
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2010-049 October 13, 2010

SEEC: A Framework for Self-aware Computing
Henry Hoffmann, Martina Maggio, Marco D.
Santambrogio, Alberto Leva, and Anant Agarwal

SEEC: A Framework for Self-aware Computing

Henry Hoffmann1, Martina Maggio1,2, Marco D. Santambrogio1,2, Alberto Leva2, Anant Agarwal1

1Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology, Cambridge, MA 02139
{mmaggio, hank, santambr}@mit.edu {agarwal}@csail.mit.edu

2Dipartimento di Elettronica e Informazione
Politecnico di Milano, Italy

{maggio, santambr, leva}@elet.polimi.it

ABSTRACT
As the complexity of computing systems increases, application pro-
grammers must be experts in their application domain and have the
systems knowledge required to address the problems that arise from
parallelism, power, energy, and reliability concerns. One approach
to relieving this burden is to make use of self-aware computing
systems, which automatically adjust their behavior to help appli-
cations achieve their goals. This paper presents the SEEC frame-
work, a unified computational model designed to enable self-aware
computing in both applications and system software. In the SEEC
model, applications specify goals, system software specifies possi-
ble actions, and the SEEC framework is responsible for deciding
how to use the available actions to meet the application-specified
goals. The SEEC framework is built around a general and extensi-
ble control system which provides predictable behavior and allows
SEEC to make decisions that achieve goals while optimizing re-
source utilization. To demonstrate the applicability of the SEEC
framework, this paper presents five different self-aware systems
built using SEEC. Case studies demonstrate how these systems can
control the performance of the PARSEC benchmarks, optimize per-
formance per Watt for a video encoder, and respond to unexpected
changes in the underlying environment. In general these studies
demonstrate that systems built using the SEEC framework are goal-
oriented, predictable, adaptive, and extensible.

1. INTRODUCTION
The growing complexity of modern computing systems is in-

creasing the burden on application developers. In addition to cor-
rectness and performance issues, contemporary application devel-
opment must handle parallelism, energy efficiency, reliability and
predictability issues. Furthermore, these concerns must be addressed
even when the execution environment cannot be characterized a
priori. Given these issues, it is no longer practical for an average
applications programmer to be an expert in their problem domain,
have the systems knowledge necessary to manage these additional
constraints, and produce an application that performs well on a
variety of machines, in a variety of situations. One approach to
simplifying the application programmer’s task is the use of self-
aware hardware [20, 9] and software [32, 17]. Researchers have
variously called such systems adaptive, autonomic, self-*, goal-
oriented, adaptive, etc, and have used these techniques in mobile
computing [27], grid and cloud computing [10, 40], networks [3],
operating systems [11, 22, 29, 21], the web [34, 31], multicore re-

Traditional System

(a)

Observe

Decide

Learner

(b)

ActAct

Process

Self-Aware System

Figure 1: Comparison of traditional and self-aware systems.

sources managers [20, 9, 35, 23], and adaptive and dynamic com-
pilation environments [39, 4, 6, 33].

Figure 1 illustrates the difference between traditional systems
and self-aware systems. Traditional, non-adaptive systems, run in
an open loop; application programmers design software given the
characteristics of the target platform and assumptions about future
inputs, power budgets, system load, etc. Then the application is
deployed without the flexibility to change its behavior. This design
process has two drawbacks: 1) it forces the designer to be an expert
in the application domain and the target platform and 2) it lacks the
flexibility to dynamically modify decisions if the original assump-
tions change. In contrast, self-aware systems run in a closed loop.
In such a system all layers – including hardware, compilers, op-
erating systems, and applications themselves – may be capable of
observing their environment, altering their decisions, and changing
their policies at run time.

This paper presents the SElf-awarE Computing (SEEC) frame-
work, a new computational model supporting the implementation
of observe-decide-act (ODA) loops involving both applications and
system software. In the SEEC model applications specify their
goals, system software specifies a set of possible actions, and the
SEEC framework is responsible for deciding how best to use the
available actions to meet application goals. For example, a video
application might specify a performance target of 30 frames per
second, while the system scheduler might specify a set of actions
that allocate cores to applications. Given these specifications, the
SEEC framework then implements an ODA loop, wherein it ob-
serves application performance and uses these observations as in-
put to a control-theoretic decision engine. SEEC’s control system
decides which of the specified actions should be taken given its ob-

1

servations. Continuing the example, the SEEC framework would
observe the video application’s performance and change its alloca-
tion of cores in order to meet its goal of 30 frames per second using
the minimum number of cores.

The SEEC framework provides several benefits for developing
self-aware systems. First, it is goal-oriented as it directly incorpo-
rates application goals and measures progress towards those goals.
Second, SEEC systems have predictable behavior because the deci-
sion making process is grounded in control theory allowing known,
mathematical characterization of the system’s response to stimuli.
Third, SEEC is adaptive in that it continually monitors progress
and alters decisions allowing it to respond to unforeseen or chang-
ing circumstances. Finally, SEEC is extensible in that it is de-
signed to work with a wide variety of applications and system soft-
ware. SEEC uses the Application Heartbeats API, which provides a
general method for applications to indicate performance goals and
progress [16]. SEEC’s control framework is easily customized by
specifying a set of actions, and SEEC is general enough to work
with any set of actions which affect application performance.

To demonstrate the benefits of the SEEC framework, this pa-
per presents several case studies. In these studies, the PARSEC
benchmarks [8] are modified to use the Heartbeats API and register
goals and performance. Five separate systems are then developed
to control the behavior of these applications. Results show that
these SEEC systems can predictably achieve their goals. Addition-
ally, a SEEC-based system is shown to optimize performance per
Watt for a video encoder across a range of input videos, each with
differing compute demands. For many videos, this dynamic system
is able to adapt its behavior and exceed the performance per Watt of
the best static allocation of resources. Finally, several experiments
demonstrate how SEEC systems can adapt their behavior to main-
tain performance in the face of environmental changes like clock
frequency changes or core failures.

Self-aware computing has been used to meet many of the chal-
lenges in modern computing systems. In addition several systems
have been built using self-aware techniques to allocate multicore
resources [20, 9], dynamically manage application power [33, 6]
and build adaptive operating systems [22, 29]. The SEEC frame-
work presented in this paper has several distinguishing character-
istics compared to previous work in self-aware computing. First,
the framework is designed to be general and to make it easy to ap-
ply self-aware computation to a variety of applications and system
software. Second, SEEC incorporates the needs of both applica-
tions and system software in self-aware systems. Using a general
method for specifying application goals allows SEEC to use a gen-
eral and widely applicable method for decision making and, thus,
SEEC is easily extended to incorporate new actions. Third, SEEC
incorporates application goals and feedback to directly measure its
effects and avoid having to infer application progress from low-
level metrics. Finally, SEEC is grounded in control theory which
provides guarantees of the system’s response to stimuli. While
control theory has been used in computing systems [15, 21], the
SEEC approach is unique in that its controller is not built for a
specific purpose, but rather provides a general and broadly appli-
cable framework which is easily customized for specific systems.
This approach is easily extensible and allows systems developers
to benefit from control-theoretic techniques without understanding
the details of designing control systems.

This paper makes the following contributions:

• It presents the SEEC framework, a general computational
model for enabling applications and system software to co-
operate in a self-aware manner. In the SEEC model applica-
tion specify goals, systems specify possible actions, and the

SEEC framework decides what actions to take to meet goals.
• It describes the SEEC control system, which grounds the de-

cision making processes of SEEC-based systems in control
theory. This control system is distinguished by its gener-
ality as it provides a framework that is easily customized
and extended to develop new systems. These properties are
demonstrated by developing five separate self-aware system
services.

• It presents several case studies, illustrating how systems im-
plemented with SEEC can predictably control application
performance, minimize power-consumption and resource uti-
lization, self-optimize, and respond to fluctuations in the un-
derlying hardware system.

• It demonstrates the applicability of the SEEC framework by
modifying the PARSEC benchmarks to take advantage of
self-aware computation and showing how the SEEC control
framework can regulate these benchmarks.

The rest of the paper is organized as follows. Section 2 presents
an example illustrating how the SEEC framework can minimize
the power consumption of a video encoder while maintaining tar-
get performance. Section 3 describes the SEEC framework in-
cluding the feedback mechanism applications use to specify goals
and progress as well as the decision making support and the co-
ordination mechanisms used to provide self-aware system services.
Section 4 describes the development of five separate self-aware sys-
tems in the SEEC framework. Section 5 presents an experimental
evaluation of the SEEC framework and the systems developed in
the previous section. Section 6 discusses related work and the pa-
per concludes with Section 7.

