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1 Support Vector Machines, ReproducingKernel Hilbert Spaces and the RandomizedGACV
Grace WahbaDepartment of Statistics, University of Wisconsin-Madisonwahba@stat.wisc.edu http://www.stat.wisc.edu/~wahbaJuly 1, 1998 Revised version, pls destroy earlier versions.cG. Wahba 1998This chapter is an expanded version of a talk presented in the NIPS 97 Workshopon Support Vector Machines. It consists of three parts: (1) A brief review of someold but relevant results on constrained optimization in Reproducing Kernel HilbertSpaces (RKHS), and a review of the relationship between zero-mean Gaussianprocesses and RKHS. Application of tensor sums and products of RKHS includingsmoothing spline ANOVA spaces in the context of SVM's is also described. (2)A discussion of the relationship between penalized likelihood methods in RKHSfor Bernoulli data when the goal is risk factor estimation, and SVM methodsin RKHS when the goal is classi�cation. When the goal is classi�cation it isnoted that replacing the likelihood functional of the logit (log odds ratio) with anappropriate SVM functional is a natural method for concentrating computationale�ort on estimating the logit near the classi�cation boundary and ignoring datafar away. Remarks concerning the potential of SVM's for variable selection asan e�cient preprocessor for risk factor estimation are made. (3) A discussionof how the the GACV (Generalized Approximate Cross Validation) for choosingsmoothing parameters proposed in Xiang and Wahba (1996, 1997) may be adaptedand implemented in the context of certain convex SVM's.Introduction Several old results in Reproducing Kernel Hilbert Spaces (RKHS) and Gaussianprocesses are proving to be very useful in the application of support vector machine
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2 Support Vector Machines, Reproducing Kernel Hilbert Spaces and the Randomized GACV(SVM) methods in classi�cation. In Section 1.1 of this paper we very briey reviewsome of these results. RKHS can be chosen tailored to the problem at hand in manyways, and we review a few of them, including radial basis function and smoothingspline ANOVA spaces.Girosi (1997), Smola and Sch�olkopf (1997), Sch�olkopf et al (1997) and others havenoted the relationship between SVM's and penalty methods as used in the statisticaltheory of nonparametric regression. In Section 1.2 we elaborate on this, and showhow replacing the likelihood functional of the logit (log odds ratio) in penalizedlikelihood methods for Bernoulli [yes-no] data, with certain other functionals ofthe logit (to be called SVM functionals) results in several of the SVM's that are ofmodern research interest. The SVM functionals we consider more closely resemble a"goodness-of-�t" measured by classi�cation error than a "goodness-of-�t" measuredby the comparative Kullback-Liebler distance, which is frequently associated withlikelihood functionals. This observation is not new or profound, but it is hopedthat the discussion here will help to bridge the conceptual gap between classicalnonparametric regression via penalized likelihood methods, and SVM's in RKHS.Furthermore, since SVM's can be expected to provide more compact representationsof the desired classi�cation boundaries than boundaries based on estimating thelogit by penalized likelihood methods, they have potential as a prescreening ormodel selection tool in sifting through many variables or regions of attribute spaceto �nd inuential quantities, even when the ultimate goal is not classi�cation, butto understand how the logit varies as the important variables change throughouttheir range. This is potentially applicable to the variable/model selection problemin demographic medical risk factor studies as described, for example in Wahba,Wang, Gu, Klein and Klein (1995).When using SVM functionals to produce classi�cation boundaries, typically atradeo� must be made between the size of the SVM functional and the `smoothness'or complexity of the logit function. This tradeo� is in the �rst instance embodiedin smoothing parameters. In Section 1.3 we discuss how the GACV for choosingsmoothing parameters proposed in Xiang and Wahba (1996, 1997) may be adaptedto some support vector machines.1.1 Some facts about RKHS1.1.1 The Moore-Aronszajn TheoremLet T be a set, for example, T = f1; 2; � � � ; Ng; T = [0; 1], or T = Ed, (Eu-clidean d-space), or T = Sd, (the d-dimensional sphere). A real symmetric functionK(s; t); s; t 2 T is said to be positive de�nite on T � T if for every n = 1; 2; � � �,and every set of real numbers fa1; a2; � � � ; ang and t1; t2; � � � tn; ti 2 T , we havePni;j=1 aiajK(ti; tj) � 0. We have the famousMoore-Aronszajn Theorem: (Aronszajn 1950)
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1.1 Some facts about RKHS 3To every positive definite function K on T �T there corresponds aunique RKHS HK of real valued functions on T and vice versa.The proof is trivial. We just suggest how to construct HK given K. Let Kt(s)be the function of s obtained by �xing t and letting Kt(s) := K(s; t). HK consistsof all �nite linear combinations of the form PL̀=1 a`Kt` with t` 2 T and limitsof such functions as the t` become dense in T , in the norm induced by the innerproduct< Ks;Kt >HK= K(s; t): (1.1)See Wahba (1990) (W) for further details on most of the material in this Section.The positive de�niteness of K guarantees that (1.1) de�nes a bona �de innerproduct. (Furthermore strong limits here imply pointwise limits 1 .) The functionKt(�) is the so-called representer of evaluation at t in HK - this means: For anyf 2 HK and �xed t< f;Kt >HK= f(t); (1.2)where < �; � >HK is the inner product in HK . If K(s; t) has a representation of theformK(s; t) =X� ��	�(s)	�(t) (1.3)with RT 	�(s)	�(s)d�(s) = 1 if � = �, and 0 otherwise, where � is some measure onT , then < f; g >HK=P� f�g��� where f� = R 	�(s)f(s)d�(s) and similarly for g� .In particular < 	�;	� >HK= 1�� if � = � and 0 otherwise. Examples of � includeLebesgue measure on [0,1] and counting measure on f1; 2; � � � ; Ng. K(�; �) is knownas the reproducing kernel (RK) for HK , due to the `reproducing property' (1.1).1.1.2 The Representer TheoremLet T be an index set, HK be an RKHS of real valued functions on T with RKK(�; �). Let fyi; ti; i = 1; 2; � � �ng be given (the "training set"), with ti (the "at-tribute vector") 2 T : yi is the "response" (usually a real number, but may bemore general, see Wahba (1992)). Let f��gM�=1 be M functions on T 2 with theproperty that the n �M matrix T with i�th entry ��(ti) is of rank M . ("Leastsquares regression on span f��g is unique.") Let gi(yi; f) be a functional of f whichdepends on f only through f(ti) := fi, that is, gi(yi; f) := gi(yi; fi). Then we haveThe Representer Theorem: (Kimeldorf and Wahba 1971 (KW))1. i. e. kfn � fk ! 0) jfn(t)� f(t)j, every t 2 T .2. Su�cient conditions on the ftig for existence are being assumed.
