
A Reliable Multicast Framework for Light-weight Sessions and

Application Level Framing

Sally Floyd, Van Jacobson, Steven McCanne

Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720
floyd, van, mccanne@ee.lbl.gov

Ching-Gung Liu

University of Southern California, Los Angeles, CA 90089

charley @carlsbad.usc.edu

Lixia Zhang

Xerox PARC, 3333 Coyote Hill Road, Palo Alto, CA 94304

lixia@parc.xerox. com

ABSTRACT

This paper describes SRM (Scalable Reliable Multicast), a

reliable multicast framework for application level framing

and light-weight sessions. The algorithms of this framework

are efficient, robust, and scale well to both very large net-

works and very large sessions. The framework has been

prototype in wb, a distributed whiteboard application, and

has been extensively tested on a global scale with sessions

ranging from a few to more than 1000 participants. The

paper describes the principles that have guided our design,

including the 1P multicast group delivery model, an end-to-

end, receiver-based model of reliability, and the application

level framing protocol model. As with unicast communica-

tions, the performance of a reliable multicast delivery algo-

rithm depends on the underlying topology and operational

environment. We investigate that dependence via analysis

and simulation, and demonstrate an adaptive algorithm that

uses the results of previous loss recovery events to adapt the

control parameters used for future loss recovery. Whh the

adaptive algorithm, our reliable multicast delivery algorithm

provides good performance over a wide range of underlying

topologies.

1 Introduction

Several researchers have proposed generic reliable multicast

protocols, much as TCP is a generic transport protocol for

reliable unicast transmission. In this paper we take a dif-

ferent view: unlike the unicast case where requirements for

reliable, sequenced data delivery are fairly general, differ-

ent multicast applications have widely different requirements

for reliability. For example, some applications require that

Permission to make digKal/hard copies of all or part of this material with-
out fee is granted prowded that the copies are not made or distributed
for profit or commercial advantage, the ACM copyrightkerver
notice, the title of the publication and Its date appear, and notice is given
that copyright is by permission of the Association for Computing Machinery,
Inc. (ACM). To copy otherwise: to republish, to post on servers or to
redistribute to hsts, requires prior specific permission and/or a fee

SIGCOMM ’95 Cambridge, MA USA
01995 ACM 0-89791 -711-1 /9510008,, ,$3.50

delivery obey a total ordering while many others do not.

Some applications have many or all the members sending

data while others have only one data source. Some applica-

tions have replicated data, for example in an n-redundant file

store, so several members are capable of transmitting a data

item while for others all data originates at a single source.

These differences all affect the design of a reliable multi-

cast protocol. Although one could design a protocol for the

worst-case requirements, e.g., guarantee totaIly ordered de-

livery of replicated data from a large number of sources, such

an approach results in substantial overhead for applications

with more modest requirements. One cannot make a single

reliable multicast delivery scheme that simultaneously meets

the functionality, scalability and efficiency requirements of

all applications.

The weakness of “one size fits all” protocols has long

been recognized. In 1990 Clark and Tennenhouse proposed a

new protocol model called Application Level Framing (ALF)

which explicitly includes an application’s semantics in the

design of that application’s protocol [CT90]. ALF was later

elaborated with a light-weight rendezvous mechanism based

on the 1P multicast distribution model, and with a notion

of receiver-based adaptation for unreliable, real-time appli-

cations such as audio and video conferencing. The result,

known as Light-Weight Sessions (LWS), has been very suc-

cessful in the design of wide-area, large-scale, conferencing

applications. This paper further evolves the principles of

ALF and LWS to add a framework for scalable reliable mul-

ticast (SRM).
ALF says that the best way to meet diverse application

requirements is to leave as much functionality and flexibility

as possible to the application. Therefore our algorithms are

designed to meet only the minimal definition of reliable mul-

ticast, i.e., eventual delivery of all the data to all the group

members, without enforcing any particular delivery order.

We believe that if the need arises, machinery to enforce a

particular delivery order can be easily added on top of this

reliable delivery service.

The design is also heavily based on the group delivery

model that is the centerpiece of the 1P multicast protocol

342

[D9 1]. In 1P multicast, data sources simply send to the

group’s multicast address (a normal 1P address chosen from

a reserved range of addresses) without needing any advance

knowledge of the group membership. Toreceive any data

sent to the group, receivers simply announce that they are in-

terested (via a “join” message broadcast on the local subnet)

— no knowledge of the group membership or active senders

is required. Each receiver joins and leaves the group indi-

vidually, without affecting the data transmission to any other

member. Ourmulticast delivery framework further enhances

the multicast group concept by maximizing information and

data sharing among all the members, and strengthens the in-

dividuality of membership by making each member respon-

sible for its own correct reception of all the data.

Finally, our design attempts to follow the core design prin-

ciples of TCP/IP. First, we require only the basic 1P delivery

model — best-effort with possible duplication and reorder-

ing of packets — and build the reliability on an end-to-end

basis. No change or special support is required from the un-

derlying 1P network. Second, in a fashion similar to TCP

adaptively setting timers or congestion control windows, our

algorithms dynamically adjust their control parameters based

on the observed performance within a session. This allows

applications using this model to adapt to a wide range of

group sizes, topologies and link bandwidths while maintain-

ing robust and high performance.

The paper proceeds as follows: Section 2 discusses gen-

eral issues for reliable multicast delivery. Section 3 describes

in detail the reliable multicast algorithm embedded in the

wb implementation. Section 4 discusses the performance

of the algorithm in simple topologies such as chains, stars,

and bounded-degree trees, and Section 5 presents simulation

results from more complex topologies. Section 6 discusses

extensions to the basic scheme embedded in wb, such as

adaptive algorithms for adjusting the timer parameters and

algorithms for local recovery. Section 7 discusses both the

application-specific aspects of wb’s reliable multicast algo-

rithms as well as the aspects of the underlying approach that

have general applicability. Section 8 discusses related work

on reliable multicast. Section 9 discusses future work on the

congestion control algorithms. Finally, Section 10 presents

conclusions.

2 The design of reliable multicast

2.1 Reliable data delivery: adding the word “multicast”

The problem of reliable (unicast) data delivery is well un-

derstood and a variety of well-tested solutions are available.

However, adding the word ‘multicast’ to the problem state-
ment significantly changes the solution set. For example, in

any reliable protocol some party must take responsibility for

loss detection and recovery. Because of the “fate-sharing”

implicit in unicast communication, i.e., the data transmis-

sion fails if either of the two ends fails, either the sender or

receiver can take on this role. In TCP, the sender times trans-

missions and keeps retransmitting until an acknowledgment

is received. NETBLT [CLZ87] uses the opposite model and

makes the receiver responsible for all loss detection and re-

covery. Both approaches have been shown to work well for

unicast.

However, if a TCP-style, sender-based approach is applied

to multicast distribution, a number of problems occur. First,

because data packets trigger acknowledgments (positive or

negative) from all the receivers, the sender is subject to the

well-known ACK implosion effect. Also, if the sender is

responsible for reliable delivery, it must continuously track

the changing set of active receivers and the reception state

of each. Since the 1P multicast model deliberately imposes a

level of indirection between senders and receivers (i.e., data is

sent to the multicast group, not to the set of receivers), the re-

ceiver set may be expensive or impossible to obtain. Finally,

the algorithms that are used to adapt to changing network

conditions tend to lose their meaning in the case of multicast.

E.g., how should the round-trip time estimate for a retransmit

timer be computed when there maybe several orders of mag-

nitude difference in propagation time to different receivers?

What is a congestion window if the delay-bandwidth product

to different receivers varies by orders of magnitude? What

self-clocking information exists in the ACK stream(s) if some

receivers share one bottleneck link and some another?

These problems illustrate that single-point, sender-based

control does not adapt or scale well for multicast delivery.

