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This chapter is an expanded version of a talk presented in the NIPS 97 Workshop
on Support Vector Machines. It consists of three parts: (1) A brief review of some
old but relevant results on constrained optimization in Reproducing Kernel Hilbert
Spaces (RKHS), and a review of the relationship between zero-mean Gaussian
processes and RKHS. Application of tensor sums and products of RKHS including
smoothing spline ANOVA spaces in the context of SVM’s is also described. (2)
A discussion of the relationship between penalized likelihood methods in RKHS
for Bernoulli data when the goal is risk factor estimation, and SVM methods
in RKHS when the goal is classification. When the goal is classification it is
noted that replacing the likelihood functional of the logit (log odds ratio) with an
appropriate SVM functional is a natural method for concentrating computational
effort on estimating the logit near the classification boundary and ignoring data
far away. Remarks concerning the potential of SVM’s for variable selection as
an efficient preprocessor for risk factor estimation are made. (3) A discussion
of how the the GACV (Generalized Approximate Cross Validation) for choosing
smoothing parameters proposed in Xiang and Wahba (1996, 1997) may be adapted
and implemented in the context of certain convex SVM’s.

Introduction

Several old results in Reproducing Kernel Hilbert Spaces (RKHS) and Gaussian
processes are proving to be very useful in the application of support vector machine
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(SVM) methods in classification. In Section 1.1 of this paper we very briefly review
some of these results. RKHS can be chosen tailored to the problem at hand in many
ways, and we review a few of them, including radial basis function and smoothing
spline ANOVA spaces.

Girosi (1997), Smola and Scholkopf (1997), Scholkopf et al (1997) and others have
noted the relationship between SVM’s and penalty methods as used in the statistical
theory of nonparametric regression. In Section 1.2 we elaborate on this, and show
how replacing the likelihood functional of the logit (log odds ratio) in penalized
likelihood methods for Bernoulli [yes-no] data, with certain other functionals of
the logit (to be called SVM functionals) results in several of the SVM’s that are of
modern research interest. The SVM functionals we consider more closely resemble a
”goodness-of-fit” measured by classification error than a ” goodness-of-fit” measured
by the comparative Kullback-Liebler distance, which is frequently associated with
likelihood functionals. This observation is not new or profound, but it is hoped
that the discussion here will help to bridge the conceptual gap between classical
nonparametric regression via penalized likelihood methods, and SVM’s in RKHS.
Furthermore, since SVM’s can be expected to provide more compact representations
of the desired classification boundaries than boundaries based on estimating the
logit by penalized likelihood methods, they have potential as a prescreening or
model selection tool in sifting through many variables or regions of attribute space
to find influential quantities, even when the ultimate goal is not classification, but
to understand how the logit varies as the important variables change throughout
their range. This is potentially applicable to the variable/model selection problem
in demographic medical risk factor studies as described, for example in Wahba,
Wang, Gu, Klein and Klein (1995).

When using SVM functionals to produce classification boundaries, typically a
tradeoff must be made between the size of the SVM functional and the ‘smoothness’
or complexity of the logit function. This tradeoff is in the first instance embodied
in smoothing parameters. In Section 1.3 we discuss how the GACV for choosing
smoothing parameters proposed in Xiang and Wahba (1996, 1997) may be adapted
to some support vector machines.

1.1 Some facts

about RKHS
1.1.1 The Moore-Aronszajn Theorem

Let T be a set, for example, 7 = {1,2,---,N},T = [0,1], or T = E? (Eu-
clidean d-space), or T = Sy, (the d-dimensional sphere). A real symmetric function
K (s,t),s,t € T is said to be positive definite on 7 x T if for every n = 1,2,-- -,
and every set of real numbers {aq,as,---,a,} and ty,t2,---t,, t; € T, we have
> i1 @iaj K (ti, ;) > 0. We have the famous

Moore-Aronszajn Theorem: (Aronszajn 1950)
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To every positive definite function K on 7 X7 there corresponds a

unique RKHS Hy of real valued functions on 7 and vice versa.

The proof is trivial. We just suggest how to construct Hy given K. Let Ky(s)
be the function of s obtained by fixing ¢ and letting K;(s) = K (s,t). Hx consists
of all finite linear combinations of the form Zle a¢K;, with t, € T and limits
of such functions as the ¢, become dense in 7, in the norm induced by the inner
product

< Ky K; >y,= K(s,t). (1.1)

See Wahba (1990) (W) for further details on most of the material in this Section.
The positive definiteness of K guarantees that (1.1) defines a bona fide inner
product. (Furthermore strong limits here imply pointwise limits 1 .) The function
K;(-) is the so-called representer of evaluation at ¢ in Hy - this means: For any
f € Hi and fixed t

< fo Ky >u,c= (1), (1.2)

where < -, >4, is the inner product in Hg. If K(s,t) has a representation of the
form

K(s,t) =Y AT, (s), (1) (13)

with [ We(s)W, (s)du(s) = 1if £ = 5, and 0 otherwise, where y is some measure on
T, then < f g >y,.=>", f;\% where f, = [¥,(s)f(s)du(s) and similarly for g,.
In particular < g, ¥, >4/, = )‘1—5 if £ = n and 0 otherwise. Examples of y include
Lebesgue measure on [0,1] and counting measure on {1,2,---, N}. K(-,-) is known
as the reproducing kernel (RK) for Hy, due to the ‘reproducing property’ (1.1).

