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Abstract

We develop a framework for post model selection inference, via
marginal screening, in linear regression. At the core of this framework
is a result that characterizes the exact distribution of linear functions
of the response y, conditional on the model being selected (“condi-
tion on selection” framework). This allows us to construct valid con-
fidence intervals and hypothesis tests for regression coefficients that
account for the selection procedure. In contrast to recent work in high-
dimensional statistics, our results are exact (non-asymptotic) and re-
quire no eigenvalue-like assumptions on the design matrix X. Further-
more, the computational cost of marginal regression, constructing con-
fidence intervals and hypothesis testing is negligible compared to the
cost of linear regression, thus making our methods particularly suitable
for extremely large datasets. Although we focus on marginal screening
to illustrate the applicability of the condition on selection framework,
this framework is much more broadly applicable. We show how to ap-
ply the proposed framework to several other selection procedures in-
cluding orthogonal matching pursuit, non-negative least squares, and
marginal screening+Lasso.

1 Introduction

Consider the model

yi = µ(xi) + εi, εi ∼ N (0, σ2I), (1)

where µ(x) is an arbitrary function, and xi ∈ Rp. Our goal is to perform
inference on (XTX)−1XTµ, which is the best linear predictor of µ. In the
classical setting of n > p , the least squares estimator

β̂ = (XTX)−1XT y (2)
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is a commonly used estimator for (XTX)−1XTµ. Under the linear model
assumption µ = Xβ0, the exact distribution of β̂ is

β̂ ∼ N (β0, σ2(XTX)−1). (3)

Using the normal distribution, we can test the hypothesis H0 : β0
j = 0 and

form confidence intervals for β0
j using the z-test.

However in the high-dimensional p > n setting, the least squares esti-
mator is an underdetermined problem, and the predominant approach is to
perform variable selection or model selection [3]. There are many approaches
to variable selection including AIC/BIC, greedy algorithms such as forward
stepwise regression, orthogonal matching pursuit, and regularization meth-
ods such as the Lasso. The focus of this paper will be on the model selection
procedure known as marginal screening, which selects the k most correlated
features xj with the response y.

Marginal screening is the simplest and most commonly used of the vari-
able selection procedures [13, 28, 20]. Marginal screening requires only
O(np) computation and is several orders of magnitude faster than regu-
larization methods such as the Lasso; it is extremely suitable for extremely
large datasets where the Lasso may be computationally intractable to apply.
Furthermore, the selection properties are comparable to the Lasso [12]. In

the ultrahigh dimensional setting p = O(en
k
), marginal screening is shown

to have the SURE screening property, P (S ⊂ Ŝ), that is marginal screening
selects a superset of the truly relevant variables [9, 11, 10]. Marginal screen-
ing can also be combined with a second variable selection procedure such
as the Lasso to further reduce the dimensionality; our statistical inference
methods extend to the Marginal Screening+Lasso method.

Since marginal screening utilizes the response variable y, the confidence
intervals and statistical tests based on the distribution in (3) are not valid;
confidence intervals with nominal 1−α coverage may no longer cover at the
advertised level:

Pr
(
β0
j ∈ C1−α(x)

)
< 1− α.

Several authors have previously noted this problem including recent work in
[17, 18, 19, 2]. A major line of work [17, 18, 19] has described the difficulty
of inference post model selection: the distribution of post model selection
estimates is complicated and cannot be approximated in a uniform sense by
their asymptotic counterparts.

In this paper, we describe how to form exact confidence intervals for
linear regression coefficients post model selection. We assume the model
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(1), and operate under the fixed design matrix X setting. The linear re-
gression coefficients constrained to a subset of variables S is linear in µ,
eTj (XT

SXS)−1XT
S µ = ηTµ for some η. We derive the conditional distribution

of ηT y for any vector η, so we are able to form confidence intervals and test
regression coefficients.

In Section 2 we discuss related work on high-dimensional statistical infer-
ence, and Section 3 introduces the marginal screening algorithm and shows
how z intervals may fail to have the correct coverage properties. Section 4
and 5 show how to represent the marginal screening selection event as con-
straints on y, and construct pivotal quantities for the truncated Gaussian.
Section 6 uses these tools to develop valid hypothesis tests and confidence
intervals.

Although the focus of this paper is on marginal screening, the “condition
on selection” framework, first proposed for the Lasso in [16], is much more
general; we use marginal screening as a simple and clean illustration of the
applicability of this framework. In Section 7, we discuss several extensions
including how to apply the framework to other variable/model selection
procedures and to nonlinear regression problems. Section 7 covers

1. marginal screening+Lasso, a screen and clean procedure that first uses
marginal screening and cleans with the Lasso,

2. orthogonal matching pursuit (OMP)

3. non-negative least squares (NNLS).