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4 Support Vector Machines, Reproducing Kernel Hilbert Spaces and the Randomized GACVAny solution to the problem: find f 2 span f��g + h with h 2 HK tominimize1n nXi=1 gi(yi; fi) + �khk2HK (1.4)has a representation of the formf(�) = MX�=1 d���(�) + nXi=1 ciK(ti; �): (1.5)1.1.3 RemarksRemark 1. This theorem is explicitly stated in KW only for gi(yi; fi) = (yi�fi)2and (letting yi = (yi1; yi2)) for gi(yi; fi) = 0; yi1 � fi � yi2;= 1 otherwise. How-ever, the extension to general gi is obvious from the argument there (and hasappeared in various places, see, for example Cox and O'Sullivan (1990)). One ofthe most popular support vector machines corresponds to the caseM = 1, �1(t) � 1and gi(yi; fi) = V�(yi � fi), where V�, Vapnik's �-insensitive loss function, is givenby V�(u) = maxf0; juj � �g. f of the form (1.5) is substituted back into (1.4), re-sulting in an optimization problem in the unknown d1 and c = (c1; � � � ; cn)0. Detailsconcerning how this optimization problem is converted to the familiar SVM QPmay be found, e. g. in Girosi (1997), see also Vapnik (1995).Remark 2. Probably the best known example of this problem is the caseT = [0; 1];M = 2; khk2HK = R 10 (h00(u))2du; �1(t) = 1; �2(t) = t. Then f is acubic spline with knots at the data points, see KW, Wahba (1990) (W) for details.Reproducing kernels for khk2HK = R 10 [(Lmf)(u)]2du where Lm is a di�erential op-erator with a null space spanned by a Tchebychev system are found in KW andinvolve Green's functions for Lm � Lm. Typically �1 is a constant function andthe �� 's are linear or low degree polynomials. Under certain circumstances a large� in (1.4) will force the minimizer into spanf��g. In KW and W this theorem isstated for f 2 H ~K where HK is a subspace of H ~K of codimension M orthogonal tospanf��g.Remark 3. Let 0 denote transpose. If we make some assumptions a simple proofexists that the coe�cient vector c of any minimizer satis�es T 0c = 0. First, notethat0BB@ f1...fn 1CCA = Kc+Td, where d = (d1; � � � dM )0 and (with some abuse of notation)we are letting K be the n � n matrix with i; jth entry K(ti; tj) (where it will beclear from the context that we mean K is an n � n matrix rather than an RK).Similarly, note that kPni=1 ciKtik2HK = c0Kc. The vectors c and d are found as the
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1.1 Some facts about RKHS 5minimizers of1n nXi=1 gi(yi; fi) + �c0Kc: (1.6)Assuming that we can di�erentiate gi with respect to fi, di�erentiating (1.6)withrespect to c and d gives1nK @g@f = �2�Kc (1.7)1nT 0 @g@f = 0 (1.8)where @g@f = (@g1@f1 ; � � � ; @gn@fn )0, and, assuming K is of full rank, and multiplying (1.7)by K�1 and substituting the result into (1.8) gives the result.Remark 4. If the matrix K is not of full rank, as would happen if, for example,K(�; �) is of the formK(s; t) = NX�=1	�(s)	�(t) (1.9)with N < n then c is not uniquely determined by the setup in (1.7), (1.8). HereHK contains at most N linearly independent functions. Letting X be the n � Nmatrix with i; � th entry 	�(ti) then K = XX 0, and if c is a minimizer of (1.6),then c + �, where � is orthogonal to the column span of X will also be a min-imizer. We may substitute c = X where  is an N vector into (1.6), then Kcbecomes X~ and c0Kc becomes ~0~, where ~ = X 0X. For uniqueness we also needthat if f(t) = PM�=1 d���(t), then argmindPni=1 gi(yi; fi) is unique. If the gi arestrictly convex functions of fi this will be true whenever T is of full column rank.However, the strict convexity will be violated in some of the cases we consider later.Remark 5. Characterization of isotropic RK's on Ed may be found in Skorkohodand Yadrenko (1973) and some examples along with their RKHS norms are givenin the slides for my NIPS 96 workshop talk available via my home page. Char-acterization of isotropic RK's on the sphere may be found in Schoenberg (1942)and some examples along with their RKHS norms may be found in Wahba (1981,1982b). K(s; t) of the form Ru2U G(t; u)G(s; u)du will always be positive de�nite ifthe integral exists.Remark 6. If R1(u1; v1); u1; v1 2 T (1) and R2(u2; v2); u2; v2 2 T (2) are pos-itive de�nite functions on T (1) 
 T (1) and T (2) 
 T (2) respectively, then boththe tensor product and the tensor sum of R1 and R2 are positive de�nite. Thatis, letting T = T (1) 
 T (2), s = (u1; u2) 2 T ; t = (v1; v2) 2 T , we have thatK(s; t) = R1(u1; v1)R2(u2; v2) and K(s; t) = R1(u1; v1) +R2(u2; v2) are both posi-tive de�nite on T 
 T .