1.1.2 The Representer Theorem

Let 7 be an index set, Hx be an RKHS of real valued functions on 7 with RK
K(-,-). Let {y;,t;,i = 1,2,---n} be given (the ”training set”), with ¢; (the ”at-
tribute vector”) € T. y; is the "response” (usually a real number, but may be
more general, see Wahba (1992)). Let {¢,}M, be M functions on 7 2 with the
property that the n x M matrix T with ivth entry ¢,(¢;) is of rank M. (”Least
squares regression on span {¢, } is unique.”) Let g;(y;, f) be a functional of f which
depends on f only through f(¢;) = f;, that is, g;(vi, f) = gi(y:, fi). Then we have

The Representer Theorem: (Kimeldorf and Wahba 1971 (KW))

1oie | fa—fll 2 0= |fu(t) — f(t)], every t € T.
2. Sufficient conditions on the {¢;} for existence are being assumed.
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Any solution to the problem: find f € span {¢,} + h with h € Hi to
minimize

1 n
=~ 9ilwir fi) + Al (14)
i=1

has a representation of the form
M n

FO = dud () + Y K (ti,-). (1.5)
v=1 i=1

1.1.3 Remarks

Remark 1. This theorem is explicitly stated in KW only for g;(v;, fi) = (vi — fi)?
and (letting y; = (yi1, yi2)) for gi(yi, fi) = 0,yi1 < fi < yi2,= oo otherwise. How-
ever, the extension to general g; is obvious from the argument there (and has
appeared in various places, see, for example Cox and O’Sullivan (1990)). One of
the most popular support vector machines corresponds to the case M = 1, ¢1(t) = 1
and ¢;(ys, fi) = Ve(yi — fi), where V., Vapnik’s e-insensitive loss function, is given
by Ve(u) = maz{0, |u| — €}. f of the form (1.5) is substituted back into (1.4), re-
sulting in an optimization problem in the unknown d; and ¢ = (¢1,- -+, ¢,)’. Details
concerning how this optimization problem is converted to the familiar SVM QP
may be found, e. g. in Girosi (1997), see also Vapnik (1995).

Remark 2. Probably the best known example of this problem is the case
T = [0,1],M = 2, ||h||,2HK = fol(h”(u))Qdu,@(t) = 1,¢2(t) = t. Then f is a
cubic spline with knots at the data points, see KW, Wahba (1990) (W) for details.
Reproducing kernels for ||h[3,, = fol[(me)(u)Pdu where L,, is a differential op-
erator with a null space spanned by a Tchebychev system are found in KW and
involve Green’s functions for L,, * L,,. Typically ¢; is a constant function and
the ¢,’s are linear or low degree polynomials. Under certain circumstances a large
Ain (1.4) will force the minimizer into span{¢$,}. In KW and W this theorem is
stated for f € H; where H is a subspace of H ;; of codimension M orthogonal to

span{dy }.

Remark 3. Let ' denote transpose. If we make some assumptions a simple proof
exists that the coefficient vector ¢ of any minimizer satisfies 7"¢ = 0. First, note

fi
that : = Kc+Td, where d = (dy,---dp)" and (with some abuse of notation)

fn
we are letting K be the n x n matrix with 4, jth entry K(¢;,t;) (where it will be

clear from the context that we mean K is an n x n matrix rather than an RK).
Similarly, note that || Y7 ¢; Ky,

%K = ¢ Kec. The vectors ¢ and d are found as the
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minimizers of

1 n

- Zgi(yi: fi) + A Ke. (1.6)
i=1

Assuming that we can differentiate g; with respect to f;, differentiating (1.6)with

respect to ¢ and d gives

0

1,99

—K—= =-2\K 1.7
n  Of ¢ (17
1,,0

—T'==0 1.8
n Of (1.8)
where g—? = (g%, e gf‘: ), and, assuming K is of full rank, and multiplying (1.7)

by K~! and substituting the result into (1.8) gives the result.

