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1. INTRODUCTION.The idea of a \digital signature" �rst appeared in DiÆe and Hellman's seminal paper, \New Dire-tions in Cryptography"[DH76℄. They propose that eah user A publish a \publi key" (used for validatingsignatures), while keeping seret a \seret key" (used for produing signatures). In their sheme userA's signature for a message M is a value whih depends on M and on A's seret key, suh that anyonean verify the validity of A's signature using A's publi key. However, while knowing A's publi key issuÆient to allow one to validate A's signatures, it does not allow one to easily forge A's signatures.They also proposed a way of implementing signatures based on \trap-door funtions" (see setion 2.1.1).The notion of a digital signature is useful and is a legal replaement for handwritten signatures[LM78, Ma79℄. However, a number of tehnial problems arise if digital signatures are implemented usingtrap-door funtions as suggested by DiÆe and Hellman [DH76℄; these problems have been addressed andsolved in part elsewhere. For example, [GMY83℄ showed how to handle arbitrary or sparse messages setsand how to ensure that if an enemy sees previous signatures (for messages that he has not hosen) it doesnot help him to forge new signatures (this is a \non-adaptive hosen-message attak" { see setion 2.2).The signature sheme presented here, using fundamentally di�erent ideas than those presented byDiÆe and Hellman, advanes the state of the art of signature shemes with provable seurity propertieseven further; it has the following important harateristis:� What we prove to be diÆult is forgery, and not merely obtaining the seret key used by the signingalgorithm (or obtaining an eÆient equivalent algorithm).� Forgery is proven to be diÆult for a \most general" enemy who an mount an adaptive hosen-message attak. (An enemy who an use the real signer as \an orale" an not in time polynomial inthe size of the publi key forge a signature for any message whose signature was not obtained fromthe real signer.) In ontrast to all previous published work on this problem, we prove the shemeinvulnerable against suh an adaptive attak where eah message whose signature is requested maydepend on all signatures previously obtained from the real signer. We believe that an adaptivehosen-message attak is the most powerful attak possible for an enemy who is restrited to usingthe signature sheme in a natural manner.� The properties we prove about the new signature sheme do not depend in any way on the set ofmessages whih an be signed or on any assumptions about a probability distribution on the messageset.� Our sheme an be generalized so that it an be based on \hard" problems other than fatoringwhenever one an reate law-free trap-door pair generators.Our sheme an be based on any family of pairs of law-free permutations, yielding a signature shemethat is invulnerable to a hosen-message attak even if the law-free trap-door permutations are vulnerableto a hosen-message attak when used to make a trap-door signature sheme (see setion 2.1.1).Fundamental ideas in the onstrution are the use of randomization, signing by using two authenti-ation steps (the �rst step authentiates a random value whih is used in the seond step to authentiatethe message), and the use of a tree-like branhing authentiation struture to produe short signatures.We note that our signature sheme is not of the simple DiÆe-Hellman \trap-door" type. For example,a given message an have many signatures.Our signature sheme is seemingly \paradoxial", in that we prove that forgery is equivalent tofatoring even if the enemy uses an adaptive hosen-message attak. We an restate the paradox asfollows:� Any general tehnique for forging signatures an be used as a \blak box" in a onstrution thatenables the enemy to fator one of the signer's publi moduli (he has two in our sheme), but� The tehnique of \forging" signatures by getting the real signer to play the role of the \blak box"(i.e. getting the real signer to produe some desired genuine signatures) does not help the enemy tofator either of the signer's moduli.Resolving this paradox was previously believed to be impossible and ontraditory [Wi80, misled byRivest℄.The rest of this paper is organized as follows. In setion 2 we present de�nitions of what it means to\break" a signature sheme and what it means to \attak" a signature sheme. In setion 3 we reviewpreviously proposed signature shemes. In setion 4 we review more losely the nature of the \paradox",2



and disuss how it anbe resolved. Setion 5 de�nes some useful onventions and notation, and setion6 desribes the omplexity-theoreti foundations of our sheme. In setion 7 we give the some of thefundamental notions for our signature sheme, and setion 8 gives the details. In setion 9 we prove thatit has the desired properties. In the last setion we disuss some ways to improve the running time andmemory requirements of this sheme.2. FUNDAMENTAL NOTIONSTo properly haraterize the results of this paper, it is helpful to answer the following questions:� What is a digital signature sheme?� What kinds of attaks an the enemy mount against a digital signature sheme?� What is meant by \breaking" the signature sheme?Little attention has been so far devoted to preisely answer these questions. For instane, signatureshemes have been generially alled "seure" without speifying against what kind of attak. This way,it would not be surprising that "seure" signature shemes were later broken by an unforseen attak.We hope that the lassi�ation we propose in this setion may prove useful in resolving unpleasantambiguities.2.1. What Is a Digital Signature Sheme?A digital signature sheme ontains the following omponents:� A seurity parameter k, whih is hosen by the user when he reates his publi and seret keys. Theparameter k determines a number of quantities (length of signatures, length of signable messages,running time of the signing algorithm, overall seurity, et.).� A message spaeM whih is the set of messages to whih the signature algorithm may be applied.Without loss of generality, we assume in this paper that all messages are represented as binarystrings { that isM� f0; 1g+. To ensure that the entire signing proess is polynomial in the seurityparameter, we assume that the length of the messages to be signed is bounded by k, for someonstant  > 0.� A signature bound B whih is an integer bounding the total number of signatures that an beprodued with an instane of the signature sheme. This value is typially bounded above by alow-degree polynomial in k, but may be in�nite.� A key generation algorithm G whih any user A an use on input 1k (i.e. k in unary) to generatein polynomial time a pair (P kA; SkA) of mathing publi and seret keys. The seret key is sometimesalled the trap-door information.� A signature algorithm � whih produes a signature �(M;SA) for a message M using the seret keySA. Here � may reeive other inputs as well. For example, in the sheme we propose �rst, � has anadditional input whih is the number of previously signed messages.� A veri�ation algorithm V whih tests whether S is a valid signature for messageM using the publikey PA. (I.e. V (S;M;PA) will be true if and only if it is valid.)Any of the above algorithms may be \randomized" algorithms that make use of auxiliary random bitstream inputs. We note that G must be a randomized algorithm, sine part of its output is the seretkey, whih must be unpreditable to an adversary. The signing algorithm � may be randomized { wenote in partiular that our signing algorithm is randomized and is apable of produing many di�erentsignatures for the same message. In general, the veri�ation algorithm need not be randomized, and oursis not.We note that there are other kinds of \signature" problems whih are not dealt with here; the mostnotable being the \ontrat signing problem" where two parties wish to exhange their signatures to anagreed-upon ontrat simultaneously (for example, see [Bl83℄, [EGL82℄, [BGMR85℄).2.1.1 A Classial Example: Trap-Door SignaturesTo reate a signature sheme, DiÆe and Hellman proposed that A use a \trap-door funtion" f :informally, a funtion for whih it is easy to evaluate f(x) for any argument x but for whih, givenonly f(x), it is omputationally infeasible to �nd any y with f(y) = f(x) without the seret \trap-door"information. Aording to their suggestion, A publishes f and anyone an validate a signature by hekingthat f(signature) = message. Only A possesses the \trap-door" information allowing him to invert f :3



f�1(message) = signature. (Trap-door funtions will be formally de�ned in setion 6.) We all anysignature sheme that �ts into this model (i.e. uses trap-door funtions and signs by apply f�1 to themessage) a trap-door signature sheme.We note that not all signature shemes are trap-door shemes, although most of the ones proposedin the literature are of this type.2.2 Kinds of AttaksWe distinguish two basi kinds of attaks:� Key-Only Attaks in whih the enemy knows only the real signer's publi key, and� Message Attaks where the enemy is able to examine some signatures orresponding to eitherknown or hosen-messages before his attempt to break the sheme.We identify the following four kinds of message attaks, whih are haraterized by how the messageswhose signatures the enemy sees are hosen. Here A denotes the user whose signature method is beingattaked.� Known Message Attak: The enemy is given aess to signatures for a set of messagesm1; : : : ;mt.The messages are known to the enemy but are not hosen by him.� Generi Chosen Message Attak: Here the enemy is allowed to obtain from A valid signaturesfor a hosen list of messages m1; : : : ;mt before he attempts to break A's signature sheme. Thesemessages are hosen by the enemy, but they are �xed and independent of A's publi key (for examplethemi's may be hosen at random). This attak is nonadaptive: the entire message list is onstrutedbefore any signatures are seen. This attak is \generi" sine it does not depend on the A's publikey; the same attak is used against everyone.� Direted Chosen Message Attak: This is similar to the generi hosen-message attak, exeptthat the list of messages to be signed may be reated after seeing A's publi key but before anysignatures are seen. (The attak is still nonadaptive.) This attak is \direted" against a partiularuser A.� Adaptive Chosen Message Attak: This is more general yet: here the enemy is also allowed touse A as an \orale"; not only may he request from A signatures of messages whih depend on A'spubli key but he may also request signatures of messages whih depend additionally on previouslyobtained signatures.The above attaks are listed in order of inreasing severity, with the adaptive hosen-message attakbeing the most severe natural attak an enemy an mount. That the adaptive hosen-message attak is anatural one an be seen by onsidering the ase of a notary publi who must sign more-or-less arbitrarydouments on demand. In general, the user of a signature sheme would like to feel that he may signarbitrary douments prepared by others without fear of ompromising his seurity.2.3 What Does It Mean To \Break" a Signature Sheme?One might say that the enemy has \broken" user A's signature sheme if his attak allows him todo any of the following with a non-negligible probability:� A Total Break: Compute A's seret trap-door information.� Universal Forgery: Find an eÆient signing algorithm funtionally equivalent to A's signing algo-rithm (based on possibly di�erent but equivalent trap-door information).� Seletive Forgery: Forge a signature for a partiular message hosen a priori by the enemy.� Existential Forgery: Forge a signature for at least one message. The enemy has no ontrol overthe message whose signature he obtains, so it may be random or nonsensial. Consequently thisforgery may only be a minor nuisane to A.Note that to forge a signature means to produe a new signature; it is not forgery to obtain from A a validsignature for a message and then laim that he has now \forged" that signature, any more than passingaround an authenti handwritten signature is an instane of forgery. For example, in a hosen-messageattak it does not onstitute seletive forgery to obtain from the real signer a signature for the targetmessage M .Clearly, the kinds of \breaks" are listed above in order of dereasing severity { the least the enemymight hope for is to sueed with an existential forgery.4