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6 Support Vector Machines, Reproducing Kernel Hilbert Spaces and the Randomized GACVRemark 7. Re: Smoothing Spline ANOVA Spaces: Let H�K be an RKHS of func-tions on T (�), for � = 1; � � � ; d, and suppose H�K has an orthogonal decompositionH�K = [1(�)]�H(�)K (1.10)where [1(�)] is the one-dimensional space of constants on T (�), and let R�(s�; t�)be the RK for H(�)K . Examples may be found in Wahba, Wang, Gu, Klein and Klein(1995) (WWGKK) and Gu and Wahba (1993). A Smoothing Spline ANOVA spaceHK of functions on T = T (1) 
 � � � 
 T (d) may be constructed by de�ning HK asHK = dY�=1[[1(�)]�H(�)K ] (1.11)which then has the RKK(s; t) = dY�=1[1 +R�(s�; t�)] (1.12)= 1 + dX�=1R�(s�; t�) +X�<�R�(s�; t�)R�(s� ; t�) + ::+ dY�=1R�(s�; t�):(1.13)Ordinarily the series in (1.13) is truncated somewhere and the direct sum of thecorresponding subspaces in the corresponding expansion in (1.11) (which are or-thogonal in this construction) constitute the `model space'. Multiple smoothingparameters can be arranged by multiplying each of the individual RK's which re-main in (1.13) after truncation, by ��; ���; � � �, and so forth. See W and WWGKKfor details. The so-called main e�ects spaces, which involve only one t� at a timeare particularly popular, see Hastie and Tibshirani (1990).Remark 8. The Smoothing Spline ANOVA spaces can be built up includingconditionally positive de�nite functions (Micchelli 1986), leading to thin plate splinecomponents (Gu and Wahba 1993), we omit the details.1.1.4 Gaussian Processes, The Isometric Isomorphism TheoremThe relationship between conditional expectations on Gaussian processes and solu-tions to variational problems in RKHS has been known for a long time, see W, KW,Kimeldorf and Wahba (1970, 1971), Wahba (1978). This is not a coincidence. LetX(t); t 2 T be a zero mean Gaussian stochastic process with EX(s)X(t) = K(s; t).The Hilbert space XK spanned by this stochastic process can be de�ned as all �nitelinear combinations of all random variables of the form PL̀=1 a`X(t`) with t` 2 Tand limits of such functions in the norm induced by the inner productEX(s)X(t) = K(s; t): (1.14)Then we have
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1.2 From Soft Classi�cation to Hard Classi�cation to SVM's 7The Isometric Isomorphism Theorem (Parzen 1962, 1970)To every RKHS HK there corresponds a zero mean Gaussian stochasticprocess X(t); t 2 T with covariance K(s; t). There is an isometric isomorphism[one-one inner product preserving map] between XK, the Hilbert spacespanned by this stochastic process, and HK, whereby the random variableX(t) 2 XK corresponds to the representer Kt 2 HK.The proof is trivial, details may be found in W. We note that sample functions ofX(t); t 2 T are not in HK (with probability 1) if HK is in�nite dimensional. Onemay understand why this should be true by considering the case where K has arepresentation of the form (1.3). Then X has a Karhunen-Loeve expansion, namelyX(t) =X� ��	�(t) (1.15)where the �'s are independent, zero mean Gaussian random variables with variance�� , and a little algebra shows that EX(s)X(t) = K(s; t) and also that the expectedvalue of the RKHS norm if it exists, would beEkX(�)k2HK =X� E �2��� (1.16)but this will be 1 if HK is in�nite dimensional. This has consequences for how onemight choose smoothing and other parameters, see, for example Wahba (1985a).1.2 From Soft Classi�cation to Hard Classi�cation to SVM's1.2.1 Hard Classi�cationLet T be a set as before, one observes n instances, fyi; tig; i = 1; � � � ; n; yi 2f+1;�1g [the training set], where ti 2 T and yi = +1 if the ith instance is memberof class A and yi = �1 if it is in class B. Consider a random model for fy; tg:Probfy = +1jtg = p(t) (1.17)Probfy = �1jtg = 1� p(t) (1.18)Let f(t) = ln(p(t)=(1� p(t)) be the logit [also called the log odds ratio]. Assumingthat the cost of misclassi�cation is the same for both kinds of misclassi�cation, thenthe optimal strategy for generalization, [minimization of expected loss], if one knewf , would be to classify as A if f(t) > 0 and B if f(t) < 0. Thus, letting [f ]� = 1 iff > 0 and 0 otherwise, one really wants to know sign f , equivalently it is desiredto estimate [�f(t)]� from the training set fyi; tig; i = 1; � � � ; n. This particularformulation is convenient, because we note that if f̂ is used for classi�cation, thenthe number of misclassi�cations on the training set will just be Pni=1[�yif̂(ti)]�.