2. MOTIVATING EXAMPLE
To illustrate self-aware computing with the SEEC framework,

we present an example of both an application and separate system
software running on a multicore system. The application is x264,
an open-source implementation of the H.264 video codec [41] (which
is also part of the PARSEC benchmarks). The system software is
a resource allocator that manages both processor speed and avail-
able cores to meet application performance goals while minimizing
power consumption. Maintaining performance in the video encoder
is complicated by the fact that videos can vary in their complexity,
meaning some inputs require more compute resources to meet the
same performance. For example, videos with few differences from
frame to frame (e.g., typical video conferencing) require fewer op-
erations to encode, while more complicated videos (e.g., sports)
require more operations. We would like the simple videos to con-
sume fewer resources and less power than the more complicated
videos which we expect to require more resources and thus more
power. Furthermore, we would like to separate the concern of man-
aging resources from that of writing the video encoder.

Using traditional methods, an application developer produces a
power-optimal video encoder by understanding both the video do-
main and how resource utilization within the target platform affects
power. While possible, making the video programmer responsible
for power management places greater burden on the programmer
and may result in an ad hoc solution. Such a solution can pro-
duce optimal resource utilization for the video encoder on a specific
hardware platform, but is likely unsuitable for other applications or
even the same application running on different hardware.

Alternatively, using the SEEC framework the encoder developer
specifies goals and current performance allowing the resource al-
locator to allot the minimal amount of resources required to meet
those goals. This solution does not require the application program-

2

Performance goal

0

10

20

30

40

50

60

70

80

50 150 250 350 450

Time (Heartbeat)

P
er

fo
rm

an
ce

 (
F

ra
m

e/
s)

130

140

150

160

170

180

0 2 4

0

10

20

30

40

50

60

70

80

50 150 250 350 450

Time (Heartbeat)

P
er

fo
rm

an
ce

 (
F

ra
m

e/
s)

130

140

150

160

170

180

0 2 4 6 8 10 12 14 16

Time (s)

P
ow

er
 (

W
)

Performance Power

Figure 2: x264 power and performance with SEEC.

mer to understand the power/performance tradeoffs in the underly-
ing hardware and operating system. The SEEC solution also clearly
separates the application development from system optimization,
which results in a modular solution and increases portability. Addi-
tionally, by using the SEEC framework the encoder and the system
both have the flexibility to adapt to unanticipated events, such as
videos that are easier or harder to encode, changes in the underly-
ing hardware, or even changes in application goals.

To make use of the SEEC system the application developer sim-
ply instruments the code using the Application Heartbeats API [16].
For x264, this instrumentation requires adding five lines of code.
These additional lines include adding a header file, declaring a
heartbeat data structure, initializing and finalizing that data struc-
ture, and a call to signify the heartbeat. The initialization function
is used to specify the desired heart rate. Since we want our encoder
to maintain thirty frames per second, we specify a desired heart
rate of thirty beats per second and add the call to signify the heart-
beat each time a frame is encoded. Having made this small set of
changes, the application is prepared to benefit from system services
written in the SEEC framework.

To meet performance goals, the encoder relies on a separately
developed resource allocator built by customizing SEEC’s control
system. This control system uses the application’s heartbeat infor-
mation as a feedback mechanism and adjusts its actions to achieve
the desired heart rate. SEEC provides a skeleton of a generic con-
troller that system software developers can specialize into different
classes of control systems to suit their particular needs. To cus-
tomize the controller, a system software developer specifies a set of
actions, the speedup associated with a given action, and a function
that executes an action.

For this example, the systems developer must specify a set of ac-
tions which affect power. We note that the power in a multicore chip
is related to the number of cores in use and the clock speed of those
cores. Using dual quad-core Intel Xeon E5530 processors running
Linux and cpufrequtils, the system has 56 actions (allocating up
to seven speeds and one to eight cores) available to the resource
allocator. Thus the developer defines a function that executes an
action by 1) changing clock speed using cpufrequtils and 2) chang-
ing the number of available cores by manipulating affinity masks.
Given this information, the generic SEEC control system will find
the state with the lowest speedup (and thus power) required to meet
the application’s performance goals.

At this point we have an example self-aware system created us-
ing SEEC. We have an application (x264) which emits heartbeats
as an indicator of performance and system software that reads those

The SEEC Approach

System Parameters

App

HeartbeatHeartbeat

App

HeartbeatHeartbeat

App

HeartbeatHeartbeat

Decide

SEEC Control
System

Observe

Application
Heartbeats

Act

Action
Implementations

Figure 3: The SElf-Aware Computing (SEEC) Framework.

heartbeats and adjusts its policies (available cores and clock speed)
to meet application goals (thirty frames per second). The behav-
ior of this system is illustrated in Figure 2. The figure shows the
performance and power consumption of x264 over time. Time is
shown on the x-axis while performance (heartbeats, or frames, per
second) is shown on the left y-axis and total system power (mea-
sured with a Wattsup power meter [1]) is shown on the right y-axis.

As shown in Figure 2, the resource allocator initially assigns
all available resources to x264. This over-provisioning results in a
performance of over 50 frames per second and a power consump-
tion of over 180 W. The resource allocator detects that the encoder
exceeds its target performance and reduces the amount of avail-
able cores and the clock-speed of those cores until performance is
at the desired level of thirty frames per second. This reduction in
resources produces a corresponding reduction in power; as the en-
coder completes it is consuming just over 130 W.

This example demonstrates several of the benefits of self-aware
computing with the SEEC framework. First, it shows how self-
aware computation can help relieve application programmer bur-
den; in this case the video developer could ignore power optimiza-
tion knowing that the system would adapt to meet application goals.
Second, it illustrates the kind of benefits that can be gained by
building self-aware systems; in this case a system power savings
of 50 W without missing application deadlines.

3. SEEC FRAMEWORK
The SEEC framework uses input from applications and systems

developers to implement a closed-loop system with three distinct
phases: Observation, Decision, and Action. This ODA loop is char-
acteristic of control systems; during the observation phase the sys-
tem collects information, which is fed to the decision phase. During
the decision phase the system determines whether recent observa-
tions warrant a change in behavior and, if needed, what form this
change should take. If adaptation is desired, the action phase imple-
ments the adaptation dictated by the decision process. The SEEC
framework, as shown in Figure 3, supports this form of closed-loop
execution by generalizing the observation and decision phases, pro-
viding standard techniques that work with a broad range of actions.

In the SEEC model there are three distinct participants, or roles:
application developer, system software developer, and the SEEC
framework itself. Table 1 shows the responsibilities of each of
these three entities for each of the three phases of observation, deci-
sion, and action. The application developer’s only responsibility is
to indicate the application’s goals and current progress toward those
goals (see Section 3.1 for more details). The systems developer
needs to indicate a set of actions and a function which implements
these actions (see Section 3.3 for more details). All responsibilities

3

Table 1: Roles and Responsibilities in SEEC Development
Phase Applications Developer Systems Developer SEEC Framework
Observation Specify application goals and perfor-

mance
- Read goals and performance

Decision - - Determine how much to speed up the
application

Action - Specify actions and a function that
performs actions

Initiate actions based on result of deci-
sion phase

listed under the SEEC framework are handled automatically by the
system as described later in this section. In brief, the SEEC frame-
work reads the application goals and performance, uses this data
as input to a control system, and the control system decides what
actions to take (see Section 3.2 for details on the control system).

3.1 Observing Application in SEEC
A key feature of the SEEC framework is its direct incorpora-

tion of application-specified goals and performance feedback into
its decision making progress. Toward this end, SEEC uses the Ap-
plication Heartbeats interface to make an application’s goals and
progress known to the rest of the system [16]. Using this interface
applications emit heartbeats at some important place in the code by
making calls to the Heartbeat API. For example, in a video encoder
a heartbeat might be registered for every encoded frame. Additional
functions in the interface allow applications to specify their goals
in terms of a desired heart rate or a desired time between specially
tagged heartbeats. The Application Heartbeats interface contains
additional API functions that allow the SEEC framework to query
an application’s heartbeat and goals. In comparison with a stan-
dard control system, the heartbeat serves as a sensor that provides
information about an application’s execution.

The ability to control an application’s heartbeat will be influ-
enced by the soundness of a particular heartbeat signal. The SEEC
framework uses past application measures to obtain a model of fu-
ture behavior (discussed further in the next section). The higher the
correlation between the recent past and the near future, the more
accurate the control. For example, if a video encoder’s frame rate
over the last second is a good indicator of its frame rate in the next
second, the system will allocate resources more efficiently. The
SEEC framework does not require, or expect, that this soundness
condition always hold (and in fact, a change in heartbeat data often
drives a change in the decision making process). The control sys-
tem discussed in the next section uses a simple adaptation mecha-
nism to estimate the workload in different phases of the application
and may decide to adjust its actions based on these estimates. This
adaptation allows the control system to adapt to underlying changes
in the environment.