We say that a sheme is respetively totally breakable, universally forgeable, seletively forgeable, orexistentially forgeable if it is breakable in one of the above senses. Note that it is more desirable to provethat a sheme is not even existentially forgeable than to prove that it is not totally breakable. The abovelist is not exhaustive; there may be other ways of \breaking" a signature sheme whih �t in betweenthose listed, or are somehow di�erent in harater.We utilize here the most realisti notion of forgery, in whih we say that a forgery algorithm sueedsif it sueeds probabilistially with a non-negligible probability. To make this notion preise, we say thatthe forgery algorithm sueeds if its hane of suess is at least as large as one over a polynomial in theseurity parameter k.To say that the sheme is \broken", we not only insist that the forgery algorithm sueed with anon-negligible probability, but also that it must run in probabilisti polynomial time.We note here that the harateristis of the signature sheme may depend on its message spaein subtle ways. For example, a sheme may be existentially forgeable for a message spae M but notexistentially forgeable if restrited to a message spae whih is a suÆiently small subset ofM.The next setion exempli�es these notions by reviewing previously proposed signature shemes.3. PREVIOUS SIGNATURE SCHEMES AND THEIR SECURITYIn this setion we list a number of previously proposed signature shemes and briey review somefats about their seurity.Trap-Door Signature Shemes [DH76℄: Any trap-door signature sheme is existentially forgeablewith a key-only attak sine a valid (message, signature) pair an be reated by beginning with a random\signature" and applying the publi veri�ation algorithm to obtain the orresponding \message". Aommon heuristi for handling this problem in pratie is to require that the message spae be sparse(i.e. requiring that very few strings atually represent messages { for example this an be enfored byhaving eah message ontain a reasonably long heksum.) In this ase this spei� attak is not likelyto result in a suessful existential forgery.Rivest-Shamir-Adleman [RSA78℄: The RSA sheme is seletively forgeable using a direted hosen-message attak, sine RSA is multipliative: the signature of a produt is the produt of the signatures.(This an be handled in pratie as above using a sparse message spae.)Merkle-Hellman [MH78℄: Shamir showed the basi Merkle-Hellman \knapsak" sheme to be univer-sally forgeable using just a key-only attak [Sh82℄. (This sheme was perhaps more an enryption shemethan a signature sheme, but had been proposed for use as a signature sheme as well.)Rabin [Ra79℄: Rabin's signature sheme is totally breakable if the enemy uses a direted hosen-messageattak (see setion 4). However, for non-sparse message spaes seletive forgery is as hard as fatoring ifthe enemy is restrited to a known message attak.Williams [Wi80℄: This sheme is similar to Rabin's. The proof that seletive forgery is as hard asfatoring is slightly stronger, sine here only a single instane of seletive forgery guarantees fatoring(Rabin needed a probabilisti argument). Williams uses e�etively (as we do) the properties of numberswhih are the produt of a prime p � 3 (mod 8) and a prime q � 7 (mod 8). Again, this sheme istotally breakable with a direted hosen-message attak.Lieberherr [Li81℄: This sheme is similar to Rabin's and Williams', and is totally breakable with adireted hosen-message attak.Shamir [Sh78℄: This knapsak-type signature sheme has reently been shown by Tulpan [Tu84℄ to beuniversally forgeable with a key-only attak for any pratial values of the seurity parameter.Goldwasser-Miali-Yao [GMY83℄: This paper presents for the �rst time signature shemes whihare not of the trap-door type, and whih have the interesting property that their seurity harateristishold for any message spae. The �rst signature sheme presented in [GMY83℄ was proven not to be evenexistentially forgeable against a generi hosen-message attak unless fatoring is easy. However, it is notknown to what extent direted hosen-message attaks or adaptive hosen-message attaks might aid anenemy in \breaking" the sheme. 5



The seond sheme presented there (based on the RSA funtion) was also proven not to be evenexistentially forgeable against a generi hosen-message attak. This sheme may also resist existentiallyforgery against an adaptive hosen-message attak, although this has not been proven. (A proof wouldrequire showing ertain properties about the density of prime numbers and making a stronger intratabil-ity assumption about inverting RSA.) We might note that, by omparison, the sheme presented here ismuh faster, produes muh more ompat signatures, and is based on muh simpler assumptions (onlythe diÆulty of fatoring or more generally the existene of law-free permutation pair generators).Several of the ideas and tehniques presented in [GMY83℄, suh as bit-by-bit authentiation, are usedin the present paper.Ong-Shnorr-Shamir [OSS84a℄: Totally breaking this sheme using an adaptive hosen-message at-tak has been shown to be as hard as fatoring. However, Pollard [Po84℄ has reently been able to showthat the \OSS" signature sheme is universally forgeable in pratie using just a key-only attak; hedeveloped an algorithm to forge a signature for any given message without obtaining the seret trap-doorinformation. A more reent \ubi" version has reently been shown to be universally forgeable in pratieusing just a key-only attak (also by Pollard). An even more reent version [OSS84b℄ based on polyno-mial equations was similarly broken by Estes, Adleman, Kompella, MCurley and Miller [EAKMM85℄for quadrati number �elds.El Gamal[EG84℄: This sheme, based on the diÆulty of omputing disrete logarithms, is existentiallyforgeable with a generi message attak and seletively forgeable using a direted hosen-message attak.Okamoto-Shiraishi[OS85℄: This sheme, based on the diÆulty of solving quadrati inequalities mod-ulo a omposite modulus, was shown to be universally forgeable by Brikell and DeLaurentis [BD85℄.4. THE PARADOX OF PROVING SIGNATURE SCHEMES SECUREThe paradoxial nature of signature shemes whih are provably seure against hosen-message at-taks made its �rst appearane in Rabin's paper, \Digitalized Signatures as Intratable as Fatorization"[Ra79℄. The signature sheme proposed there works as follows. User A publishes a number n whih is theprodut of two large primes. To sign a messageM , A omputes asM 's signature one of M 's square rootsmodulo n. (When M is not a square modulo n, A modi�es a few bits of M to �nd a \nearby" square.)Here signing is essentially just extrating square roots modulo n. Using the fat that extrating squareroots modulo n enables one to fator n, it follows that seletive forgery in Rabin's sheme is equivalentto fatoring if the enemy is restrited to at most a known message attak.However, it is true (and was notied by Rabin) that an enemy might totally break the sheme usinga direted hosen-message attak. By asking A to sign a value x2 mod n where x was piked at random,the enemy would obtain with probability 12 another square root y of x2 suh that gd(x + y; n) was aprime fator of n.Rabin suggested that one ould overome this problem by, for example, having the signer onatenatea fairly long randomly hosen pad U to the message before signing it. In this way the enemy an notfore A to extrat a square root of any partiular number.However, the reader may now observe that the proof of the equivalene of seletive forgery to fatoringno longer works for the modi�ed sheme. That is, being able to seletively forge no longer enables theenemy to diretly extrat square roots and thus to fator. Of ourse, breaking this equivalene was reallythe whole point of making the modi�ation.4.1 The ParadoxWe now \prove" that it is impossible to have a signature sheme for whih it is both true that forgeryis provably equivalent to fatoring, and yet the sheme is invulnerable to adaptive hosen-message attaks.The argument is essentially the same as the one given in [Wi80℄. By forgery we mean in this setion anyof universal, seletive, or existential forgery { we assume that we are given a proof that forgery of thespei�ed type is equivalent to fatoring.Let us begin by onsidering this given proof. The main part of the proof presumably goes as follows:given a subroutine for forging signatures, a onstrutive method is spei�ed for fatoring. (The other6