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8 Support Vector Machines, Reproducing Kernel Hilbert Spaces and the Randomized GACV1.2.2 Soft Classi�cationIf, on the other hand one's goal is not simply classi�cation, but to understandhow the relative risk [ef(t)] of A to B, varies with t, as is frequently the case indemographic and environmental studies, then one is interested in estimating theactual value of f for all t in a region of T , for which one is likely to have futureobservations. See, for example, WWGKK (1994, 1995). In this latter case one mightestimate f from the training set by the methods of penalized log likelihood, thatis, one �nds f in fspan ��g �HK to minimize1n nXi=1 L(yi; fi) + �khk2HK : (1.19)Here, fi := f(ti) and L(yi; fi) is the negative log likelihood function3. In this examplethe likelihood that yi = 1 is p(ti), and the likelihood that yi = �1 is (1 � p(ti)).Thus L(yi; fi) := l(yifi) where l(�) = ln(1 + e�� ). To see this, let pi := p(ti) andnote thatL(1; fi) = � ln( efi1+efi ) = � ln piL(�1; fi) = � ln( 11+efi ) = � ln(1� pi) (1.20)Thus, we may rewrite (1.19) as1n nXi=1 l(yifi) + �khk2HK (1.21)where l(�) = ln(1 + e�� ). l(�) is plotted in Figure 1.1 as ln(1+exp(-tau)).Note that l(�) is strictly convex. We know that h = Pni=1 ciKti ; khk2HK =c0Kc; f = (f1; � � � ; fn)0 = Kc + Td and, if K is of full rank, T 0c = 0, with themodi�cations noted if K is not of full rank. c and d are substituted into (1.21)and, if K is of full rank or the dimension of c is reduced appropriately, a strictlyconvex optimization problem with readily accessible gradient and Hessian results.A natural target for choosing � is then to minimize the comparative Kullback-Liebler distance CKL(�) := CKL(ftrue; f�) between ftrue and f�4. Here f� isthe minimizer of (1.21) and ftrue is the logit of the `true' distribution ptrue whichgenerated the data. CKL(�) in this case becomesEtruePni=1 l(yif�i), see Xiang andWahba (1996) for more details. Later we will turn to the randomized GACV methodfor estimating a computable proxy for CKL(�) (Xiang and Wahba 1996,1997, Linand Wahba, in preparation).3. In the statistics literature the usual log likelihood functional is formulated for y = 1 or0.4. Recall that the Kullback-Liebler distance is not really a distance.
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1.2 From Soft Classi�cation to Hard Classi�cation to SVM's 9
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Figure 1.1 Pseudo-distance functions of tau (�) mentioned in the text.1.2.3 Back to Hard Classi�cationSection 1.2.1 suggests that we choose f 2 fspan ��g+ h with h 2 HK to minimize1n nXi=1[�� yifi]� + �khk2HK ; (1.22)for some �xed � > 0, thereby penalizing the misclassi�cation rate rather than thelog likelihood. [�� ]� is plotted in Figure 1.1 as [-tau]* for comparison with l(�).Substituting c and d into (1.22) as before, one seeks to �nd the minimizers, whilechoosing �. It appears that a large � will force f into spanf��g, thus making fand (hence the boundaries of the di�erent classi�cation regions) less exible, whilea small � will allow the classi�cation boundaries to follow the training set moreclosely. However, if the attribute data is well separated by class, then the minimizerover d of Pni=1[� � yiPM�=1 d���(ti)]� may not be unique or bounded, so that itwill be necessary to further constrain the d� 's. Supposing �1(t) = 1, and letting�(t) =PM�=2 d���(t), in what follows we could replace the penalty �khk2HK by J�(f)where J�(f) = �0k�k20+�1khk2HK , where k�k20 is some appropriate positive de�nitequadratic form in d2; � � � ; dM , for example PM�=2 d2� . Alternatively, the f��g couldretain their special role by being absorbed into K. In this case, K(s; t) is replaced
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10 Support Vector Machines, Reproducing Kernel Hilbert Spaces and the Randomized GACVby �PM�=2 ��(s)��(t) + K(s; t). Increasing � forces more of the solution into thef��g.Unfortunately the use of [� � � ]� in (1.22) results in a nonconvex optimizationproblem, with its attendant pitfalls. However, Mangasarian (1994) has recentlyproposed numerical algorithms in the �1 = 1 case with t = (t1; � � � ; td) 2 Ed,�1(t) = 1; ��(t) = t�; � = 1; � � � ; d. Bradley, Mangasarian and Street (1997) recentlyconsidered problems where the rather nasty function [�� ]� is replaced with othermore tractable functions including the sigmoidal approximation 1=(1+ea� ) and thefunction [1 � ea� ]+, concave for � < 0. Here, [x]+ = x; x > 0;= 0 otherwise. Forcomparison, these two functions are also plotted in Figure 1.1 with a = 1. Bradleyet al considered examples with a large number of variables, where the goal was toscreen out some non-informative variables for deletion. They penalized the numberof variables included and used 10-fold cross validation on the misclassi�cation rateto choose a penalty parameter on the number of variables. See also Bennett andBlue (1997).1.2.4 Convex Compromises with SVM'sLet v(�) := v�+;��(�) be de�ned byv�+;��(�) = [�(� � �++��2 )]+ � < ��= (���+)22(�+���) �� � � � �+= 0 �+ � �: (1.23)For �xed �� < �+, v�+;��(�) is convex and possesses a continuous �rst derivative,and a non-negative second derivative everywhere except at �� and �+, where thesecond derivative could be de�ned by assigning it to be continuous from the left,say. v�+;��(�) is plotted in Figure 1.1 as v(e+,e-,tau), along with v0;0(�) := [�� ]+.v�+;�+(�) := [� � � ]+. The v's may be thought of as (in some sense) convexapproximations to [�� � ]�, which for �� < �+ possess a continuous �rst derivativeand non-negative second derivative which could be de�ned everywhere.1.3 The Randomized GACV for Choosing �So far our discussion has been a relatively straightforward description of bridgesbetween well known results in optimization in RKHS, Gaussian processes, penalizedlikelihood methods in soft classi�cation (more commonly known as risk factorestimation) and SVM methods. This section is more heuristic and in the natureof work in progress. The goal is to explore to what extent the randomized GACVmethod in Xiang and Wahba (1996,1997) for choosing � n the case g(�) =ln(1 + e�� ) may be extended to apply in the context of SVM's. Minimizationof the generalized comparative Kullback-Liebler distance (GCKL) of f� to the`true0 f as a function of � is the target of the GACV. We �rst describe the GCKL
