
received within time t = τm,i.

M.6 On receiving a request for data from a page p ≤ γ
from version v, transition to TX.

We leverage the Trickle suppression mechanism to help
minimize the set of senders and simplify the decision mak-
ing process of nodes at any given time. The only trigger that
causes R to request data from S is the receipt of an adver-
tisement stating the availability of a needed page. Because
Trickle bounds the number of transmitted advertisements in
a given cell, the set of nodes which may become senders dur-
ing any round is also bounded. Deluge simply requests data
from the node which most recently advertised the needed
page. If R overhears a data packet of the needed page, it
suppresses any requests for a full round and attempts to
snoop as much as possible. This also suppresses the initia-
tion of any additional senders which can interfere with the
current set of senders.

A significant contribution of Deluge is its emphasis on spa-
tial multiplexing. Deluge advertises the availability of com-
plete pages even before all pages in the object are complete,
allowing the further propagation of newly received pages.
Overall throughput is increased by pipelining the transfer
of pages across the network. Without spatial multiplexing,
propagation across a network of d hops requires d complete
object transfers, requiring a time of o(d · Sobj). Instead,
pipelining the transfer approaches a time of o(d + Sobj). In-
tuitively, it is the time for the first bit of data to traverse
the network in addition to the time required to flush the
pipeline. Since Deluge targets both large scale networks
and object sizes, spatial multiplexing can significantly en-
hance performance. One drawback is the entire network
must remain powered-on to achieve the full benefits of spa-
tial multiplexing. However, it is not required and transfers
can be localized by only powering on a subset of the nodes,
trading energy-consumption with completion time.

In order to realize the full benefit of spatial multiplexing,
Deluge takes special care to ensure that transfers of different
pages do not interfere with each other. First, Deluge con-
strains nodes by requesting pages in sequential order, that
is, a request for page i cannot be made unless data for all
pages in the range [0, i) are also up-to-date and complete.
This allows neighboring nodes take advantage of the broad-
cast medium by working together in receiving the same page
rather than contending with each other in requesting differ-
ent pages. An added advantage is that a node need not



decide whether to give up an attempt to receive a specific
page p and focus its efforts on a different page. Because all
nodes complete pages in sequential order, any node adver-
tising γ > p is also able to supply page p.

A B D E
1p 0pC

Source

Figure 2: Pipelining. Example four-hop network. A
three-hop spacing is required for effective spatial multiplex-
ing. In this example, a simultaneous broadcast from A and
C would collide at B.

Second, a transfer of page p will always take higher pri-
ority than a transfer of a page p′ > p. From local rule M.5,
nodes may not issue a request for a page p if a transfer of
page p′ < p is in progress. As shown in Figure 2, this con-
straint reduces interference, including the hidden terminal
problem, caused by messages generated from transfers of
different pages.

3.2.2 Request
A node in the RX state is responsible for actively re-

questing the remaining packets required to complete page
p = γ + 1. Each request operates as a selective negative ac-
knowledgment (SNACK) where a bit-vector specifies which
data packets in the page are needed. To achieve density-
awareness, requests are made with a random backoff to help
minimize collisions with requests from other nodes and al-
lows for suppression if any requests or data packets are over-
heard during the backoff period. Utilizing the broadcast
medium, responses to requests are shared by all receivers.

After a node makes a request, it waits for a response and
makes subsequent requests if some of the data was lost in
the process. Nodes delay subsequent requests until they
detect a period of silence equal to ω packet transmit times
to help ensure the completion of data transmissions before
requests are made. The value of ω is chosen such that simply
dropping a couple packets is not detected as a period of
silence.

Deluge is also designed to tolerate asymmetric links. First,
a node R receiving advertisements from S may not be able
to communicate requests to S. Deluge limits a node to λ re-
quests before returning to MAINTAIN. However, if progress
(measured as reception rate of data) is above some thresh-
old 0 < α < 1, Deluge allows the node to continue making
requests. Additionally, the rate of requests from R will de-
crease with the decreasing advertisement rate in the steady
state since S will not know that R is not up-to-date. Second,
if node S cannot communicate advertisements to R, then R
will not transmit any requests to S since requests are only
transmitted in response to advertisements.

We now present the local rules for a node in RX. For a
node n with summary φ = {v, γ}, we define S as the node
that caused n’s transition into RX.

R.1 After not receiving a request or a data packet for time
t = ω ·Ttx +r, where r is a random value in the range
τr, transmit a request to node S.

R.2 After λ requests with a packet reception rate of α′ <
α, transition to MAINTAIN even if page γ + 1 is
incomplete.

R.3 If all packets for page p are received and data for
page γ + 1 passes the CRC, mark page as complete
and transition to MAINTAIN.

Note that a node need not be in RX in order to re-
ceive data packets. Deluge takes advantage of the broadcast
medium and any packets needed to complete page γ + 1 are
saved regardless of which state the node is in.

3.2.3 Transmit
A node in TX is responsible for broadcasting all requested

packets for a given page (continuing to service any subse-
quent requests for data from the same page) until all re-
quested packets have been broadcast and then transition
back to MAINTAIN. Deluge services requests by taking the
union of any new requests with previous requests not yet
serviced. Packets are sent in round-robin order to provide
fairness among requesters. We define Π as the set of packets
from page p which have been requested and is initialized to
the request which caused the transition to this state. The
set of local rules are as follows:

T .1 On receiving a request for packets Π′
rx from page p,

set Πtx to Πtx ∪Π′
rx.

T .2 Continue broadcasting packets in Πtx in round-robin
order and remove each broadcast packet from Πtx

until Π = {}, then transition to MAINTAIN.

3.3 Design Space
The design space for data dissemination protocols is large

and includes: methods for suppressing redundant control
and data messages, selection of nodes to transmit data, use
of forward error-correction (FEC), the fragmentation of data
for spatial multiplexing, use of link quality estimates or other
metrics to improve decisions, among others. In the early
stages of designing Deluge, we experimented with several of
these options in simulation. Due to space limitations, we
briefly mention some of our findings.