part of the equivalane, showing that fatoring enables forgery, is usually easy, sine fatoring usuallyenables the enemy to totally break the sheme.)But it is trivial then to show that an adaptive hosen-message attak enables an enemy to totallybreak the sheme. The enemy merely exeutes the onstrutive method for fatoring given in the proof,using the real signer instead of the forgery subroutine! That is, whenever he needs to exeute the forgerysubroutine to obtain the signature of a message, he merely performs an \adaptive hosen-message attak"step { getting the real user to sign the desired message. In the end the unwary user has enabled theenemy to fator his modulus! (If the proof redues fatoring to universal or seletive forgery, the enemyhas to get the real user to sign a partiular message. If the proof redues fatoring to existential forgery,the enemy need only get him to sign anything at all.)4.2 Breaking The ParadoxHow an one hope to get around the apparent ontraditory natures of equivalene to fatoring andinvulnerability to an adaptive hosen-message attak?The key idea in resolving the paradox is to have the onstrutive proof that forgery is as hard asfatoring be a uniform proof whih makes essential use of the fat that the forger an forge for arbitrarypubli keys with a non-negligible probability of suess. However, in \real life" a signer will only produesignatures for a partiular publi key. Thus the onstrutive proof an not be applied in \real life" (byasking the real signer to unwittingly play the role of the forger) to fator.In our sheme this onept is implemented using the notion of \random rooting". Eah user publishesnot only his two omposite moduli n1 and n2, but also a \random root" r. This value r is used whenvalidating the user's signatures. The paradox is resolved in our ase as follows:� It is provably equivalent to fatoring for an enemy to have a uniform algorithm for forging; uniformin the sense that if for all pairs of omposite numbers n1 and n2 if the enemy an randomly forgesignatures for a signi�ant fration of the possible random roots r, then he an fator either n1 orn2.� The above proof requires that the enemy be able to pik r himself { the forgery subroutine is fedtriples (n1; n2; r) where the r part is hosen by the enemy aording the proedure spei�ed in theonstrutive proof. However, in \real life" the user has piked a �xed r at random to put in hispubli key, so an adaptive hosen-message attak will not enable the enemy to \forge" signaturesorresponding to any other values of r. Thus the onstrutive method given in the proof an not beapplied! More details an be found in setion 9.5. GENERAL NOTATION AND CONVENTIONS5.1 Notation and Conventions for StringsLet � = �0�1 : : : �x be a binary string, then �� will denote the integer Pxk=0 �k2x�k. (Note that agiven integer may have several denotations, but only one of a given length.) The strings in f0; 1g� areordered as follows: if � and � are binary strings, we write � < � if there exists a string  suh that � isa pre�x of ,  has exatly the same length as �, and � < ��.If i is a k-bit string, we let DFS(i) = f� j � � ig. (Imagine a full binary tree of depth k whoseroot is labelled �, and the left (right) son of a node labelled � is �0 (�1) and let DFS be the Depth FirstSearh algorithm that starts at the root and explores the left son of any node before the right son of thatnode. Then DFS(i) represents the set of nodes visited by DFS up to and inluding the time when itreahes node i). Note that DFS(i) ontains the empty string.5.2 Notation and Conventions for Probabilisti Algorithms.We introdue some generally useful notation and onventions for disussing probabilisti algorithms.(We make the natural assumption that all parties, inluding the enemy, may make use of probabilistimethods.)We emphasize the number of inputs reeived by an algorithm as follows. If algorithm A reeives onlyone input we write \A(�)", if it reeives two inputs we write \A(�; �)" and so on.We write \PS" for \probability spae"; in this paper we only onsider ountable probability spaes.In fat, we only deal with probability spaes arising from probabilisti algorithms.7



If A(�) is a probabilisti algorithm then, for any input i, the notation A(i) refers to the PS whihassigns to the string � the probability that A, on input i, outputs �. We point out the speial ase that Atakes no inputs; in this ase the notation A refers to the algorithm itself, whereas the notation A() refersto the PS de�ned by running A with no input. If S is a PS, we denote by PS(e) the probability that Sassoiates with element e. Also, we denote by [S℄ the set of elements whih S gives positive probability.In the ase that [S℄ is a singleton set feg we will use S to denote the value e; this is in agreement withtraditional notation. (For instane, if A(�) is an algorithm that, on input i, outputs i3, then we may writeA(2) = 8 instead of [A(2)℄ = f8g.)If f(�) and g(�; � � �) are probabilisti algorithms then f(g(�; � � �)) is the probabilisti algorithm obtainedby omposing f and g (i.e. running f on g's output). For any inputs x; y; : : : the assoiated probabilityspae is denoted f(g(x; y; : : :)).If S is a PS, then x  S denotes the algorithm whih assigns to x an element randomly seletedaording to S; that is, x is assigned the value e with probability PS(e).The notation P(p(x; y; : : :)jx  S; y  T ; : : :) will then denote the probability that the prediatep(x; y; : : :) will be true, after the (ordered) exeution of the algorithms x S, y  T , et.We let RA denote the set of probabilisti polynomial-time algorithms. We assume that a naturalrepresentation of these algorithms as binary strings is used.By 1k we denote the unary representation of integer k, i.e.11 : : : 1| {z }k6. THE COMPLEXITY THEORETIC BASIS OF THE NEW SCHEMEA partiular instane of our sheme an be onstruted if integer fatorization is omputationallydiÆult. However, we will present our sheme in a general manner without assuming any partiularproblem to be intratable. This lari�es the exposition, and helps to establish the true generality ofthe proposed sheme. We do this by introduing the notion of a \law-free permutation pair", andonstrutively showing the existene of suh objets under the assumption that integer fatorization isdiÆult.This setion builds up the relevant onepts and de�nitions in stages. In subsetion 6.1. we givea areful de�nition of the notions of a trap-door permutation and a trap-door permutation generator.These notions are not diretly used in this paper, but serve as a simple example of the use of our notation.(Furthermore, no previous de�nition in the literature was quite so omprehensive.) The reader may, ifhe wishes, skip setion 6.1 without great loss.In subsetion 6.2. we de�ne law-free permutation pairs and law-free permutation pair generators.In subsetion 6.3. we show how to onstrut law-free permutation pair generators under the as-sumption that fatoring is diÆult.Finally, in subsetion 6.4. we show how to onstrut an in�nite family of pairwise law-free permu-tations, given a generating pair f0, f1, of law-free permutations.Altogether, then, this setion provides the underlying de�nitions and assumptions required for on-struting our signature sheme. The atual onstrution of our signature sheme will be given in setions7 and 8.6.1 Trap-door PermutationsInformally, a family of trap-door permutations is a family of permutations f possessing the followingproperties:� It is easy, given a integer k, to randomly selet permutations f in the family whih have k as theirseurity parameter, together with some extra \trap-door" information allowing easy inversion of thepermutations hosen.� It is hard to invert f without knowing f 's trap-door.We an interpret the two properties above by saying that any user A an easily randomly selet a pair ofpermutations, (f; f�1), inverses of eah other. This will enable A to easily evaluate and invert f ; if nowA publiizes f and keeps seret f�1, then inverting f will be hard for all other users.8



In the informal disussion above, we used the terms \easy" and \hard". The term \easy" an beinterpreted as \in polynomial time"; \hard", however, is of more diÆult interpretation. By saying thatf is hard to invert we annot possibly mean that f�1 annot be easily evaluated at any of its arguments.*We mean, instead, that f�1 is hard to evaluate at a random argument. Thus, if one wants (as we do) touse trap-door funtions to generate problems omputationally hard for an \adversary", he must be ableto randomly selet a point in the domain of f and f�1. This operation is easy for all urrently knownandidates of a trap-door permutation, and we expliitly assume it to be easy in our formal treatment.De�nition: Let G be an algorithm in RA that on input 1k, outputs an ordered triple (d; f; f�1) ofalgorithms. (Here D = [d()℄ will denote the domain of the trap-door permutation f and its inverse f�1.)We say that G is a trap-door permutation generator if there is a polynomial p suh that(1) Algorithm d always halts within p(k) steps and de�nes a uniform probability distribution over the�nite set D = [d()℄. (I.e., running d with no inputs uniformly selets an element from D.)(2) Algorithms f and f�1 halt within p(k) steps on any input x 2 D. (For inputs x not in D, thealgorithms f and f�1 either loop forever or halt and print an error message that the input is notin the appropriate domain.) Furthermore, the funtions x 7! f(x) and x 7! f�1(x) are inversepermutations of D.(3) For all (inverting) algorithms I(�; �; �; �) 2 RA, for all  and suÆiently large k:P(y = f�1(z)j(d; f; f�1) G(1k); z  d(); y  I(1k; d; f; z)) < k�:We make the following informal remarks orresponding to parts of the above de�nition.(1) This ondition makes it expliit that it is possible to sample the domain of f in a uniform manner.(3) This part of the de�nition states that if we run the experiment of generating (d; f; f�1) using thegenerator G and seurity parameter k, and then randomly generating an element z in the range off , and then running the \inverting" algorithm I (for polynomially in k many steps) on inputs d; f;and z, the hane that I will suessfully invert f at the point z is vanishingly small as a funtionof k.De�nition: If G is a trap-door permutation generator, we say that [G(1k)℄ is a family of trap-doorpermutations. We say that f and f�1 are trap-door permutations if (d; f; f�1) 2 [G(1k)℄ for some k andtrap-door permutation generator G.6.2 \Claw-Free" Permutation PairsThe signature sheme we propose is based on the existene of \law-free" permutation pairs { infor-mally, these are permutations f0 and f1 over a ommon domain for whih it is omputationally infeasibleto �nd a triple x, y, and z suh that f0(x) = f1(y) = z (a \law" or \f -law" { see Figure 1).