We note that for application developers, adding Heartbeats is the
only requirement for taking advantage of SEEC (as shown in Ta-
ble 1). Typically, this addition requires adding less than six lines
of code to the application and linking against the publicly available
implementation of the Application Heartbeats API. Application de-
velopers who want to create adaptive applications can, of course,
use the SEEC control system within an application to drive adapta-
tion.

3.2 Making Decisions in SEEC
The use of the Heartbeats API means that all applications in the

system have a standard method for indicating their current perfor-
mance and there is a standard method for observing this behavior.
This standardization of observation makes SEEC’s control system
possible. SEEC provides a general decision making framework for

system services designed to control the performance of Heartbeat-
enabled applications. The SEEC control system takes a series of
heartbeat observations as input and produces a series of desired
speedups which are then used to determine what actions the system
should take.

As the Heartbeats framework abstracts applications into a heart-
beat, the SEEC control system abstracts decisions into reasoning
about speedup. The controller determines when, and by how much,
to speedup an application in order to achieve a desired heart rate (or
latency between heartbeats). By reasoning about speedup, rather
than specific decisions, the SEEC controller can be used as a de-
cision making engine for a wide range of potential actions includ-
ing resource allocation, algorithmic modifications, policy modifica-
tions, etc. The SEEC control system can serve as a decision engine
for any system that affects application performance.

We note that the SEEC control system automatically provides
decision making capabilities as part of the framework; neither the
application nor systems developer is responsible for implementing
the decision making process or understanding control theory. Thus,
the SEEC framework allows self-aware systems to benefit from a
well-founded decision making process without understanding the
details. The controller is general, however, so developers can cus-
tomize its behavior if desired.

3.2.1 The SEEC Control System
This section provides an overview of the SEEC control system,

which complements and generalizes previous work on controlling
heartbeat-enabled applications [26].

The SEEC system block diagram is illustrated in Figure 4. The
controller observes the heartbeat data of the application and models
application performance at the k-th heartbeat as

r(k) =
s(k)
w(k)

+ δr(k) (1)

Where r(k) is the heart rate of the application at time k, s(k) is the
relative speedup applied to the application between time k − 1 and
time k, and w(k) is the workload of the application. Workload is
defined as the expected time between two subsequent heartbeats
when the system is in the state that provides the lowest speedup.
For example, in an adaptive resource allocator the workload corre-
sponds to the application performance with the minimal amount of
the resource under control. For control purposes we assume that the
workload is not time variant and its variations, which in principle
cannot be predicted, are modeled with the term δr(k), representing
an exogenous disturbance.

Using the Heartbeats API an application specifies its desired
heart rate r̄. The SEEC controller uses that value as a target, or
set point and the controller is designed to be as general as possible
while converging to the set point without committing errors. Ad-
ditionally, the controller is parameterized, allowing system devel-
opers to customize transient behavior to suit the needs of a specific
implementation. Examples of these customizable options include
the time for the controller to converge to the set point, the existence

4

App

HeartbeatHeartbeat

SEEC Controller

_
r

H
e
a

rt
 R

a
te

Time

pure delay

slow convergence

oscillating

_
r

H
e
a

rt
 R

a
te

Time

pure delay

slow convergence

oscillating

Error Speedup

Observed Heart Rate

e(k) s(k)

r(k)

r

+
-

Desired
Heart Rate

Figure 4: Block diagram of the SEEC control system.

of oscillations around the set point, and whether over- or under-
shooting the set point is allowed.

Specifically, SEEC supports three classes of control systems and
three possible trajectories from an observed heart rate to a desired
heart rate as illustrated in Figure 5. The first, a pure delay con-
troller, has the shortest time for the observed heart rate to converge
to the desired heart rate, but it is also sensitive to noisy or unsound
feedback from the application. The second, a slow convergence
controller, takes longer to converge but is the least sensitive to noise
or disturbance in the heart rate observations. The third, an oscillat-
ing controller, quickly achieves an average heart rate that is equal to
the desired value, but does so by alternately over- and undershoot-
ing the the target heart rate before finally converging.

SEEC’s controller is based on a generic closed-loop transfer func-
tion, i.e., the function that produces the heartrate r given the target
r̄. In general, a transfer function is a mathematical representation
of the relation between the input and the output of a linear time in-
variant system. In Figure 4, the input is the desired heart rate and
the output is the observed heart rate. SEEC’s controller provides
a guarantee that, the observed heart rate converges to the desired
heart rate provided a set of actions that produce sufficient speedup.
In addition, the controller is generic in that system developers are
free to customize the parameters of the generic transfer function,
and thus the trajectory of the observed heart rate as it converges to
the desired value.

Selecting the behavior of the control system as it converges to
the set point is equivalent to selecting the shape of the system in
the frequency domain. As the SEEC framework uses a discrete
time model, we use the Z-transform to obtain its frequency domain
representation [24, p17]. Defining R̄(z) as the transfer function of
the desired heart rate and R(z) as the transfer function of the ob-
served heart rate, we set the relation between the output and the
input

R(z)

R̄(z)
=

(1 − p1)(1 − p2)
1 − z1

z − z1

(z − p1)(z − p2)
(2)

where z−1 is the delay operator and {z1, p1, p2} are a set of customiz-
able parameters which alter the transient behavior (or trajectory as
described in Section 3.2). The gain of this function is 1, so the
system will reach the set point or the desired heart rate assuming
sound feedback. From Equation 2, the generic SEEC controller is
synthesized following a classical control procedure [24, p281]. As
shown in Equation 1, SEEC must determine s(k), the speedup to
apply at time k. This value is calculated thusly:

e(k) = r̄ − r(k)
s(k) = F · [A s(k − 1) + B s(k − 2) +

C e(k) w(k) + D e(k − 1) w(k − 1)]
(3)

where e(k) is the error between the current heart rate and the de-
sired heart rate at time k as shown in Figure 4. And the values of

{A, B,C,D, F} come from the controller synthesis:

A = − [−p1z1 − p2z1 + p1 p2]
B = − [p2z1 + p1z1 − z1 − p1 p2]
C = + [p2 − p1 p2 + p1 − 1]
D = + [p1 p2 − p2 − p1 + 1] z1

F = + [z1 − 1]−1

(4)

To customize the generic controller for a specific trajectory, the
values {z1, p1, p2} must be specified. For the overall system to be
stable the absolute value of p1 and p2 needs to be less than one.
In the pured delay case, no transient behavior is desired, and z1 =

z2 = p1 = 0 specify that the system should reach r̄ as quickly as
possible. Otherwise, suppose, without loss of generality, p2 ≥ p1.
If at least one of these values is negative, the system will oscillate
around r̄. If p1 ≤ z1 ≤ p2, will slowly converge to r̄. The closer
z1 is to p2, the faster the system will reach r̄. If z1 ≥ p1 the system
is subject to overshoot r̄ and if z1 ≥ 1 the system is subject to
undershoot. p1 = −ε, p2 = z1 = 0 produces oscillating behavior
that allows the system to reach the steady state quickly, while if
p1 = −1+ε the oscillating behavior slowly converges to the desired
value. p1 = 0.1, p2 = 0.8 and z1 = 0.7 does not present any
oscillations or overshoots but has a slow convergence.

SEEC’s generic controller calculates a speedup using an equa-
tion that produces values in a set of real numbers (1,∞); however,
this speedup must be realized in a computing system which is lim-
ited to a discrete set of actions. For example, consider a system that
allocates cores in a dual-core computer. This system can achieve
speedups of 1 and 2, but the controller decide on a speedup of
1.5. To convert the continuous speedup signal into a set of actions
achievable in a discrete system, the SEEC framework computes a
set of actions to take over a window such that the average speedup
over that window is the desired speedup. In the example, SEEC
will decide on a speedup of 2 for half the window and a speedup of
1 for the other half, thus achieving an average of 1.5.

Given a target speedup s̄ determined by Equation 3 and a discrete
set of actions ai with associated speedups si, the SEEC framework
determines which actions to take over the next time window using
the following algorithm. First, the framework finds an action ai+1

such that si+1 is the smallest speedup for which si+1 ≥ s̄. Thus,
si < s̄. For a window of τ time units, SEEC computes the amount of
time τi+1 to apply speedup si+1 and the amount τi to apply speedup
si as

τi+1 = τ
si+1 − s̄
si+1 − si

τi = τ − τi+1

(5)

Thus, SEEC takes the desired heart rate and observed heartbeat
data from an application and uses it to decide what speedup to apply
at time k to meet the application’s goal. Having done so, SEEC
then translates this speedup into a set of actions that can be realized
by the discrete computing system. SEEC’s control framework is
general, allowing system’s developers to customize it for specific
behavior as desired.