2 Related Work

Most of the theoretical work on high-dimensional linear models focuses on
consistency. Such results establish, under restrictive assumptions on X,
the Lasso β̂ is close to the unknown β0 [24] and selects the correct model
[33, 30, 15]. We refer to the reader to [3] for a comprehensive discussion
about the theoretical properties of the Lasso.

There is also recent work on obtaining confidence intervals and signif-
icance testing for penalized M-estimators such as the Lasso. One class of
methods uses sample splitting or subsampling to obtain confidence intervals
and p-values [31, 23]. In the post model selection literature, the recent work
of [2] proposed the POSI approach, a correction to the usual t-test confidence
intervals by controlling the familywise error rate for all parameters in any
possible submodel. The POSI approach will produce valid confidence inter-
vals for any possible model selection procedure; however for a given model
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selection procedure such as marginal regression, it will be conservative. In
addition, the POSI methodology is extremely computationally intensive and
currently only applicable for p ≤ 30.

A separate line of work establishes the asymptotic normality of a cor-
rected estimator obtained by “inverting” the KKT conditions [29, 32, 14].
The corrected estimator b̂ has the form b̂ = β̂ + λΘ̂ẑ, where ẑ is a subgradi-
ent of the penalty at β̂ and Θ̂ is an approximate inverse to the Gram matrix
XTX. The two main drawbacks to this approach are 1) the confidence in-
tervals are valid only when the M-estimator is consistent, and thus require
restricted eigenvalue conditions on X, 2) obtaining Θ̂ is usually much more
expensive than obtaining β̂, and 3) the method is specific to regularized es-
timators, and does not extend to marginal screening, forward stepwise, and
other variable selection methods.

Most closely related to our work is the “condition on selection” frame-
work laid out in [16] for the Lasso. Our work extends this methodology
to other variable selection methods such as marginal screening, marginal
screening followed by the Lasso (marginal screening+Lasso), orthogonal
matching pursuit, and non-negative least squares. The primary contribu-
tion of this work is the observation that many model selection methods,
including marginal screening and Lasso, lead to “selection events” that can
be represented as a set of constraints on the response variable y. By con-
ditioning on the selection event, we can characterize the exact distribution
of ηT y. This paper focuses on marginal screening, since it is the simplest of
variable selection methods, and thus the applicability of the “conditioning
on selection event” framework is most transparent. However, this framework
is not limited to marginal screening and can be applied to a wide a class
of model selection procedures including greedy algorithms such as matching
pursuit and orthogonal matching pursuit. We discuss some of these possible
extensions in Section 7, but leave a thorough investigation to future work.

A remarkable aspect of our work is that we only assume X is in general
position, and the test is exact, meaning the distributional results are true
even under finite samples. By extension, we do not make any assumptions
on n and p, which is unusual in high-dimensional statistics [3]. Further-
more, the computational requirements of our test are negligible compared
to computing the linear regression coefficients.

Our test assumes that the noise variance σ2 is known. However, there
are many methods for estimating σ2 in high dimensions. A data splitting
technique is used in [8], while [27] proposes a method that computes the
regression estimate and an estimate of the variance simultaneously. We
refer the reader to [25] for a survey and comparison of the various methods,
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and assume σ2 is known for the remainder of the paper.

3 Marginal Screening

Let X ∈ Rn×p be the design matrix, y ∈ Rn the response variable, and
assume the model

yi = µ(xi) + εi, εi ∼ N (0, σ2I).

We will assume that X is in general position and has unit norm columns.
The algorithm estimates β̂ via Algorithm 1. The marginal screening algo-

Algorithm 1 Marginal screening algorithm

1: Input: Design matrix X, response y, and model size k.
2: Compute |XT y|.
3: Let Ŝ be the index of the k largest entries of |XT y|.
4: Compute β̂Ŝ = (XT

Ŝ
XŜ)−1XT

Ŝ
y

rithm chooses the k variables with highest absolute dot product with y, and
then fits a linear model over those k variables. We will assume k ≤ min(n, p).
For any fixed subset of variables S, the distribution of β̂S = (XT

SXS)−1XT
S y

is

β̂S ∼ N (β?S , σ
2(XT

SXS)−1) (4)

β?S := (XT
SXS)−1XT

S µ. (5)

We will use the notation β?j∈S := (β?S)j , where j is indexing a variable in the
set S. The z-test intervals for a regression coefficient are

C(α, j, S) :=(
β̂j∈S − σz1−α/2(XT

SXS)jj , β̂j∈S + σz1−α/2(XT
SXS)jj

)
(6)

and each interval has 1−α coverage, meaning Pr
(
β?j∈S ∈ C(α, j, S)

)
= 1−α.