Figure 1. A Claw* For example, any f an be easily inverted at the image of a �xed argument, say 0. In fat, we mayonsider inverting algorithms that, on inputs x and f , �rst hek whether x = f(0).9



De�nition: LetG be an algorithm inRA that, on input 1k, outputs an ordered quintuple (d; f0; f�10 ; f1; f�11 )of algorithms. We say that G is a law-free permutation pair generator if there is a polynomial p suhthat:(1) Algorithm d always halts within p(k) steps and de�nes a uniform probability distribution over the�nite set D = [d()℄.(2) Algorithms f0, f�10 , f1 and f�11 halt within p(k) steps on any input x 2 D. (For inputs x not inD, these algorithms either loop forever or halt with an error message that the input is not in theneessary domain.) Furthermore, the funtions x 7! f0(x) and x 7! f�10 (x) are permutations of Dwhih are inverses of eah other, as are x 7! f1(x) and x 7! f�11 (x).(3) For all (law-making) algorithms I(�; �; �; �) 2 RA, for all  and suÆiently large k:P(f0(x) = f1(y) = zj(d; f0; f�10 ; f1; f�11 ) G(1k); (x; y; z) I(1k; d; f0; f1)) < k�:Note: It would be possible to use a variant of the above de�nition, in whih the funtion f may atuallyreturn answers for inputs outside of D, as long as it is understood that the diÆulty of reating a \law"applies to all x; y for whih the funtion f returns an answer. Thus, it should be hard to �nd any triplet(x; y; z) suh that f0(x) = f1(y) = z even when x; y are not in D. We do not pursue this variation furtherin this paper.De�nition: We say that f = (d; f0; f1) is a law-free permutation pair (or law-free pair for short) if(d; f0; f�10 ; f1; f�11 ) 2 [G(1k)℄ for some k and law-free permutation pair generator G. In this ase, f�1will denote the pair of permutations (f�10 ; f�11 ).6.2.1 Claw-Free Permutation Pairs vs. Trapdoor PermutationsIn this subsetion we larify the relation between the notions of law-free permutation pairs andtrapdoor permutations, by showing that the existene of the former ones implies the existane of thelatter ones. (Sine trapdoor permutations are not used in our signature sheme, this subsetion an beskipped by the reader without loss of larity.)Claim: Let G 2 RA be a law-free permutation generator. Then there exists a �G 2 RA whih is atrapdoor permutation generator.Proof: The algorithm �G is de�ned as follows on input 1k: Run G on input 1k. Say, G outputs theordered tuple (d; f0; f�10 ; f1; f�11 ). Then, �G outputs (d; f0; f�10 ).We now show that �G is a trapdoor permutation generator. Assume for ontradition that it not thease. Namely, there exists a onstant  > 0 and an inverting algorithm �I(�; �; �; �) 2 RA suh that forin�nitely many k:P(f0(y) = zj(d; f0; f�10 ) �G(1k); z  d(); y  �I(1k; d; f0; z)) � k�:Note now, that sine f1 is a permutation, algorithms f1(d(�)) and d(�) both de�ne the uniformprobability distribution over [d()℄. Thus, for in�nitely many k,P(f1(x) = f0(y) = zj(d; f0; f�10 ; f1; f�11 ) G(1k);x d(); z  f1(x); y  �I(1k; d; f0; z)) � k�:Let I(�; �; �; �) be the following inverting algorithm: On input 1k; d; f0, and f1, ompute x  d(),z  f1(x), y  �I(1k; d; f0; z), and output (x; y; z).Then, I is in RA and for in�nitely many k,P(f0(x) = f1(y) = zj(d; f0; f�10 ; f1; f�11 ) G(1k); (x; y; z) I(1k; d; f0; f1)) > k�:This ontradits G being a law-free permutation generator and thus �G must be a trapdoor permu-tation generator. 10



We note, however, that the the onverse to the above laim may be false. For example, the pair of(\RSA") permutations over Z�n = f1 � x � n : gd(x; n) = 1g, de�ned byf0(x) � x3 (mod n); andf1(x) � x5 (mod n)(where gd(�(n); 15) = 1) is not law-free : sine the two funtions ommute it is easy to reate a lawby hoosing w at random and then de�ning x � f1(w), y � f0(w), andz � f0(x) � f1(y) � w15 (mod n):However, it is likely that f0 and f1 are trap-door permutations.In pratie, one may want to relax the de�nition of a law-free permutation pair generator slightly,to allow the generator to have a very small hane of outputting funtions f0 and f1 whih are notpermutations. We do not pursue this line of development in this paper.6.3 Claw-free permutations exist if fatoring is hardThe assumption of the existene of law-free pairs is made in this paper in a general manner, inde-pendent of any partiular number theoreti assumptions. Thus instanes of our sheme may be seureeven if fatoring integers turns out to be easy. However for onretely implementing our sheme thefollowing is suggested.We �rst make an assumption about the intratability of fatoring, and then exhibit a law-freepermutation pair generator based on the diÆulty of fatoring.Notation: Let Hk = �n = p � q �� jpj = jqj = k; p � 3 (mod 8); q � 7 (mod 8)	(the set of omposite numbers whih are the produt of two k-bit primes whih are both ongruent to 3modulo 4 but not ongruent to eah other modulo 8), and let H = SkHk.Remark: One way to hoose \hard" instanes for all known fatoring algorithms seems to be to hoosek to be large enough and then to hoose n randomly from Hk.These numbers were used in [Wi80℄ and their wide appliabilty to ryptography was demonstratedby Blum in [Bl82℄ { hene they are ommonly referred to as \Blum integers".Let Qn denote the set of quadrati residues (mod n). We note that for n 2 H :�1 has Jaobi symbol +1 but is not in Qn.2 has Jaobi symbol �1 (and is not in Qn).We also note every x 2 Qn has exatly one square root y 2 Qn, but has four square roots y;�y; w;�waltogether (see [Bl82℄ for proof). Roots w and �w have Jaobi symbol �1, while y and �y have Jaobisymbol +1.The following assumption about the intratability of fatoring is made throughout this subsetion.Intratability Assumption for Fatoring (IAF): Let A be a probabilisti polynomial-time (fatoring)algorithm. Then for all onstants  > 0 and suÆiently large kP(x is a nontrivial divisor of njn Hk();x A(n)) < 1k :(Here we have used the notation n Hk() to denote the operation of seleting an element ofHk uniformlyat random.)De�ne f0;n and f1;n as follows:f0;n(x) = �x2 (mod n) if x2 (mod n) < n=2;�x2 (mod n) if x2 (mod n) > n=2.11



f1;n(x) = � 4x2 (mod n) if 4x2 (mod n) < n=2;�4x2 (mod n) if 4x2 (mod n) > n=2.The ommon domain of these funtions isDn = fx 2 Zn j �xn� = 1 & 0 < x < n=2g;it is easy to see that the range of these funtions is inluded in Dn for n 2 H . Note also that it is easyto test whether or not a given element x is a member of Dn, sine Jaobi symbols an be evaluated inpolynomial time.We now show that f0;n and f1;n are atually permutations of Dn for n 2 H . Suppose f0;n is not apermutation of Dn; then there exist distint elements x; y in Dn suh that f0;n(x) = f0;n(y). This anonly happen if x2 � y2 (mod n), whih would imply that x � �y (mod n). But this is impossible ifx and y are both in Dn, thus proving that f0;n is a permutation. The proof for f1;n is similar.Not only are f0;n and f1;n permutations of Dn when n 2 H , but their inverses are easily omputed,given knowledge of p and q. Given p and q, it is easy to distinguish quadrati residues (mod n) fromresidues with Jaobi symbol equal to 1; this ability enables one to negate the input to the inverse funtionif neessary in order to obtain a quadrati residue (mod n). Of ourse, dividing by 4 is easy { this step isneeded only for inverting f1;n. Next, taking square roots (mod n) is easy, sine we an take square rootsmodulo p and q separately (making sure to pik the square root whih is itself a quadrati residue) andombine the results using the Chinese Remainder Theorem. Finally, the result an be negated (mod n)as neessary in order to obtain a result in Dn. Sine all of these steps are omputable in polynomial time,eah of the inverse funtions f�10;n and f�11;n is omputable in polynomial time, given p and q as additionalinputs.Theorem 1: Under the IAF, the following algorithm G is a law-free permutation pair generator. Oninput 1k, G:(1) Generates two random primes p and q of length k, where p � 3 (mod 8) and q � 7 (mod 8).(2) Outputs the quintuple (d; f0;n; f�10;n; f1;n; f�11;n)where(a) Algorithm d generates elements uniformly at random in Qn.(b) Algorithms f0;n and f1;n are as desribed in the above equations.() Algorithms f�10;n and f�11;n are algorithms for the inverse funtions (these algorithms make use ofp and q).Proof: We �rst note that uniformly seleting k-bit guaranteed primes an be aomplished in expetedpolynomial (in k) time, by the reent work of Goldwasser and Kilian [GK86℄, and that asymptotiallyone-quarter of these will be ongruent to 3 (mod 8) (similarly for those ongruent to 7 (mod 8)). (Inpratie, one would use a faster probabilisti primality test suh as the one proposed by Solovay andStrassen [SS77℄ or Rabin [Ra80℄.)Let n 2 H and (d; f0;n; f�10;n; f1;n; f�11;n) 2 [G(1k)℄. First, f0;n and f1;n are permutations of Dn = [d()℄.Then, we need only show that if there exists a fast algorithm that �nds x and y in Dn suh thatf0;n(x) � f1;n(y) (mod n) (i.e. a law-reating algorithm) then fatoring is easy. Suppose suh an xand y have been found. Then x2 � 4y2 (mod n). (Note that x2 � �4y2 (mod n) is impossible: sine4y2 is a quadrati residue (mod n), �4y2 an not be a quadrati residue (mod n), for n 2 H .) Thisimplies that (x + 2y)(x � 2y) � 0 (mod n). Moreover, we also know that x 6� �2y (mod n), sine� xn� = 1 and � 2yn � = �1. Thus gd(x� 2y; n) will produe a nontrivial fator of n.12