The suppression mechanisms make up most of the com-
plexity in Deluge. To confirm their importance, we tested
Deluge without any suppression and it performed so poorly
that the simulations did not complete after days of execu-
tion. With just request message suppression, Deluge is simi-
lar to SPIN-RL. We again tested Deluge by keeping only the
request suppression and it also performed poorly, confirm-
ing the results presented by SPIN-RL’s authors that show
it performing worse than naive flooding in lossy network
models.

We experimented with suppressing the transmission of
data packets if k redundant data packets were overheard
while in TX, where lower values of k represented more ag-
gressive suppression. Lower values of k tended to decrease
performance. Recall that Deluge already attempts to limit
the number of senders. While too many senders leads to high
contention and greater opportunities for the hidden termi-
nal problem, a small number (two or three) of neighboring
senders is able to cover more area without much loss in per-
formance. Additionally, the TinyOS MAC layer implements
CSMA, minimizing collisions caused by neighboring senders.
This result led to the decision of not employing additional
techniques for data packet suppression.

Deluge takes a very simple approach to selecting a sender
by using the most recent advertisement. We tested more



sophisticated methods based on a hop count metric (i.e. re-
questing data from nodes nearest to the source, nodes fur-
thest from the source, and nearest neighbor) and on the
number of nodes requesting data, but found no significant
difference in performance for any of these approaches over
Deluge’s current, simple approach.

We also tested the use of FEC which allows receivers to
reconstruct the original data from any k-size subset of the
encoded data at the expense of transmitting redundant data.
It was interesting to see that FEC improved performance in
sparse networks while harming performance in dense net-
works. The decreased performance in dense networks is due
to the existence of highly variable link qualities where nearby
neighbors had high link qualities and nodes further away had
poor link qualities. FEC works best in environments where
loss rates are predictable and have low variance, allowing
the amount of redundant data transmitted to be tuned to
match the link qualities of the network.

4. EVALUATION METHODOLOGY
The metrics we use to evaluate Deluge are driven by the

primary motivation for this work: network programming.
We list the metrics we consider, ordered from highest to
lowest priority.

1. Complete Reliability. Every byte of the data must
be correctly received by all nodes.

2. Completion Time. In deployments, any interrup-
tion to their primary service caused by network pro-
gramming should be minimized. In the development
process, network programming should quickly install
updates to shorten debugging and testing cycle.

3. RAM Usage. Sensor nodes are severely constrained
in the amount of memory available to running applica-
tion and is compounded by the lack of dynamic mem-
ory allocation in TinyOS.

4. Energy Consumption. Wireless senor nodes are
strictly limited in their energy capacity and a minimal
amount of energy should be used in order to lengthen
network lifetimes.

The full Deluge protocol as described in this paper is im-
plemented in the nesC programming language on the TinyOS
platform. By executing Deluge, we first observe the overall
performance of Deluge under different network diameters,
densities, and object sizes. We then investigate Deluge’s re-
action to these parameters by examining the detailed prop-
agation dynamics which occur. Finally, we develop a simple
model to help identify factors which limit overall perfor-
mance.

To evaluate and investigate the behavior of Deluge, we use
two separate mechanisms. The first is a TinyOS hardware
testbed of modest size, composed of Mica2-dot nodes [14].
The second is TOSSIM, a bit-level node simulator designed
specifically for the TinyOS platform [7]. We use these two
methods to provide varying degrees of realism and scale: the
former providing the most realistic environment while the
latter allows us to scale to hundreds of nodes and different
node topologies.

4.1 TinyOS Hardware
To gather empirical data, we use a testbed composed

Mica2-dots, a TinyOS supported hardware platform. Each
node contains a 7MHz, 8-bit microcontroller as a CPU,
which offers 128KB of program memory and 4KB of RAM; a
512KB external flash chip used for storing application gener-
ated data; and communicate via a 433MHz radio transceiver
which transmits 19.2Kbit/s [14]. In ideal conditions, the
Mica2-dot can transmit about 37 packets per second at a
size of 36 bytes each (including headers) after encoding and
media access.

We fully implemented Deluge in nesC and ran experiments
using the Mica2-dot hardware platform with 75 nodes de-
ployed non-uniformly in a 150’ by 100’ office environment
[13]. With the source placed at one corner, the diameter
of the network is about five hops. To instrument a back-
channel, we used specialized hardware to create a UART to
TCP bridge, allowing nodes to transmit and receive mes-
sages over TCP through an Ethernet adapter. By opening
up sockets to each node from a desktop computer, we times-
tamp each UART message with precision on the order of
milliseconds and track the propagation of each page. Note
that the UART to TCP bridge is only used as a mechanism
for gathering timing information from the network and does
not represent any significant source of noise. At the end of
each experiment, we verify the integrity of the data object
via the TCP connection.

4.2 TOSSIM
In addition to hardware experiments, we use TOSSIM,

a discrete-event network simulator, to investigate and eval-
uate Deluge at networks of much greater scale and differ-
ing structures. TOSSIM compiles directly from unmodified
TinyOS application code and simulates communication be-
tween nodes at the bit level. Because TOSSIM models a pre-
vious generation of TinyOS hardware, the absolute values in
time may not match closely with the Mica2-dot hardware.
However, it is very useful for exposing overall behavior. In
the rest of this section, we focus our discussion on TOSSIM’s
radio model since the radio is the most significant shared re-
source of a WSN and is the most important component when
simulating Deluge.

Capturing sufficient detail when simulating the commu-
nication between nodes is essential since the behavior of
dissemination protocols can be highly sensitive to low level
factors. We have experimented with using high-level sim-
ulators, but they were unable to capture unique behaviors
which appear when simulating low-level details. TOSSIM
captures data-link level network interactions with high fi-
delity by simulating communication between nodes at the
bit level, allowing TOSSIM to capture the entire TinyOS
network stack and all of its complex behaviors, including the
CSMA MAC layer packet transmission delays and backoffs,
link-level acknowledgments, packet CRC checks, SECDED
packet encoding scheme, sender-receiver synchronization, and
hardware-specific timing. The main advantage with simu-
lating at the bit-level is that the transmission and reception
of bits govern the actions of each layer, rather than modeling
each layer with its own set of parameters.