Since members of a multicast group have different commu-

nication paths and may come and go at any time, the “fate-

shared” coupling of sender and receiver doesn’ t generalize to

multicast. None of the problems described above exist with

NETBLT-style, receiver-based reliability (e.g., since each re-

ceiver keeps its own reception state, the per-host state burden

is constant, independent of group size, and the fact that group

membership can’t be known is irrelevant). Thus it is clear

that receiver-based reliability is a far better building block

for reliable multicast [PTK94].

Another unicast convention that migrates poorly to mul-

ticast has to do with the vocabulary used by the sender and

receiver(s) to describe the progress of their communication.

A receiver can request a retransmission either in application

data units (“sector 5 of file sigcomm-slides. ps”) or in terms

of the shared communication state (“sequence numbers 2560

to 3071 of this conversation”). Both models have been used

successfully (e.g., NFS uses the former and TCP the latter)

but, because the use of communication state for naming data

allows the protocol to be entirely independent of any appli-

cation’s namespace, it is by far the most popular approach
for unicast applications. However, since the multicast case

tends to have much weaker and more diverse state synchro-

nization, using that state to name data works badly. E.g.,

if a receiver joins a conversation late and receives sequence

numbers 2560 to 3071, it has no idea of what’s been missed

343

(since the sender’s starting number is arbitrary) and so can

neither do anything useful with the data nor make an intel-

ligent request for retransmission. If receivers hear from a

sender again after a lengthy network partition, they have no

way of knowing whether “2560” is a retransmission of data

they received before the partition or is completely new (due

to sequence number wrapping during the partition). Thus the

“naming in application data units (ADUS)” model works far

better for multicast. Use of this model also has two benefi-

cial side effects. As [CT90] points out, a separate protocol

namespace can impose delays and inefficiencies on an ap-

plication, e.g., TCP will only deliver data in sequence even

though a file transfer application might be perfectly happy to

receive sectors in any order. The ADU model eliminates this

delay and puts the application back in control. Also, since

ADU names can be made independent of the sending host, it

is possible to use the anonymity of 1P multicast to exploit the

redundancy of multiple receivers. E.g., if some receiver asks

for a retransmit of “sigcomm-slides.ps sector 5“, any mem-

ber who has a copy of the data, not just the original sender,

can carry out the retransmission.

2.2 Reliable multicast requirements

While the ALF model says that applications should be ac-

tively involved in their communications and that communi-

cation should be done in terms of ADUs rather than some

generic protocol namespace, we do not claim that every ap-

plication’s protocol must be completely different from every

other’s or that there can be no shared design or code. A great

deal of design commonality is imposed simply because dif-

ferent applications are attempting to solve the same problem:

scalable, reliable, multipoint communication over the Inter-

net. As Section 2.1 pointed out, just going from unicast to

multicast greatly limits the viable protocol design choices. In

addition, experience with the Internet has shown that success-

ful protocols must accommodate many orders of magnitude

variation in every possible dimension. While several algo-

rithms meet the constraints of Section 2.1, very few of them

continue to work if the delay, bandwidth and user population

are all varied by factors of 1000 or more.

In the end we believe the ALF model results in a skeleton

or template which is then fleshed out with application specific
details. Portions of that skeleton are completely determined

by network dynamics and scaling considerations and apply

to any application. So, for example, the scalable request and

repair algorithms described in Sections 3 through 6 are com-

pletely generic and apply to a wide variety of reliable mul-

ticast applications. Each different application supplies this

reliability framework with a namespace to talk about what

data has been sent and received; a policy and machinery to

determine how bandwidth should be apportioned between a

participant in the group, the group as a whole, and other users

of the net; and a local send policy that a participant uses to

arbitrate the different demands on its bandwidth (e.g., locally

originated data, repair requests and responses, etc.). It is the

intent of this paper to describe the skeleton common to scal-

able, reliable multicast applications. However, to make the

ideas concrete, we first describe a complete, widely used ap-

plication — wb, the LBL network whiteboard — that has

been implemented according to this model. After mention-

ing some details of its operation that are direct implications

of the design considerations in Section 2.1, we then factor

out the wb specifics to expose the generic, scalable, reliable

multicast skeleton underneath. The remaining sections of

this paper are an exploration of that skeleton.

2.3 The wb framework

Wb is a network con ferencing tool designed and imple-

mented by McCanne and Jacobson [J92, J94a, M92] that

provides a distributed whiteboard. The whiteboard separates

the drawing into pages, where a new page can correspond

to a new viewgraph in a talk or the clearing of the screen

by a member of a meeting. Any member can create a page

and any member can draw on any page.] Each member is

identified by a globally unique identifier, the Source-ID, and

each page is identified by the Source-ID of the initiator of

the page and a page number locally unique to that initiator.

Each member drawing on the whiteboard produces a stream

of drawing operations that are timestamped and assigned se-

quence numbers, relative to the sender. Most drawing op-

erations are idempotent and are rendered immediately upon

receipt. Each member’s graphics stream is independent from

that of other sites.

The following assumptions are made in wb’s reliable mul-

ticast design:

●

●

All data has a unique name.

This global name consists of the end host’s Source-ID

and a locally unique sequence number.

The name always refers to the same data.

It is impossible to achieve consistency among different

receivers in the face of late arrivals and network parti-

tions if, say, drawop 6’floyd:5° initially means a blue line

and later turns into a red circle. This does not mean that
the drawing can’t change, only that drawops must effect

the change. E.g., to change a blue line to a red circle, a

“delete” drawop for “tloyd:5” is sent, then a drawop for

the circle is sent.

1There are floor control mechamsms, largely extemat to wb, that can be
used if necessary to control who can create or draw on pages. These can be

combmed with normal Intemet prtvacy mechanisms (e.g., symmetric-key

encryption of atl the wb data) to limit participation to a particulm group

arrd/or with nonnat authentication mechanisms (e.g., participants signing

them drawing operations via public-key encryption of a cryptographic hash

of the drawop). The privacy, authentication and control mechanisms are

completely orthogonal to the rehabdity machinery that is the subJect of this

paper and will not be described here. For further details see [MJ95, J94].

344

●

●

●

Source-ID’s are persistent.

A user will often quit a session and later re-join, obtain-

ing the session’s history from the network. By ensuring

that Source-ID’s are persistent across invocations of the

application, the user maintains ownership of any data

created before quitting.

1P multicast datagram delivery is available.

All participants join the same multicast group; there is

no distinction between senders and receivers.

Wb has no requirement for ordered delivery because most

operations are idempotent. Operations that are not strictly

idempotent, such as a “delete” that references an earlier dra-

wop, can be patched after the fact, when the missing data

arrives. A receiver uses the timestamps on the drawing op-

erations to determine the rendering order. This coarse syn-

chronization mechanism captures the temporal causality of

drawing operations at a level appropriate for the application,

without the added complexity and delay of protocols that

provide guaranteed causal ordering.

3 Wb’s instantiation of the reliable multicast algorithm

Whenever new data is generated by wb, it is multicast to the

group. Each member of the group is individually responsi-

ble for detecting loss and requesting retransmission. Loss

is normally detected by finding a gap in the sequence space.

However, since it is possible that the last drawop of a set is

dropped, each member sends low-rate, periodic, session mes-

sages that announce the highest sequence number received

from every member that has written on the page currently

being displayed. In addition to the reception state, the ses-

sion messages contain timestamps that are used to estimate

the distance (in time) from each member to every other (de-

scribed in Section 3.1).

When receiver(s) detect missing data, they wait for a ran-

dom time determined by their distance from the original

source of the data, then send a repair request (the timer cal-

culations are described in detail in Section 3.2). As with the

original data, repair requests and retransmissions are always

multicast to the whole group. Thus, although a number of

hosts may all miss the same packet, a host close to the point

of failure is likely to timeout first and multicast the request.