We note that the details described in this section are implemented
automatically by the SEEC framework. System software devel-
opers do not need to understand how the control system works to
make use of SEEC, although they can optionally customize the con-
trol behavior by setting the values of {p1, p2, z1} as described above.

3.3 Taking Action in SEEC
The SEEC control system determines a series of speedups to ap-

ply to modify an application’s heart rate. Affecting these speedups
requires that the system take some action. Thus the SEEC frame-

5

_
r

H
ea

rt
 R

at
e

Time

pure delay
slow convergence
oscillating

_
r

H
ea

rt
 R

at
e

Time

pure delay
slow convergence
oscillating

Figure 5: Possible trajectories of SEEC controllers.

work needs three inputs from the systems developer: a set of possi-
ble actions, the speedups associated with these actions, and a func-
tion that can take a specified action. For example, to implement
a controller allocating cores in a dual-core system, the systems de-
veloper would specify two actions (allocating one or two cores with
associated speedups of one and two). In addition, the system’s de-
veloper might specify a function that manipulates affinity masks to
affect the assignment of cores to an application.

Using this information, the SEEC framework is responsible for
mapping speedups into actions and calling the function provided
by the system’s developer to realize those actions. Consider the
core allocator from the previous paragraph and suppose the SEEC
controller determines that a speedup of 1.5 is desired over some
time interval. The SEEC framework will achieve this speedup by
calling the provided function to assign two cores for half the time
interval and then assigning one core for the second half. Using the
action set provided by the systems developer, the SEEC framework
automatically maps the decisions of the control system into actions.

We note that the system software developer is responsible for
specifying a set of actions, the speedup of these actions, and a
function to implement the actions. Additionally, the systems de-
veloper may choose to customize the trajectory of the controller as
discussed above. The developer provides this information to the
SEEC framework, which automatically monitors applications, uses
its control system to make decisions, and uses the provided func-
tion to convert those decisions into actions. Section 4 provides five
examples developing self-aware system software using SEEC.

4. USING THE SEEC FRAMEWORK
To illustrate the development of system software using SEEC,

we describe five different examples. To demonstrate the broad ap-
plicability of SEEC, these example systems operate on a range of
mechanisms including: processor speed, allocation of processor
cores, access to DRAM, system power, and algorithm changes. Of
course, this is a small subset of the many possible types of adaptive
systems that can be built with SEEC, which supports any system
that can take action to influence application speed.

To use SEEC in a given system, the systems software developer
must specify a set of actions that can be taken, a speedup associ-
ated with each action, and a function that realizes the desired ac-
tion. Table 2 summarizes these values for each of the five example
systems. We note that each action often represents a tradeoff. For
example, changing the processor speed may increase application
performance, but it will also increase system power. Therefore,
the table includes a summary of the tradeoffs inherent in each con-
troller’s actions.

Given that actions represent tradeoffs, system developers would
like to ensure that SEEC can make the optimal tradeoff. For ex-
ample, we would like the adaptive video encoder to maximize the
quality when achieving a given speedup. As described in Section 3,
SEEC selects the action that has the minimum speedup required to

meet a goal. If the set of actions presented to SEEC represent the
Pareto-optimal subset of all possible actions, then SEEC’s control
system will select the action that meets the target performance with
optimal trade off. For example, consider a video encoder that can
execute three possible actions: the default algorithm with speedup
1 and quality 1, algorithm A with speedup 1.5 and quality .8, and
algorithm B with speedup 2 and quality .9. In this case, A is not
Pareto-optimal and should not be in the set of actions that the sys-
tems developer specifies for SEEC; instead, the SEEC controller
should only decide between the default algorithm and B.

4.1 Frequency Scaler
The first controller uses dynamic voltage and frequency scal-

ing (DVFS) to adjust clock speed. As described in Table 2 the
controller acts by adjusting the clock speed to one of the possi-
ble settings. On the experimental platform used in the next section
there are seven possible settings. The lowest setting is assumed to
provide speedup of 1 and all other setting are assumed to provide
speedup proportional to their difference in clock speed. We imple-
ment the actuator using the cpufrequtils package in Linux. In-
creasing clock-speed increases performance, while increasing sys-
tem power. For the frequency scaler all possible states are assumed
to be Pareto-optimal.

4.2 Core Allocator
Our second control system allocates cores in a multicore proces-

sor. This controller acts by changing the affinity mask of processes
(or threads in a process) thus altering the number of cores on which
the process is permitted to run. Binding a process to a single core
is assumed to provide a speedup of one. We assume that addi-
tional cores increase speedup according to sn = n7/8 where sn is the
speedup of using n cores. For this system we do not assume lin-
ear scaling with the number of cores. Empirically we find that few
systems achieve truly linear scaling and the core allocator achieves
better results in practice with this model. Increasing the number
of cores in use increases application performance while increasing
system power. For the core allocator, all states are again assumed
to be Pareto-optimal in the target system.

4.3 DRAM Allocator
The first two controllers in the system alter the amount of com-

pute resources available to applications; however, the framework
also supports development of controllers for other needs. Thus, we
examine is designed to alter the amount of available memory band-
width by changing an application’s NUMA mappings and allowing
access to additional DRAM controllers. This system affects change
by suspending the processes and threads in an application, allocat-
ing new memory from a new set of DRAM controllers, copying the
contents of old to new, and freeing the old memory. We assume
that the speedup using a single memory controller is 1 and that
sn = n, where n is the number of DRAM controllers used, which
provides good results for memory bound applications. Increasing
the number of DRAM controllers in use will increase application
performance at a cost of increased system power.

4.4 Power Manager
All three of the previous controllers alter the number of resources

assigned to an application and affect the system power. Therefore,
it is possible to develop a single controller which allocates power
by managing all three resources simultaneously. For this controller
the possible actions are simultaneously adjusting the number of
DRAM controllers, the number of cores, and the frequency of these
cores. In our experimental platform (described in Section 5) this

6

Table 2: Summary of SEEC Controllers
Controller Action Set Actuation Function Tradeoffs
Frequency Scaler CPU Speeds Change CPU speed Power vs Speed
Core Allocator Number of available cores Change affinity masks Power vs Speed
DRAM Allocator Number of available DRAM controllers Change NUMA page allocation Power vs Speed
Power Manager CPU speed and in-use cores Change CPU speed and affinity masks Power vs Speed
Adaptive Video Encoder Encoding Parameters and Algorithm Change parameters, use different algorithms Video Quality vs Speed

results in 112 possible actions. However, in profiling the power and
performance of this system we find that only 50 of these possible
actions are Pareto-optimal, thus SEEC reasons only about these 50
states. To affect an action the controller changes the clock speed,
affinity masks, and NUMA mappings as described above. To elimi-
nate unnecessary memory management in CPU bound applications
we write the action function such that it will not take an action that
allocates multiple memory controllers unless the observed cache
miss rate is above 20%. This policy shows how the direct per-
formance metrics provided by Application Heartbeats can be used
in conjunction with low-level metrics gathered from performance
counters to build more capable and efficient systems.

4.5 Adaptive Video Encoder
As our final example of a self-aware controller, we develop an

adaptive application that alters its algorithm to meet a performance
goal. Specifically, we improve the adaptive video encoder devel-
oped in [16] using the x264 source code [41]. The original system
used heuristics to control its adaptation. Using SEEC’s control sys-
tem we build a controller that accomplishes the same goal but does
so with predictable and well-founded methods. In this example,
the actions alter the algorithms the encoder uses to find temporal
redundancy in a raw input video. We define the set of algorithms
specified by the default command line for the PARSEC native input
to have a speedup of 1. To find additional actions and speedups we
profile x264 using different algorithms to encode 4 inputs and mea-
sure different algorithms’ effects on speedup and quality. Out of the
560 possible actions, only 54 are Pareto-optimal (many algorithms
are not meant to be used in conjunction). x264 rechecks a set of
control parameters for every frame; to realize an action dynami-
cally, we modify the values of x264’s internal control parameters
which will change the algorithm used in the next frame.

5. EVALUATION
This section describes several experiments designed to evaluate

the generality, applicability, and effectiveness of the SEEC frame-
work. First, we describe the experimental platform. Then, we
demonstrate the predictability of the SEEC framework by show-
ing the five controllers (described in Section 4) achieving a per-
formance goal using the desired trajectory. The next subsection
illustrates the broad applicability of SEEC for a range of applica-
tions by controlling the performance and power consumption of
the PARSEC benchmarks. Then, we show how SEEC can be used
to adaptively perform constrained optimization, by maximizing a
video encoder’s performance per Watt over a range of inputs each
with differing compute requirements. Finally, the adaptability of
the SEEC framework is illustrated by showing how the system can
maintain performance in the face of fluctuations in the underlying
compute environment.