The network itself is modeled by a weighted directed graph
G = (V, E), which is static for the entire duration of the
simulation. Each vertex v′ ∈ V represents a node and each
edge (u, v) ∈ E specifies a bit-error rate in the direction



0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance (feet)

Lo
ss

 R
at

e

Figure 3: TOSSIM Packet Loss Rates vs. Distance

from u to v. The bit-error rate represents the probability a
given bit is flipped while in transmission from u to v. Each
bit-error rate is independently chosen based on the distance
between u and v and a random distribution derived from
empirical data collected on Mica nodes. Figure 3 shows this
model’s packet loss rate over distance from an experiment in
TOSSIM. Sampling the bit-error rate for each edge indepen-
dently allows for asymmetric links where the a bit-error rate
for (u, v) is significantly different than (v, u). This is impor-
tant since asymmetric links are a real problem in WSNs.

TOSSIM treats the transmission of each individual bit as
an event. If a node receives bits from multiple senders at
the same time, the union is taken as the result. In doing so,
real-world wireless problems dealing with interference and
the hidden terminal problem can be observed in simulation.
However, TOSSIM does make some significant simplifica-
tions from the real world. For example, the transmission
strength for each node is uniform within a 50 foot radius.
This implies that while a close node may have a lower bit-
error rate, it is unable to overpower the signal of a further
node. This aspect of TOSSIM is overly pessimistic when
compared to the real world where signal strength fades at a
polynomial rate with distance.

5. PROPAGATION

5.1 Empirical Results
The procedure of each experiment follows that of a nor-

mal deployment scenario. In its initial state, all but one of
the nodes are deployed and operating in the steady-state,
meaning that they have the same version v of the object
profile and the same set of completed pages for version v.
The remaining node acts as the source node. Initially dis-
connected from the deployment, a new object with version
v′ > v and all page ages set to 0 is loaded onto the source
via a physical connection from a desktop computer. The ex-
periment begins by introducing the source into the 75 node
deployment, beginning the dissemination process. We mea-
sure the time to propagate each page to individual nodes,
relative to the first advertisement made by the source. No
concurrent services, other than those required by Deluge,
execute for the duration of each experiment. In the current
implementation, each page is 1104 bytes with 48 data pack-
ets per page and each data packet has a data payload of 23
bytes. For the maintenance service, we set τl = 2 seconds,
τh = 60 seconds, and k = 1. For requests, we set τr = 0.5,
λ = 2, and ω = 8.

In every test, the data was correctly and completely re-
ceived by all nodes in the network. The empirical results
are shown in Figure 4. Figure 4(a) shows the average com-
pletion time of 10 propagations when varying the object size
with 95% confidence intervals. The completion time is linear
with the size of the object. With this deployment, Deluge
pushes 88.4 bytes/second on average. To see the beneficial
effects of spatial multiplexing, the dotted line is a projection
of the completion time without spatial multiplexing and is
represented by multiplying the average completion time for
one page by the number of pages in the object. On average,
the completion time would increase by 31% without spatial
multiplexing. We expect a more significant improvement in
larger networks as there is greater opportunity for parallel
transfers.

Figure 4(b) shows the distribution of completion times
for individual nodes across the same 10 experiments. All
nodes have a completion time greater than 220 seconds, but
less than 275 seconds. We note that the average range of
completion times for an individual run is 18.6±2.60 seconds.
The narrow range of completion times is a direct result of
spatial multiplexing, where the range of completion times
represents the amount of time to flush the pipeline and is
essentially the time to disseminate a single page.

To get a better understanding of what packets are trans-
mitted during propagation, we counted the number of trans-
missions for each packet type on each node when propagat-
ing a 20 page object to all 75 nodes. As shown in Figure
4(c), 18% of the transmitted packets are control packets
while 82% are data packets.

Using the transmission count information on advertise-
ments, we plot a histogram of the average advertisement
rate for each node by dividing the count by the comple-
tion time. As shown in Figure 4(d), the average advertise-
ment rate is 0.048 packets/second and the median is 0.042
packets/second. This low rate shows the effectiveness of ad-
vertisement suppression. Without suppression, each node
would broadcast 0.5 packets/second, more than ten times
the average rate than with suppression.

Figure 4(e) displays a histogram based on the number of
request transmissions for each node. The average number
for all nodes is 10.52 packets while the median is 8. Again,
these low numbers show the effectiveness of suppression on
request transmissions. Considering that there are 20 pages
in the object, many nodes did not transmit requests in order
to receive entire pages. In fact, more than half the nodes
transmitted less than 10 requests, meaning that those nodes
took advantage of the broadcast channel and did not trans-
mit requests to receive a majority of their pages. A few
nodes transmitted many more requests and was due to their
poor link qualities with neighboring nodes.

Finally, we counted the number of data packet receptions
to calculate the ratio of total data packets received to the
minimal number of data packets required. Figure 4(f) dis-
plays a histogram of the ratio for each node. The minimal
number of data packets required is the number of packets
per page times the number of pages. On average, a node
receives about 3.35 times the minimum number of required
data packets, while half receive fewer than 3.34 times the
minimum number. This redundancy is mainly due to the
single-channel, broadcast network that is used by all nodes.
In a simple linear setup, as shown in Figure 2, we would ex-
pect a node to receive twice the minimum number: once by



0 5 10 15 20
0

50

100

150

200

250

300

350

400

Object Size (pages)

C
om

pl
et

io
n 

Ti
m

e 
(s

)
No Pipeline (projected)
Observed

(a) Completion time for varying object
sizes.

220 230 240 250 260 270 280
0

2

4

6

8

10

12

14

16

18

20

Time (s)

N
od

es
 (%

)

Mean
Median

(b) Completion times for individual
nodes.

Message Type Total %
Advertisement 1023 10.26

Request 789 7.92
Data 8154 81.82

(c) Transmitted messages

0 0.02 0.04 0.06 0.08 0.1 0.12
0

5

10

15

20

25

30

Advertisements/second

N
od

es
 (%

)

Mean
Median

(d) Advertisement rate.

0 10 20 30 40 50 60
0

5

10

15

20

25

30

Transmitted Requests

N
od

es
 (%

)

Mean
Median

(e) Transmitted requests.

1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

14

Received Data Ratio (multiple of minimum required)

N
od

es
 (%

)

Mean
Median

(f) Received data ratio.