Other hosts that are also missing the data hear that request

and suppress their own request. (This prevents a request im-

plosion.) Any host that has a copy of the requested data can

answer a request. It will set a repair timer to a random value
depending on its distance from the sender of the request mes-

sage and multicast the repair when the timer goes off. Other

hosts that had the data and scheduled repairs will cancel their

repair timers when they hear the multicast from the first host.

(This prevents a response implosion). In a topology with

diverse transmission delays, a lost packet is likely to trigger

345

only a single request from a host just downstream of the point

of failure and a single repair from a host just upstream of the

point of failure.

3.1 Session messages

As mentioned above, each member sends periodic session

messages that report the sequence number state for active

sources. Receivers use these session messages to determine

the current participants of the session and to detect losses.

The average bandwidth consumed by session messages is

limited to a small fraction (e.g., 5%) of the session data band-

width using the algorithm developed for vat and described in

[SCFJ94].

In a large, long-lived session, the state would become un-

manageable if each receiver had to report the sequence num-

bers of everyone who had ever written to the whiteboard. The

“pages” mentioned above are used to partition the state and

prevent this explosion. Each member only reports the state

of the page it is currently viewing. If a receiver joins late, it

may issue page requests to learn the existence of pages and

the sequence number state in each page. We omit the details

of the page state recovery protocol as it is almost identical to

the repair request / response protocol for data.

In addition to state exchange, receivers use the session

messages to estimate the one-way distance between nodes.

All whiteboard packets, including session packets, include a

Source-ID and a timestamp. The session packet timestamps

are used to estimate the host-to-host distances needed by the

repair algorithm.

The timestarnps are used in a highly simplified version

of the NTP time synchronization algorithm [M84]. Assume

that host A sends a session packet PI at time tI and host

B receives P1 at time t2. At some later time, t3, host B

generates a session packet Pz, marked with (t1,A) where

A = t3 – tz (time t 1 is included in Pz to make the algorithm

robust to lost session packets). Upon receiving Pz at time

t4,host A can estimate the latency from host B to host A as

(tA – t, – A)/2. Note that while this estimate does assume

that the paths are symmetric, it does not assume synchronized

clocks.

3.2 Loss recovery

The loss recovery algorithm provides the foundation for re-

liable delivery. In this section we describe the loss recovery

algorithm originally designed for wb; Section 6.1 describes

a modified version of this algorithm with an adaptive adjust-

ment of the timer parameters.
When host A detects a loss, it schedules a repair request for

a random time in the future. The request timer is chosen from

the uniform distribution on [Cl d,S,A, (Cl +Cz)d.9,A] seconds,

where ds,A is host A’s estimate of the one-way delay to the

original source S of the missing data. When the request

timer expires, host A sends a request for the missing data,

and doubles the request timer to wait for the repair.

If host ‘A receives a request for the missing data before

its own request timer for that data expires, then host A does

a (random) exponential backoff, and resets its request timer.

That is, if the current timer had been chosen from the uniform

distribution on

2z[Cld5’,4t, (cl + @is,A],

then the backed-off timer is randomly chosen from the uni-

form distribution on

2i+1 [~~ds,A, (cl + C2)&,A1.

When host B receives a request from A that host B is

capable of answering, host B sets a repair timer to a value

from the uniform distribution on

seconds, where dA,B is host B‘s estimate of the one-way

delay to host A. If host B receives a repair for the missing

data before its repair timer expires, then host B cancels its

repair timer. If host B‘s repair timer expires before it receives

a repair, then host B multicasts the repair. Because host B

is not responsible for host A’s reliable data reception, it does

not verify whether host A actually receives the repair.

Due to the probabilistic nature of these algorithms, it is not

unusual for a dropped packet to be followed by more than one

request. Thus, a host could receive a duplicate request imme-

diately after sending a repair, or immediately after receiving

a repair in response to its own earlier request. In order to

prevent duplicate requests from triggering a responding set

of duplicate repairs, host B ignores requests for data D for

3 ds,~ seconds after sending or receiving a repair for that

data, where host S is either the original source of data D or

the source of the first request.

Because data represents idempotent operations, loss re-

covery can proceed independently from the transmission of

new data. Similarly, recove~ for losses from two differ-

ent sources can also proceed independently. Since transmis-

sion bandwidth is often limited, a single transmission rate

is allocated to control the throughput across all these differ-
ent modes of operation, while the application determines the

order of packet transmission according to their relative im-

portance. In wb, the highest priority packets are repairs for

the current page, middle priority are new data, and lowest

priority are repairs for previous pages.

3.3 Bandwidth limitations

The congestion control mechanism for whiteboard sessions

is based on a (fixed, in current implementations) maximum

bandwidth allocation for each session. Each wb session has a

sender bandwidth limit advertised as part of the sd announce-

ment. A typical value is 64 Kbps; in this case a wb session

costs no more (and typically considerably less) than the ac-

companying audio session. Individual members use a token

bucket rate limiter to enforce this peak rate on transmissions.

This peak rate is mostly relevant when a source distributes a

postscript file for anew page of the whiteboard, or when a late

arrival requests the past history of the whiteboard session.

3.4 Recovery from partitioning

The whiteboard does not require special mechanisms for the

detection or recovery from network partitioning. Because

wb relies on the underlying concept of an 1P multicast group,

where members can arrive and depart independently, wb does

not distinguish a partitioning from a normal departure of

members from the wb session.

During a partition of a session, users can simply continue

using the whiteboard in the connected components of the

partitions. Because pages are identified by the Source-ID

of the initiator of the page, along with the page number for

that initiator, members can continue creating new pages dur-

ing the partition (e.g., “Floyd:3” in one half of the partition,

and “Zhang:5” in the other). After recovery each page will

still have a unique page ID and the repair mechanism will

distribute any new state throughout the entire group.

Almost all of the design described in this section is present

in version 1.59 of wb; some omissions are pending imple-

mentation. These omissions include the measurements of

one-way delays and the rate-limiting mechanisms.

4 Requesth-epair algorithms for simple topologies

Building on our initial design experiences in wb, we turn to a

more general investigation of the requesthepair algorithms.

The algorithms described in the remainder of the paper have

been implemented only within our simulation framework.

Given that multiple hosts may detect the same losses, and

multiple hosts may attempt to handle the same repair re-

quest, the goal of the requesthepair timer algorithms is to

de-synchronize host actions to keep the number of duplicates

low. Among hosts that have diverse delays to other hosts in

the same group, this difference in delay can be used to dif-
ferentiate hosts; for hosts that have similar delays to reach

others, we can only rely on randomization to de-synchronize

their actions.

This section discusses a few simple, yet representative,

topologies, namely chain, star, and tree topologies, to provide

a foundation for understanding the requesthepair algorithms

in more complex environments. For a chain the essential

feature of a requesthepair algorithm is that the timer value

be a function of distance. For a star topology the essential

feature of the requesthepair algorithm is the randomization

used to reduce implosion. Request/repair algorithms in a

346

tree combine both the randomization and the setting of the

timer as a function of distance. This section shows that the

performance of the requesth-epair algorithms depends on the

underlying network topology.

4.1 Chains

Figure 1 shows a chain topology where all nodes in the chain

are members of the multicast session. Each node in the under-

lying multicast tree has degree at most two. The chain is an

extreme topology where a simple deterministic requesthepair

algorithm suffices: in this section we assume that Cl, D1 = 1,

and that C2, D2 = O.

For the chain, as in most of the other scenarios in this paper,

link distance and delay are both normalized. We assume that

packets take one unit of time to travel each link, i.e. all links

have distance of 1.

0 : source of dropped packet

X :faded edge

Figure 1: A chain topology.