6.4 An In�nite Set of Pairwise Claw-Free PermutationsFor our sheme we need not just law-free pairs of permutations, but an in�nite family of permuta-tions whih are pairwise law-free and generated by a single law-free pair f = (d; f0; f1).We de�ne the funtion fi(�) for any string i 2 f0; 1g+ by the equation:fi(x) = fi0(fi1(: : : (fid�1(fid(x)) : : :)))if i = i0i1 : : : id�1id. (Also, read f�1i as (fi)�1 so that f�1i (fi(x)) = x.)Eah fi is a trap-door permutation: it is easy to ompute fi(x) given f0, f1, i, and x, and to omputef�1i (x) if f�10 and f�11 are available. However, given only f0 and f1 it should be hard to invert fi on arandom input z, or else f0 and f1 are not trap-door permutations. (By inverting fi on a random inputone also e�etively inverts fi0 on a random input, where i0 is the �rst bit of i.)This way of generating an in�nite family of trap-door permutations was also used in [GMY83℄.Looking ahead, we shall see that a user A of our sheme an use the fi's to perform basi authen-tiation steps as follows. Let us presume that A has published f0 and f1 as part of his publi key, andhas kept their inverses f�10 and f�11 seret. If user A is known to have authentiated a string y, then bypublishing strings i and x suh that fi(x) = y;he thereby authentiates the new strings i and x.For this to work, when the signer A reveals f�1i (y) he should not enable anyone else to omputef�1j (y) for any other j.The signer ahieves this in our sheme by oding i using a pre�x-free mapping h�i. This preventsan enemy from omputing f�1hji (x) from f�1hii (x) in an obvious way sine hji is never a pre�x of hii. Thefollowing lemma 1 shows that this approah is not only neessary but suÆient.Note: Atually, the mapping h�i that we use is a one-to-one mapping from tuples of strings of bits tostrings of bits. The mapping h�i is pre�x-free in the sense that ha1; : : : ; ani is never a pre�x of hb1; : : : ; bmiunless n = m and a1 = b1; :::; an = bn. Any pre�x-free mapping is usable if it and its (partial) inverses arepolynomial-time omputable and the lengths of a1; :::; an and ha1; : : : ; ani are polynomially related. Foronreteness, we suggest the following enoding sheme for the tuple of strings a1; :::; an. Eah string aiis enoded by hanging eah 0 to 00 and eah 1 to 11, and the enoding is followed by 01. The enodingsof a1; :::; an are onatenated and followed by 10.Lemma 1 essentially says that if (d; f0; f1) is a law-free pair, then it will be hard to �nd two di�erenttuples of strings i and j, and elements x and y suh that f<i>(x) = f<j>(y).Lemma 1: Let f = (d; f0; f1) be a law-free pair, x and y be elements of d and i; j two di�erent tuplesof binary strings suh that there exists a string z suh that z = fhii(x) = fhji(y). Then there exists anf -law (x1; x2; x3) where x3 = f�1 (z) for some pre�x  of hii.Proof: Let  2 f0; 1g� be the longest ommon pre�x of hii and hji. Suh a  must exist sine h�i is apre�x-free enoding sheme. Thus, setting x3  f�1 (z), x1  f�10 (z), and x2  f�11 (z), we obtain anf -law (x1; x2; x3). (If  is the empty string then f�1 denotes the identity funtion, so x3 = z.) Notethat the f -law is easily omputed from f , x, and y.7. BUILDING BLOCKS FOR SIGNINGIn this setion we de�ne the basi building bloks needed for desribing our signature sheme. Insetion 8, we will de�ne what a signature is and how to sign, using the objets and data struturesintrodued here.Assumption: We assume from here on that all law-free funtions used are de�ned over domains whihdo not inlude the empty string �.This assumption is neessary sine we use � as a \marker" in our onstrution; note that it is easy,via simple reodings, to enfore this onstrution if neessary.We begin by de�ning the essential notion of an f -item.13



De�nition: Let f = (df ; f0; f1) be a law-free pair. A tuple of strings (t; r; 1; : : : ; m) is an f-item iffh1;:::;mi(t) = rDe�nition: In an f -item (t; r; 1; : : : ; m),� t is alled the tag of the item,� r is alled the root of the item, and� the i's are the hildren of the item. We note that the hildren are ordered, so that we an speak ofthe �rst hild or the seond hild of the item.Note that given a law free pair f and a tuple it is easy to hek if the tuple is an f -item by applyingthe appropriate fhii to the tag, and heking if the orret root is obtained.Figure 2 gives our graphi representation of an f -item (t; r; 1; 2) with two hildren.

Figure 2. An f -item with two hildrenDe�nition: We say that a sequene of f -items L1; L2; : : : ; Lb is an f-hain starting at y if, for i =1; : : : ; b� 1, the root of Li+1 is one of the hildren of Li and y is the root of L1. We say the hain endsat x if x is one of the hildren of the item Lb.For eÆieny onsiderations, our signature sheme will organize a olletion of a speial type off -hains in the tree-like struture de�ned below.De�nition: Let i be a binary string of length b and f a law-free pair. An f -i-tree is a bijetion Tbetween DFS(i) and a set of f -items suh that:(1) if string j has length b, then T (j) is an f -item with exatly two hildren, exatly one of whih is �,the empty string. These f -items are alled bridge items.(2) if string j has length less than b, then T (j) is an f -item with exatly two hildren, 0 and 1, both ofwhih are non-empty strings. Moreover, 0, the 0th hild, is the root of T (j0) and 1, the 1st hild,the root of T (j1).The f -item T (j) is said to be of depth d if string j has length d. (The bridge items are thus the itemsof depth b.) The root of T is the root of the f -item T (�). The internal nodes of T are the root and thehildren of the f -items of depth less than b. The leaves of T are the non-empty hildren of the bridgeitems. Thus the internal nodes and the leaves of an f -i-tree are atual values and not f -items. Leavespossess binary names of length b, leaf j is the non-empty hild of bridge item T (j). The path to leafj = j0 : : : jb is the f -hain T (�); T (j0); : : : ; T (j0 : : : jb).14



Figure 3 gives our graphi representation of an f -100-tree, as it would be used in our signaturesheme. In this �gure we denote by rfi the root of f -item T (i), and by rgi the leaf (non-empty) hild ofbridge item T (i). (Also present in this �gure are a number of \g-items", whih are not part of the f -100tree but are attahed to it in a manner to be desribed.)

Figure 3. An f -100-tree
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There are two reasons for letting the bridge items of an f -i-tree have the empty string as one of theirhildren. First, it makes them de fato f -items with only one hild, a subtle point in our proof of seuritythat is pointed out in remark 1. Seond, it makes them distinguishable from items with two hildren, asimple point used, for instane, in Lemma 2.8. DESCRIPTION OF OUR SIGNATURE SCHEME8.1 Message SpaesThe seurity properties of the new signatures sheme hold for any nonempty message spae M �f0; 1g+.8.2 How to Generate KeysWe assume the existene of a law-free permutation pair generator G and, without loss of generality,that the bound B on the number of signatures that an be produed is a power of 2: B = 2b.The key-generation algorithm K runs as follows on inputs 1k and 2b:(1) K runs G twie on input 1k to seretly and randomly selet two quintuples(df ; f0; f�10 ; f1; f�11 ); and (dg ; g0; g�10 ; g1; g�11 ) 2 [G(1k)℄:(2) K then randomly selets rf� in Df = [df ()℄.(3) K outputs the publi key PK = (f; rf� ; g; 2b) where f is the law-free pair (df ; f0; f1) and g is thelaw-free pair (dg ; g0; g1).(4) K outputs the seret key SK = (f�1; g�1).The PK and SK so produed are said to be (mathing) keys of size k.8.3 What Is a SignatureA signature of a message m with respet to a publi key (f; rf� ; g; 2b) onsists of:(1) An f -hain of length b+ 1 starting at a string rf� and ending at rg , and(2) A g-item with rg as its root and m as its only hild.8.4 How To Sign?In the remainder of this setion we shall presuppose that user A's publi key is PK = (f; rf� ; g; 2b)where f = (df ; f0; f1) and g = (dg ; g0; g1). User A's seret key is SK = (f�1; g�1). We denote by Dfthe domain [df ()℄, and denote by Dg the domain [dg()℄ similarly.Coneptually, user A reates an f -1b-tree T , whih has 2b leaves. The root of T will be rf� . Theother internal nodes of T are randomly seleted elements of Df . The leaves of T are randomly seletedelements of Dg.To sign mi, the i� th message in the hronologial order, user A omputes a g-item Gi whose rootrgi 2 Dg is the ith leaf of T , and whose only hild is the message mi. He then outputs, as the signatureof mi, Gi and the f -hain in T starting at root rf� and ending at leaf rgi .In pratie, it will be undesirable for user A to preompute and store all of T . He will instead "grow"T as needed and try to optimize his use of storage and time. This is taken into aount by our signingproedure. In what follows, we desribe a variation of our signing method that requires the signer toremember just his seret key and his most reently produed signature, in order to produe his nextsignature. The reader may �nd it helpful to refer to Figure 3 while reading this desription.The Signing Proedure (also alled SP):We presume that the proedure is initialized with the values of the publi key PK and the orre-sponding seret key SK in its loal private storage, that has already signed messages m0;m1; : : : ;mi�1and kept trak of the number of previous messages signed (i.e. the variable i = i0 : : : ib�1 whih is ab-long bit string, whih may ontain leading 0's), and the most reent signature produed.To ompute a signature for message mi, the i-th message, user A performs the following steps.(1) (Output f-hain.) 16