Figure 4: Empirical Data. These results are from a network of 75 nodes. Figure (a) shows the completion time when
varying object size. Figure (b) shows the completion time for individual nodes. Figures (c)-(f) are derived from transmitting
20 pages over 75 nodes.

first receiving the data from its parent and once by overhear-
ing its child retransmit the data. In a dense linear topology,
we would expect a node to receive nearly three times the
minimum number, as a neighboring node may retransmit
the data on its behalf since it is in the same radio cell. In
a non-linear topology, we would expect a node to receive
three to five times the minimum number as a node may
have additional neighbors which need to retransmit data.
In our experiments, none of the nodes received more than
five times the amount of required data packets. Some nodes
experienced significantly less redundancy since they lie on
the edge of the deployment.

5.2 Simulation Results
While the empirical results are promising, we were un-

able to experiment with networks of large scale since the
testbed configuration does not scale easily. Instead, we used
TOSSIM to evaluate and investigate the behavior of Deluge
with network sizes on the order of hundreds of nodes and
tens of hops. Recall that TOSSIM models a previous gener-
ation of TinyOS hardware and we use it mainly for exposing
overall behavior, rather than absolute time measurements.
This section starts by evaluating the propagation perfor-
mance with different network diameters, densities, and ob-
ject sizes for a square topology. We then examine the prop-
agation dynamics in detail to understand how Deluge reacts
to the different parameters. Finally, the overall performance
of Deluge in a linear network is provided and a simple model

is derived to help identify the different factors which limit
overall performance.

5.2.1 Overall Performance
We briefly discuss the overall performance of Deluge for

a square topology. Due to execution times on the order of
tens of hours for each simulation, we do not provide con-
fidence intervals. We begin by executing application-level
code identical to that used in the empirical experiments, in-
cluding all parameter values except that each page has 24
packets rather than 48 packets. The smaller page size re-
duces the simulation time while showing the effect of prop-
agating multiple pages. Because Deluge requires nodes to
keep their radios on, the vast majority of energy is spent
in the listening state where the radio continuously listens to
the channel. Thus, we focus on completion time as it closely
resembles energy consumption.

Figure 5(a) shows the total propagation time for differ-
ent object sizes in square topologies of different diameters.
Node density is kept constant with nodes spaced 15 feet
apart. At network diameters less than 8, the propagation
time is roughly a function of the product of the network
diameter and object size. With network diameters greater
than 8, the slope of the propagation times for the multi-page
objects approaches that of a single page, indicating the ef-
fectiveness of spatial multiplexing (i.e. the propagation time
is the sum of the network diameter and object size). Figure
5(b) plots the propagation times for various object sizes in
a 20 × 20 grid topology, showing that propagation time is



2 4 6 8 10 12 14 16 18 20
0

200

400

600

800

1000

1200

Network Dimension (nodes)

Ti
m

e 
to

 C
om

pl
et

io
n 

(s
)

1 Page
5 Pages
10 Pages

(a) Varying network size.

1 2 3 4 5 6 7 8 9 10
200

300

400

500

600

700

800

900

1000

1100

Object Size (pages)

Ti
m

e 
to

 C
om

pl
et

io
n 

(s
)

(b) Varying object size.

0 0.005 0.01 0.015 0.02 0.025 0.03
0

100

200

300

400

500

600

Density (nodes/ft2)

Ti
m

e 
to

 C
om

pl
et

io
n 

(s
)

(c) Varying node density.

Figure 5: Simulated Propagation Time for Square Structures. These results are from a N × N network where
N = 2, 4, 8, . . . , 20 with 15’ spacing. Figure (c) is for a 180′ × 180′ field for different densities.

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

(a) t = 50

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

(b) t = 100

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

(c) t = 150

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18
0−50
50−100
100−150
150−200
200−250

(d) Summary

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

(e) t = 100

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

(f) t = 200

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

(g) t = 300

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

50

50

100

100

100

150

150

150

15
0

200

200

200

200

250

250

25
0

25
0

30
030

0

300

350

350

0−50
50−100
100−150
150−200
200−250
250−300
300−350
350−400

(h) Summary

Figure 6: Simulated Propagation Time for 1 Page in a 20× 20 Grid Topology. Figures (a) - (d) and (e) - (h) are
from a network with 15’ and 10’ node spacing, respectively.

linear with object size. Figure 5(c) shows that an increase
in density harms overall performance. In the next section,
we investigate the propagation dynamics of Deluge to see
why density affects performance.

5.2.2 Dynamic Behavior
In this section, we investigate the propagation behavior of

Deluge for a square topology. Figure 6 shows the propaga-
tion of a single page from a corner node through a 20 × 20
network with nodes spaced 15 feet apart for a single ex-
periment and is representative of all other experiments of
similar topologies. Figures 6(a)-6(c) show a time series of
the propagation while Figure 6(d) summarizes the comple-
tion time for all nodes. With this topology, the propagation
behaves as expected: the propagation progresses at a fairly
constant rate in a nice wavefront pattern from corner to cor-
ner. The irregularities are due to the non-uniform loss rates
and contention.

An interesting behavior emerges as we increase density.
To show this behavior, we repeat the experiment with a
20 × 20 network with adjacent nodes spaced 10 feet apart,
increasing the density by 2 1

4
times. As shown in Figure

6(e), the propagation began as it did in the sparse case.
But soon after, the propagation along the diagonal slowed
significantly while quick propagation along the edge contin-
ued and completely wrapped around the edge before filling
in the middle.