In Figure 1 the nodes in the chain are labeled as either to

the right or to the left of the congested link. Assume that

source LJ multicasts a packet that is subsequently dropped

on link (L 1, R1), and that the second packet sent from source

Lj is not dropped. We call the edge that dropped the packet,

whether due to congestion or to other problems, the congested

link. Assume that the right-hand nodes each detect the failure

when they receive the second packet from Lj.

Assume that node R, first detects the loss at time t, and

that each link has distance 1. Then node R1 multicasts a

request at time t + j. Node L 1 receives the request at time

t + j + 1 and multicasts a repair at time t + j + 2. Node Rk

receives the repair at time t + k + j + 2.

Note that all nodes to the right of node R] receive the

request from RI before their own request timers expire. We

call this deterministic suppression. We leave it as an exercise

for the reader to verify that, due to deterministic suppression,

there will be only one request and one repair.

Had the loss repair been done by unicast, i.e. node Rk

sent a unicast request to the source Lj as soon as it detected

the faih.rre and LJ sent a unicast repair to Rk as soon as it

received the request, node Rk would not receive the repair

until time t + 2j + 3k. Thus, with a chain and with a simple
deterministic requesthpair algorithm, the furthest node re-

ceives the repair sooner than it would if it had to rely on its

own unicast communication with the original source. While

the original source and the intended recipient of the dropped

packet could be arbitrarily far from the congested link, in

the multicast repair algorithm both the request and the repair

come from the node immediately adjacent to the congested

link.

4.2 Stars

For the star topology in Figure 2 we assume that all links

are identical and that the center node is not a member of the

multicast group. For a star topology, setting the request timer

as a function of the distance from the source is not an essential

feature, as all nodes detect a loss at exactly the same time.

Instead, the essential feature of the requesthepair algorithm

in a star is the randomization used to reduce implosion; we

call this probabilistic suppression.

N3

N1

%

N2

Ng

. . .

N4 O N6 O : source of dropped packet

N5 X : faded edge

Figure 2: A star topology.

For the star topology in Figure 2 assume that the first packet

from node NI is dropped on the adjacent link. There are

G members of the multicast session, and the other members

detect the loss at exactly the same time. For the discussion of

this topology we assume that Cl, D1 = O; because all nodes

detect losses and receive requests at the same time, Cl and

D] are not needed to amplify differences in delay. The only

benefit in setting Cl greater than O is to avoid unnecessary

requests from out-of-order packets.

If C2 is at most 1, then there will always be G – 1 requests.

Increasing C2 reduces the expected number of requests but

increases the expected time until the first request is sent.

For Cz > 1, the expected number of requests is roughly

1 + (G – 2)/C2, and the expected delay until the first timer

expires is 2C2/G. 2 For example, if C2 is set to ~, then

the expected number of requests is roughly @, and the ex-

pected delay until the first timer expires is 2/@ seconds.

The same remarks apply to D2 with respect to repairs.

4.3 Bounded-degree trees

The requesthepair performance in a tree topology uses both

the deterministic suppression described for chain topologies

2 rhe G – 1 nodes all detect the failure at the same rime, and atl set

their timers to a uniform value in an interval of width 2C2. If the first timer
expires at time t, then the other G – 2 receivers receive that first request

at time t+ 2. So the expected number of duplicate requests is equat to the

expected number of timers that expire in the interval [t,t+ 2].

347

and the probabilistic suppression described for star topolo-

gies. Consider a network topology of a bounded-degree tree

with N nodes where interior nodes have degree p. A tree

topology combines aspects of both chains and stars. The

timer value should be a function of distance, to enable re-

quests and repairs to suppress request and repair timers at

nodes further down in the tree. In addition, randomization is

needed to reduce requestfrepair implosion from nodes that are

at an equal distance from the source (of the dropped packet,

or of the first request).

We assume that node S in the tree is the source of the

dropped packet, and that link (B,A) drops a packet from

source S. We call nodes on the source’s side of the congested

link (including node B) good nodes, and we call nodes on

the other side of the congested link (including node A) bad

nodes. Node A detects the dropped packet at time t,when it

receives the next packet from node S. We designate node A

as a level-O node, and we call a bad node a level-i node if it

is at distance i from node A.

Assume that the source of the dropped packet is at distance

j from node A. Node A’s request timer expires at time

t + C,j + U1[qj,

where U [C2] denotes a uniform random variable between O

and Cz. Assuming that node A’s request is not suppressed, a

level-i node receives node A’s request at time

t+i+c, j+u~[c*]j.

Node B receives node A’s repair request at time

t+ 1 + Clj + Ul[cz]j.

A bad level-i node detects the loss at time t+ i,and such

a node’s request timer expires at some time

t+i+c, (i+j)+uz[cz](i+ j).

Note that regardless of the values of U1 [C2] and U2[C2], a

level-i node receives node A’s request by time t + i + Cl j +

C2j, and a level-i node’s request timer expires no sooner than

t+i+Cl(i+j). If

t+i+Clj +C2j<t+i+Cl(i+ j),

that is, if

~1

then the level- i node’s request timer will always be sup-

pressed by the request from the level-O node. Thus, the

smaller the ratio C2/C1, the fewer the number of levels that

could be involved in duplicate requests. This relation also

demonstrates why the number of duplicate requests or repairs

is smaller when the source (of the dropped packet, or of the

request) is close to the congested link.

Note that the parameter Cl serves two different functions.

A smaller value for Cl gives a smaller delay for node B

to receive the first request. At the same time, for nodes

further away fi-om the congested link, a larger value for Cl

contributes to suppressing additional levels of request timers.

A similar tradeoff occurs with the parameter C2. A smaller

value for C2 gives a smaller delay for node B to receive the

first repair request. At the same time, as illustrated with star

topologies, a larger value for C2 helps to prevent duplicate

requests from session members at the same distance from the

congested link. Similar remarks apply to the functions of D1

and D2 in the repair timer algorithm.

5 Simulations of the request and repair algorithms

For a given underlying network, set of session members,

session sources, and congested link, it should be feasible to

analyze the behavior of the repair and request algorithms,

given fixed timer parameters Cl, C2, D,, and D2. However,

we are interested in the repair and request algorithms across a

wide range of topologies and scenarios. We use simulations

to examine the performance of the requesth-epair algorithms

for individual packet drops in random and bounded-degree

trees. We do not claim to be presenting realistic topologies

or typical patterns of packet loss.

The simulations in this section show that the requestfrepair

algorithms with fixed timer parameters perform well in a

random or bounded-degree tree when every node in the un-

derlying tree is a member of the multicast session. The re-

questh-epair algorithms perform somewhat less well for a

sparse session, where the session size is small relative to the

size of the underlying network. This motivates the develop-

ment on the adaptive request.h-epair algorithm in Section 6.1,

where the timer parameters Cl, C2, D1, and D2 are adjusted

in response to past performance.

In these simulations the fixed timer parameters are set as

follows: Cl, C2 = 2, and D1, D2 = log lo G, where G is

the number of members in the same multicast session. The
choice of loglo G for D1 and D2 is not critical, but gives

slightly better performance than D1, D2 = 1 for large G.

Each simulation constructs either a random tree or a

bounded degree tree with N nodes as the network topology.

Next, G of the N nodes are randomly chosen to be session

members, and a source S is randomly chosen from the G

session members.

We assume that messages are multicast to members of the

multicast group along a shortest-path tree from the source of

the message. In each simulation we randomly choose a link

L on the shortest-path tree from source S to the G members

of the multicast group. We assume that the first packet from

source S is dropped by link L, and that receivers detect this

loss when they receive the subsequent packet from source S.