5.1 Experimental Platform
All experiments are run on a Dell PowerEdge R410 server with

two quad-core Intel Xeon E5530 processors running Linux 2.6.26.
The processors support seven power states with clock frequencies

from 2.4 GHz to 1.6 GHz. The cpufrequtils package enables
software control of the clock frequency (and thus the power state).
Consumed power is measured by a WattsUp device which samples
and stores power at 1 second intervals [1]. All benchmark appli-
cations run for significantly more than 1 second so the sampling
interval should not affect results. The maximum and minimum
measured power ranges from 210 watts (at full load) to 80 watts
(idle), with a typical idle power consumption of approximately 90
watts.

To account for the overhead of the SEEC control system we mea-
sure the time it takes to make a new decision, which requires calcu-
lating a speedup given a new observation of the heartbeat data. Our
SEEC implementation is able to make a decision in 20.09 nanosec-
onds, which is close to 50 million decisions per second. We con-
clude that SEEC can likely make decisions much faster than the
system can take action, or even record heartbeats so we conclude
that SEEC’s decision engine is low-overhead. There are other over-
heads, but those will be implementation specific and include the
overhead of registering a heartbeat and the overhead of taking an
action.

5.2 Predictable Behavior
We begin with a study to demonstrate the behavior of the five

example systems (described in Section 4) built using the SEEC
framework. For the first three systems we show the behavior while
managing the PARSEC swaptions benchmark. For the DRAM allo-
cator we show the system managing the STREAM benchmark [28].
For the adaptive video encoder we show x264 managing itself.

For each controller we first measure and record the minimum
and maximum performance available through static allocation of
resources. We then instantiate three different versions of each con-
troller: pure delay, slow convergence, and oscillating. For each
system, we set the application to request a target performance that
is average of the maximum and minimum. The goal is predictably
achieve the target heart rate following the desired trajectory.

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 (H
ea

rt
R

at
e

vs
 M

ax
im

um
 H

ea
rt

R
at

e)

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Time (Heart Beat)
50 100 150 200 250 300 350 400 450 500

Static maximum
SEEC, pure delay
SEEC, slow convergence
SEEC, oscillating
Static minimum

Figure 6: swaptions controlled with the SEEC frequency scaler.

The results of this study for all five systems are shown in Fig-
ures 6–10. For each chart, the x-axis shows time while the y-axis
shows performance normalized to the maximum value. The min-

7

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 (H
ea

rt
R

at
e

vs
 M

ax
im

um
 H

ea
rt

R
at

e)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Time (Heart Beat)
50 100 150 200 250 300 350 400 450 500

Static maximum
SEEC, pure delay
SEEC, slow convergence
SEEC, oscillating
Static minimum

Figure 7: swaptions controlled with the SEEC core allocator.

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 (H
ea

rt
R

at
e

vs
 M

ax
im

um
 H

ea
rt

R
at

e)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Time (Heart Beat)
50 100 150 200 250 300 350 400 450 500

Static maximum
SEEC, pure delay
SEEC, slow convergence
SEEC, oscillating
Static minimum

Figure 8: swaptions controlled with the SEEC power manager.

imum and maximum performance of the system are shown with
dotted lines, while the behavior of the SEEC systems are shown
with dashed lines.

Figure 6 shows the behavior of the frequency scaler managing
swaptions. In this scenario, swaptions is run on a single core and
provides perfectly sound feedback, which allows the controller to
achieve the desired behavior exactly. Figure 7 shows the behav-
ior of the core allocator, again managing swaptions. In this case,
we use the parallel version of swaptions and the noise in the feed-
back system increases as we add cores. Despite this noise, the fig-
ure shows that all controllers converge to the desired performance,
although the oscillating controller’s curve is distorted. Figure 8
shows the behavior of the power manager controlling swaptions.
Again all the curves converge to the desired performance with some
distortion due to noise.

Figure 9 shows the behavior of the DRAM allocator managing
the STREAM benchmark. In this case we use STREAM because
none of the PARSEC benchmarks exhibit significant response to
DRAM bandwidth changes on our system. For this experiment
we increased the size of the vectors in the stream benchmark to
1.6MB and ran the benchmark for 1000 iterations. As shown in
the figure all controllers converge to the desired behavior. This
is notable because the DRAM allocator on our system has only
two states, but is still able to achieve arbitrary speedups using the
SEEC control system. The “spikes” in the curves are due to the
overhead of taking an action with this controller (which reallocates
large chunks of memory).

Figure 10 shows the behavior of the adaptive x264 encoder using
the PARSEC native input. Again, the controller is able to achieve
the desired performance. In this case, the SEEC framework is able
to turn an arbitrary application into a soft-real-time application with
little work required on the part of the developer; SEEC automati-

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 (H
ea

rt
R

at
e

vs
 M

ax
im

um
 H

ea
rt

R
at

e)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

Time (Heart Beat)
0 100 200 300 400 500 600 700 800 900 1000

Static maximum
SEEC, pure delay
SEEC, slow convergence
SEEC, oscillating
Static minimum

Figure 9: STREAM with the SEEC memory allocator.

cally adjusts and controls performance using options that already
existed as part of the software.

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 (H
ea

rt
R

at
e

vs
 M

ax
im

um
 H

ea
rt

R
at

e)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Time (Heart Beat)
50 100 150 200 250 300 350 400 450 500

Static maximum
SEEC, pure delay
SEEC, slow convergence
SEEC, oscillating
Static minimum

Figure 10: Adaptive video encoder built with SEEC.

In summary, these results illustrate the generality and extensibil-
ity of the SEEC framework. While each system works with a differ-
ent set of mechanisms, they are all built using the SEEC framework,
which is shown to predictably converge to the set point and do so
following the desired trajectories. This convergence is achieved de-
spite the fact that the heartbeat signal is noisy for some systems. As
expected, the oscillating controls are most affected by the presence
of noise. The slowly converging controllers are least affected by
noise while the pure delay controllers lie somewhere in between.

5.3 SEEC and the PARSEC Benchmarks
This section demonstrates the broad applicability of the SEEC

framework and shows how its incorporation of application speci-
fied goals can be used to reduce resource consumption (in this case,
power). For this study we instrument each of the PARSEC (v2.0)
benchmarks using the Application Heartbeats API. We then mea-
sure the performance of each benchmark using its native input set
when statically allocated eight cores set to the highest clock speed.
Knowing the maximum achievable performance, we then run each
benchmark with lower performance goals under the control of the
self-aware power manager described in Section 4.4, recording the
performance and total system power.

The results of this experiment are shown in Figures 11(a) and 11(b).
Figure 11(a) shows the normalized performance of each benchmark
when it is given the maximum resources, as well as the performance
of the benchmark when requesting a heart rate of 50 and 75% of the
maximum. Figure 11(b) shows the corresponding power consump-
tion of each benchmark for each performance target.

This study demonstrates several characteristics of the SEEC frame-
work. First, PARSEC consists of a variety of important multi-

8

0

0.25

0.5

0.75

1

bla
ck

sc
ho

les

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

fa
ce

sim fe
rre

t

flu
ida

nim
at

e

fre
qm

ine

ra
ytr

ac
e

str
ea

m
clu

ste
r

sw
ap

tio
ns vip

s
x2

64

N
o

rm
al

iz
ed

 H
ea

rt
 R

at
e

Static, Max resources Static, Min resources SEEC, 1/2 Max SEEC, 3/4 Max

(a) Performance

0

35

70

105

140

175

210

bla
ck

sc
ho

les

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

fa
ce

sim fe
rre

t

flu
ida

nim
at

e

fre
qm

ine

ra
ytr

ac
e

str
ea

m
clu

ste
r

sw
ap

tio
ns vip

s
x2

64

P
o

w
er

Static, Max Resources Static, Min Resources SEEC, 1/2 Max SEEC, 3/4 Max

(b) Power

Figure 11: PARSEC benchmarks under SEEC.

core benchmarks, so SEEC’s ability to control these benchmarks
shows the framework is applicable to a broad range of applica-
tions. Adding Heartbeats to the PARSEC benchmarks is straight-
forward requiring each benchmark be augmented with the same
five lines of code described in detail in Section 2. Second, this
study demonstrates the predictability of SEEC’s control system as
eleven of the thirteen benchmarks are within 85% of their requested
performance, indicating that the SEEC framework can control ap-
plications with predictable results. Finally, this study shows how
the SEEC framework can be used to perform constrained optimiza-
tion, allocating the minimal amount of resources required to meet
the desired performance goal. For example, consider swaptions,
which consumes 207 watts when allocated all resources in the ma-
chine. If the user only needs 75% of the maximum performance
for swaptions, the self-aware resource manager can save 36 watts
of total system power (17%). Alternatively, if only 50% of max-
imum performance is required, then the SEEC resource manager
can save 50 Watts (24% of total system power). We note that each
benchmark has a separate set of power/performance tradeoffs and
the SEEC framework is capable of navigating these tradeoffs for
each individual benchmark. The SEEC controller is able to make
these tradeoffs without incorporating any prior knowledge of the
benchmark itself; it only uses Heartbeat data observed during the
application’s execution.