Remark 4. If the matrix K is not of full rank, as would happen if, for example,
K(-,-) is of the form

N
K(s,1) =Y 0, (s)¥,(h) (1.9)
p=1
with N < n then ¢ is not uniquely determined by the setup in (1.7), (1.8). Here
Hr contains at most N linearly independent functions. Letting X be the n x N
matrix with 4, u th entry ¥, (¢;) then K = X X', and if ¢ is a minimizer of (1.6),
then ¢ + §, where § is orthogonal to the column span of X will also be a min-
imizer. We may substitute ¢ = X~ where v is an N vector into (1.6), then K¢
becomes X4 and ¢ K¢ becomes 74’4, where ¥ = X' X~. For uniqueness we also need
that if f(t) = Zi\il dy ¢y (t), then argming Y., gi(yi, fi) is unique. If the g; are
strictly convex functions of f; this will be true whenever 7' is of full column rank.
However, the strict convexity will be violated in some of the cases we consider later.

Remark 5. Characterization of isotropic RK’s on E? may be found in Skorkohod
and Yadrenko (1973) and some examples along with their RKHS norms are given
in the slides for my NIPS 96 workshop talk available via my home page. Char-
acterization of isotropic RK’s on the sphere may be found in Schoenberg (1942)
and some examples along with their RKHS norms may be found in Wahba (1981,
1982b). K (s,t) of the form [, G(t,u)G(s, u)du will always be positive definite if
the integral exists.

Remark 6. If Ry(ui,v1),ur,v1 € T and Ro(ug,v9),us,v9 € T2 are pos-
itive definite functions on 7" ® T and T®?) & T respectively, then both
the tensor product and the tensor sum of R; and R» are positive definite. That
is, letting 7 = 7T @ T, s = (u1,uz) € T,t = (v1,v2) € T, we have that
K(s,t) = Ri(u1,v1)Ra(ug,v2) and K(s,t) = Ry (u1,v1) + Ra(ua,vs) are both posi-
tive definite on 7 ® T .
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Remark 7. Re: Smoothing Spline ANOVA Spaces: Let H% be an RKHS of func-
tions on T(®, for @ = 1, --,d, and suppose ‘H% has an orthogonal decomposition

HE = [10)] g ') (1.10)

where [1()] is the one-dimensional space of constants on 7(%), and let R, (s®,t*)
be the RK for ’H;?). Examples may be found in Wahba, Wang, Gu, Klein and Klein
(1995) (WWGKK) and Gu and Wahba (1993). A Smoothing Spline ANOVA space
H e of functions on T =T @ - .- @ T may be constructed by defining Hg as

Hi = ﬁ (1] & 1l (1.11)
a=1
which then has the RK
K(s, 1) = f[u + Ro(s,1%)] (1.12)
" d d
=14 Ra(s*,t") + ) Ra(s*,t*)Rs(s%,t%) + . + [] Ra(s*.t%)(1.13)
a=1 a<f a=1

Ordinarily the series in (1.13) is truncated somewhere and the direct sum of the
corresponding subspaces in the corresponding expansion in (1.11) (which are or-
thogonal in this construction) constitute the ‘model space’. Multiple smoothing
parameters can be arranged by multiplying each of the individual RK’s which re-
main in (1.13) after truncation, by €4, 6.3, - - -, and so forth. See W and WWGKK
for details. The so-called main effects spaces, which involve only one ¢ at a time
are particularly popular, see Hastie and Tibshirani (1990).

Remark 8. The Smoothing Spline ANOVA spaces can be built up including
conditionally positive definite functions (Micchelli 1986), leading to thin plate spline
components (Gu and Wahba 1993), we omit the details.

1.1.4 Gaussian Processes, The Isometric Isomorphism Theorem

The relationship between conditional expectations on Gaussian processes and solu-
tions to variational problems in RKHS has been known for a long time, see W, KW,
Kimeldorf and Wahba (1970, 1971), Wahba (1978). This is not a coincidence. Let
X(t),t € T be a zero mean Gaussian stochastic process with EX (s)X (t) = K (s,1).
The Hilbert space X'k spanned by this stochastic process can be defined as all finite
linear combinations of all random variables of the form Zle a¢X (t¢) with t, € T
and limits of such functions in the norm induced by the inner product

EX(s)X () = K(s,1). (1.14)

Then we have
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1.2 From Soft Classification to Hard Classification to SVM’s 7

The Isometric Isomorphism Theorem (Parzen 1962, 1970)

To every RKHS Hy there corresponds a zero mean Gaussian stochastic
process X(t),t € T with covariance K (s,t). There is an isometric isomorphism
[one-one inner product preserving map] between Xk, the Hilbert space
spanned by this stochastic process, and Hg, whereby the random variable

X (t) € Xk corresponds to the representer K; € Hy .