348

5.1 Simulations on random trees Note that with unicast communications the ratio of delay to

We first consider simulations on random labeled trees of N

nodes, constructed according to the labeling algorithm in

[Pa85, p.99]. These trees have unbounded degree, but for

large N, the probability that a particular vertex in a random

labeled tree has degree at most four approaches 0.98 [Pa85,

p. 114]. Figure 3 shows simulations of the requesth-epair al-

gorithm for this case, where all N nodes in the tree are mem-

bers of the multicast session (that is, G = N). For each graph

the x-axis shows the session size G; twenty simulations were

run for each value of G. Each simulation is represented by

an jittered dot, and the median from the twenty simulations

is shown by a solid line. The two dotted lines mark the up-

per and lower quartiles; thus, the results from half of the

simulations lie between the two dotted lines.

I
E
=Ln

z 1‘~-:’ ~~‘ ~I
.;. ..,,

:.-.””””- -..-.-:”- -.. . 7,
.: ...::-- .- :.. .

0

20 40 60 80 100
Session Size

-t I
0

20 40 60 80 100

Session .9ze

Figure 3: Random trees with a random congested link, where

all nodes are members of the multicast session.

The top two graphs in Figure 3 show the number of re-

quests and repairs to recover from a single loss. The bottom

graph shows the delay of the last node in the multicast session

to receive the repair. For each member affected by the loss,
we define the delay as the time from when the member first

RTT is at least one. For a unicast receiver that detects a packet

loss by waiting for a retransmit timer to time out. the typical

ratio of delay to RTT is closer to 2. As the earlier discus-

sion of chain topologies shows, with multicast requesthepair

algorithms the ratio of delay to RTT can sometimes be less

than one, because the request and/or repair could each come

from a node close to the point of failure.

Figure 3 shows that the repair/request algorithm works

well for a tree topology where all nodes of the tree are mem-

bers of the multicast session. There is usually only one re-

quest and one repair. (Some lack of symmetry results from
the fact that the original source of the dropped packet might

be far from the point of failure, while the first request comes

from a node close to the point of failure.) The average recov-

ery delay for the farthest node is roughly 2 RTT, competitive

with the average delay available from a unicast algorithm

such as TCP. The results are similar in simulations where the

congested link is chosen adjacent to the source of the dropped

packet, and for simulations on a bounded-degree tree of size

N = G where interior nodes have degree 4.

5.2, Simulations on large bounded-degree trees

The performance of the requesth-epair algorithms with fixed

timer parameters is less optimal when the underlying network

is a large bounded-degree tree. The underlying topology for

the simulations in this section is a balanced bounded-degree

tree of N = 1000 nodes, with intenor nodes of degree four.

In these simulations the session size G is significantly less

than N. For a session that is sparse relative to the underlying

network, the nodes close to the congested link might not be

members of the session.

As Figure 4 shows, the average number of repairs for each
loss is somewhat high. In simulations where the congested

link is always adjacent to the source, the number of repairs

is low but the average number of requests is high.

[FJLMZ95] shows the performance of the requesthepair

algorithm on a range of topologies. These include topolo-

gies where each of the N nodes in the underlying network is

a router with an adjacent ethernet with 5 workstations, point-

to-point topologies where the edges have a range of propa-

gation delays, and topologies where the underlying network

is more dense that a tree. None of these variations that we

have explored have significantly affected the performance of

the requesthepair algorithms with fixed timer parameters.

6 Extending the basic approach

6.1 Adaptive adjustment of random timer algorithms

detected the loss until the member first received a repair. The The close connection of the loss recovery performance with
graph shows this delay as a multiple of RTT, the roundtrip the underlying topology of the network suggests that the
time from the receiver to the original source of the dropped timer parameters Cl, C2, Dl, and D2 be adjusted in response
packet. to the past behavior of the requesth-epair algorithms. In this

349

q
g.
$
~o ,.. . ,,
g .“

----- . . .~ :“, ,’
3L0 -

,, .
. -

0 -“

“~

0 I
20 40 60 80 100

Session Size

Figure4: Bounded-degree tree, degree4, 1000 nodes, with

a random congested link.

section we describe an adaptive algorithm that adjusts the

timer parameters as a function of both the delay and of the

number of duplicate requests and repairs in recent loss re-

covery exchanges.

Before each new request timer is set:

if ave. dup. requests high

increase request timer interval

else if ave. dup. requests low

and ave. req. delay too high

decrease request timer interval

Figure 5: Dynamic adjustment algorithm for request timer

interval.

Figure 5 gives the outline of the dynamic adjustment al-

gorithmfor adjusting thetimerparameter C2, whichcontrols

the width of the request timer interval. If the average number

ofduplicate requests istoohigh, then the adaptive algorithm

increases the request timer interval. Alternately, if the av-

erage number ofduplicatesis okay butthe average delayin

sending a request is too high, then the adaptive algorithm de-

creases the request timer interval. In this fashion the adaptive

algorithm can adapt the timer parameters not only to fit the

fixed underlying topology, but also to fit a changing session

membership and pattern of congestion.

First we describe how a session member measures the av-

erage delay and number of duplicate requests in previous loss

recovery rounds in which that member has been a participant.

A request period begins when a member first detects a loss

and sets a request timer, and ends only when that member

begins a new request period. The variable dupi-eq keeps

count of the number of duplicate requests received during

one request period; these could be duplicates of the most re-

cent request or of some previous request, but do not include

requests for data for which that member never set a request

timer. At the end of each request period, the member updates

ave-dup-req, the average number of duplicate requests per re-

quest period, before resetting dup-req to zero. The average

is computed as an exponential-weighted moving average,

ave-dup-req - (1— CY)ave_dup_req + a dup.req,

with a = 1/4 in our simulations. Thus, ave-dup.req gives

the average number of duplicate requests for those request

events for which that member has actually set a request timer.

When a request timer either expires or is reset for the first

time, indicating that either this member or some other mem-

ber has sent a request for that data, the member computes

req_delay, the delay from the time the request timer was

first set (following the detection of a loss) until a request was

sent (as indicated by the time that the request timer either

expired or was reset). The variable req-delay expresses this

delay as a multiple of the roundtnp time to the source of

the missing data. The member computes the average request

delay, ave.req-delay.

In a similar fashion, a repairperiod begins when a member

receives a request and sets a repair timer, and ends when a

new repair period begins. In computing dup-rep, the number

of duplicate repairs, the member considers only those repairs

for which that member at some point set a repair timer. At

the end of a repair period the member updates avehp-rep,

the average number of duplicate repairs.

When a repair timer either expires or is cleared, indicating

that this member or some other member sent a repair for

that data, the member computes rep-delay, the delay from

the time the repair timer was set (following the receipt of a

request) until a repair was sent (as indicated by the time that

the repair timer either expired or was cleared). As above, the
variable rep-delay expresses this delay as a multiple of the

roundtnp time to the source of the missing data. The member

computes the average repair delay, ave-rep_delay.

Figure 6 gives the adaptive adjustment algorithm used in

our simulator to adjust the request timer parameters Cl and

C2. The adaptive algorithm is based on comparing the mea-

surements ave_dup-req and ave-.reqdelay with AveDups and

AveDelay, the target bounds for the average number of du-

plicates and the average delay. An identical adjustment algo-

rithm is used to adapt the repair timer parameters Q and D2,

based on the measurements aveAup_rep and avexepdelay.

0

After a request timer expires or is first

reset:

update ave-req_delay

Before each new request timer is set:

update avedup.req

if (ave_dup-req > AveDups))

C, =MaxC1

Cji- = 0.5

else if (avedup-req < AveDups/2)

if (ave-req-deiay > AveDelay)

C2– = 0.1
if (ave..dup.req < 1/4)

C,– =0.05

else CI+=O.05

Figure 6: Dynamic adjustment algorithm for request timer

parameters.