However if Ŝ is chosen using a model selection procedure that depends on
y, the distributional result (5) no longer holds and the z-test intervals will
not cover at the 1− α level. It is possible that

Pr
(
β?
j∈Ŝ ∈ C(α, j, Ŝ)

)
< 1− α.

Similarly, the test of the hypothesis H0 : β?
j∈Ŝ = 0 will not control type I

error at level α, meaning Pr (reject H0|H0) > α.
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3.1 Failure of z-test confidence intervals

We will illustrate empirically that the z-test intervals do not cover at 1− α
when Ŝ is chosen by marginal screening in Algorithm 1. For this experiment
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Figure 1: Plots of the coverage proportion across a range of SNR (log-scale).
We see that the coverage proportion of the z intervals can be far below the
nominal level of 1−α = .9, even at SNR =5. The adjusted intervals always
have coverage proportion .9.

we generated X from a standard normal with n = 20 and p = 200. The sig-
nal vector is 2 sparse with β0

1 , β
0
2 = SNR, y = Xβ0 +ε, and ε ∼ N(0, 1). The

confidence intervals were constructed for the k = 2 variables selected by the
marginal screening algorithm. The z-test intervals were constructed via (6)
with α = .1, and the adjusted intervals were constructed using Algorithm 3.
The results are described in Figure 1. The y-axis plots the coverage propor-
tion or the fraction of times the true parameter value fell in the confidence
interval. Each point represents 500 independent trials. The x-axis varies the
SNR parameter over the values 0.1, .2, .5, 1, 2, 5, 10. From the figure, we see
that the z intervals can have coverage proportion drastically less than the
nominal level of 1 − α = .9, and only for SNR=10 does the coverage tend
to .9. This motivates the need for intervals that have the correct coverage
proportion after model selection.
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4 Representing the selection event

Since Equation (5) does not hold for a selected Ŝ when the selection proce-
dure depends on y, the z-test intervals are not valid. Our strategy will be to
understand the conditional distribution of y and contrasts (linear functions
of y) ηT y, then construct inference conditional on the selection event Ê. We
will use Ê(y) to represent a random variable, and E to represent an element
of the range of Ê(y). In the case of marginal screening, the selection event
Ê(y) corresponds to the set of selected variables Ŝ and signs s:

Ê(y) =
{
y : sign(xTi y)xTi y > ±xTj y for all i ∈ Ŝ and j ∈ Ŝc

}
=
{
y : ŝix

T
i y > ±xTj y and ŝix

T
i y ≥ 0 for all i ∈ Ŝ and j ∈ Ŝc

}
=
{
y : A(Ŝ, ŝ)y ≤ b(Ŝ, ŝ)

}
(7)

for some matrix A(Ŝ, ŝ) and vector b(Ŝ, ŝ)1. We will use the selection event
Ê and the selected variables/signs pair (Ŝ, ŝ) interchangeably since they are
in bijection.

The space Rn is partitioned by the selection events,

Rn =
⊔

(S,s)

{y : A(S, s)y ≤ b(S, s)}.

The vector y can be decomposed with respect to the partition as follows

y =
∑
S,s

y 1 (A(S, s)y ≤ b(S, s)) (8)

The previous equation establishes that y is a different constrained Gaussian
for each element of the partition, where the partition is specified by a possible
subset of variables and signs (S, s). The above discussion can be summarized
in the following theorem.

Theorem 4.1. The distribution of y conditional on the selection event is a
constrained Gaussian,

y|{Ê(y) = E} d
= z
∣∣{A(S, s)z ≤ b}, z ∼ N (µ, σ2I).

Proof. The event E is in bijection with a pair (S, s), and y is uncondition-
ally Gaussian. Thus the conditional y

∣∣{A(S, s)y ≤ b(S, s)} is a Gaussian
constrained to the set {A(S, s)y ≤ b(S, s)}.

1b can be taken to be 0 for marginal screening, but this extra generality is needed for
other model selection methods
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5 Truncated Gaussian test

This section summarizes the recent tools developed in [16] for testing con-
trasts2 ηT y of a constrained Gaussian y. The results are stated without
proof and the proofs can be found in [16].