The two benchmarks from this study which are more difficult to
control are freqmine and vips, which do not provide sound feed-
back. For example, the bulk of processing in freqmine is done

through recursive function calls. While it is easy to add heartbeats
to this application, the time spent in each instance of the function
call depends on the data processed at the leaves of the recursion.
For freqmine we see performance vary by more than 10× from
one heartbeat call to another. The vips benchmark is structured
around a thread-pool and we insert a heartbeat each time a thread
completes an assigned function; however, the time spent in these
functions varies tremendously from one call to another. For these
applications, Heartbeats can serve as a signal that the application
is still alive, but the lack of sound feedback makes the control un-
predictable. It is possible that an application expert could place the
heartbeat calls into freqmine and vips in such a way as to provide
sound feedback.

5.4 Maximizing Power/Performance Tradeoffs
This section presents an in-depth study of optimizing resource

consumption while maintaining a performance goal. Specifically,
we use the SEEC power manager (discussed in Section 4.4) to
optimize performance per Watt for a video encoder. Furthermore,
we want to achieve this optimization over a large range of inputs,
each with differing compute requirements. This study uses fifteen
different 1080p videos obtained from xiph.org, plus the native input
from PARSEC.

To begin, x264 is modified to emit a heartbeat every frame, and it
requests a heart rate of 30 frames per second. Additional modifica-
tions are made so that when the encoder detects a heart rate of less
than 25 frames per second it “drops” the current frame, skipping
its encoding and moving to the next frame. To evaluate the perfor-
mance of the encoder, we measure the number of dropped frames
for each input and record the fraction of frames which are encoded
(not dropped). This performance metric rewards the system for
reaching the target performance, but provides no extra benefit for
exceeding the goal, as appropriate for systems with real-time goals
like video encoding.

Given this performance metric, we run x264 without a resource
manager, statically assigning it a set number of cores and a set
clock-speed. We do this for all 56 possible combinations of cores
and clock-speeds in the system. We then measure the power and
performance for x264 on each of the 16 inputs and compute the
performance per Watt, recording the best and worst static assign-
ment of resources for each of the inputs. Having done so, we run
x264 for each of the inputs using the SEEC power manager and
again compute performance per Watt. This allows us to compare
the performance per Watt under SEEC to the best and worse static
assignments for each input. We note that no single static assign-
ment is the best for all inputs. For example, with blue_sky.yuv the
best static assignment of resources is 3 cores at maximum clock
speed, while for ducks_take_off_1080p.yuv, the best static assign-
ment is 6 cores at maximum clock speed. The fact that there is no
single static assignment that is best for all inputs shows the diffi-
culty of this optimization problem. Furthermore, this is a common
problem for video encoders as they will routinely be confronted
with previously unseen inputs.

Figure 12 shows the results of this study. The x-axis shows each
input (with the average over all inputs shown at the end). The y-axis
shows the performance per Watt for each input normalized to the
best static assignment. For each input, the first bar represents the
worst static assignment, the middle bar represents the best static
assignment, and the last bar represents the performance per Watt
for x264 run with the SEEC power manager.

As shown in Figure 12 the SEEC-based power manager is able
to adapt its behavior to individual inputs, delivering performance
per Watt that is close to or better than the best static assignment

9

0

0.2

0.4

0.6

0.8

1

1.2

blu
e_

sk
y.y

uv

cr
ow

d_
ru

n_
10

80
p.

yu
v

din
ne

r.y
uv

du
ck

s_
ta

ke
_o

ff_
10

80
p.

yu
v

fa
cto

ry
.yu

v

in_
to

_t
re

e_
10

80
p.

yu
v

life
.yu

v

na
tiv

e.
yu

v

old
_t

ow
n_

cr
os

s_
10

80
p.

yu
v

pa
rk

_jo
y_

10
80

p.
yu

v

pe
de

str
ian

_a
re

a.
yu

v

riv
er

be
d.

yu
v

ru
sh

_h
ou

r.y
uv

sta
tio

n2
.yu

v

su
nf

low
er

.yu
v

tra
cto

r.y
uv

av
er

ag
e

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

/W
at

t
static worst static best SEEC

0

0.2

0.4

0.6

0.8

1

1.2

blu
e_

sk
y.y

uv

cr
ow

d_
ru

n_
10

80
p.

yu
v

din
ne

r.y
uv

du
ck

s_
ta

ke
_o

ff_
10

80
p.

yu
v

fa
cto

ry
.yu

v

in_
to

_t
re

e_
10

80
p.

yu
v

life
.yu

v

na
tiv

e.
yu

v

old
_t

ow
n_

cr
os

s_
10

80
p.

yu
v

pa
rk

_jo
y_

10
80

p.
yu

v

pe
de

str
ian

_a
re

a.
yu

v

riv
er

be
d.

yu
v

ru
sh

_h
ou

r.y
uv

sta
tio

n2
.yu

v

su
nf

low
er

.yu
v

tra
cto

r.y
uv

av
er

ag
e

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

/W
at

t
static worst static best SEEC

0

0.2

0.4

0.6

0.8

1

1.2

blu
e_

sk
y.y

uv

cr
ow

d_
ru

n_
10

80
p.

yu
v

din
ne

r.y
uv

du
ck

s_
ta

ke
_o

ff_
10

80
p.

yu
v

fa
cto

ry
.yu

v

in_
to

_t
re

e_
10

80
p.

yu
v

life
.yu

v

na
tiv

e.
yu

v

old
_t

ow
n_

cr
os

s_
10

80
p.

yu
v

pa
rk

_jo
y_

10
80

p.
yu

v

pe
de

str
ian

_a
re

a.
yu

v

riv
er

be
d.

yu
v

ru
sh

_h
ou

r.y
uv

sta
tio

n2
.yu

v

su
nf

low
er

.yu
v

tra
cto

r.y
uv

av
er

ag
e

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

/W
at

t
static worst static best SEEC

Figure 12: x264 performance per Watt.

of resources. The SEEC power manager is always within at least
95% of the best static assignment; however, for 10 of the 16 inputs,
it outperforms the best static assignment by a small margin. In
fact, on average the SEEC power manager provides slightly better
performance per Watt than the best static assignment.

We note that in practice it would be impossible to achieve the
best static assignment for an input without an oracle that can pro-
vide the correct assignment for unseen videos. In contrast, the
SEEC power manager is able to achieve performance similar to the
best possible without requiring an oracle, because it adapts behav-
ior based on feedback from the application. In practice, many real-
time systems simply allocate resources for the worst case scenario.
Therefore, we expect SEEC to provide an even greater advantage
in practice because worst case execution will result in wasted re-
sources for most of the inputs.

SEEC out-performs static allocations by adapting its behavior to
inputs whose needs vary during execution. For example, the mid-
dle section of the PARSEC native input is easier to encode than
the beginning and the end. During this section, the SEEC control
system detects an increase in performance and is able to reduce
the amount of resources assigned to the encoder while still meeting
its goal. This behavior is illustrated in Figure 13, which shows
the power consumption of x264 encoding the PARSEC native in-
put running with both its best static allocation and SEEC. Such an
adaptation allows the SEEC to save power over even the best static
assignment which lacks flexibility to adjust.

Po
w

er
 (W

)

100

110

120

130

140

150

160

170

Time (s)
0 2 4 6 8 10 12 14 16 18 20

SEEC
Static best

Figure 13: Power consumption of native input.

These results show several advantages of self-aware computing
using the SEEC framework. First, they demonstrate how program-
mer burden can be reduced. With SEEC, the video programmer
only has to use the Heartbeat interface and then SEEC-based sys-
tems can optimize the behavior of the program. With static as-

signments, the video programmer is responsible for the laborious
task of profiling and understanding resource management within
the system. Second, this study shows the optimality of the SEEC
framework. Even though no single static assignment is best for all
videos, the SEEC manager is able to adapt its behavior to find an
assignment that is close to or better than the best static assignment
for each input. Finally, this experiment shows the adaptability of
the SEEC framework as videos with multiple regions with differ-
ing needs can be allocated the optimal amount of resources for each
region. The next section explores this adaptability further.

5.5 Adapting to Hardware Changes
This section illustrates how the SEEC framework can adapt be-

havior to maintain application performance in fluctuating hardware
environments. Toward this end, we present two scenarios: the first
shows the core allocator reacting to a change in processor speed
and the second shows the adaptive x264 reacting to a change in the
number of available cores.