Figure 7 gives the initial values used in our simulations for the

timer parameters. All four timer parameters are constrained

to stay within the minimum and maximum values in Figure

7.

Initial values:

C,=2

D1 = Ma~[loglOG, 2]

C2=2

D2 = logloG

Fixed parameters:

MinCl = 0.5; MaxCl = 2

.k?inCp = 1 ; MaxC2 = G

MinD1 = 0.5; iWaxD1 = iWaz[loglOG, 2]

MinD2 = 1 ; ikfaxD2 = G

AveDups = 1

AveDelay = 3

Figure 7: Parameters for adaptive algorithms

We are not trying to devise an optimal adaptive algorithm

for reducing some function of both delay and of the num-

ber of duplicates; such an optimal algorithm could involve

rather complex decisions about whether to adjust mainly Cl

or Cz, possibly depending on such factors as that member’s

relative distance to the source of the lost packet. Recall that

increasing C2 is guaranteed to reduce the number of dupli-

cate requests; in contrast, increasing Cl reduces the number

of duplicate requests only when the members of the multicast
group have diverse delays to reach each other. Our adaptive

algorithm relies largely on adjustments of C2 to reduce du-

plicates. Our adaptive algorithm only decreases Cl when the

average number of duplicates is already quite small (e.g., in

scenarios where there are only one or two nodes capable of

sending a request).

Because of the probabilistic nature of the repair and re-

quest algorithms, the behavior might vary over a fairly wide

range even with a fixed set of timer parameters. Thus, the

adaptive algorithm does not assume that the average num-

ber of duplicates is controlled until ave-dup-req is less than

AveDups/2.

The numerical parameters in Figure 6 of 0.05, 0.1, and

0.5 were chosen somewhat arbitrarily. The adjustment of

–0.05 for Cl is intended to be small, as the adjustment of

Cl is not the primary mechanism for controlling the num-

ber of duplicates. The adjustments of –O. 1 and +0.5 for C2

are intended to be sufficiently small to minimize oscillations

in the setting of the timer parameters. Sample trajectories

of the requestfrepair algorithms confirm that the variations

from the random component of the timer algorithms domi-

nate the behavior of the algorithms, minimizing the effect of

oscillations.

In our simulations we use a multiplicative factor of 3 rather

than 2 for the request timer backoff described in Section 3.2.

With a multiplicative factor of 2, and with an adaptive al-

gorithm with small minimum values for Cl and C’z, a single

node that experiences a packet loss could have its request

timer expire before receiving the repair packet, resulting in

an unnecessary duplicate request.

Figures 8 and 9 show simulations comparing adaptive and

non-adaptive algorithms. The simulation set in Figure 8 uses

fixed values for the timer parameters, and the one in Figure

9 uses the adaptive algorithm. From the simulation set in

Figure 4, we chose a network topology, session membership,

and drop scenario that resulted in a large number of dupli-

cate requests with the non-adaptive algorithm. The network

topology is a bounded-degree tree of 1000 nodes with degree

4 for interior nodes, and the multicast session consists of 50

members.

Each of the two figures shows ten runs of the simulation,

with 100 loss recovery rounds in each run. For each round of

a simulation, the same topology and loss scenario is used, but

a new seed is used for the pseudo-random number generator

to control the timer choices for the requests and repairs. In

each round a packet from the source is dropped on the con-

gested link, a second packet from the source is not dropped,

and the requesth-epair algorithms are run until all members

have received the dropped packet. Each round of each simu-

lation is marked with a dot, and a solid line shows the median

from the ten simulations. The dotted lines show the upper

and lower quartiles.

For the simulations in Figure 8 with fixed timer parameters,

one round differs from another only in that each round uses
a different set of random numbers for choosing the timers.

For the simulations with the adaptive algorithm in Figure

9, after each round of the simulation each session member

uses the adaptive algorithms to adjust the timer parameters,

based on the results from previous rounds. Figure 9 shows

351

28
a .,
2.
cx -
Z

2
u-) -

0

0 20 40 60 80 100
Round Number

Adaptwe T[mer Parameters AveDups=l, AveDelay=3

ok

0 20 40 60 80 10
Round Number

Adapt(ve T!mer Parameters AveDups=l, AveDelay=3

0

0 20 40 60 80 100
Round Number

Adaptive Timer Parameters AveDups=l, AveDelay=3

Figure 8: The non-adaptive algorithm.

that for this scenario, the adaptive algorithms quickly reduce

the average number of repairs with little penalty in additional

delay. The average delay is roughly the same for the adap-

tive and the non-adaptive algorithms, but with the adaptive

algorithm the delay has a somewhat higher variance.

Figure 10 shows the results of the adaptive algorithm on the

same set of scenarios as that in Figure 4. For each scenario

(i.e., network topology, session membership, source mem-

ber, and congested link) in Figure 10, the adaptive algorithm

is run repeatedly for 40 loss recovery rounds, and Figure 10

shows the results from the 40th loss recovery round. Com-

paring Figures 4 and 10 shows that the adaptive algorithm is

effective in controlling the number of duplicates over a range

of scenarios.

Simulations in [FJLMZ95] show that adaptive algorithm
works well in a wide range of conditions. These include

scenarios where only one session member experiences the

packet loss; where the congested link is chosen adjacent to

the source of the packet to be dropped; and for a range of

underlying topologies, including 5000-node trees, trees with
interior nodes of degree 10; and connected graphs that are

more dense that trees, with 1000 nodes and 1500 edges.

In actual multicast sessions, successive packet losses are

not necessarily from the same source or on the same network

link. Simulations in [FJLMZ95] show that in this case, the

adaptive timer algorithms tune themselves to give good aver-

age performance for the range of packet drops encountered.

[FJLMZ95] explores the benefits of adding additional condi-

tions to the adaptive algorithm to monitor the worst-case as

well as the average delay and number of duplicates. Simula-

tions in [FJLMZ95] show that, by choosing different values

0 20 40 60 80 100
Round Number

Adaptive T)mer Parameters AveDups=l, AveDelay=3

Figure 9: The adaptive algorithm.

~
$U7 .
=,-

~
:0
0-
g

Em -

2

g
E ,.
=LO ,.
z ,: ...:..:

. . .
..

0 -

20 40 60 80 100

Session Size

“~

I

0

20 40 60 80 100

Session Size

Figure 10: Adaptive algorithm on round 40, for a bounded-

degree tree of 1000 nodes with degree 4 and a randomly

picked congested link. AveDups = 1, AveDeiay = 3.

for AveDelay and AveDups, tradeoffs can be made between

352

the relative importance of low delay and a low number of

duplicates.

In the simulations in this section, none of the requests or

repairs are themselves dropped. In more realistic scenarios

where not only data messages but requests and repairs can

be dropped at congested links as well, members have to rely

on retransmit timer algorithms to retransmit requests and re-

pairs as needed. Obviously, this will increase not only the

delay, but also the number of duplicate requests and repairs

in different parts of the network.

6.2 Local recovery

With the requestirepair algorithm described above, even if a

packet is dropped on an edge to a single member, both the

request and the repair are multicast to the entire group. In

cases where the neighborhood affected by the loss is small,

the bandwidth costs of the request/repair algorithm can be

reduced if requests and repairs are multicast with limited

scope. This use of limited scope can be implemented by

setting an appropriate “hop count” in the time-to-live (TTL)

field of the 1P header.

Local recovery requires that the member sending the re-

quest have some information about the neighborhood of

members sharing the same losses. However, end nodes

should not know about network topology. We define a loss

neighborhood is a set of members who are all experienc-

ing the same set of losses. End nodes can learn about “loss

neighborhoods” from information in session messages, with-

out learning about the network topology. For each member,

we call a loss a local loss if the number of members ex-

periencing the loss is much smaller than the total number of

members in the session. To help identify loss neighborhoods,

session messages could report the names of the last few lo-

cal losses. In addition, session messages could report the

fraction of received repairs that are redundant, that is, those

repairs received for known data, for which that member never

set a request timer.