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1.3 The Randomized GACV for Choosing � 11and how it relates in some cases to the expected misclassi�cation rate. Then wedescribe how the (computable) minimizer of the GACV should be a good estimateof the minimizer of the (not computable) GCKL. The randomized trace method forcomputing the GACV relatively e�ciently is described and the details worked outfor a simple case. Finally relations between the the GACV here and its versions inother contexts is noted.1.3.1 The Generalized Comparative Kullback-Liebler DistanceSuppose unobserved yi's will be generated according to an (unknown) probabilitymodel with p(t) = ptrue(t) being the probability that an instance with attributevector t is in class A. Let yj be an (unobserved) value of y associated with tj . Givenf�, de�ne the generalized comparative Kullback-Liebler distance (GCKL distance)with respect to g asGCKL(ftrue; f�) := GCKL(�) = Etrue 1n nXj=1 g(yjf�j): (1.24)If g(�) = ln(1 + e�� ), then GCKL(�) reduces to the usual CKL 5 , averaged overthe attribute vectors of the training set. If g(�) = [�� � ]�, thenEtrue[�� yjf�j ]� = p[true]j [�� f�j ]� + (1� p[true]j)[�+ f�j ]� (1.25)= p[true]j ; f�j < �� (1.26)= 1; � � � f�j � � (1.27)= (1� p[true]j); f�j > �; (1.28)where p[true]j = p[true](tj), so that the GCKL(�) is (a slight over estimate of) theexpected misclassi�cation rate for f� on unobserved instances if they have the samedistribution of tj as the training set (since the GCKL is assigning `misclassi�ed' toall f�j 2 [��; �].) Similarly, if g(�) = [�� � ]+, thenEtrue[�� yjf�j ]+ = p[true]j(�� f�j); f�j < �� (1.29)= �+ (1� 2p[true]j)f�j ; � � � f�j � � (1.30)= (1� p[true]j)(�+ f�j); f�j > �; (1.31)not quite the misclassi�cation rate, but related to it. The misclassi�cation ratewould be small if the large negative f�j go with small p[true]j and the largepositive f�j go with small (1 � p[true]j). We do not, of course, know p[true], so wecannot calculate GCKL(�) directly. However if it were cheap and easy to obtainan estimate of the minimizer of GCKL(�) it would be an appealing method forchoosing �.5. The usual CKL (comparative Kullback-Liebler distance) is the Kullback-Liebler dis-tance plus a term which depends only on p[true].
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12 Support Vector Machines, Reproducing Kernel Hilbert Spaces and the Randomized GACVSince for yi = �1 and 0 < � < 1, V�(yi; fi) = maxf0; j1 � yifij � �g, g(�) =[j1� � j � �]+ corresponds to the `usual' SVM. Note that this g(�) is not monotonicin � , but is 0 for � 2 [1� �; 1 + �] and increases outside of this interval linearly as� goes away from the interval in either direction. The relation of the GCKL to themisclassi�cation rate in this example is not quite so direct, but it still may still beuseful.1.3.2 A Computable Proxy for the GCKL1.3.2.1 Approximate Cross ValidationXiang and Wahba (1996,1997) proposed the randomized GACV method for es-timating a proxy for CKL(�). By a proxy for CKL(�) is meant a computablefunction whose minimizer is a good estimate for the minimizer of CKL(�). De�neI�(f; Y ) = 1n nXi=1 g(yifi) + J�(f); (1.32)where J�(f) is a quadratic penalty on f depending on �. In this section we follow thederivation in Xiang and Wahba (1996) to �nd a computable proxy for GCKL(�),in the case that I� is strictly convex. In the SVM cases we are interested in, I�is generally convex but not strictly convex. However, the end result, below at(1.63) is well de�ned and plausible, even though some of the steps to get there areheuristic. The derivation proceeds by describing a leaving-out-one cross validationprocedure for the GCKL and a series of approximations to get an approximateproxy for the GCKL. Then we describe a randomization procedure for computingthis proxy e�ciently. We emphasize that we do not actually do leaving-out-one, therandomization technique is a Monte Carlo estimate of a quantity approximatingwhat we would expect to get if we actually did leaving-out-one.Let f [�i]� be the solution to the variational problem: �nd f 2 fspan ��g�HK tominimize1n nXj=1j 6=i g(yjfj) + J�(f): (1.33)Then the leaving-out-one function V0(�) is de�ned asV0(�) = 1n nXi=1 g(yif [�i]�i ): (1.34)Since f [�i]�i does not depend on yi but is (presumably) on average close to f�i, wemay consider V0(�) a proxy for GCKL(�), albeit one that is not generally feasibleto compute in large data sets. Now letV0(�) = OBS(�) +D(�); (1.35)
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1.3 The Randomized GACV for Choosing � 13where OBS(�) is the observed match of f� to the data,OBS(�) = 1n nXi=1 g(yif�i) (1.36)andD(�) = 1n nXi=1 [g(yif [�i]�i )� g(yif�i)]: (1.37)Using a �rst order Taylor series expansion givesD(�) � � 1n nXi=1 @g@f�i (f�i � f [�i]�i ): (1.38)Next we let �(f) be a `prediction' of y given f . Here we let�i = �(fi) = Xy2f+1;�1g @@fi g(yifi): (1.39)When g(�) = ln(1 + e�� ) then �(f) = 2p � 1 = Efyjpg. For g(�) = v�+;��(�),�(f) = �1; f < minf�+;���g, �(f) = +1; f > maxf�+;���g, and varies in anon-decreasing piecewise linear fashion in between. �(f) is plotted in Figure 1.2 forboth these cases. For g(�) = 12 [j1� � j � �]+, �(f) is a nondecreasing step functionwith �(�(1 + �)) = �1, �(1 + �) = +1.Letting ��i = �(f�i) and �[�i]�i = �(f [�i]�i ), we may write (ignoring, for themoment, the possibility of dividing by 0),D(�) � � 1n nXi=1 @g@f�i (f�i � f [�i]�i )(yi � �[�i]�i ) (yi � �[�i]�i ) (1.40)� � 1n nXi=1 @g@f�i (f�i � f [�i]�i )(yi � �[�i]�i ) (yi � ��i)(1� ��i��[�i]�iyi��[�i]�i ) : (1.41)Next, approximate ��i � �[�i]�i as��i � �[�i]�i = �(f�i)� �(f [�i]�i ) � @�@f�i (f�i � f [�i]�i ): (1.42)Making the de�nitionsg0i = @g@f�i (1.43)�0i = @�@f�i (1.44)hii = f�i � f [�i]�iyi � �[�i]�i (1.45)
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14 Support Vector Machines, Reproducing Kernel Hilbert Spaces and the Randomized GACV

f

m
u(

f)

-1
.0

0.