The distribution of a constrained Gaussian y ∼ N(µ,Σ) conditional
on affine constraints {Ay ≤ b} has density 1

Pr(Ay≤b)f(y;µ,Σ)1 (Ay ≤ b),
involves the intractable normalizing constant Pr(Ay ≤ b). In this section,
we derive a one-dimensional pivotal quantity for ηTµ. This pivot relies on
characterizing the distribution of ηT y as a truncated normal. The key step
to deriving this pivot is the following lemma:

Lemma 5.1. The conditioning set can be rewritten in terms of ηT y as
follows:

{Ay ≤ b} = {V−(y) ≤ ηT y ≤ V+(y),V0(y) ≥ 0}
where

α =
AΣη

ηTΣη
(9)

V− = V−(y) = max
j: αj<0

bj − (Ay)j + αjη
T y

αj
(10)

V+ = V+(y) = min
j: αj>0

bj − (Ay)j + αjη
T y

αj
. (11)

V0 = V0(y) = min
j: αj=0

bj − (Ay)j (12)

Moreover, (V+,V−,V0) are independent of ηT y.

The geometric picture gives more intuition as to why V+ and V− are
independent of ηT y. Without loss of generality, we assume ||η||2 = 1 and

y ∼ N(µ, I) (otherwise we could replace y by Σ−
1
2 y). Now we can decompose

y into two independent components, a 1-dimensional component ηT y and
an (n− 1)-dimensional component orthogonal to η:

y = ηT y + Pη⊥y.

The case of n = 2 is illustrated in Figure 2. Since the two components
are independent, the distribution of ηT y is the same as ηT y|{Pη⊥y}. If we
condition on Pη⊥y, it is clear from Figure 2 that in order for y to lie in the

set, it is necessary for V− ≤ ηT y ≤ V+, where V− and V+ are functions of
Pη⊥y.

2A contrast of y is a linear function of the form ηT y.
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Figure 2: A picture demonstrating that the set {Ay ≤ b} can be character-
ized by {V− ≤ ηT y ≤ V+}. Assuming Σ = I and ||η||2 = 1, V− and V+ are
functions of Pη⊥y only, which is independent of ηT y.

Corollary 5.2. The distribution of ηT y conditioned on {Ay ≤ b,V+(y) =
v+,V−(y) = v−} is a (univariate) Gaussian truncated to fall between V−
and V+, i.e.

ηT y | {Ay ≤ b,V+(y) = v+,V−(y) = v−} d
= W

where W ∼ TN(ηTµ, ηTΣη, v−, v+). TN(µ, σ, a, b) is the normal distribu-
tion truncated to lie between a and b.

In Figure 3, we plot the density of the truncated Gaussian, noting that
its shape depends on the location of µ relative to [a, b] as well as the width
relative to σ.

The following pivotal quantity3 follows from Corollary 5.2 via the prob-
ability integral transform.

Theorem 5.3. Let Φ(x) denote the CDF of a N(0, 1) random variable, and

let F
[a,b]
µ,σ2 denote the CDF of TN(µ, σ, a, b), i.e.:

F
[a,b]
µ,σ2(x) =

Φ((x− µ)/σ)− Φ((a− µ)/σ)

Φ((b− µ)/σ)− Φ((a− µ)/σ)
. (13)

3The distribution of a pivotal quantity does not depend on unobserved parameters.
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Figure 3: The density of the truncated Gaussian TN(µ, σ2, a, b) depends
on the width of [a, b] relative to σ as well as the location of µ relative
to [a, b]. When µ is firmly inside the interval, the distribution resembles a
Gaussian. As µ leaves [a, b], the density begins to converge to an exponential
distribution with mean inversely proportional to the distance between µ and
its projection onto [a, b].

Then F
[V−,V+]

ηTµ, ηTΣη
(ηT y) is a pivotal quantity, conditional on {Ay ≤ b}:

F
[V−,V+]

ηTµ, ηTΣη
(ηT y)

∣∣ {Ay ≤ b} ∼ Unif(0, 1) (14)

where V− and V+ are defined in (10) and (11).

6 Inference for marginal screening

In this section, we apply the theory summarized in Sections 4 and 5 to
marginal screening. In particular, we will construct confidence intervals for
the selected variables.

To summarize the developments so far, recall that our model (1) says that
y ∼ N(µ, σ2I). The distribution of interest is y|{Ê(y) = E}, and by The-
orem 4.1, this is equivalent to y|{A(S, s)z ≤ b(S, s)}, where y ∼ N(µ, σ2I).
By applying Theorem 5.3, we obtain the pivotal quantity

F
[V−,V+]

ηTµ, σ2||η||22
(ηT y)

∣∣ {Ê(y) = E} ∼ Unif(0, 1) (15)

for any η, where V− and V+ are defined in (10) and (11).
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Figure 4: Histogram and qq plot of F
[V−,V+]

ηTµ, ηTΣη
(ηT y) where y is a constrained

Gaussian. The distribution is very close to Unif(0, 1), which is in agreement
with Theorem 5.3.