To see the behavior with spatial multiplexing, Figure 7
shows the propagation of a five page object in both the
sparse and dense case. With multiple pages, the complex
rate of progress becomes apparent even in the sparse case.
A closer look at the sparse case when propagating a single
page shows that the propagation along the diagonal is ac-
tually slightly slower than along the edge, which accounts
for the linear wavefront shape. The difference in propaga-
tion times is not enough to clearly show the behavior as



0 5 10 15 20
0

2

4

6

8

10

12

14

16

18
Page 5
Page 4
Page 3
Page 2
Page 1

(a) t = 150

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18
Page 5
Page 4
Page 3
Page 2
Page 1

(b) t = 300

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18
Page 5
Page 4
Page 3

(c) t = 450

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18
0−100
100−200
200−300
300−400
400−500
500−600
600−700

(d) Summary

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18
5
4
3
2
1
0

(e) t = 200

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18
5
4
3
2
1
0

(f) t = 500

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18
5
4
3
2
1
0

(g) t = 1000

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18
0−250
250−500
500−750
750−1000
1000−1250
1250−1500
1500−1750
1750−2000
>2000

(h) Summary

Figure 7: Simulated Propagation Time for 5 Pages in a 20× 20 Grid Topology. Figures (a) - (d) and (e) - (h) are
from a network with 15’ and 10’ node spacing, respectively.

experienced by the dense case. However, when propagat-
ing multiple pages, the delay in reaching the middle nodes
accumulates over time and thus forms the same pattern as
in the dense case. In the dense case, the behavior becomes
even more pronounced.

To examine this behavior in greater detail, we plot the
rate of propagation for a single page along the edge and di-
agonal in Figure 8(a). We use the propagation times from
only those nodes on the bottom edge (i.e. (i, 0)∀i ∈ [0, 19])
and along the diagonal (i.e. (i, i)∀i ∈ [0, 19]) to represent
the propagation along the edge and diagonal respectively.
The slope of the plotted times represents the propagation
rate. Early in the process, the propagation rate along both
the edge and diagonal are identical. However, the propa-
gation rate along the diagonal drops to nearly 20% of the
original rate once it reaches node (5, 5). The propagation
rate remains fairly constant after the drop.

The root cause of this behavior is the hidden terminal
problem, which occurs when two nodes A and C communi-
cating within the range of node B are unable to coordinate
their transmissions, thus causing collisions when transmit-
ting to B. Nodes in the center of the network have more
neighboring nodes and experience a greater probability of
collisions than those on the edge of the network. Consid-
ering that nodes are spaced 10’ apart with TOSSIM’s 50’
interference range, a significant slow down at node (5, 5) is
understandable since it, along with all other nodes in the
center, experiences the greatest number of nodes within the
interference rage.

To see the effects of interference, we count the number of
transmissions within interference range and the number of
messages overheard which pass the CRC check. Figures 9(a)
and 9(b) show the number of each message type sent in a 10
second window within the interference range of nodes (2, 2)
and (5, 5) respectively. Node (5, 5) clearly shows a higher
number of sustained transmissions within its interference

range, causing a higher likelihood of collisions. Figures 9(c)
and 9(d) show the effects of the interference by plotting the
number of messages overheard which pass the CRC check.
Even though the rate of transmissions within node (5, 5)’s
interference range is greater, the rate of correctly received
messages is, at best, half of node (2, 2).

Deluge’s reaction to collisions is compounded by a more
subtle problem. Recall that Deluge achieves its density-
awareness by overhearing similar packets and suppresses re-
dundancies by employing a linear backoff scheme. Thus,
it relies on overhearing packets to estimate node density.
When the channel is pushed to saturation, the high number
of collisions can cause such a mechanism to underestimate
the number neighbors, stimulating transmission of more re-
dundant messages, causing more collisions, and leading to
congestion collapse. While Deluge borrows the suppression
mechanisms from Trickle, it differs in that Deluge operates
near channel capacity to quickly disseminate large amounts
of data. The authors of Trickle studied its performance with
a relatively low data rate. Figure 9(b) shows that the ad-
vertisement rate increases in proportion with other activity,
providing evidence that Deluge is underestimating the node
density.

To test how Deluge performs when the channel is not
pushed to saturation, we increase the backoff time for a
request. We chose to vary the request backoff time for
several reasons. First, decreasing the rate of requests has
the effect of decreasing the rate of invoking nodes to begin
transmitting data. Second, in contrast to data messages,
request messages can be transmitted by any node needing
data. With a large set of requesters, request messages are
more likely to increase collisions due to the hidden termi-
nal problem. Because requests are unicast to the node that
most recently advertised, it is unlikely for many senders in
a region to begin transmitting data. Finally, Figure 9(d)
clearly shows that the amount of request traffic can signifi-



0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18

20

Time (s)

D
is

ta
nc

e

Edge
Diagonal

(a) τr = 0.5 s.

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18

20

Time (s)

D
is

ta
nc

e

Edge
Diagonal
Edge Slow Req
Diagonal Slow Req

(b) τr = 1 s.

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

14

16

18

20

Time (s)

D
is

ta
nc

e

Edge
Diagonal
Edge Slow Req
Diagonal Slow Req

(c) τr = 2 s.

Figure 8: Simulated Propagation Rate of a Single Page. Figure (a) shows the propagation rate through the diagonal
and edge while Figures (b) and (c) compare the propagation rate for different values of τr.

−50 0 50 100 150 200 250 300 350 400
0

100

200

300

400

500

600

Time (s)

M
sg

s 
S

en
t

Adv Msgs
Data Msgs
Req Msgs

(a) Node (2, 2).

−50 0 50 100 150 200 250 300 350 400
0

100

200

300

400

500

600

Time (s)

M
sg

s 
S

en
t

Adv Msgs
Data Msgs
Req Msgs

(b) Node (5, 5).

−50 0 50 100 150 200 250 300 350 400
0

20

40

60

80

100

120

140

Time (s)

M
sg

s 
R

ec
ei

ve
d

Adv Msgs
Data Msgs
Req Msgs

(c) Node (2, 2).

−50 0 50 100 150 200 250 300 350 400
0

20

40

60

80

100

120

140

Time (s)

M
sg

s 
R

ec
ei

ve
d

Adv Msgs
Data Msgs
Req Msgs

(d) Node (5, 5).

Figure 9: Number of Messages Sent and Received. Figures (a) and (b) show the number of messages sent within the
interference range. Figures (c) and (d) show the number of messages overheard by the node.

cantly overcome the amount of data traffic for those nodes
which experience slow propagation times. By decreasing
the request traffic, useful data traffic can utilize more of the
channel.