(1.1) (Output f-items in ommon with previous signature.) If i = 0b this substep is skipped, and ontrolpasses to step (1.2). Otherwise, for eah string j whih is a ommon pre�x of i and i� 1, he outputsthe f -item (tfj ; rfj ; rfj0; rfj1) whih was part of the signature for message mi�1, in order of inreasinglength of j.(1.2) (Output new f-items in f-tree.) For eah string j (if any) whih is a proper pre�x of i, but not apre�x of i � 1, user A reates and outputs an f -item T (j), in order of inreasing length of j. Thef -item T (j) = (tfj ; rfj ; rfj0; rfj1) is reated as follows: If j = � its root rfj is the rf� from the publikey; otherwise it is the k-th hild of the most reently output f -item, where k is the last bit of thestring j. The hildren rfj0 and rfj1 of the f -item with root rfj are hosen at random from Df . Thetag tfj = f�1hrfj0;rfj1i(rfj ) is omputed using f�10 and f�11 from the seret key. Note that the last itemoutput (by either step (1.1) or (1.2)) has rfi as one of its hildren.(1.3) (Output bridge f-item.) User A next outputs a single f -item with root rfi and whose hildren are �and rgi , a randomly hosen element from Dg . The tag tfi for this item is again omputed using theseret trap-door information for inverting f0 and f1.(2) (Output g-item.) Finally, user A outputs the g-item Gi = (tgi ; rgi ;mj). The tag tgi for this item isomputed using the g�1 from the seret key.The items output by the above proedure onstitute a signature for mi. Notie that there are manypossible signatures (among whih A hooses one at random) for eah ourrene of eah message, butonly one signature is atually output.The reader may verify that the above proedure for produing a signature will have a total runningtime whih is bounded by a polynomial in k and b.Notie that if A has signed i messages, the funtion T mapping eah string j 2 DFS(i) to f -itemT (j) is an f -i-tree as de�ned in setion 7.8.5 How to Verify a SignatureGiven A's publi key (f; rf� ; g; 2b), anyone an easily verify that the �rst b+1 elements in the signatureof mi are f -items forming an f -hain starting at rf� and ending at rgi , and that the g-item in the signaturehas rgi as its root and mi as its only hild. If these heks are all satis�ed, the given sequene of items isaepted as an authenti signature by A of the message mi.It is easy to on�rm that these operations take time proportional to b times some polynomial in k,the size of the publi key.8.6 EÆieny of the Proposed Signature ShemeAssume that if f = (df ; f0; f1) is a law-free pair of size k, then an element of Df is spei�ed by ak-bit string. Then the time to ompute a signature for a message m of length l is is O(bk) f -inversions(i.e. inversions of f0 or f1) and O(l) g-inversions.Another relevant measure of eÆieny is \amortized" time. That is, the time used for produingall possible 2b signatures divided by 2b. In our sheme, the amortized \f -inversion" ost is O(k). Theamortized \g-inversion" ost is O(l) if the average length of a message is l.The length of the signature for m is O(bk + l), where l is the length of m, as m is inluded in m'ssignature as the hild of the g-item. Clearly, if m is known to the signature reepient, the g-item neednot inlude m: it suÆes to give its root and its tag. This way the length of the signature an be onlyO(bk) long, whih is independent of the length of m and possibly muh shorter.The memory required by the signing algorithm is O(bk) sine it onsists of storing (the f -items in)the most reently produed signature.9. PROOF OF SECURITYLet us start by establishing a onvenient terminology.De�nition: We all signature orpus the �rst i (for some i > 0) signatures output by our signingproedure SP . We shall generally use the symbol S to denote a signature orpus.We de�ne the following quantities relative to a signature orpus S, onsisting of i signatures relativeto a publi key PK = (f; rf� ; g; 2b). 17



(1) The set of items of S, denoted by I(S), is the set of the items in the signatures of S.(2) The set of f-items of S, denoted by f(S), is the set of f -items in I(S).(3) The set of g-items of S, denoted by g(S), is the set of g-items in I(S).(4) The set of messages of S, denoted M(S), is the set of messages signed by S, i.e. the set of hildrenof the g-items of S.(5) The f-tree of S, denoted by T f (S), is the f -i-tree having root rf� and, as path to leaf j (j = 0; :::; i),the f -hain of the j-th signature of S.(6) The set of internal nodes of S, denoted by IN (S), is the set of the internal nodes of T f (S).(7) The set of non-roots of S, denoted by NR(S), is the set of those internal nodes of T f (S) that arenot the root of any f -item of S. We may think of these nodes as \hooks" from whih additionalf -items will be grown as new signatures are reated.(8) The set of leaves of S, denoted L(S), is the set of leaves of T f (S).Notie that all the above sets are unambiguously de�ned. For instane, an item in f(S) has exatlytwo hildren while an item in g(S) only one, the bridge elements of I(S) have exatly one empty hildand thus are distinguishable from other items in f(S), and so on.Some of these de�nitions an be observed in �gure 3. For example, the leaves of the f -101-tree in�gure 3 are rf000; rf001; rf010; rf011; rf100 and its non-roots are rf101, and rf11.Let us now see how the signature of a message never signed before relates to a given signature orpus.Lemma 2: Let S be a signature orpus relative to a publi key PK = (f; rf� ; g; 2b) and let � be asignature (relative to the same publi key) of a message m not belonging to M(S). Denote by I(�) theset of items in �. Then I(�) � I(S) (the set of new items) ontains either(1) a g-item with root r 2 L(S) or(2) an f -item with root r 2 IN (S).Proof: First notie that I(�) � I(S) is not empty as it ontains G, the g-item of �. In fat, G annotbelong to f(S), as it is a g-item, and annot belong to g(S), as m is its only hild and all items in g(S)have elements of M(S) as their hildren. Assume I(�)�I(S) also ontains an f -item. Then this f -itembelongs to F , the f -hain of � whose �rst item has rf� as root, one of the internal nodes of S. Thus, forsome item in F , (2) holds. Assume now that I(�) � I(S) = G. Then the root of G is the non-emptyhild of B, the bridge f -item of �. By hypothesis B is in I(S), thus the root of G belongs to L(S) and(1) holds.Reall lemma 1 from setion 6.4.Lemma 1: Let f = (d; f0; f1) be a law-free pair, x and y be elements of d and i; j two di�erent tuplesof binary strings suh that there exists a string z suh that z = fhii(x) = fhji(y). Then there exists anf -law (x1; x2; x3) where x3 = f�1 (z) for some pre�x  of hii.We an now prove Lemma 3.Lemma 3: There exists a polynomial-time algorithm A that, on input a orpus S relative to a publikey PK = (f; rf� ; g; 2b) and the signature � of a message not belonging to M(S), �nds either(1) a g-law or(2a) an f -law or(2b) an f -item whose root belongs to NR(S).Proof: (the ases are numbered aording to the orresponding ases in Lemma 2)If ase (1) of Lemma 2 holds for S and �, then we have two g-items with the same root r in L(S).Namely, an i; j; x and y suh that ghii(x) = ghji(y) = r and we get a g-law by Lemma 1. Otherwise, ifase (2) of lemma 2 holds, let F be the f -item that satis�es ondition (2) of Lemma 2. If F has the sameroot as some F 0 2 f(S), then again by Lemma 1, we get an f -law, otherwise we get an f -item whoseroot belongs to NR(S).Remark 1: Notie that if � is generated by the legal signer (i.e. the SP proedure) then, with veryhigh probability, ase (2b) will hold in lemma 3. 18



In the proof of the main theorem we will assume that there exists a suessful adaptive hosen-message attak, and derive a ontradition by showing that this attak would enable an enemy to easilyreate either an f -law or a g-law with suÆiently high probability. Reall that in an adaptive hosen-message attak the enemy an repeatedly use the real signer as an \orale" before attempting to forge anew signature. The next lemma, (lemma 4), essentially states that the signing proess an be simulatedperfetly by an eÆient algorithm that knows the publi key and only half of the seret key: the inversesof the �rst law-free pair. (i.e. in some sense, this algorithm is a forger.)To state lemma 4, additional notation regarding \interative" probabilisti algorithms, needs to beintrodued. The notion of an adaptive, hosen-message attak involves the interation of two algorithms:SS (the signer) and SR (the signature requestor). These algorithms \take turns": SR requests asignature of a given message, SS signs it, SR requests a seond signature, SS omputes it, and so on.We might view the two routines as \o-routines" that pass ontrol bak and forth while preserving theirown state. We formalize this interation by means of the ombining algorithm C that de�nes a ompositealgorithm from two auxiliary ones. The ombining algorithm C will invoke repeatedly SS and SR inalternation, orresponding to their taking turns. The algorithms SS and SR have private state variables(denoted VSS and VSR) that are preserved from invoation to invoation. Algorithm SS (whih produessignatures) takes as input a publi key PK, an auxilary input X (whih for the moment is unsepei�edbut will later denote either the orresponding seret key SK or part of it), a new message to sign, andits private state variable. It produes as output a signature for the new message and an updated versionof its private state variable. Similarly, SR is a probabilisti algorithm whih takes as input a publi key,a sequene of previous signatures relative to that publi key, and its private state variable, and produesas output a message to be signed and an updated version of its private state variable.The following algorithm makes spei� the proess of ombining SS and SR:Algorithm C(SS ;SR;PK;X; i)Set S0  �.Set VSR and VSS to �.for j = 0 to i do:(mj ; VSR) SR(PK; fS1; : : : ;Sj�1g; VSR) (Request signature for message mj.)(Sj ; VSS) SS(PK;mj ; VSS ; X). (Produe signature for message mj .)Output Sj .Here Sj denotes the signature of the j-th message.We extend our notation of probabilisti algorithm in a natural way by letting C(SS ;SR;PK;X; i)represent the probability spae that assigns the sequene � the probability that C outputs � after invokingalternatively (for i times) SS (with initial input PK and X) and SR (with initial inputs PK).We an now state lemma 4, stating that the signing proess an be simulated e�etively if the fi'sinverses are known but the gi inverses are not.Lemma 4: There exists an algorithm A in RA suh that for all requestors SR 2 RA, for all publikeys PK = (f; rf� ; g; 2b) and for all non-negative integers i < 2b,C(A;SR;PK; ff�1g; i) = C(SP ;SR;PK;SK; i)(Where SP is the legal signing proess of setion 8, and SK is the orresponding seret key to PK).Proof. Consider the following algorithm A. We indutively assume thatC(A;SR;PK; ff�1g; i� 1) = C(SP ;SR;PK;SK; i� 1)Thus the f -hains in the �rst i� 1 signatures output by C uniquely de�ne an f -(i� 1)-tree T . AlgorithmA stores i� 1 and the f -hain of the last produed signature and exeutes the following instrutions tosign mi, the i-th message, where i=i0 � � � ib.(1) (Authentiate mj with a g-item.) Pik an element tgj at random in Dg and ompute rgj = ghmji(tgj )so to generate the g-item (tgj ; rgj ;mj)(2) (Build the f-hain from rf� to rfj to the extent that it is not already done.) Compute i0i1 � � � ij , thelongest proper pre�x of i that is also a pre�x of i� 1. For x = 1 to b� j, generate T (i0 � � � ij+x), an19