6.1 Hypothesis tests for selected variables

In this section, we describe how to form confidence intervals for the com-
ponents of β?

Ŝ
= (XT

Ŝ
XŜ)−1XT

Ŝ
µ. The best linear predictor of µ that uses

only the selected variables is β?
Ŝ

, and β̂Ŝ = (XT
Ŝ
XŜ)−1XT

Ŝ
y is an unbiased

estimate of β?
Ŝ

. In this section, we propose hypothesis tests and confidence
intervals for β?

Ŝ
. If we choose

ηj = ((XT
Ŝ
XŜ)−1XT

Ŝ
ej)

T , (16)

then ηTj µ = β?
j∈Ŝ , so the above framework provides a method for inference

about the jth variable in the model Ŝ. This choice of η is not fixed before
marginal screening selects Ŝ, but it is measurable with respect to the σ-
algebra generated by the partition. Since it is measurable, η is constant on
each partition, so the pivot is uniformly distributed on each element of the
partition, and thus uniformly distributed for all y.

If we assume the linear model µ = Xβ0 for some β0 ∈ Rp, S0 :=
support(β0) ⊂ Ŝ, and XŜ is full rank, then by the following computation
β?
Ŝ

= β0
Ŝ

:

β?
Ŝ

= (XT
Ŝ
XŜ)−1XT

Ŝ
XSβ

0
S

= (XT
Ŝ
XŜ)−1XT

Ŝ
XŜβ

0
Ŝ

= β0
Ŝ

In [9], the screening property S0 ⊂ Ŝ for the marginal screening algorithm is
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established under mild conditions. Thus under the screening property, our
method provides hypothesis tests and confidence intervals for β0

Ŝ
.

By applying Theorem 5.3, we obtain the following (conditional) pivot
for β?

j∈Ŝ :

F
[V−,V+]
β?
j∈Ŝ

, σ2||ηj ||2(ηTj y)
∣∣∣{Ê(y) = E} ∼ Unif(0, 1). (17)

The quantities j and ηj are both random through Ê, a quantity which is
fixed after conditioning, therefore Theorem 5.3 holds even for this choice of
η.

Consider testing the hypothesis H0 : β?
j∈Ŝ = βj . A valid test statis-

tic is given by F
[V−,V+]
βj , σ2||ηj ||2(ηTj y), which is uniformly distributed under the

null hypothesis and y|{Ê(y) = E}. Thus, this test would reject when

F
[V−,V+]
βj , σ2||ηj ||2(ηTj y) > 1− α

2 or F
[V−,V+]
βj , σ2||ηj ||2(ηTj y) < α

2 .

Theorem 6.1. The test of H0 : β?
j∈Ŝ = βj that accepts when

α

2
< F

[V−,V+]
βj , σ2||ηj ||2(ηTj y) < 1− α

2

is an α level test of H0.

Proof. Under H0, we have β?
j∈Ŝ = βj , so by (17) F

[V−,V+]
βj , σ2||ηj ||2(ηTj y)

∣∣{Ê(y) =

E} is uniformly distributed. Thus

Pr(
α

2
< F

[V−,V+]
βj , σ2||ηj ||2(ηTj y) ≤ 1− α

2

∣∣{Ê(y) = E,H0)} = 1− α,

and the type 1 error is exactly α. Under H0, but not conditional on selection
event Ê, we have

Pr(
α

2
< F

[V−,V+]
βj , σ2||ηj ||2(ηTj y) ≤ 1− α

2

∣∣H0)}

=
∑
E

Pr(
α

2
< F

[V−,V+]
βj , σ2||ηj ||2(ηTj y) ≤ 1− α

2

∣∣{Ê(y) = E,H0)}Pr(Ê(y) = E|H0)

=
∑
E

(1− α)Pr(Ê(y) = E|H0)

= (1− α)
∑
E

Pr(Ê(y) = E|H0)

= 1− α.

For each element of the partition E, the conditional (on selection) hypoth-
esis test is level 1 − α, so by summing over the partition the unconditional
test is level 1− α.
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Our hypothesis test is not conservative, in the sense that the type 1 error
is exactly α; also, it is non-asymptotic, since the statement holds for fixed
n and p. We summarize the hypothesis test in this section in the following
algorithm.

Algorithm 2 Hypothesis test for selected variables

1: Input: Design matrix X, response y, model size k.
2: Use Algorithm 1 to select a subset of variables Ŝ and signs ŝ =

sign(XT
Ŝ
y).

3: Specify the null hypothesis H0 : β?
j∈Ŝ = βj .