We begin with the PARSEC swaptions benchmark, running it on
a single core at the maximum clock speed (2.4 GHz) and swaptions
requests a performance that is achievable at this speed. Approx-
imately one-quarter of the way through the execution of the pro-
gram the clock speed is dropped to its lowest setting (1.6 GHz).
This might occur if the system detects that the chip is too hot and
reduces clock-speed to reduce power. We measure the performance
of swaptions both when run by itself and with the core allocator
described in Section 4. We note that meeting this performance
represents a particular challenge for the core allocator as, ideally, it
would allocate 1.5 cores to the application to make up for the loss
in clock frequency. As such an allocation is not possible, SEEC
will closely manage the number of cores in order to meet, but not
exceed, the desired performance.

In the second scenario we explore the adaptive video encoder de-
scribed in Section 4.5. We begin with the encoder running on eight
cores with the default PARSEC command line and a performance
goal that requires all eight cores. Approximately one-quarter of the
way through execution we use the Linux taskset utility to force
the encoder onto five cores. This simulates a loss of compute re-
sources that may occur due to core failure or an unforeseen spike
in system load. We measure the reaction of both the original x264
code and the SEEC version.

The results of these two experiments are shown in Figures 14(a)
and 14(b). These charts show time on the x-axis (measured in heart-
beats) and normalized performance on the y-axis. The behavior of
the applications without SEEC (labeled “default response”) is rep-
resented with a dotted line, while the behavior of the SEEC frame-
work (labeled “SEEC response”) is represented with a solid line.

In the frequency scaling scenario, Figure 14(a) shows that, the
default response without adaptation does nothing and swaptions’
performance falls to two-thirds of its original value. In contrast, the
core allocator uses the SEEC control system to detect the drop in
swaptions’ heart rate and adjusts the required speedup and number
of cores to keep performance at the desired, original value.

In the core loss scenario, Figure 14(b) shows that the default
response without adaptation does nothing and x264’s performance
falls. In contrast, the SEEC control system which detects the drop
in performance and adjusts x264’s algorithms to keep performance
at the desired, original value.

The SEEC framework adapts without directly detecting the fre-
quency change or the change in number of cores. Instead, these
systems use their direct observations of application performance re-
flected in the heart rate. The SEEC control system uses this change
to drive a decision in the amount of speedup to apply to an applica-

10

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

Time (Heart Beat)
50 100 150 200 250 300 350 400 450 500

SEEC response
Default response

(a) swaptions with clock frequency changes

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

Time (Heart Beat)
50 100 150 200 250 300 350 400 450 500

SEEC response
Default response

(b) x264 with simulated core failures

Figure 14: Adapting to hardware changes with SEEC.

tion. The control system then takes an action to deliver the desired
speedup returning performance to the desired level.

The generality of the SEEC approach means that the system is
not limited by an ability to detect specific conditions or events but
can respond to arbitrary environmental fluctuations. Any event that
alters performance will be detected by the SEEC framework and be
fed as input to the control-based decision making process, allowing
the system to adapt its behavior. Thus, the SEEC framework can aid
fault tolerance and detection by providing a general way to detect
changes in application performance and a general way to decide on
what actions to take in the face of such performance fluctuations.

6. RELATED WORK
A self-aware, adaptive, or autonomic computing system is able

to alter its behavior in some beneficial way without the need for
human intervention [32, 2, 17]. Such a system can observe its be-
havior, make decisions, and take actions to meet desired goals at
runtime. This ability to adapt promises to reduce the burden mod-
ern computing systems place on application developers; however it
also rises new challenges for the creation and the usage of such sys-
tems [12]. Some example systems that adapt behavior include mul-
ticore chips that manage resource allocation [9], provide resources
for critical sections [35], optimize for power [23], and assemble
heterogeneous cores from many small cores[19]. In addition, lan-
guages and compilers have been developed to support adapting ap-
plication implementation for performance [39, 4] or power [6, 33].
Operating systems are also a natural fit for self-aware computa-
tion [11, 22, 29, 21]. Self-aware techniques are also prominent
in industry; companies such as IBM [17] (e.g., IBM Touchpoint
Simulator, the K42 Operating System [22]), Oracle (e.g., Oracle
Automatic Workload Repository [30]), and Intel (e.g., Intel RAS
Technologies for Enterprise [18]).

While self-aware computing has been used to build a variety of
systems, we find that there are several common trends in implemen-
tations. First, while these systems are designed to help applications

meet their goals (e.g., the PEM [5] technology in the IBM K42 Op-
erating System [22, 7]), many rely on inferring application behav-
ior from low-level metrics like performance counters (e.g. Perfor-
mance API (PAPI) project [38]) or high-level metrics like system
throughput (e.g. the adaptive memory controller in [20]). An ex-
ception is Green which uses application goals for the quality of the
answer, but not application speed [6]. In addition, many existing
adaptive systems have the adaptation mechanism tightly coupled
with the specific system being built. For example, the multicore
processor described in [9] can adaptively assign resources to ap-
plications and does so under the control of a neural network and this
decision engine is tightly coupled with the specific architecture. Fi-
nally, many adaptive systems rely on either machine learning (e.g.
[20, 9, 13]) or system specific decision engines (e.g. [35, 33]).

The SEEC framework presented here differs from existing self-
aware approaches in several respects. SEEC is designed as a gen-
eral framework that supports applications and system software work-
ing together in a self-aware manner. In the SEEC model applica-
tions directly specify their goals, while system software specifies a
set of possible actions. This approach is general in that it uses Ap-
plication Heartbeats [16] allowing any application to specify goals,
and it uses a simple framework wherein systems specify actions.
In addition, SEEC uses a generic control system as its decision en-
gine, while this control system is easily extended to new systems
it is also capable of provided predictable behavior and guaranteed
convergence to an application specified goal.

As self-aware systems mature, they will likely use a combination
of these techniques. For example, application performance must be
inferred when applications provide no feedback or when the feed-
back is too noisy to be useful; however, when direct feedback and
goals are available they open up a new range of possibilities. In
addition future systems will likely benefit from a combination of
machine learning and control theoretic techniques. When applica-
tions require predictable performance and the system response can
be adequately modeled, control theory provides known responses
to stimuli. For systems where the interaction is too complicated to
accurately model machine learning is an alternative.

Hellerstein et al [15] and Karamanolis et al [21] have both sug-
gested that control systems can be used as “off-the-shelf” solutions
for managing the complexity of modern systems, especially multi-
tiered web-applications. While these authors suggest that existing
control solutions can be used, the development of such systems still
requires identification of a feedback mechanism and translating an
existing control model into software. This leads to solutions that
address a specific computing problem using control theory, but do
not generalize [37, 36, 25]. For example, in [14] the specific prob-
lem of building a controller for a .NET thread pool is addressed.

One approach to generalizing control is ControlWare, middle-
ware designed to create a generic control interface for managing
Quality of Service in Internet applications [42]. Both ControlWare
and SEEC turn a user desired service level into a set point for a con-
trol system; however, in the case of ControlWare, the system uses a
difference equation model based on performance traces rather than
direct feedback from sensors. In our proposal, the system is com-
pletely modeled and the translation into different actuator actions is
characterized based on the feedback provide by Application Heart-
beats.

In summary, the SEEC control system differs from existing ap-
proaches to using control in computing because SEEC does not
solve a specific problem, but provides a general control strategy
using a widely applicable feedback mechanism. SEEC’s control
strategy provides a common decision making infrastructure which
is easily customized when applications specify goals and system

11

software specifies actions.

7. CONCLUSION
This paper has presented the SEEC framework for self-aware

computing. SEEC enables a new computational model where ap-
plications specify their goals, system software specifies possible
actions, and the framework observes the system using a decision
engine to select and execute actions as necessary to reach the de-
sired goals. SEEC has three distinguishing features: it addresses
the needs of both applications and system software in a unified
framework, it directly incorporates application goals, and it uses a
general control-theoretic decision engine that is easily customized
for specific needs. We have implemented several self-aware sys-
tems with SEEC and found that it predictably achieves application-
specified goals. Furthermore, the SEEC framework is easily ex-
tended to a wide range of systems operating on different mecha-
nisms. Finally, by constantly observing and re-evaluating its deci-
sions, SEEC is able to adapt its behavior. This flexibility to change
decisions and take new actions allows SEEC to minimize power
consumption while maintaining performance as well as respond to
changes in the available compute resources. My predictably man-
aging resource usage and response to unforeseen events, we believe
the SEEC framework has the potential to reduce some of the appli-
cation programmer’s burden.

8. REFERENCES
[1] Wattsup .net meter. http://www.wattsupmeters.com/.
[2] Organic Computing Initiative OCI.
http://www.sra.uni-hannover.de/orgcomp/, 2010.