f -item whose root is the ij+x-th hild of T (io � � � ij+x�1), and whose two hildren are independentlyand randomly seleted elements of Df . (Algorithm A easily omputes the tag of this new f -item byusing f�1.)(3) (Create the bridge item authentiating rgj .) Using f�10 and f�11 , reate a f -item with hildren � andrgi and having as root the ib-th hild of T (i0 � � � ib�1).(4) (Output signature of mi) Output T (�); T (i0); : : : T (i0 � � � ib�1), the new bridge item T (i0; :::; ib) andthe new g-item.In lemma 6 we show a similar result: the signing proess an be simulated if g�1 is known, but f�1is not. The proof of lemma 6 makes essential use of the fat that there is a known upper bound on thenumber of signatures to be produed. (The bound provides a limit on the amount of a preproessing stepthat is the subjet of lemma 5.)There is, however, a very important di�erene between the signing simulation proedure desribedin lemma 4 (whih uses f�1 but not g�1) and that of lemma 6 (whih uses g�1 but not f�1). The proofof lemma 4 works with any �xed root rf� , whih an be �xed arbitrarily before the simulation proedureis invoked.By ontrast, the signing simulation proedure of lemmas 5 and 6 atually produes the neessaryroot rf� to be part of the publi key in its preproessing step. The root produed is uniformily distributedover Df . Thus, from the point of view of an observer that monitors the behaviour of the signer when hepublishes his publi key, the preproessing step is undistinguishable from a genuine key generation step.Moreover, by monitoring the signing proess, the observer an not tell whether the signer really knowsf�1 or he has �rst applied the preproessing proedure of lemma 5 to produe his publi �le and onlythen applied the simulation proedure of lemma 6.De�nition: For all strings m1; :::;mi, let sequene(m1; :::;mi) denote the trivial interative algorithmthat, no matter what inputs it gets, when invoked for the j-th time (j = 1; :::; i) outputs the string mj .Let us de�ne two probability spaes over the f -i-trees whih are ruial to our analysis.De�nition: Let PK = (f; rf� ; g; 2b) and SK = (f�1; g�1) be a pair of mathing publi and seret key,where f = (df ; f0; f1). Reall that C is the ombining algorithm. De�ne two probability spaes, Ti;PKand Ti;f;g;2b , as follows:Ti;PK is generated by randomly seleting S in C(SP ; sequene(m1; :::;mi);PK;SK; i) and then omputingT f (S). (Note that Ti;PK does not depend on the values of the messages m1; : : : ;mi but it does dependon i, the number of messages.)Ti;f;g;2b is generated by randomly seleting S in C(SP ; sequene(m1; :::;mi); (f; df (); g; 2b); SK; i) andthen omputing T f (S).Informally, Ti;PK is the probability spae obtained from Ti;f;g;2b by randomly piking rf� 2 Df and �xingit in PK.Notie that both probability spaes are easily generated if the seret key SK = (f�1; g�1) is amongthe available inputs. However, both probability spaes remain easy to generate on a more restrited set ofinputs. It has been impliitly proved in lemma 2 that Ti;PK an be generated in probabilisti polynomial-time on inputs i; PK and f�1 alone. The following lemma shows that Ti;f;g;2b is easily generated on inputsi; f; g; 2b alone.Lemma 5: There exists T 2 RA suh that for all law-free pairs f = (df ; f0; f1) and g = (dg ; g0; g1)and for all integers i < 2b, T (i; f; g; 2b) = Ti;f;g;2b :Proof: Consider the following algorithm T that onstruts an f -i-tree T in \reverse order"; that is, itonstruts f -item T (x) before f -item T (y) if y < x. (This is neessary sine T does not have aess tof�1.) The onstrution goes as follows.If string j 2 DFS(i) has length b, T selets the non-empty hild of T (j) at random in Dg . Otherwise(if j has length shorter than b), T selets, as 0-th hild of T (j), the root of T (j0) and, as 1st hild, theroot of T (j1). In ase j1 does not belong to DFS(i), T selets the seond hild of T (j) at random in Df .20



Having seleted the two hildren o and 1 of T (j), T selets its tag t at random in Df . Then itomputes the pre�x-free enoding h(0; 1)i and selets as the root of T (j) the element fhi(t), whih Teasily omputes using f0 and f1.Notie that eah T (j) so omputed is a proper f -item and that the resulting T is a proper f -i-treebelonging to [Ti;f;g;2b ℄. Let's now analyse the probability distribution aording to whih T has beenseleted.First notie that the leaves of T (that is the non-empty hildren of the items of depth b) have thesame distribution of the leaves of a f -i-tree randomly seleted in Ti;f;g;2b . In fat, in both ases, all leavesare uniformily and independently seleted elements of Dg. Then notie that the roots of the items of T ofdepth k (that is the hildren of the items of T of depth k � 1) are seleted uniformly and independentlyin Df . In fat, the root of eah item is obtained by applying fhxi, a permutation of Df randomly seletedfrom some probability spae, to an element t (the tag) independently and uniformily seleted in Df .From this it easily follows that T selets T at random in Ti;f;g;2b . It is easily seen that T 2 RA and thussatis�es all the required properties of our lemma.Lemma 6: There exists an algorithm A 2 RA suh that for all signature requestors SR 2 RA, for alllaw-free pairs f = (df ; f0; f1) and g = (dg ; g0; g1), and for all non-negative integers i < 2b,C(A;SR; (f; df (); g; 2b); fg�1g; i) = C(SP ;SR; (f; df (); g; 2b); ff�1; g�1g; i):Proof: Consider the following algorithm A. In a preproessing step, A runs algorithm T of Lemma 5to randomly selet an f -i-tree T from Ti;f;g;2b . Let rf� be the root of T . This root is used to onstrutthe publi �le PK = (f; rf� ; g; 2b), with respet to whih all subsequent signatures will be produed asfollows. A starts the signature requestor SR on input PK. Then it simulates the signing proedure withinitial inputs PK and the orresponding seret key SK = (f�1; g�1) without using f�1 in the followingway. When SR outputs mj , the j-th message to be signed, A retrieves the f -hain Tj , the path from theroot of T to leaf j. Then A omputes the neessary g-item by using g�1.Before stating and proving our main theorem, let us single out a simple lemma stating that oneannot invert a law-free pair on a randomly seleted input of its domain.Lemma 7: Let G be a law-free permutation pair generator. Then, for any inverting algorithm I 2 RA,any  > 0 and suÆiently large k,P(h0(z) = x or h1(z) = xj(d; h0; h�10 ; h1; h�11 ) G(1k);x dh(); z  I(1k; d; h0; h1)) < k�:Proof: Otherwise the following algorithm would �nd a law with too high a probability: randomly selety in dh, randomly selet i between 1 and 2, ompute x = hi(y) and run I to get z suh that hj(z) = xfor j 6= i.We are now ready to formally state and prove our main theorem. We start by strengthening thede�nition of existentially forgeable to inlude probabilisti suess on the part of the forger.De�nition: We say that a signature sheme is �-existentially forgeable if it is existentially foregeable withprobability � where the probability spae inludes the random hoies of the adaptive hosen-messageattak, the random hoies made by the legal signer in the reation of the publi key, and the randomhoie made by the legal signer in produing signatures.It is very important to note that the random hoies made in reating the publi key are inludedin the probability spae; our proof depends ritially on this de�nition. The main theorem of this paperis the following.Main Theorem. Assuming that law-free permutation pair generators exist, the signature shemedesribed in setion 8 is not even 1Q(k) -existentially forgeable under an adaptive hosen-message attak,for all polynomials Q and for all suÆiently large k.21