Figure 8(b) compares the propagation of a single page
along the edge and diagonal for a τr of 1 second with the
original τr of 0.5 seconds. By doubling τr, the propaga-
tion rate along the diagonal improves by about 2.7 times
while the propagation rate along the edge remains nearly
identical, leading to an improvement in overall propagation
performance. With these improved effects, we continue to
increase τr to 2 seconds. Figure 8(c) compares the propaga-
tion of a single page along the edge and diagonal for a τr of 2
seconds with the original τr of 0.5 seconds. While the propa-
gation rate across the diagonal is slightly improved over the
original test, it does not match Deluge’s performance when
τr is 1 second. The propagation rate along the edge is worse
than either of the other tests. This leads to lowered over-
all performance. Note that the propagation rate across the
diagonal only experiences a 28% rate reduction relative to
the edge rather than the 80% reduction seen in the original
test. This shows that lowering channel utilization is effective
in eliminating the hidden terminal problem and minimizing
the difference in propagation rates between the edge and di-
agonal. However, it is also at odds with lowering the overall
propagation rate, a primary goal of Deluge.

In each experiment thus far, the propagation began at
a corner node. We now examine the behavior when the
source node is placed at the center of the network. One
might suggest that starting the propagation in the center

might help to eliminate the behavior of following the edge
and also decrease the propagation time by about half. We
repeat the simulations with τr at 0.5 seconds except with a
21×21 grid and the source node at the center of the network
rather than at the corner.

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20
0−20
20−40
40−60
60−80
80−100
100−120
120−140

(a) Spacing 15.

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20
0−50
50−100
100−150
150−200
200−250
250−300

(b) Spacing 10.

Figure 10: Simulated Propagation for 1 Page from
the Center in a 21× 21 Grid Topology.

Figure 10(a) shows the propagation behavior for the sparse
case (spacing 15). The time to reach all nodes is reduced
by approximately 40%. Additionally, the propagation still
does not behave in a nice circular manner. One cause is
Deluge’s depth-first tendency, where propagation of a sin-
gle page along good links is not blocked by delays caused
by poor links. Notice that the propagation speeds up as
it approaches the edge of the network. Figure 10(b) shows
the propagation behavior for the dense case (spacing 10).



0 10 20 30 40 50 60 70 80
0

100

200

300

400

500

600

Network Length (nodes)

Ti
m

e 
to

 C
om

pl
et

io
n 

(s
)

1 Page
5 Pages
10 Pages
15 Pages

(a) Varying network length.

0 5 10 15
150

200

250

300

350

400

450

500

550

600

Object Size (pages)

Ti
m

e 
to

 C
om

pl
et

io
n 

(s
)

(b) Varying object size.

2 4 6 8 10 12 14 16

x 10
−3

0

50

100

150

200

250

Density (nodes/ft2)

Ti
m

e 
to

 C
om

pl
et

io
n 

(s
)

(c) Varying node density.

Figure 11: Simulated Propagation Time for Linear Structures. These results are from a 2 × N network where
N = 4, 12, 20, . . . , 76 and 10’ spacing.

The time to reach all nodes is reduced by approximately
25%, significantly less than the expected 50%. Even though
placing the source at the center effectively reduces the the
diameter by about half, Deluge is unable to take advantage
of the quick edges since nodes in the center experience a
greater number of collisions. However, once the propaga-
tion reaches an edge, it begins to speed around the edge as
before.

5.2.3 Linear Structures
We briefly discuss the Deluge’s overall performance in lin-

ear networks. Figure 11 shows similar tests as in the square
topology case but for a 2 × N topology, where N ranges
from 4 to 76 nodes. The linear topology can be considered
a special case of the grid by representing just the edge. Fig-
ure 11(a) shows the effectiveness of the spatial multiplexing
and Figure 11(b) shows that propagation time is linear with
object size. Unlike the square topology, Figure 11(c) shows
that an increase in density actually improves performance.

5.2.4 Model
For the linear case, the simulations show that Deluge takes

about 40 seconds to disseminate each page to 152 nodes
across 15 hops. Considering that the link bandwidth be-
tween two nodes in TOSSIM can reach 32 packets/second,
this seems suboptimal, only achieving 4% of this rate. To
help understand this difference and the various factors which
contribute to it, we develop a simple model of the Deluge
process for the linear case.

Unlike wired networks, the broadcast nature of single-
channel, wireless networks prevents any multihop communi-
cation protocol from achieving the maximum transmission
rate of the radio. Recall from Figure 2 that a three hop
spacing is required to prevent collisions from simultaneous
transmissions, limiting any multihop communication scheme
to 33% of the maximum transmission rate.

Assume that the expected time to transmit a page is
E[TtPage] and the delay between completing a page and
requesting a new page is DnewReq, the expected time to
transmit an object of n pages across a d hop network is

E[Tobj ] = min(d·n, d+3(n−1))·(E[TtPage]+DnewReq). (1)

Given a packet loss rate E[rl], we define the expected
number of transmissions for a given packet as E[NtPkt] =

1
1−rl

. The expected time required to transmit just the data

packets is

E[Ttx] = E[NtPkt] · TtPkt ·N, (2)

where TtPkt is the transmission time for a single packet.
Given that TtPkt = 32.2 ms and E[rl] = 0.1, as derived
from the simulation data, E[Ttx] is relatively small.

Much of the remaining difference from the maximum trans-
mission rate is due to the various delays and backoffs within
Deluge. The first source of delay is the random backoffs be-
fore transmitting requests, where the expected backoff delay
of E[τr] = τr

2
. When receiving a page, the expected time

spent backing off while making requests is

E[Treq] = E[NtPkt] · E[Nreqs] · E[τr], (3)

where E[Nreqs] is the expected number of requests a node
must make to complete a given page.

The second source of delay comes from the relatively low
rate of advertisements. The expected time for receiving ad-
vertisements from nodes closer to the source is given by

E[TrAdv] = E[NtPkt] ·
τl

2
· (1 + E[NSupp]) (4)

where E[NSupp] specifies the expected number of times that
an advertisement from hop h is suppressed by hop h − 1
before transmitting an advertisement (in the linear case,
E[NSupp] = 1). Assume node R is at hop h+1 while S is at
hop h. After S acquires new data to transmit, the expected
time for R to learn that S has new data and transition to
RX is E[TrAdv].