4: Let A = A(Ŝ, ŝ) and b = b(Ŝ, ŝ) using (7). Let ηj = (XT
Ŝ

)†ej .

5: Compute F
[V−,V+]
βj , σ2||ηj ||2(ηTj y), where V− and V+ are computed via (10)

and (11) using the A, b, and η previously defined.

6: Output: Reject if F
[V−,V+]
βj , σ2||ηj ||2(ηTj y) > α

2 or F
[V−,V+]
βj , σ2||ηj ||2(ηTj y) < 1− α

2 .

6.2 Confidence intervals for selected variables

Next, we discuss how to obtain confidence intervals for β?
j∈Ŝ . The standard

way to obtain an interval is to invert a pivotal quantity [4]. In other words,
since

Pr

(
α

2
≤ F [V−,V+]

β?
j∈Ŝ

, σ2||ηj ||2(ηTj y) ≤ 1− α

2

∣∣ {Ê = E}
)

= α,

one can define a (1− α) (conditional) confidence interval for β?
j,Ê

as{
x :

α

2
≤ F [V−,V+]

x, σ2||ηj ||2(ηTj y) ≤ 1− α

2

}
. (18)

In fact, F is monotone decreasing in x, so to find its endpoints, one need
only solve for the root of a smooth one-dimensional function. The mono-
tonicity is a consequence of the fact that the truncated Gaussian distribution
is a natural exponential family and hence has monotone likelihood ratio in µ
[21]. Since the truncated Gaussian distribution is in the exponential family,
we can also form uniformly most accurate unbiased confidence intervals by
solving for a root of a system of two equations [21]. For simplicity, we will
use the interval in (18), but we expect that the intervals can be shortened
by using the uniformly most accurate unbiased intervals.

We now formalize the above observations in the following result, an im-
mediate consequence of Theorem 5.3.
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Corollary 6.2. Let ηj be defined as in (16), and let Lα = Lα(ηj , (Ŝ, ŝ)) and
Uα = Uα(ηj , (Ŝ, ŝ)) be the (unique) values satisfying

F
[V−,V+]
Lα, σ2||ηj ||2(ηTj y) = 1− α

2
F

[V−,V+]
Uα, σ2||ηj ||2(ηTj y) =

α

2
(19)

Then [Lα, Uα] is a (1− α) confidence interval for β?
j∈Ŝ, conditional on Ê:

P
(
β?
j∈Ŝ ∈ [Lα, Uα]

∣∣ {Ê = E}
)

= 1− α. (20)

Proof. The confidence region of β?
j∈Ŝ is the set of βj such that the test

of H0 : β?
j∈Ŝ accepts at the 1 − α level. The function F

[V−,V+]
x, σ2||ηj ||2(ηTj y) is

monotone in x, so solving for Lα and Uα identify the most extreme values
where H0 is still accepted. This gives a 1− α confidence interval.

In relation to the literature on False Coverage Rate (FCR) [1], our pro-
cedure also controls the FCR.

Lemma 6.3. For each j ∈ Ŝ,

Pr
(
β?
j∈Ŝ ∈ [Ljα, U

j
α]
)

= 1− α. (21)

Furthermore, the FCR of the intervals
{

[Ljα, U
j
α]
}
j∈Ê

is α.

Proof. By (20), the conditional coverage of the confidence intervals are 1−α.
The coverage holds for every element of the partition {Ê(y) = E}, so

Pr
(
β?
j∈Ŝ ∈ [Ljα, U

j
α]
)

=
∑
E

Pr
(
β?
j∈Ŝ ∈ [Lα, Uα]

∣∣ {Ê = E}
)
Pr(Ê = E)

=
∑
E

(1− α)Pr(Ê = E)

= (1− α)
∑
E

Pr(Ê = E)

= 1− α.

We summarize the algorithm for selecting and constructing confidence
intervals below.
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Figure 5: Comparison of adjusted and unadjusted 90% confidence interval
for TN(µ, σ2, a, b). The upper and lower bounds of 90% confidence intervals
are based on [a, b] = [−3σ, 3σ], and the x-axis plots the observation on the
scale x

σ . We see that as long as the obser vation x
σ is roughly 0.5σ away from

either boundary, the size of the intervals is comparable to an unadjusted
confidence interval. However, the adjusted intervals are guaranteed to have
the correct coverage, whereas it is unknown when the unadjusted intervals
have the correct coverage.