The proof is trivial, details may be found in W. We note that sample functions of
X(t),t € T are not in Hy (with probability 1) if Hx is infinite dimensional. One
may understand why this should be true by considering the case where K has a
representation of the form (1.3). Then X has a Karhunen-Loeve expansion, namely

X(t) =Y _&W,(1) (1.15)

where the ¢’s are independent, zero mean Gaussian random variables with variance
A, and a little algebra shows that EX (s) X (t) = K(s,t) and also that the expected
value of the RKHS norm if it exists, would be

2
BIXOl, = Y B (110

but this will be oo if H is infinite dimensional. This has consequences for how one
might choose smoothing and other parameters, see, for example Wahba (1985a).

1.2 From Soft Classification to Hard Classification to SVM’s
1.2.1 Hard Classification

Let 7 be a set as before, one observes n instances, {y;,¢;},i = 1,---,n,y; €
{+1, —1} [the training set], where t; € T and y; = +1 if the ith instance is member
of class A and y; = —1 if it is in class B. Consider a random model for {y,t}:

Prob{y = +1[t} = p(t) (1.17)
Prob{y = —1|t} =1 —p(t) (1.18)

Let f(t) = In(p(t)/(1 — p(t)) be the logit [also called the log odds ratio]. Assuming
that the cost of misclassification is the same for both kinds of misclassification, then
the optimal strategy for generalization, [minimization of expected loss], if one knew
f, would be to classify as A if f(t) > 0 and B if f(¢) < 0. Thus, letting [f]. = 1 if
f > 0 and 0 otherwise, one really wants to know sign f, equivalently it is desired
to estimate [—f(t)]« from the training set {y;,t;},i = 1,---,n. This particular
formulation is convenient, because we note that if f is used for classification, then

the number of misclassifications on the training set will just be Y0 [—y; f(£:)]«-
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1.2.2 Soft Classification

If, on the other hand one’s goal is not simply classification, but to understand
how the relative risk [e/()] of A to B, varies with ¢, as is frequently the case in
demographic and environmental studies, then one is interested in estimating the
actual value of f for all ¢ in a region of T, for which one is likely to have future
observations. See, for example, WWGKK (1994, 1995). In this latter case one might
estimate f from the training set by the methods of penalized log likelihood, that
is, one finds f in {span ¢,} & Hk to minimize

1 n
Ezﬁ(yufz‘) + AlAl3 - (1.19)
i=1

Here, f; = f(t;) and L(y;, f;) is the negative log likelihood function3. In this example
the likelihood that y; = 1 is p(t;), and the likelihood that y; = —1is (1 — p(¢;)).
Thus L(ys, fi) = l(yif;) where I(7) = In(1 + e~ 7). To see this, let p; = p(t;) and
note that

LLf) = —In(-<-) = —Inp
( 7f) n(1+1efz) np (120)
‘C(i]':fl) = 71n(1+efi) = 7ln(1 7pl)
Thus, we may rewrite (1.19) as
1 )
- > i) + MlBll, (1.21)

i=1
where I(7) =In(1 + e~ 7). (1) is plotted in Figure 1.1 as In(1+exp(-tau)).

Note that I(r) is strictly convex. We know that h = Y. ¢ Ky, ||hl3, =
dKe,f = (fi, -+, fn) = Ke+ Td and, if K is of full rank, T'¢c = 0, with the
modifications noted if K is not of full rank. ¢ and d are substituted into (1.21)
and, if K is of full rank or the dimension of ¢ is reduced appropriately, a strictly
convex optimization problem with readily accessible gradient and Hessian results.
A natural target for choosing A is then to minimize the comparative Kullback-
Liebler distance CKL(X) = CKL(ftrue, fx) between fi,.,. and fk4. Here f) is
the minimizer of (1.21) and fi,.4. is the logit of the ‘true’ distribution ps;.. which
generated the data. C K L(A) in this case becomes Ejy.qe 2?21 U(yifri), see Xiang and
Wahba (1996) for more details. Later we will turn to the randomized GACV method
for estimating a computable proxy for CK L()) (Xiang and Wahba 1996,1997, Lin
and Wahba, in preparation).

3. In the statistics literature the usual log likelihood functional is formulated for y =1 or
0.
4. Recall that the Kullback-Liebler distance is not really a distance.
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Figure 1.1 Pseudo-distance functions of tau (7) mentioned in the text.

1.2.3 Back to Hard Classification

Section 1.2.1 suggests that we choose f € {span ¢,} + h with h € H to minimize
1 n