0

0.
5

1.
0

1.
5

e- 0 e+

ln(1+exp(-tau))
v(e-,e+,tau)

Figure 1.2 Prediction functions �(f) de�ned in the text for g(�) = ln(1+ e�� ) andg(�) = v�+;��(�).in (1.41) gives, �nallyD(�) � � 1n nXi=1 g0ihii yi � ��i1� �0ihii : (1.46)Now gi; ��i and �0i depend only on f�i, which presumably, is at hand if the originalvariational problem has been solved. It remains to �nd an approximation for theright hand side of (1.45) to use for hii. The Leaving Out One Lemma will help.1.3.3 The Leaving Out One LemmaLet g(�) be convex, and let � = �(f) be a nondecreasing function of f with�(�1) = �1 and �(1) = +1, and let f y(�) be any function of � such that�(f y(�)) = �. Thus if �(f) is a strictly monotone function of f then f y is uniquelyde�ned and f y(�) = f(�). Suppose thatg(�(f)f y(�(f))) � g(�(f)f�) (1.47)for any f� for which �(f�) 6= �(f). It can be shown that g = l and g = v�+;�� withthe `prediction functions' � as in Figure 1.2 have property (1.47). Then we have
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1.3 The Randomized GACV for Choosing � 15theLeaving-Out-One Lemma (Craven and Wahba 1979, Xiang and Wahba 1996)Let f [�i]� be the minimizer of (1.33) as before. Then f [�i]� is also theminimizer of 1nPni=1 g(yjfj) + J�(f) given the data Y [�i] =fy1; � � � ; yi�1; �(f [�i]�i ); yi+1; � � � ; yng.A proof is in the Appendix.This lemma says that if we leave out the ith data point, use the predictionfunction �(f [�i]� ) to `predict' (or impute) yi, and then solve the variational problemwith �(f [�i]�i ) substituted in for yi, we will get f [�i]� back for the solution.1.3.4 An Approximation for hii = f�i�f [�i]�iyi��[�i]�iWith some abuse of notation, in this subsection we let f stand for a vector offunction values, at t1; � � � ; tn rather than a function, as we have been doing. Thatis, heref� = (f�1; � � � ; f�n)0 (1.48)f [�i]� = (f [�i]�1 ; � � � f [�i]�n )0 (1.49)and letY = (y1; � � � ; yn)0 (1.50)Y [�i] = (y1; � � � ; yi�1; �(f [�i]�i ); yi+1; � � � ; yn)0: (1.51)Recalling the de�nition of I� from (1.32), it can be shown that I� depends only onf through the values of f at (some of) the data points t1; � � � ; tn. We don't need toknow this relationship explicitly here, however. Details have been worked out forthe strictly convex case in Xiang and Wahba (1996). Expanding the vector @I�@f ina Taylor series about f� and Y gives@I�@f (f [�i]� ; Y [�i]) = @I�@f (f�; Y )+ @2I�@f@f 0 (f�; Y )(f [�i]� �f�)+ @2I�@f�@Y 0 (Y [�i]�Y )+::(1.52)Now since f� is a minimizer of I�(f; Y ) and, by the Leaving Out One Lemma, f [�i]�is a minimizer of I�(f; Y [�i]), we have@I�@f (f [�i]� ; Y [�i]) = @I�@f (f�; Y ) = 0 (1.53)and, from (1.52),Hff (f� � f [�i]� ) � �HfY (Y � Y [�i]) (1.54)
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16 Support Vector Machines, Reproducing Kernel Hilbert Spaces and the Randomized GACVwhere Hff = @2I�@f@f 0 and Hfy = @2I�@f@Y 0 . If Hff were invertible, we could writehii � f�i � f [�i]�iyi � �[�i]�i � �(H�1ff HfY )ii = ~hii; (1.55)say, where (H�1ff HfY )ii is the iith entry of H�1ff HfY . Here Hff = W + �� whereW is the diagonal matrix with iith entry wii = @2@f2�i g(yif�i), �� is the Hessianmatrix of J� with respect to the f�i and HfY is the diagonal matrix with iith entry@2@f�i@yi g(yif�i). Setting~hii = �(H�1ff HfY )ii (1.56)gives our approximate cross validation function ACV (�) as an approximation toV0(�), the leaving-out-one function of (1.34):ACV (�) = 1n nXi=1 g(yif�i)� 1n nXi=1 g0i ~hii yi � ��i1� �0i ~hii : (1.57)ACV (�) can be shown to be equivalent to the ACV2(�) of Xiang and Wahba (1996),p 689, after suitable modi�cation for the setup here.1.3.4.1 The Randomized Trace Estimate of GACV (�) for g(�) = [�� � ]+Next, we consider g(�) = v�;���(�) and lim�!0 v�;���(�) = [� � � ]+. Table 1.3.4.1gives the ingredients of D(�) other than ~hii for g(�) = [� � � ]+. Note that as wetake the above limit certain derivatives used in the derivation of (1.57) do not existat � = ��. Nevertheless we proceed. Assuming that we need not be concerned atexactly the degenerate points yifi = ��, we have, substituting the entries fromTable 1.3.4.1 into (1.46),D(�) � 1n Xyif�i�<� 2 ~hii + 1n X��<yif�i<� ~hii: (1.58)If Hff were invertible, we would have the simple expressionD(�) � � 2ntraceE�H�1ff HfY ; (1.59)where E� is the diagonal matrix with 1 in the iith position if yifi < ��, with 12in the iith position if �� < yifi < �, and 0 otherwise. We now give a heuristicargument for the randomized trace estimation of D(�) for g(�) = [� � � ]+, basedon a perturbation of the data, and not requiring Hff strictly positive de�nite. LetZ = (z1; � � � ; zn)0, where the zi's will be generated by a random number generatorwith Ezi = 0 and Ezizj = �2Z ; i = j;= 0 otherwise. Let f� � fY� 6 be the minimizerof I�(f; Y ) as before and let fY+Z� be the minimizer of I�(f; Y + Z). That is, we6. Again, with some abuse of notation, we are letting f stand for a function, whenconvenient, and for the vector of its values at t1; � � � ; tn when convenient.