Proof of the Main Theorem. The proof proeeds by ontradition. We assume, for ontraditionsake, that for some polynomial Q and for in�nitely many k our signature sheme is 1Q(k) -existentiallyforgeable under an adaptive hosen message attak by an algorithm F in RA.By de�nition, the forging algorithm F onsists of two algorithms in RA: a signature requestor FR,whih is ative in a �rst phase when it adaptively asks and reeives signatures of messages of its hoie,and a signature �nder FF , whih is ative in a seond phase when it attempts to forge a signature of amessage not asked about by FR.Let PK = (f; rf� ; g; 2b) and SK be a publi/seret-key pair of size k, randomly seleted by ourkey generator using a law-free permutation pair generator G. In the �rst phase a signature orpusS  C(SP ;FR;PK;SK; i) is generated, where i < 2b. Then FF is run on input S and PK. Let�k denote the probability that FF outputs �, a legal signature, with respet to PK, for a messagem 62M(S). (This probability is taken over all the oin tosses of G, FR, FF and SP).What we have assumed is that, for in�nitely many k,�k � 1Q(k) :By Lemma 3, given S and �, it is now easy to ompute either(1) a g-law (i.e. a law for the seond law-free pair in PK) or(2) an f -law (i.e. a law for the �rst law-free pair in PK) or(3) an f -item whose root belongs to NR(S).Denote the probability that ase (1), (2) or (3) hold respetivey by Æ1; Æ2 and Æ3. Then, for in�nitelymany k, we have Æ1(k) + Æ2(k) + Æ3(k) � �k > 1Q(k) :Thus either(1') there is an in�nite set K1 so that for k 2 K1 Æ1(k) > 13Q(k) , or(2') there is an in�nite set K2 so that for k 2 K2 Æ2(k) > 13Q(k) , or(3') there is an in�nite set K3 so that for k 2 K3 k 2 K3 Æ3(k) > 13Q(k) .We will show that either ase leads to ontradition.Assume ase (1') holds. Then onsider the following algorithm in RA that, on input 1k and alaw-free pair h = (dh; h0; h1) of size k randomly seleted by G, �nds an h-law with suÆiently highprobability.Algorithm 1: Run G on input 1k to randomly selet a quintuple (df ; f0; f�10 ; f1; f�11 ). Selet rf� 2Df at random and onstrut the publi key PK = (df ; f0; f1; rf� ; dh; h0; h1; 2b). (Notie that PK isa random publi key of size k of our signature sheme.) Randomly selet the signature orpus S  C(SP ;FR;PK;SK; i). Though PK's mathing seret key SK is not totally known, this random seletionan be eÆiently done as, by Lemma 4, there exists an A 2 RA suh that C(SP ;FR;PK;SK; i) =C(A;FR;PK; f�1; i). Now run FF on input S and PK to sign a new message. From this last signatureand S, try to ompute an h-law.Notie that, for k 2 K1, Algorithm 1 will suessfully ompute an h-law with probability Æ1(k) >13Q(k) . This ontradits the law-freeness of G.Assume now that either (2') or (3') hold. Consider the following algorithm in RA, whose input is 1k anda law-free pair h = (dh; h0; h1) of size k randomly seleted by G.Algorithm 2: Run G on input 1k to randomly selet a quintuple (dg ; g0; g�10 ; g1; g�11 ). Randomly seletthe signature orpus S  C(SP ;SR; (h; dh(); g; 2b); fh�1; g�1g; i)whih an be done as by lemma 6 there exists an algorithm A 2 RA suh thatC(SP ;SR; (h; dh(); g; 2b); fh�1; g�1g; i) = C(A;SR; (h; dh(); g; 2b); g�1; i). Then run FF on input S and PK. 22



Assume that ase (2') holds. Then, for k 2 K2, from the output of Algorithm 2 an h-law an beomputed with suÆiently high probability to violate the law-freeness of G.Finally, assume that ase (3') holds and k 2 K3. Then, given a random x  dh(), the followingalgorithm I will invert h on x with non-negligible probability (ontraditing Lemma 7). I runs Algorithm2 exept that, when onstruting T h(S) as in Lemma 5, makes x the value of a randomly seleted non-root of S. Notie that this operation does not hange the probability distribution of S. (Reall thatthe pre-proessing proedure of Lemma 5 just piks at random all the internal nodes of S.) Thus S is arandom signature orpus with respet to a randomly seleted publi key of size k. Thus, from the outputof Algorithm 2, I omputes an h-item with root r 2 NR(S) with probability Æ3(k) > 13Q(k) . When thishappens, with probability 1jNR(S)j we have r = x. Now, given the h-item omputed, I an easily omputeeither h�10 (x) or h�11 (x), and lemma 7 is ontradited. This ompletes the proof of the main theorem.10. VARIATIONS AND IMPROVEMENTSIn this setion we desribe ways to improve the eÆieny of the proposed signature sheme withouta�eting its seurity.10.1 Using gi's to sign rather than g�1i 's.This variation is of interest if it is substantially easier to ompute g0 or g1 than to ompute theirinverses. In this ase steps (3) and (4) in the signing proedure an be replaed by:(3) (Output g-item.) User A selets a random tgi 2 Dg , and (using g0 and g1) omputes the root rgi ofthe g-item (tgi ; rgi ;mi), and outputs this item.(4) (Output bridge f-item.) Using his knowledge of f�10 and f�11 , user A outputs an f -item with rootrfi and an only hild rgi .Now eah usage of g�10 or g�11 has been replaed by a usage of g0 or g1.Although one might be tempted to use this variation using one-way permutations instead of trap-door permutations for the gi's, this temptation should be resisted, sine our proof of seurity does nothold if this hange is made.10.2 Fast iterated square rootsAs we saw in setion 6.3, if fatoring is omputationally hard, a partiular family of trap-doorpermutations is law-free. By using these permutations in a straightforward manner, one obtains apartiular instane of our signature sheme. Let us disuss its eÆieny of this instane. The omputationof f�10 (x) onsists of omputing the square-root whih has Jaobi symbol 1 and is less than n=2, moduloa Blum-integer n. We an ompute f�11 (x) as f�10 (x=4). Computing g�10 (x) and g�11 (x) is the same,exept for using the appropriate n. If n is k-bits long, this an be done in O(k3) steps. Thus the signatureof a k-bit message an be omputed in time O(b � k4), or in O(k4) amortized time.This partiular instane of our sheme an be improved in a manner suggested in disussions withOded Goldreih (see [Go86℄ { we appreiate his permission to quote these results here). The improvementrelates to the omputation of f�1hyi(x) (or g�1hyi(x)).We note �rst of all that taking square roots modulo n is equivalent to taking u-th powers modulo n,where u �2 � 1 (mod �(n)), and where �(n) is Euler's phi funtion. More generally, to �nd a 2m-th rootw of x modulo n one an raise x to the v-th power modulo n, where v � um (mod �(n)). Computing wby �rst omputing v and then raising x to the v-th power is substantially faster than repeatedly takingsquare roots.To apply this observation, we note that the funtions f de�ned in setion 6.3. satisfyf�1hyi(x) = �( x4rev(hyi) )2�m ;where \rev" is the operation whih reverses strings and interprets the result as an integer, where m isthe length of hyi, where all operations are performed modulo n, and where the �nal sign is hosen tomake the result less than n=2. The only omputationally diÆult portion here is omputing a 2m-th root.Using the observation of the previous paragraph, the omputation of suh an f -inverse an be performed23



in time proportional to the ube of the length of n, in the ase that messages have the same length k asn. Using these ideas, the signature of a k-bit message an be omputed in time O(b � k3), or in O(k3)amortized time.10.3 \Memoryless" Version of the Proposed Signature ShemeThe onept of a random funtion was introdued by Goldreih, Goldwasser and Miali in [GGM84℄.Let Ik denote the set of k-bit integers. Let Wk denote the set of all funtions from Ik to Ik, and letFk �Wk be a set of funtions from Ik to Ik. We say that F = Sk Fk is a poly-random olletion if:(1) Eah funtion in Fk has a unique k bit index assoiated with it. Furthermore, piking suh an indexat random (thereby piking an f 2 Fk at random) is easy.(2) There exists a deterministi polynomial time algorithm that given as input an index of a funtionf 2 Fk and an argument x, omputes f(x).(3) No probabilisti polynomial in k time algorithm an \distinguish" between Wk and Fk. Formally,let T be a probabilisti polynomial time algorithm, that on input k and aess to an orale Of for afuntion f : Ik ! Ik outputs 0 or 1. Then, for all T , for all polynomials Q, for all suÆiently largek, the di�erene between the probability that T outputs 1 on aess to an orale Of when f wasrandomly piked in Fk and the probability that T outputs 1 on aess to an orale Of when f wasrandomly piked in Wk is less than 1=Q(k).In [GGM84℄ it was shown how to ontrut a poly-random olletion assuming the existene of one-way funtions. The existene of law-free permutation pairs is a stronger assumption, and thus impliesthe existene of a poly-random olletion. See setion 5.4 for an implementation of a law-free family offuntions based on fatoring and [GGM84℄ for details on how to ontrut a poly-random olletion.Leonid Levin suggested the following use of a poly-random olletion in order to redue the amountof storage that a signer must keep from O(bk) to O(b) bits. His suggestion also eliminates the need togenerate new random numbers (e.g. rgi ) during the signing proess.Let k denote the seurity parameter. In the seret key generation phase, in addition to omputingthe seret trap-door pairs (f�10 ; f�11 ), (g�10 ; g�11 ) user A also piks a random funtion h in a poly-randomolletion Fk , and keeps h seret. (We assume that k > b.) During the signing proess, A keeps a ounteri to denote the number of times the signing algorithm has been invoked. To sign message mi, A signs asbefore, exept that (using m to denote the length of j):� Instead of piking values rfj at random from Df , he omputes them as rfj = h(0k�mj).� Instead of piking values rgj at random from Dg, he omputes them as rgj = h(1k�mj).We laim that the \memoryless" version of the signature sheme desribed above enjoys the sameseurity properties as our original sheme. The proof (whih we shall not give in detail) is based on theobservation that if the memoryless sheme was vulnerable to an adaptive hosen-message attak, then itwould be possible to eÆiently distinguish pseudo-random funtions from truly random funtions.A further improvement (due to Oded Goldreih [Go86℄) removes even the neessity of rememberingthe number of previous signatures, by piking the index i for a message M as a random b-bit string. Tomake this work, the maximum number of signatures that an be produed by an instane of this shemeis limited to 2pb, so that it is extremely unlikely that two messages would have the same index hosen forthem. The seurity proof an be modi�ed to aomodate these hanges. (Note that in the preproessingstep that builds an f -tree, we would now only build a portion of it onsisting of 2pb randomly hosenpaths of length b.)11. OPEN PROBLEMS� It is an open question whether the RSA sheme is universally forgeable under an adaptive hosen-message attak.� Can an enryption sheme be developed for whih deryption is provably equivalent to fatoring yetfor whih an adaptive hosen iphertext attak is of no help to the enemy?24
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