Assume for the moment that after a number of local losses

with a stable loss neighborhood a member M can use session

messages to estimate the size of the local neighborhood, that

is, the minimum TTL h 1needed to reach all members sharing

the same losses. Further assume that from previous loss

recoveries M can estimate h2, the minimum TTL needed to

reach some member not in the loss neighborhood. To use

local recovery for the next request, M sends the request with

TTL h~ = Max(hl, h2). If this 10SSfollows the same history

as the previous local losses, then h3 is sufficient to suppress

requests from other members in the loss neighborhood and
to reach some member capable of answering the request. A

member receiving a request from M that was sent with TTL

h3 answers with a repair of TTL h~ + h(kf), where h(kf) is

the number of hops to reach M. For a network with symmetric

paths and thresholds, this repair reaches M with a remaining

TTL of hs, and therefore reaches all members reached by the

original request.

Scenarios that could particularly benefit from local recov-

ery include sessions with persistent losses to a small neigh-

borhood of members, and isolated late arrivals to a multicast

session asking for back history. [FJLMZ95] explores lo-

cal recovery for a range of environments, including environ-

ments like the current Mbone where regions of the network

are separated from each other by paths with high thresholds.

We are also investigating the use of separate multicast groups

for local recovery.

7 Application-specific and general aspects of reliable

multicast

Section 2 discussed some of the underlying assumptions in

the design of reliable multicast for wb. In this section we ex-

plore some of the ways that the reliable multicast framework

described in this paper could be used and modified to meet

the needs of other applications for reliable multicast.

A fundamental concept in our reliable multicast algorithm

is a multicast group, i.e. a set of hosts that(1) can be reached

by a group address without being identified individually first,

ancl (2) share the same application data and thus can help

each other with loss recovery. This group concept is also

appropriate for applications such as routing protocol updates

and DNS updates, as well as for the group distribution of

stock quotes, Usenet news, or WWW-based mass media.

Let’s take the Border Gateway Protocol (BGP) as an exam-

ple. The Internet is viewed as a set of arbitrarily connected

autonomous systems (AS) that are connected through bor-

der gateways that speak BGP to exchange routing informa-

tion. One AS may have multiple BGP speakers, and all BGP

speakers representing the same AS must give a consistent

image of the AS to the outside, i.e. they must maintain con-

sistent routing information. In the current implementation,

this consistency is achieved by each BGP router opening a

TCP connection to each other BGP router to deliver rout-

ing updates reliably. There are several problems with this

approach. First, achieving multicast delivery by multiple

one-to-one connections bears a high cost. Second, for an AS

with N BGP routers, one has to manually configure the (N-1)

TCP connections for each of the N routers, and repeat again

whenever a change occurs. Both of these problems could be

solved by applying our reliable multicast algorithm, perhaps

with some minor adjustments to the data persistence model.

our reliable multicast framework could easily be adapted

for the distribution of such delay-insensitive material as

Usenet news. Different applications have different trade-

offs between minimizing delay and minimizing the number

of duplicate requests or repairs. For an interactive applica-

tion such as wb, close attention must be paid to minimizing

delay, For reliably distributing Usenet news, on the other

hand, minimizing bandwidth would be more important than

353

minimizing delay. Again some minor tuning to our request

and repair timer algorithms may make our work readily ap-

plicable to the news distribution.

As a third example, we could consider applying the basic

approach in this work to data caching and replication for Web

pages. Like wb, all objects in the Web have a globally unique

identifier. With HTTP, all requests for a specific object are

handled by the original source, even though in many cases,

especially for “hot” objects, a copy may be found within the

neighborhood of a requester. When distributed Web caches

are implemented, our reliable multicast framework could be

used to reliably distribute updates to the caches. In addition,

when a user makes a request to a remote object, the request

could be multicast to the cache group. By using our timer

algorithms, the cache closest to the requester would be most

likely to send a reply.

We believe that the approach to reliable multicast de-

scribed in this paper could be useful to a wide range of ap-

plications based on multicast groups. Even for applications

that may require partial or total data ordering, the reliable

multicast framework described in this paper could be used

to reliably deliver the data to all group members, and a par-

tial or total ordering protocol could be built on top that is

specifically tailored to the ordering needs of that application.

8 Related work on reliable multicast

The literature is rich with architectures for reliable multicast.

Due to space limitations, we will not describe the details of

each solution. Instead, we focus on the different goals and

definitions of reliability in the various architectures, and the

implications of these differences for the scalability, robust-

ness, handling of dynamic group membership, and overhead

of the algorithms.

The Chang and Maxemchuk protocol [CM84] is one of the

pioneer works in reliable multicast protocols. It is basically

a centralized scheme that provides totally ordered delivery

of data to all group members. All the members are ordered

in a logical ring, with one of them being the master, called

the token site. The token site is moved around the ring af-

ter each data transmission. Sources multicast new data to

the group, and the token site is responsible for acknowledg-

ing (by multicast) the new data with a timestamp, as well as

retransmitting (through unicast) all missing packets upon re-

quests from individual receivers. The order of data reception

at all the sites is determined by the timestamp in the ACK.

Each ACK also serves to pass the token to the next member

in the ring. By shifting the token site among all the members,

with a requirement that a site can become the token site only

if it has received all the acknowledged data, it is assured that

after shifting the token site through all the N members in the

group, everyone will have received all the data that is at least

N smaller than the current timestamp value.

Because the token site is responsible for all the acknowl-

edgments and retransmissions, it becomes the bottleneck

point whenever losses occur. The scheme also requires ref-

ormation of the ring whenever a membership change occurs.

Therefore it does not scale well with the size of the group.

RMP (Reliable Multicast Protocol) [WKM95] is an en-

hanced implementation of the Chang and Maxemchuk algo-

rithm with added QoS parameters in each data transfer and

better handling of membership changes.

The reliable multicast protocol for ordered delivery de-

scribed in [KTHB89] is similar to, but simpler than, the

Chang and Maxemchuk protocol. Basically, all data is first

unicast to a master site, called a sequencer, which then multi-

casts the data to the group. Therefore the sequencer provides

a global ordering of all the data in time; it is also responsi-

ble for retransmitting, by unicast, all the missing data upon

requests. The sequencer site does not move unless it fails, in

which case a new sequencer is elected. To avoid keeping all

the data forever, the sequencer keeps track of the receiving

state of all the members to determine the highest sequence

number that has been correctly received by all the members.

MTP (Multicasting Transport Protocol) [AFM92] is again

a centralized scheme for totally ordered multicast delivery.

A master site is responsible for granting membership and to-

kens for data transmission; each host must obtain a token

from the master first before multicasting data to the group,

thus the total order of data packets is maintained. A window

size defines the number of packets that can be multicast into

the group in a single heartbeat and a retention size defines the

period (in heartbeats) to maintain all client data for retrans-

mission. NACKS are unicast to the data source which then

multicasts the retransmission to whole group.

Compared to the above cited works, the Trans and Total

protocols described in [MMA90] are the closest in spirit to
our work. These protocols assume that all the members in a

multicast group are attached to one broadcast LAN. Each host

keeps an acknowledgment list which contains identifiers of

both positive and negative ACKS. Whenever a host sends a

data packet, it attaches its acknowledgment list to the packet,

as a way to synchronize the state with all other members in

the group. Because the single LAN limits data transmissions

from all hosts to one packet at a time, partial and total or-

dering of data delivery can be readily derived from data and

acknowledgment sequences.
Perhaps the most well-known work on reliable multicast is

the ISIS distributed programming system developed at Cor-

nell University [BSS91]. It provides causal ordering and, if

desired, total ordering of messages on top of a reliable mul-

ticast delivery protocol. Therefore the ISIS work is to some

extent orthogonal to the work described in this paper, and fur-

ther confirms our notion that a partial or total ordering, when

desired, can always be added on top of a reliable multicast de-

livery system. The reliable multicast delivery in existing ISIS

implementations is achieved by multiple unicast connections

using a windowed acknowledgment protocol similar to TCP

354

[B93]. A new implementation has been announced recently

that can optionally run on top of 1P multicast.