EZ[E_yifi]* + AllAll3, (1.22)
=1

for some fixed € > 0, thereby penalizing the misclassification rate rather than the
log likelihood. [—7]. is plotted in Figure 1.1 as [-tau]* for comparison with (7).
Substituting ¢ and d into (1.22) as before, one seeks to find the minimizers, while
choosing A. It appears that a large A will force f into span{¢,}, thus making f
and (hence the boundaries of the different classification regions) less flexible, while
a small A\ will allow the classification boundaries to follow the training set more
closely. However, if the attribute data is well separated by class, then the minimizer
over d of 31 e —y; ZIJ,VIZI d, ¢, (t;)]« may not be unique or bounded, so that it
will be necessary to further constrain the d,’s. Supposing ¢1(t) = 1, and letting
o(t) = Z,]/WZZ dy ¢, (t), in what follows we could replace the penalty A|A[|3,, by Jx(f)
where Jx(f) = Xol|@ll§ + A1 |R[[3,,. , where ||¢][3 is some appropriate positive definite
quadratic form in ds, - -+, dy, for example ZIJ,V; d?. Alternatively, the {¢,} could
retain their special role by being absorbed into K. In this case, K (s,t) is replaced
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by HZ]VVIZQ ¢u(s)by, (t) + K(s,t). Increasing 6 forces more of the solution into the
{6},

Unfortunately the use of [e — 7], in (1.22) results in a nonconvex optimization
problem, with its attendant pitfalls. However, Mangasarian (1994) has recently
proposed numerical algorithms in the A\; = oo case with ¢t = (t',--- t?) € E¢
d1(t) = 1,04(t) =t*,a =1,---,d. Bradley, Mangasarian and Street (1997) recently
considered problems where the rather nasty function [—7], is replaced with other
more tractable functions including the sigmoidal approximation 1/(1+e%7) and the
function [1 — e®7]4, concave for 7 < 0. Here, [z]; = z,z > 0,= 0 otherwise. For
comparison, these two functions are also plotted in Figure 1.1 with a = 1. Bradley
et al considered examples with a large number of variables, where the goal was to
screen out some non-informative variables for deletion. They penalized the number
of variables included and used 10-fold cross validation on the misclassification rate
to choose a penalty parameter on the number of variables. See also Bennett and
Blue (1997).

1.2.4 Convex Compromises with SVM’s

Let v(7) = ve, _(7) be defined by

Vepe (1) = [(r—=4=)4 T < e
= gl e < 1 < e (1.23)
= 0 e < T

For fixed e < ey, ve, . (7) is convex and possesses a continuous first derivative,
and a non-negative second derivative everywhere except at e_ and e+, where the
second derivative could be defined by assigning it to be continuous from the left,
say. ve, ._(7) is plotted in Figure 1.1 as v(e+e- tau), along with v o(7) = [-7]4.
Vey,ep () = [6 — 7]4. The v’s may be thought of as (in some sense) convex
approximations to [e — 7],, which for e_ < ey possess a continuous first derivative
and non-negative second derivative which could be defined everywhere.

1.3 The Randomized GACYV for Choosing A

Generic author design sample pages

So far our discussion has been a relatively straightforward description of bridges
between well known results in optimization in RKHS, Gaussian processes, penalized
likelihood methods in soft classification (more commonly known as risk factor
estimation) and SVM methods. This section is more heuristic and in the nature
of work in progress. The goal is to explore to what extent the randomized GACV
method in Xiang and Wahba (1996,1997) for choosing A n the case g(r) =
In(1 + e ") may be extended to apply in the context of SVM’s. Minimization
of the generalized comparative Kullback-Liebler distance (GCKL) of fy to the
‘true’ f as a function of X is the target of the GACV. We first describe the GCKL
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and how it relates in some cases to the expected misclassification rate. Then we
describe how the (computable) minimizer of the GACV should be a good estimate
of the minimizer of the (not computable) GCKL. The randomized trace method for
computing the GACV relatively efficiently is described and the details worked out
for a simple case. Finally relations between the the GACV here and its versions in
other contexts is noted.

1.3.1 The Generalized Comparative Kullback-Liebler Distance

Suppose unobserved y;’s will be generated according to an (unknown) probability
model with p(t) = pirue(t) being the probability that an instance with attribute
vector ¢ is in class A. Let y; be an (unobserved) value of y associated with ¢;. Given
fx, define the generalized comparative Kullback-Liebler distance (GCKL distance)
with respect to g as

: 1 ¢
GCKL(ftrue: f)\) = GCKL(A) = Et?“ueﬁ Z g(yjf)\j)- (1-24)

j=1

If g(1) = In(1+ e~ "), then GCKL()) reduces to the usual CKL ? | averaged over
the attribute vectors of the training set. If g(7) = [¢ — 7], then

Etrue [E - yjf)\j]* = p[true]j[e - f)\j]* + (1 - p[true]j)[e + f)\j]* (1'25)
= DPltrue]js f)\j < —€ (1.26)
=1, —e<fyj<e (1.27)
= (1 7p[true]j)7 f)xj > €, (1.28)

where piyyelj = Plerue](t;), s0 that the GCK L(A) is (a slight over estimate of) the
expected misclassification rate for f) on unobserved instances if they have the same
distribution of ¢; as the training set (since the GCK L is assigning ‘misclassified’ to
all fx; € [—€,¢€].) Similarly, if g(7) = [e — 7], then

Etrue [6 - yjf)\j]+ = p[true]j (6 - f)xj): f)xj < —€ (1'29)
:6+(1_2p[true]j)f)\j: _CS f)\j SC (130)
= (1 = pleruei) €+ fr5), frj > 6 (1.31)

not quite the misclassification rate, but related to it. The misclassification rate
would be small if the large negative fy; go with small pp,...; and the large
positive fy; go with small (1 — prpye)j). We do not, of course, know pig.e), so we
cannot calculate GCK L()) directly. However if it were cheap and easy to obtain
an estimate of the minimizer of GCK L()) it would be an appealing method for
choosing A.