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1.3 The Randomized GACV for Choosing � 17yifi < �� �� < yifi < � � < yifig(yifi) �� yifi 0@g@fi �yi 0@2g@fi@yi �1 0@g@fi (yi � �i) �2 �1 0fi < �� �� < fi < � � < fi�(fi) �1 0 1d�dfi 0 0 0Table 1.1 Ingredients of D(�) for g(�) = [�� � ]+.are perturbing the response vector Y by adding a (small) random perturbation Z.Note that in what follows yi + zi does not have to be in f�1; 1g, and in generalthe variational problems here do not require the responses to be in that set. Usingthe Taylor series expansion (1.52) with (fY+Z� ; Y +Z) replacing (f [�i]� ; Y [�i]) gives,assuming that Z is a small perturbation,Hff (fY+Z� � fY� ) � �HfY Z: (1.60)If Hff were invertible we could writefY+Z� � fY� � �H�1ff HfY Z: (1.61)Then, observing that for any n� n matrix A, that EZ 0AZ = �2Z traceA, we wouldhave that2n 1�2z Z 0E�(fY+Z� � fY� ) (1.62)is an estimate of � 2n traceE�H�1ff HfY . For g(�) = [� � � ]+ generally Hff will notbe invertible at f� since f� does not depend on the inactive data points, that is,those yi for which yif�i > �. However, we argue heuristically that the restrictionof the argument above (and thus the restriction of Hff ) to just the active datapoints does make sense. (Recall that we will be limiting ourselves to I� with uniquesolutions.) Thus we conjecture that (1.62) will provide a reasonable randomizedestimate of D(�) of (1.58). The end result is the randomized GACV function forg(�) = [�� � ]+ de�ned asranGACV (�) = 1n Xyif�i<�[�� yifY�i]+ + 2n 1�2z Z 0E�(fY+Z� � fY� ): (1.63)
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18 Support Vector Machines, Reproducing Kernel Hilbert Spaces and the Randomized GACVWe conjecture that the minimizer of ranGACV (�), under suitable assumptions (inparticular, fairly large sample sizes) should be a good estimate of the minimizer ofGCKL(�) of (1.24). Note that the reasonableness of the result (1.63) is independentof how the solutions to the variational problem are found. The minimizer of I� withg(�) = [�� � ]+ will be found via a mathematical programming algorithm, whereasthe case with g(�) = l(�) (with its corresponding GACV function) is typicallyfound using a descent algorithm which uses the Hessian.Note that the same Z should be used for all �, however it is possible to computeseveral replicates of D(�) and take a suitable average, see Xiang (1996) whoexamined this question in the log likelihood case. It is to be expected that D(�) inthe [�� � ]+ case will be `bumpy' considered as a function of � as instances move inand out of the active constraint set as � varies, see Wahba(1982a), Villalobos andWahba (1987) for related examples involving linear inequality constraints.1.3.5 Discussion of ranGACVUsing the fact that for g(�) = l(�) it can be shown that �g0i = 12 (yi��i), then, (asnoted before) (1.57) corresponds to the formula ACV2 in Xiang and Wahba (1996)p. 689. In that paper a slightly di�erent leaving out one was used in the setupyi = 1 or yi = 0 with probability pi and (1 � pi) respectively. Then the negativelog likelihood can be written as �yf + b(f) where b(f) = ln(1+ ef )7. In that paperwe used the same argument as described here starting with the leaving out one inthe form �yif [�i]�i + b(f�i), that is, we did not leave out one in the b term. The endresult, called ACV there (which is based on yi 2 f0; 1g) resulted inD(�) = nXi=1 yi ~hii(yi � ��i)(1� �0i ~hii) (1.64)In that paper we replaced D by DGACV de�ned byDGACV (�) = �hPni=1 yi(yi � ��i)1� ( ��0h) (1.65)where �h = 1nPni=1 ~hii, ��0h = 1nPni=1 �0i ~hii and demonstrated that the resultingGACV (�) provided an excellent proxy for the CKL in the examples tried. In Xiangand Wahba (1997) and Lin and Wahba, in preparation randomized versions ofthe GACV were tried and proved to be essentially as good as the exact versioncalculated via matrix decompositions.The problem of choosing smoothing parameters in the log likelihood case withGaussian response data with unknown noise variance has been extensively studied.In that case fi = Eyi and l(f) = Pni=1(yi � fi)2. In that case it can be shown7. This is the usual formulation in the Statistics literature for the log likelihood for amember of an exponential family.