[3] ANA, European Union Funded Project. Autonomic network
architecture. http://www.ana-project.org, 2009.

[4] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao,
A. Edelman, and S. Amarasinghe. PetaBricks: A language
and compiler for algorithmic choice. In Conf. on
Programming Language Design and Implementation, Jun
2009.

[5] R. Azimi, C. Cascaval, E. Duesterwald, M. Hauswirth,
K. Sudeep, P. F. Sweeney, and R. W. Wisniewski.
Performance and environment monitoring for whole-system
characterization and optimization. pages 15–24, 2004.

[6] W. Baek and T. Chilimbi. Green: A framework for
supporting energy-conscious programming using controlled
approximation. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, June
2010.

[7] A. Baumann, D. D. Silva, O. Krieger, and R. W. Wisniewski.
Improving operating system availability with dynamic
update. In Proc. of the 1st Workshop on Operating System
and Architectural Support for the On-Demand IT
Infrastructure, 2004.

[8] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC
benchmark suite: Characterization and architectural
implications. In PACT-2008: Proceedings of the 17th Inter.
Conf. on Parallel Architectures and Compilation Techniques,
Oct 2008.

[9] R. Bitirgen, E. Ipek, and J. F. Martinez. Coordinated
management of multiple interacting resources in chip
multiprocessors: A machine learning approach. In MICRO
41: Proceedings of the 41st annual IEEE/ACM International
Symposium on Microarchitecture, pages 318–329,
Washington, DC, USA, 2008. IEEE Computer Society.

[10] J. Buisson, F. André, and J. L. Pazat. Dynamic adaptation for
grid computing. Lecture Notes in Computer Science.
Advances in Grid Computing - EGC, pages 538–547, 2005.

[11] C. Cascaval, E. Duesterwald, P. F. Sweeney, and R. W.
Wisniewski. Performance and environment monitoring for
continuous program optimization. IBM J. Res. Dev.,
50(2/3):239–248, 2006.

[12] P. Dini, W. Gentzsch, M. Potts, A. Clemm, M. Yousif, and
A. Polze. Internet, GRID, self-adaptability and beyond: Are
we ready? Aug 2004.

[13] J. Eastep, D. Wingate, M. D. Santambrogio, and A. Agarwal.
Smartlocks: lock acquisition scheduling for self-aware
synchronization. In ICAC ’10: Proceeding of the 7th
international conference on Autonomic computing, pages
215–224, New York, NY, USA, 2010. ACM.

[14] J. Hellerstein, V. Morrison, and E. Eilebrecht. Applying
control theory in the real world: Experience with building a
controller for the .net thread pool. Sigmetrics Performance
Evaluation Review, pages 38–42, 2009.

[15] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury.
Feedback Control of Computing Systems. John Wiley &
Sons, 2004.

[16] H. Hoffmann, J. Eastep, M. D. Santambrogio, J. E. Miller,
and A. Agarwal. Application heartbeats: a generic interface
for specifying program performance and goals in
autonomous computing environments. In ICAC ’10:
Proceeding of the 7th international conference on Autonomic
computing, pages 79–88, New York, NY, USA, 2010. ACM.

[17] IBM Inc. IBM autonomic computing website.
http://www.research.ibm.com/autonomic/, 2009.

[18] Intel Inc. Reliability, availability, and serviceability for the
always-on enterprise.
www.intel.com/assets/pdf/whitepaper/ras.pdf,
2005.

[19] E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez. Core
fusion: accommodating software diversity in chip
multiprocessors. SIGARCH Comput. Archit. News,
35(2):186–197, 2007.

[20] E. Ipek, O. Mutlu, J. F. MartŠnez, and R. Caruana.
Self-optimizing memory controllers: A reinforcement
learning approach. In ISCA ’08: Proc. of the 35th Inter.
Symp. on Comp. Arch., 2008.

[21] C. Karamanolis, M. Karlsson, and X. Zhu. Designing
controllable computer systems. In Proceedings of the 10th
conference on Hot Topics in Operating Systems, pages 9–15,
Berkeley, CA, USA, 2005. USENIX Association.

[22] O. Krieger, M. Auslander, B. Rosenburg, R. W. J. W.,
Xenidis, D. D. Silva, M. Ostrowski, J. Appavoo, M. Butrico,
M. Mergen, A. Waterland, and V. Uhlig. K42: Building a
complete operating system. In EuroSys ’06: Proc. of the 1st
ACM SIGOPS/EuroSys Euro. Conf. on Computer Systems,
2006.

[23] R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan, and
D. Tullsen. Processor power reduction via single-isa
heterogeneous multi-core architectures. Computer
Architecture Letters, 2(1):2–2, Jan-Dec 2003.

[24] W. Levine. The control handbook. CRC Press, 2005.
[25] C. Lu, Y. Lu, T. Abdelzaher, J. Stankovic, and S. Son.

Feedback control architecture and design methodology for
service delay guarantees in web servers. IEEE Transactions
on Parallel and Distributed Systems, 17(9):1014–1027,
September 2006.

12

[26] M. Maggio, H. Hoffmann, M. D. Santambrogio, A. Agarwal,
and A. Leva. Controlling software applications via resource
allocation within the heartbeats framework. In Proceeding of
the 49th international conference on decision and control,
2010.

[27] M. M. Masters. Exploring usability in mobile autonomic
networks. In MobileHCI ’08: Proceedings of the 10th
international conference on Human computer interaction
with mobile devices and services, pages 549–550, New York,
NY, USA, 2008. ACM.

[28] J. D. McCalpin. Memory bandwidth and machine balance in
current high performance computers. IEEE Computer
Society Technical Committee on Computer Architecture
(TCCA) Newsletter, pages 19–25, Dec. 1995.

[29] S. Oberthür, C. Böke, and B. Griese. Dynamic online
reconfiguration for customizable and self-optimizing
operating systems. In EMSOFT ’05: Proceedings of the 5th
ACM international conference on Embedded software, pages
335–338, New York, NY, USA, 2005. ACM.

[30] Oracle Corp. Automatic Workload Repository (AWR) in
Oracle Database 10g.
http://www.oracle-base.com/articles/10g/
AutomaticWorkloadRepository10g.php.

[31] P. Reinecke and K. Wolter. Adaptivity metric and
performance for restart strategies in web services reliable
messaging. In WOSP ’08: Proceedings of the 7th
International Workshop on Software and Performance, pages
201–212. ACM, 2008.

[32] M. Salehie and L. Tahvildari. Self-adaptive software:
Landscape and research challenges. ACM Trans. Auton.
Adapt. Syst., 4(2):1–42, 2009.

[33] J. Sorber, A. Kostadinov, M. Garber, M. Brennan, M. D.
Corner, and E. D. Berger. Eon: a language and runtime
system for perpetual systems. In SenSys, pages 161–174,
2007.

[34] J. Strassner, S.-S. Kim, and J. W.-K. Hong. The design of an
autonomic communication element to manage future internet
services. In C. S. Hong, T. Tonouchi, Y. Ma, and C.-S. Chao,
editors, APNOMS, volume 5787 of Lecture Notes in
Computer Science, pages 122–132. Springer, 2009.

[35] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt.
Accelerating critical section execution with asymmetric
multi-core architectures. In ASPLOS, pages 253–264, 2009.

[36] Q. Sun, G. Dai, and W. Pan. LPV model and its application in
web server performance control. In Proceedings of the 2008
International Conference on Computer Science and Software
Engineering, volume 3, pages 486–489, Washington, DC,
USA, December 2008. IEEE Computer Society.

[37] M. Tanelli, D. Ardagna, and M. Lovera. LPV model
identification for power management of web service systems.
In Proceedings of the 2008 IEEE Multi-conference on
Systems and Control, pages 1171–1176, Boston, MA, 2008.
IEEE Control Systems Society.

[38] P. Team. Online document,
http://icl.cs.utk.edu/papi/.

[39] N. Thomas, G. Tanase, O. Tkachyshyn, J. Perdue, N. M.
Amato, and L. Rauchwerger. A framework for adaptive
algorithm selection in STAPL. In PPoPP ’05: Proceedings
of the 10th ACM SIGPLAN symposium on Principles and
Practice of Parallel Programming, pages 277–288, New
York, NY, USA, 2005. ACM.

[40] S. S. Vadhiyar and J. J. Dongarra. Self adaptivity in grid

computing. Concurr. Comput. : Pract. Exper.,
17(2-4):235–257, 2005.

[41] x264. Online document,
http://www.videolan.org/x264.html.

[42] R. Zhang, C. Lu, T. Abdelzaher, and J. Stankovic.
Controlware: A middleware architecture for feedback control
of software performance. In Proceedings of the 22nd
International conference on Distributed Computing Systems.
IEEE computer society, 2002.

13