5. The usual CKL (comparative Kullback-Liebler distance) is the Kullback-Liebler dis-
tance plus a term which depends only on pigyye1-

1998/07/01 20:11



12

Generic author design sample pages

Support Vector Machines, Reproducing Kernel Hilbert Spaces and the Randomized GACV

Since for y; = £1 and 0 < € < 1, V(y;, fi) = maz{0,|1 — y; fi| — €}, g(7) =
[|1 — 7| — €]+ corresponds to the ‘usual’ SVM. Note that this g(7) is not monotonic
in 7, but is 0 for 7 € [1 — €, 1 + €] and increases outside of this interval linearly as
T goes away from the interval in either direction. The relation of the GCKL to the
misclassification rate in this example is not quite so direct, but it still may still be
useful.

1.3.2 A Computable Proxy for the GCKL
1.3.2.1 Approximate Cross Validation

Xiang and Wahba (1996,1997) proposed the randomized GACV method for es-
timating a proxy for CKL(\). By a proxy for CKL(\) is meant a computable
function whose minimizer is a good estimate for the minimizer of C K L()\). Define

n

DY) = 3 alwif) + (). (132
i=1

where J)(f) is a quadratic penalty on f depending on A. In this section we follow the
derivation in Xiang and Wahba (1996) to find a computable proxy for GCK L()\),
in the case that I, is strictly convex. In the SVM cases we are interested in, I,
is generally convex but not strictly convex. However, the end result, below at
(1.63) is well defined and plausible, even though some of the steps to get there are
heuristic. The derivation proceeds by describing a leaving-out-one cross validation
procedure for the GCKL and a series of approximations to get an approximate
proxy for the GCKL. Then we describe a randomization procedure for computing
this proxy efficiently. We emphasize that we do not actually do leaving-out-one, the
randomization technique is a Monte Carlo estimate of a quantity approximating
what we would expect to get if we actually did leaving-out-one.

Let fl[\fi] be the solution to the variational problem: find f € {span ¢,}® Hx to
minimize

1 n
EZg(yjfj) + A (f)- (1.33)
7
Then the leaving-out-one function V5 () is defined as
1< i
Vo) =~ > glwifi ). (1.34)
i=1

Since f)[;l} does not depend on y; but is (presumably) on average close to fy;, we
may consider Vy(A) a proxy for GCK L()), albeit one that is not generally feasible
to compute in large data sets. Now let

Vo(A) = OBS()) + D()), (1.35)
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where OBS()) is the observed match of fy to the data,

n

OBS() = = > gluif) (136
=1
and
D(A) = % S lotwifi ") = glyifra)l. (1.37)
i=1

Using a first order Taylor series expansion gives

n

15~ 9 -]
D\~ —— —(fni — [ ) 1.
W~ ; a7 i A (1.38)
Next we let u(f) be a ‘prediction’ of y given f. Here we let
0
pi=nlf)= Y, a_fg(yz’fi)- (1.39)
ye{+1,-1} "

When g(7) = In(1 + e 7) then u(f) = 2p — 1 = E{y|p}. For g(7) = ve, (1),
u(f) = =1, f < min{ey,—e_}, p(f) = +1,f > maxr{er,—e_}, and varies in a
non-decreasing piecewise linear fashion in between. u(f) is plotted in Figure 1.2 for
both these cases. For g(7) = 3[|1 — 7| — €]+, u(f) is a nondecreasing step function
with p(—=(1+¢€)) = =1, u(1 +¢€) = +1. '
Letting ux; = p(fr) and u[;il] = ,u(fk;l])7 we may write (ignoring, for the
moment, the possibility of dividing by 0),
1~ 99 (fai— fi"
i1 9N (yi — Hx; )

1o~ g (Fi— o™ (i — )

(i — ui,™) (1.40)

=—— : U (1.41)
. —1 =il
n = 0 (yi — ™) (1 - £27Fa )
yi—hy,
Next, approximate py; — u[);i] as
—i —i o —i
Kxi — N[M V= () - H(f;i )~ W(f/\i - f;i . (1.42)
Making the definitions
dg
,_ 0 1.43
%= 5 (1.43)
ou
L= 1.44
M= 5 (1.44)
_pl]
hi; = % (1.45)
Yi — Ky
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0 |
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-~ — -  In(1+exp(-tau))
o | — - v(e-,e+tau) o
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o | - _
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Figure 1.2 Prediction functions u(f) defined in the text for g(r) = In(1+e~7) and
g(r) = Vey e (7).

in (1.41) gives, finally

1 Yi — Mai

~ ! . ——
D(A) ~ Zgihml — Nl'hz'i' (1.46)
i=1 2

Now g;, pxi and p} depend only on fy;, which presumably, is at hand if the original

variational problem has been solved. It remains to find an approximation for the
right hand side of (1.45) to use for h;;. The Leaving Out One Lemma will help.