6.3 Experiments on Diabetes dataset

In Figure 1, we have already seen that the confidence intervals constructed
using Algorithm 3 have exactly 1−α coverage proportion. In this section, we
perform an experiment on real data where the linear model does not hold,
the noise is not Gaussian, and the noise variance is unknown. The diabetes
dataset contains n = 442 diabetes patients measured on p = 10 baseline
variables [6]. The baseline variables are age, sex, body mass index, average
blood pressure, and six blood serum measurements, and the response y is
a quantitative measure of disease progression measured one year after the
baseline. The goal is to use the baseline variables to predict y, the measure
of disease progression after one year, and determine which baseline variables
are statistically significant for predicting y.

Since the noise variance σ2 is unknown, we estimate it by σ2 = ‖y−ŷ‖
n−p ,

where ŷ = Xβ̂ and β̂ = (XTX)−1XT y. For each trial we generated new
responses ỹi = Xβ̂ + ε̃, and ε̃ is bootstrapped from the residuals ri = yi −
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Algorithm 3 Confidence intervals for selected variables

1: Input: Design matrix X, response y, model size k.
2: Use Algorithm 1 to select a subset of variables Ŝ and signs ŝ =

sign(XT
Ŝ
y).

3: Let A = A(Ŝ, ŝ) and b = b(Ŝ, ŝ) using (7). Let ηj = (XT
Ŝ

)†ej .

4: Solve for Ljα and U jα using Equation (19) where V− and V+ are computed
via (10) and (11) using the A, b, and ηj previously defined.

5: Output: Return the intervals [Ljα, U
j
α] for j ∈ Ŝ.
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Figure 6: Plot of 1−α vs the coverage proportion for diabetes dataset. The
nominal curve is the line y = x. The coverage proportion of the adjusted
intervals agree with the nominal coverage level, but the z-test coverage pro-
portion is strictly below the nominal level. The adjusted intervals perform
well, despite the noise being non-Gaussian, and σ2 unknown.

ŷi. This is known as the residual bootstrap, and is a standard method for
assessing statistical procedures when the underlying model is unknown [7].
We used marginal screening to select k = 2 variables, and then fit linear
regression on the selected variables. The adjusted confidence intervals were
constructed using Algorithm 3 with the estimated σ2. The nominal coverage
level is varied across 1 − α ∈ {.5, .6, .7, .8, .9, .95, .99}. From Figure 6, we
observe that the adjusted intervals always cover at the nominal level, whereas
the z-test is always below. The experiment was repeated 2000 times.
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7 Extensions

The purpose of this section is to illustrate the broad applicability of the
condition on selection framework. This framework was first proposed in [16]
to form valid hypothesis tests and confidence intervals after model selection
via the Lasso. However, the framework is not restricted to the Lasso, and
we have shown how to apply it to marginal screening. For expository pur-
poses, we focused the paper on marginal screening where the framework is
particularly easy to understand. In the rest of this section, we show how
to apply the framework to marginal screening+Lasso, orthogonal matching
pursuit, and non-negative least squares. This is a non-exhaustive list of se-
lection procedures where the condition on selection framework is applicable,
but we hope this incomplete list emphasizes the ease of constructing tests
and confidence intervals post-model selection via conditioning.

7.1 Marginal screening + Lasso

The marginal screening+Lasso procedure was introduced in [9] as a variable

selection method for the ultra-high dimensional setting of p = O(en
k
). Fan

et al. [9] recommend applying the marginal screening algorithm with k =
n − 1, followed by the Lasso on the selected variables. This is a two-stage
procedure, so to properly account for the selection we must encode the
selection event of marginal screening followed by Lasso. This can be done
by representing the two stage selection as a single event. Let (Ŝm, ŝm) be
the variables and signs selected by marginal screening, and the (ŜL, ẑL) be
the variables and signs selected by Lasso [16]. In Proposition 2.2 of [16],
it is shown how to encode the Lasso selection event (ŜL, ẑL) as a set of
constraints {ALy ≤ bL} 4, and in Section 4 we showed how to encode the
marginal screening selection event (Ŝm, ŝm) as a set of constraints {Amy ≤
bm}. Thus the selection event of marginal screening+Lasso can be encoded
as {ALy ≤ bL, Amy ≤ bm}. Using these constraints, the hypothesis test and
confidence intervals described in Algorithms 2 and 3 are valid for marginal
screening+Lasso.

7.2 Orthogonal Matching Pursuit

Orthogonal matching pursuit (OMP) is a commonly used variable selection
method. At each iteration, OMP selects the variable most correlated with

4The Lasso selection event is with respect to the Lasso optimization problem after
marginal screening.
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the residual r, and then recomputes the residual using the residual of least
squares using the selected variables. The description of the OMP algorithm
is given in Algorithm 4.