Additionally, when a node exceeds its limit of λ requests,
it must transition to MAINTAIN and wait for another ad-
vertisement before making additional requests. Thus, the
expected amount of time spent waiting for additional ad-
vertisements when the request limit of λ is exceeded is

E[TtGiveUp] = E[NtPkt] ·
„

E[Nreqs]

λ
− 1

«
· E[TrAdv]. (5)

We now define E[TtPage] (the expected time required to
transmit a page across a single hop) used in (Equation 1) as

E[TtPage] = E[TrAdv]+E[Ttx]+E[Treq]+E[TtGiveUp]. (6)

We test the accuracy of the model by fitting it with the
simulated data from the linear case. The parameters Nhops =



15, TtPkt = 0.0322 seconds, rl = 0.1, and E[Nreqs] = 5.4
represent averages derived from the simulated data while
the remaining parameters are identical to the ones used in
the experiments. Figure 12 shows that the model fits fairly
well the simulated data.

0 5 10 15
0

100

200

300

400

500

600

Network Length (hops)

Ti
m

e 
to

 C
om

pl
et

io
n 

(s
)

1 Page
5 Pages
10 Pages
15 Pages

Figure 12: Comparison of Model with Simulation.
The solid lines represent the predicted times from the model.

Pipelining E[Treq] E[TtGiveUp] E[TrAdv] E[Ttx]
66% 14% 11% 5% 4%

Table 1: Contributions to Reduced Bandwidth from
the Maximum Transmission Rate.

From the model, the items that contribute to the differ-
ence from the maximum transmission rate are shown in Ta-
ble 1. As mentioned, spatial multiplexing alone accounts
for 66% of the difference and is a fundamental limit of any
multihop communication protocol in single-channel, wire-
less networks. The remaining 30% of the difference is due
to the delays and backoffs in Deluge and represent a trade-
off: while we would like to minimize these delays to increase
bandwidth, they are also necessary for suppression and with-
out suppression, contention would slow propagation. Thus,
there is an inherent limit to the dissemination rate which
is much less than that of simply routing a single message.
With a greater density, a larger delay period reduces any
collisions caused by the hidden terminal problem. We have
tested Deluge in very sparse cases with low delay settings
and it is able to achieve higher transfer rates.

6. CURRENT STATUS
The fully implemented Deluge protocol is included as a

core part of TinyOS 1.1.8 to support network programming
on the Mica2, Mica2-dot, MicaZ, and Telos platforms, the
latter two using 2.4 GHz, IEEE 802.15.4 radios. The cur-
rent implementation consumes 84 bytes of RAM, of which
43 bytes is a message buffer. In addition to the features de-
scribed in this paper, Deluge supports multiple objects on
each node by including an object summary of each object in
the advertisement. This allows a user to switch between two
or more program objects without continuously propagating
a new object.

We codeveloped TOSBoot, a bootloader that can repro-
gram a node by transferring a Deluge object from external
flash into program flash. TOSBoot is a static piece of code
that executes each time the node exits the reset state. Ar-
guments to TOSBoot are passed via the internal flash of the

MCU and indicate whether to program the node and which
Deluge object to program the node with. If there is no com-
mand to program the MCU, TOSBoot simply invokes the
TinyOS application. The use of non-volatile storage to pass
arguments provides robust operation in the face of node fail-
ures.

In addition to Deluge’s objects, the hardware manufac-
turer can install a program that contains Deluge and other
minimal services in the write-protect region of external flash.
TOSBoot programs a node with the factory installed object
on request by the user (through a radio command or a physi-
cal gesture) or if the node experiences failures. This factory
installed object is crucial for node reliability by providing
a solid software base that allows user interaction without
programming the node using a physical connection.

7. LOOKING FORWARD
While Deluge provides good, robust performance, there is

room for potential improvement. From our experiments, ad-
ditional design options become apparent. One possibility is
to employ an exponential backoff rather than a linear backoff
to accurately estimate the node density and avoid conges-
tion collapse. Dynamically adjusting the backoffs may have
the additional effect of minimizing wasted time caused by
backoffs. In areas where nodes are sparse, the backoffs can
be relatively small while contention remains low and the
suppression mechanisms remain effective.

The increased performance along the edge introduces an
interesting concept for disseminating large data objects. Ide-
ally, we would like to duplicate the beneficial edges in the
center of the network. One way is to select a linear set of
nodes through the center of the network to initially dissemi-
nate data. This allows for quick propagation across the cen-
ter of the network, splitting the network in two. We might
recursively continue this process, creating a fractal structure
for propagation. This structured approach should improve
the propagation time for a single page, but inhibits the use
of pipelining since it is more difficult to minimize interfer-
ence between transfers of different pages. Also, methods
for creating these paths in a distributed manner need to be
explored.

We have experimented with both adaptive delays and
structured approaches using TOSSIM. In some cases, we
were able to improve performance. However improvement
was limited to a 28% reduction in completion time even
when the protocols relied on ideal information. For exam-
ple, we assumed that nodes knew the location of their one-
hop neighbors and had accurate bi-directional link-quality
estimates for each neighbor. We were unable to achieve com-
parable results with on-line estimators. A complete analysis
of our results is beyond the scope of this paper.

This raises an important open question: What is the true
limit on the rate of dissemination in wireless networks? It
is clear that this bound is much lower than simply routing
a single message across the network. For large data objects,
we have shown that the use of spatial multiplexing provides
a lower bound than without it. However, spatial multiplex-
ing limits a node’s broadcast rate to no greater than one-
third the maximum rate due to the single-channel, broadcast
medium. The limit of one-third assumes a perfectly formed,
linear network topology with no interference between nodes
other than their direct children and grandchildren. Many
networks are not of this form even under a uniform distri-



bution because of the unpredictable nature of wireless com-
munications. In Section 5.1, we argued that nodes receive
up to four or five times the minimum number of required
packets in realistic deployments with single-channel, broad-
cast radios. This would reduce the transmission rate limit
to one-fourth or one-fifth the maximum rate. This limit
does not even consider packet-loss. Additionally, the unpre-
dictable interference causes additional sources of potential
collisions between nodes and leads to the use of selective and
delayed retransmissions, implemented in Deluge through the
use of suppression mechanisms. These delays further limit
the maximum transmission rate. From the empirical results,
Deluge operates at about one-ninth the maximum rate when
using TinyOS defaults.