1.3.3 The Leaving Out One Lemma

Let g(7) be convex, and let u = u(f) be a nondecreasing function of f with
p(—00) = —1 and p(oco) = +1, and let ff(u) be any function of p such that
p(f () = p. Thus if u(f) is a strictly monotone function of f then f' is uniquely
defined and ff(u) = f(u). Suppose that

g ) FF ((F))) < g(u(f) fx) (1.47)

for any fx for which p(fx) # p(f). It can be shown that g =1 and g = v, . with
the ‘prediction functions’ p as in Figure 1.2 have property (1.47). Then we have
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the
Leaving-Out-One Lemma (Craven and Wahba 1979, Xiang and Wahba 1996)

Let f;i] be the minimizer of (1.33) as before. Then f)[fi] is also the

minimizer of Z? L9(y;f;) + In(f) given the data Y[ =

n

{yr, - yi1, u(fm N yitt, - um}

A proof is in the Appendix.

This lemma says that if we leave out the ith data point, use the prediction
function ,u(fA ) to ‘predict’ (or impute) y;, and then solve the variational problem
with u(f = Z]) substituted in for y;, we will get f>\ back for the solution.

Fri— it

1.3.4 An Approximation for h;; = =24
Yi—Hx

With some abuse of notation, in this subsection we let f stand for a vector of

function values, at ty,---,t, rather than a function, as we have been doing. That
is, here

fx= (fAl 5 Fan)’ (1.48)
A=t Y (149)
and let

Y =(y1, ,yn) (1.50)
Y[iz] = (y17 o Yi-a, ,u(f)[\;l])7 Yit1, yn)l (151)

Recalling the definition of I from (1.32), it can be shown that I, depends only on
f through the values of f at (some of) the data points #1,- -, t,. We don’t need to
know this relationship explicitly here, however. Details have been worked out for
the strictly convex case in Xiang and Wahba (1996). Expanding the vector a_f in
a Taylor series about fy and Y gives
ol (] i oIy %1,
6—f(fA Y = o (faY)+ a7af

Now since fy is a minimizer of I,(f,Y") and, by the Leaving Out One Lemma, f)[fi]

%1,

5Fv (YEI_v)+..(152)

a0 (x )(f o)+

is a minimizer of I, (f, Y1=%), we have

Oy =11 iy _ 9D

af(f)\ YY) = af(J”A7 Y)=0 (1.53)
and, from (1.52),

Hyp(fr—f1) ~ —Hpy (v — YY) (1.54)
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where Hyp = f’ and Hy, = If H¢; were invertible, we could write

8f8

Fri — 14" _ ~
! [Mz] ~ _(HflefY)ii = h“ (1.55)

Yi — Ky

say, where (Hff Hyy )i is the iith entry of H ny Here Hyp = W + ) where

W is the diagonal matrix with iith entry w;; = f2 g(yifai), L is the Hessian

matrlx of Jy with respect to the fy; and Hyy is the dlagonal matrix with 4ith entry

8fxi8yi (ny)\z)- Settlng

8f8Y"

hii

hii = *(H;lefY)ii (1.56)

gives our approximate cross validation function ACV (\) as an approximation to
Vo(A), the leaving-out-one function of (1.34):

1 I~ - Yi— I
ACV () = — iIxi) — — Ih“7~ 1.57
N =D 9wifa) = 2> i T (1.57)
i=1 i=1 i
ACV (M) can be shown to be equivalent to the ACV5(A) of Xiang and Wahba (1996),
p 689, after suitable modification for the setup here.