Algorithm 4 Orthogonal matching pursuit (OMP)

1: Input: Design matrix X, response y, and model size k.
2: for: i = 1 to k
3: pi = arg maxj=1,...,p |rTi xj |.
4: Ŝi = ∪ij=1 {pi}.
5: ri+1 = (I −XŜi

X†
Ŝi

)y.

6: end for
7: Output: Ŝ := {p1, . . . , pk}, and β̂Ŝ = (XT

Ŝ
XŜ)−1XT

Ŝ
y

Similar to Section 4, we can represent the OMP selection event as a set
of linear constraints on y.

Ê(y) =
{
y : sign(xTpiri)x

T
piri > ±x

T
j ri, for all j 6= pi and all i ∈ [k]

}
= {y : ŝix

T
pi(I −XŜi−1

X†
Ŝi−1

)y > ±xTj (I −XŜi−1
X†
Ŝi−1

)y and

ŝix
T
pi(I −XŜi−1

X†
Ŝi−1

)y > 0, for all j 6= pi, and all i ∈ [k] }

=
{
y : A(Ŝ1, . . . , Ŝk, ŝ1, . . . , ŝk) ≤ b(Ŝ1, . . . , Ŝk, ŝ1, . . . , ŝk)

}
.

The selection event encodes that OMP selected a certain variable and the
sign of the correlation of that variable with the residual, at steps 1 to k.
The primary difference between the OMP selection event and the marginal
screening selection event is that the OMP event also describes the order
at which the variables were chosen. The marginal screening event only
describes that the variable was among the top k most correlated, and not
whether a variable was the most correlated or kth most correlated.

Since the selection event can be represented as constraints on y, the
hypothesis test and confidence intervals described in Algorithms 2 and 3 are
valid for OMP selected β̂Ŝ .

7.3 Nonnegative Least Squares

Non-negative least squares (NNLS) is a simple modification of the linear
regression estimator with non-negative constraints on β:

arg min
β:β≥0

1

2
‖y −Xβ‖2 . (22)
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Under a positive eigenvalue conditions on X, several authors [26, 22] have
shown that NNLS is comprable to the Lasso in terms of prediction and
estimation errors. The NNLS estimator also does not have any tuning pa-
rameters, since the sign constraint provides a natural form of regularization.
NNLS has found applications when modeling non-negative data such as
prices, incomes, count data. Non-negativity constraints arise naturally in
non-negative matrix factorization, signal deconvolution, spectral analysis,
and network tomography; we refer to [5] for a comprehensive survey of the
applications of NNLS.

We show how our framework can be used to form exact hypothesis tests
and confidence intervals for NNLS estimated coefficients. The primal dual
solution pair (β̂, λ̂) is a solution iff the KKT conditions are satisfied,

λ̂i := −xTi (y −Xβ̂) ≥ 0 for all i

β̂ ≥ 0.

Let Ŝ = {i : −xTi (y − Xβ̂) = 0}. By complementary slackness β̂−Ŝ = 0,

where −Ŝ is the complement to the “active” variables Ŝ chosen by NNLS.
Given the active set we can solve the KKT equation for the value of β̂Ŝ ,

−XT
Ŝ

(y −Xβ̂) = 0

−XT
Ŝ

(y −XŜ β̂Ŝ) = 0

β̂Ŝ = X†
Ŝ
y,

which is a linear contrast of y. The NNLS selection event is

Ê(y) = {y : XT
Ŝ

(y −Xβ̂) = 0, XT
−Ŝ(y −Xβ̂) > 0}

= {y : XT
Ŝ

(y −Xβ̂) ≥ 0,−XT
Ŝ

(y −Xβ̂) ≥ 0, XT
−Ŝ(y −Xβ̂) > 0}

= {y : XT
Ŝ

(I −XŜX
†
Ŝ

)y ≥ 0,−XT
Ŝ

(I −XŜX
†
Ŝ

)y ≥ 0, XT
−Ŝ(I −XŜX

†
Ŝ

)y > 0}

= {y : A(Ŝ)y ≤ 0}.

The selection event encodes that for a given y the NNLS optimization pro-
gram will select a subset of variables Ŝ(y). Similar to the case in OMP and
marginal screening, we can use Algorithms 2 and 3, since the selection event
is represented by a set of linear constraints {y : A(Ŝ)y ≤ 0}.

8 Conclusion

Due to the increasing size of datasets, marginal screening has become an
important method for fast variable selection. However, the standard hy-
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pothesis tests and confidence intervals used in linear regression are invalid
after using marginal screening to select important variables. We have de-
scribed a method to perform hypothesis and form confidence intervals after
marginal screening. The conditional on selection framework is not restricted
to marginal screening, and also applies to OMP, marginal screening + Lasso,
and NNLS.
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