The real-world deployment shows much better results for
Deluge than simulation. The propagation dynamics de-
scribed are determined by very low level factors and hence
may be influenced by the simulator itself. Because TOSSIM
models a uniform signal strength within a 50’ radius, the
impact of interfering transmissions may be overestimated.
The same experiments using a 20’ interference radius model
do not experience the edge effect and show a 70% reduction
in completion time, better representing the real-world de-
ployment. However, we are confident that such effects occur
at some density in real deployments and that the actual den-
sity may depend heavily on the way the network behaves.
While previous work has hinted at similar behaviors in real
deployments, the effects are too complex to state anything
conclusive and only small amounts of data are disseminated.

8. CONCLUSIONS
In this paper, we presented Deluge, a reliable data dis-

semination protocol for propagating large data objects from
one or more source nodes to many other nodes over a mul-
tihop WSN. With its density-aware, epidemic mechanisms,
we showed that Deluge can reliably disseminate data to all
nodes at a rate of 90 bytes/second in a real-world deploy-
ment, one-ninth the maximum transmission rate of the radio
supported under TinyOS. Control messages are limited to
18% of all transmissions. At scale, Deluge exposes propa-
gation dynamics only hinted at by previous work, showing
the impact of the hidden terminal problem on dissemina-
tion. We presented a simple model of Deluge’s propaga-
tion behavior, describing factors which limit its propagation
performance. Finally, we argued that dissemination is in-
herently slower than single path propagation and identified
establishing a tight lower bound as an open problem. Un-
like wired networks, dissemination protocols cannot achieve
an aggregate bandwidth near the link capacity due to the
single-channel radio, spatial multiplexing, and delays neces-
sary for suppression. It appears very hard to significantly
improve upon the rate obtained by Deluge.

9. ACKNOWLEDGMENTS
Special thanks to Gilman Tolle for his helpful input and

early contributions to Deluge. This work was supported
by the Defense Advanced Research Projects Agency (grant
F33615-01-C-1895), the National Science Foundation (grants
EIA-0122599 and IIS-033017), the Center for Information
Technology Research in the Interest of Society (CITRIS),
Intel, Sun Microsystems, Hewlett Packard, Microsoft, and
the California MICRO program.

10. REFERENCES
[1] A. Demers, D. Greene, C. Hauser, W. Irish, and J. Larson.

Epidemic algorithms for replicated database maintenance.
In Proceedings of the Sixth Annual ACM Symposium on
Principles of Distributed Computing, pages 1–12. ACM
Press, 1987.

[2] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler,
D. Estrin, and S. Wicker. Complex behavior at scale: An
experimental study of low-power wireless sensor networks.
Technical Report UCLA/CSD-TR 02-0013, UCLA, 2002.

[3] J. Jeong, S. Kim, and A. Broad. Network Reprogramming.
University of California at Berkeley, Berkeley, CA, USA,
August 2003.

[4] S. K. Kasera, G. Hjálmtýsson, D. F. Towsley, and J. F.
Kurose. Scalable reliable multicast using multiple multicast
channels. IEEE/ACM Transactions on Networking,
8(3):294–310, 2000.

[5] J. Kulik, W. R. Heinzelman, and H. Balakrishnan.
Negotiation-based protocols for disseminating information
in wireless sensor networks. Wireless Networks,
8(2-3):169–185, 2002.

[6] P. Levis and D. Culler. Maté: a tiny virtual machine for
sensor networks. In 10th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS-X), pages 85–95. ACM Press,
2002.

[7] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM:
Accurate and scalable simulation of entire tinyos
applications. In Proceedings of the First ACM Conference
on Embedded Networked Sensor Systems (SenSys 2003).
ACM Press, November 2003.

[8] P. Levis, N. Patel, S. Shenker, and D. Culler. Trickle: A
self-regulating algorithm for code propagation and
maintenance in wireless sensor networks. Technical report,
University of California at Berkeley, 2004.

[9] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu. The
broadcast storm problem in a mobile ad hoc network. In
Proceedings of the Fifth Annual ACM/IEEE International
Conference on Mobile Computing and Networking, pages
151–162. ACM Press, 1999.

[10] F. Stann and J. Heidemann. RMST: Reliable data
transport in sensor networks. In Proceedings of the First
International Workshop on Sensor Net Protocols and
Applications, pages 102–112, Anchorage, Alaska, USA,
April 2003. IEEE.

[11] T. Stathopoulos, J. Heidemann, and D. Estrin. A remote
code update mechanism for wireless sensor networks.
Technical report, UCLA, Los Angeles, CA, USA, 2003.

[12] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler.
Lessons from a sensor network expedition. In Proceedings of
the First European Workshop on Sensor Networks
(EWSN), Berlin, Germany, Jan. 2004.

[13] University of California, Berkeley. Smote testbed.
http://smote.cs.berkeley.edu/.

[14] University of California, Berkeley. Mica2-dot schematics.
http://webs.cs.berkeley.edu/tos/hardware/design/
ORCAD_FILES/MICA2/6310-0306-01ACLEAN.pdf, March 2003.

[15] University of California, Berkeley. Tinyos.
http://www.tinyos.net/, 2004.

[16] C.-Y. Wan, A. T. Campbell, and L. Krishnamurthy. PSFQ:
A reliable transport protocol for wireless sensor networks.
In Proceedings of the 1st ACM International Workshop on
Wireless Sensor Networks and Applications, pages 1–11.
ACM Press, 2002.

http://smote.cs.berkeley.edu/
http://webs.cs.berkeley.edu/tos/hardware/design/ORCAD_FILES/MICA2/6310-0306-01ACLEAN.pdf
http://webs.cs.berkeley.edu/tos/hardware/design/ORCAD_FILES/MICA2/6310-0306-01ACLEAN.pdf
http://www.tinyos.net/

	Introduction
	Related Work
	Deluge
	Data Representation
	The Protocol
	Maintenance
	Request
	Transmit

	Design Space

	Evaluation Methodology
	TinyOS Hardware
	TOSSIM

	Propagation
	Empirical Results
	Simulation Results
	Overall Performance
	Dynamic Behavior
	Linear Structures
	Model


	Current Status
	Looking Forward
	Conclusions
	Acknowledgments
	REFERENCES -9pt 