9 Future work on congestion control

SRM assumes that the multicast session has a maximum

bandwidth allocation for the session. We are continuing re-

search on a number of congestion control issues related to

this bandwidth allocation.

Given this bandwidth allocation, in an application tuned

to the worst-case receiver members could give priority to the

transmission of repairs, refraining from sending new data

in the absence of available bandwidth. In an application

like wb not tuned to the worst-case receiver, the application

gives the transmission of new data priority over the repairs for

previous pages. In such a reliable multicast session limited

by a fixed or adaptive target bandwidth, a session member

that is falling behind could either wait for the congestion to

clear or unsubscribe from the multicast session.

The congestion control mechanisms required from an ap-

plication using reliable multicast depend in part on the re-

source management services available from the network. For

realtime traffic (i.e., traffic such as audio and video that is

constrained by a fixed or adaptive playback time), some

researchers have proposed that the network provide real-

time services with an explicit reservation setup protocol, ad-

mission control procedures, and appropriate scheduling al-

gorithms, to provide for guaranteed and predictive service

[BCS94]. If members of a reliable multicast application were

to take advantage of such services, and make reservations for

a fixed target bandwidth, then each member simply requires

a procedure for determining whether the session is over or

under its bandwidth allocation.

On the other hand, if the application uses an adaptive rather

than a fixed target bandwidth, adapting the target bandwidth

for the session in response to congestion in the network, then

the additional question remains of how this adaptive target

bandwidth would be determined. One possibility that re-

quires additional research would be to use multiple multicast

groups, with a low-bandwidth multicast group targeted to

the needs of the worst-case receivers, and limited to low-

bandwidth data and repairs for the current page.

10 Conclusions and future work

This paper described in detail SRM, a scalable reliable mul-

ticast algorithm that was first developed to support wb. We

have discussed the basic design principles as well as exten-

sions of the basic algorithm that make it more robust for a
wide range of network topologies.

Many applications need or desire support for reliable mul-

ticast. Experience with the wb design shows, however, that

individual applications may have widely different require-

ments of multicast reliability. Instead of designing a generic

reliable multicast protocol to meet the most stringent require-

ments, this work has resulted in a simple, robust, and scalable

reliable multicast algorithm that meets a minimal reliability

definition of delivering all data to all group members, leav-

ing more advanced functionalities, whenever needed, to be

handled by individual applications.

The work described in this paper is based on the fundamen-

tal principles of application level framing (ALF), multicast

grouping, and the adaptivity and robustness in the TCP/IP ar-

chitecture design. Although the work started with the goal of

supporting wb, the end results should be generally applicable

to a wide variety of other applications.

11 Acknowledgments

This work benefitted from discussions from Dave Clark and

from the End-to-End Task Force about general issues of

sender-based vs. receiver-based protocols. We would also

like to thank Peter Danzig for discussions about reliable mul-

ticasting and web-caching.

REFERENCES

[AFM92] Armstrong, S., Freier, A., and Marzullo, K., “Mul-

ticast Transport Protocol”, Request for Comments

(RFC) 1301, Feb. 1992.

[B93] Birman, K., “The Process Group Approach to Reli-

able Distributed Computing”, Communications of the

ACM, Dec. 1993.

[BSS91] Birman, K., Schiper, A., and Stephenson, P.,

“Lightweight Casual and Atomic Group Mtdticast”,

ACM Transactions on Computer Systems, VOL9, No.

3, pp. 272-314, Aug. 1991.

[BCS94] B. Braden, D. Clark, and S. Shenker, “Integrated

Services in the Intemet Architecture: an Overview”,

Request for Comments (RFC) 1633, IETF, June 1994.

[CM84] Chang, J., and Maxemchuk, N., “Reliable Broad-

cast Protocols”, ACM Transactions on Computer Sys-

tems, VO1.2, No. 3, pp. 251-275, Aug. 1984.

[Cr90] Clark, D., and Tennenhouse, D., “Architectural

Considerations for a New Generation of Protocols”,

Proceedings of ACM SIGCOMM ’90, Sept. 1990, pp.

201-208.

[CLZ87] Clark, D., Lambert, M., and Zhang, L., “NETBLT

A High Throughput Transport Protocol”, Proceedings

of ACM SIGCOMM ’87, pp. 353-359, Aug. 1987.

[D91] Deering, S., “Multicast Routing in a Datagram Inter-

network”, PhD thesis, Stanford University, Palo Alto,
California, Dec. 1991.

[FJLMZ95] Floyd, S., Jacobson, V., Liu, C., McCanne, S.,

and Zhang, L., “A Reliable Multicast Framework for

Light-weight Sessions and Application Level Fram-

ing, Extended Report”, LBL Technical Report, URL

ftp:l/ftp.ee.lbl. gov/papers/wb.tech.ps.Z, Sept. 1995.

355

[J92] Jacobson, V., “A Portable, Public Domain Network

‘Whiteboard’ “, Xerox PARC, viewgraphs. April 28,

1992.

[J94] Jacobson, V., “A Privacy and Security Architecture

for Lightweight Sessions”, Sante Fe, NM, Sept. 94.

[J94a] Jacobson, V., “Multimedia Conferencing on the In-

ternet”, Tutorial 4, SIGCOMM 1994, Aug. 1994.

[KTHB89] Kaashoek, M., Tannenbaum, A., Hummel, and

Bal, “An Efficient Reliable Broadcast Protocol”, Op-

erating Systems Review, Oct., 1989.

[M92] McCanne, S., “A Distributed Whiteboard for Net-

work Conferencing”, May 1992, UC Berkeley CS 268

Computer Networks term project.

[MJ95] McCanne, S., and Jacobson, V., “vie: A Flexi-

ble Framework for Packet Video”, submitted to ACM

Multimedia 1995.

[MMA90] Melliar-Smith, P., Moser, L., and Agrawala, V.,

“Broadcast Protocols for Distributed Systems”, IEEE

Transactions on Parallel and Distributed Systems,

Vol. 1 No. 1, Jan. 1990, pp. 17-25.

[M84] Mills, D. L., “Network Time Protocol (Version 3)”,

RFC (Request For Comments) 1305, March 1992.

[Pa85] Palmer, E., Graphical Evolution: An Introduction to

the Theory of Random Graphs, John Wiley & Sons,

1985.

[SCFJ94] Schulzrinne, H., Casner, S., Frederick, R., and

Jacobson, V., “RTP: A Transport Protocol for Real-

Time Applications”, Internet Draj draft-ietf-avt-rtp-

06.txt, work in progress, Nov. 1994.

[PTK94] Pingali, S., Towsley, D., and Kurose, J., “A Com-

parison of Sender-Initiated and Receiver-Initiated Re-

liable Multicast Protocols”, SIGMETRICS ’94.

[TS94] Thyagarajan, A., and Deering, S., 1P Mul-

ticast release 3.3, Aug. 1994, available from

ftp:llparcftp.xerox.cornlpubl net-research /ipmulti3.3-

sunos413x.tar.Z.

[WKM95] Whetten, B., Kaplan, S., Montgomery, T., “A

High Performance Totally Ordered Multicast Proto-

col”, submitted to INFOCOM ’95.

356