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1.3 The Randomized GACV for Choosing � 19(Craven and Wahba 1979) that(yi � f [�i]�i )2 = (yi � f�i)2(1� hii) (1.66)which gave rise to the GCV estimate V (�)V (�) = 1nPni=1(yi � f�i)2(1� �h) ; (1.67)which is known to have various theoretically optimum properties (See Li (1986),W). The randomized trace version of it can be found in Girard (1991,1998),who showed that the randomized version was essentially as good as the exactversion for large data sets, Hutchinson (1989), who used Bernoulli data for theperturbations, Wahba, Johnson, Gao and Gong (1995) who further compared exactand randomized versions of GCV, Gong, Wahba, Johnson and Tribbia (1998)where it was applied to a complex variational problem with multiple smoothingparameters, Golub and vonMatt (1997), who did extensive simulations. Wahba(1982a, 1985b) and Villalobos and Wahba (1987) considered variational problemsin RKHS with Gaussian data and linear inequality constraints as side conditions,where a GCV function adapted to inequality constraints was used. It can be seenin Wahba (1982a) how GCV (�) has jumps as data points move in and out of theactive constraint set as � varies.AcknowledgementsI would like to thank the organizers of the NIPS 97 SVM Workshop for inviting meto speak. I would especially like to thank Chris Burges for graciously providing mewith some unpublished numerical results of his on estimating the misclassi�cationrate, and for Olvi Mangasarian for some very helpful comments and for providingpointers to some important references. A lively dinner discussion with Trevor Hastieand Jerry Friedman at NIPS 96 contributed to the ideas in this paper. I am gratefulto David Callan for his patient help as a sounding board and in producing thisdocument, and to Fangyu Gao for the plots. This work was partly supported byNSF under Grant DMS-9704758 and NIH under Grant R01 EY09946.Appendix: Proof of the Leaving Out One LemmaThe hypotheses of the Lemma giveg(�(f [�i]�i )fy(�(f [�i]�i ))) � g(�(f [�i]�i )f�)for any f� for which �(f�) 6= �(f [�i]�i ). and, in particularg(�(f [�i]�i )f [�i]�i ) � g(�(f [�i]�i )f�)
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20 Support Vector Machines, Reproducing Kernel Hilbert Spaces and the Randomized GACVfor any f� for which �(f�) 6= �(f [�i]�i ). Thus, letting J(f) = khk2HK (in an obviousnotation), we haveg(�(f [�i]�i )fi) +Xj 6=i g(yjfj) + n�J(f) � g(�(f [�i]�i )f [�i]�i ) +Xj 6=i g(yjfj) + n�J(f)� g(�(f [�i]�i )f [�i]�i ) +Xj 6=i g(yjf [�i]�j ) + n�J(f [�i]� )giving the result.References1. Aronszajn, N. (1950), `Theory of reproducing kernels', Trans. Am. Math. Soc.68, 337{404.2. Bennett, K. & Blue, J. (1997), A support vector machine approach to decision trees,Technical report, Mathematical Sciences Department, RPI, Troy NY.3. Bradley, P., Mangasarian, O. & Street, N. (1997), `Feature selection viamathematical programming', INFORMS J. Complexity, to appear.4. Cox, D. & O'Sullivan, F. (1990), `Asymptotic analysis of penalized likelihood andrelated estimators', Ann. Statist. 18, 1676{1695.5. Craven, P. & Wahba, G. (1979), `Smoothing noisy data with spline functions:estimating the correct degree of smoothing by the method of generalizedcross-validation', Numer. Math. 31, 377{403.6. Girard, D. (1991), `Asymptotic optimality of the fast randomized versions of GCVand CL in ridge regression and regularization', Ann. Statist. 19, 1950{1963.7. Girard, D. (1998), `Asymptotic comparison of (partial) cross-validation, GCV andrandomized GCV in nonparametric regression', Ann. Statist. 126, 315{334.8. Girosi, F. (1997), An equivalence between sparse approximation and support vectormachines, Technical Report A. I. 1606, MIT arti�cial Intelligence Laboratory,Boston MA.9. Golub, G. & vonMatt, U. (1997), `Generalized cross-validation for large-scaleproblems', J. Comput. Graph. Statist. 6, 1{34.10. Gong, J., Wahba, G., Johnson, D. & Tribbia, J. (1998), `Adaptive tuning ofnumerical weather prediction models: simultaneous estimation of weighting,smoothing and physical parameters', Monthly Weather Review 125, 210{231.11. Gu, C. & Wahba, G. (1993), `Semiparametric analysis of variance with tensorproduct thin plate splines', J. Royal Statistical Soc. Ser. B 55, 353{368.12. Hastie, T. & Tibshirani, R. (1990), Generalized Additive Models, Chapman andHall, 335pp.13. Hutchinson, M. (1989), `A stochastic estimator for the trace of the inuence matrixfor Laplacian smoothing splines', Commun. Statist.-Simula. 18, 1059{1076.14. Kimeldorf, G. & Wahba, G. (1970), `A correspondence between Bayesian estimationof stochastic processes and smoothing by splines', Ann. Math. Statist. 41, 495{502.15. Kimeldorf, G. & Wahba, G. (1971), `Some results on Tchebyche�an splinefunctions', J. Math. Anal. Applic. 33, 82{95.
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