1.3.4.1 The Randomized Trace Estimate of GACV (X) for g(1) = [e — 7]+

Next, we consider ¢(7) = ve—5(7) and lims_0 v c—5(7) = [¢ — 7]4. Table 1.3.4.1
gives the ingredients of D()) other than h;; for g(r) = [e — 7],. Note that as we
take the above limit certain derivatives used in the derivation of (1.57) do not exist
at 7 = +e. Nevertheless we proceed. Assuming that we need not be concerned at
exactly the degenerate points y; f; = +e, we have, substituting the entries from
Table 1.3.4.1 into (1.46),

1 ~ 1 -
Yi i —<e —e<y; fri<e

If Hyy were invertible, we would have the simple expression
2
D(\) =~ ——traceE H; ny (1.59)

where E. is the diagonal matrix with 1 in the 4ith position if y; f; < —e, with %
in the iith position if —e < y;f; < €, and 0 otherwise. We now give a heuristic
argument for the randomized trace estimation of D(\) for ¢g(r) = [e — 7]+, based
on a perturbation of the data, and not requiring Hy strictly positive definite. Let
Z = (z1,-++,2zn)', where the z;’s will be generated by a random number generator
with Ez; = 0 and Ez;z; = 0%,i = j,= 0 otherwise. Let f\ = ff 6 be the minimizer
of I (f,Y) as before and let fY+Z be the minimizer of I (f,Y + Z). That is, we

6. Again, with some abuse of notation, we are letting f stand for a function, when
convenient, and for the vector of its values at t1,---,%, when convenient.
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| [yifi<—c| —e<yifi<e|e<uyifs

9(yifi) e—yifi 0

5 i 0

T -1 0

i (yi — hi) -2 -1 0
l [ fi<—e | —e<ti<e [ e<ti |

p(fi) -1 0 1

T 0 0 0

Table 1.1 Ingredients of D(X) for g(7) = [e — 7]+.

are perturbing the response vector ¥ by adding a (small) random perturbation Z.
Note that in what follows y; + z; does not have to be in {—1,1}, and in general
the variational problems here do not require the responses to be in that set. Using
the Taylor series expansion (1.52) with (fy 74,Y + Z) replacing (f)[fi],Y[”'}) gives,
assuming that 7 is a small perturbation,

Hpp(fYy ™2 — 1Y)~ —Hyy 7. (1.60)
If Hyy were invertible we could write
N —H,}Hyy 7. (1.61)

Then, observing that for any n x n matrix A, that EZ'AZ = o%traceA, we would
have that

21
== Z'E(f\ "7 = ) (1.62)

nos

is an estimate of —%traceEEH;lefy. For g(7) = [e — 7]+ generally Hyy will not
be invertible at fy since f) does not depend on the inactive data points, that is,
those y; for which y; fn; > €. However, we argue heuristically that the restriction
of the argument above (and thus the restriction of Hyy) to just the active data
points does make sense. (Recall that we will be limiting ourselves to I, with unique
solutions.) Thus we conjecture that (1.62) will provide a reasonable randomized
estimate of D(\) of (1.58). The end result is the randomized GACV function for
g(7) = [¢e — 7]+ defined as

1 21 _,
ranGACV()) = — S le—vifils + =5 Z'B(fY 7 = 1Y) (1.63)

2
2 - n UZ
yifri<e
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We conjecture that the minimizer of ranGACV (), under suitable assumptions (in
particular, fairly large sample sizes) should be a good estimate of the minimizer of
GCKL(A) of (1.24). Note that the reasonableness of the result (1.63) is independent
of how the solutions to the variational problem are found. The minimizer of I, with
g(7) = [e — 7]+ will be found via a mathematical programming algorithm, whereas
the case with g(7) = I(7) (with its corresponding GACV function) is typically
found using a descent algorithm which uses the Hessian.

Note that the same Z should be used for all A, however it is possible to compute
several replicates of D(A) and take a suitable average, see Xiang (1996) who
examined this question in the log likelihood case. It is to be expected that D()\) in
the [e — 7]+ case will be ‘bumpy’ considered as a function of A as instances move in
and out of the active constraint set as A varies, see Wahba(1982a), Villalobos and
Wahba (1987) for related examples involving linear inequality constraints.

1.3.5 Discussion of ranGACV

Using the fact that for g(r) = I(7) it can be shown that —g} = 1 (y; — y;), then, (as
noted before) (1.57) corresponds to the formula ACV; in Xiang and Wahba (1996)
p- 689. In that paper a slightly different leaving out one was used in the setup
y; = 1 or y; = 0 with probability p; and (1 — p;) respectively. Then the negative
log likelihood can be written as —y f + b(f) where b(f) = In(1 + ef)7. In that paper
we used the same argument as described here starting with the leaving out one in
the form fyifmfi] +b(fxi), that is, we did not leave out one in the b term. The end
result, called ACV there (which is based on y; € {0,1}) resulted in

Z yz zz Yi ,U)\z) (1.64)
ll’zh“)
In that paper we replaced D by Dgacy defined by

fLZLl yz’(yz'i_ ,U)\z‘)
1—(u'h)

Dgacv(X) = (1.65)
where h = LS hj, p'h = LS°" | pthy; and demonstrated that the resulting
GACV (\) provided an excellent proxy for the CKL in the examples tried. In Xiang
and Wahba (1997) and Lin and Wahba, in preparation randomized versions of
the GACV were tried and proved to be essentially as good as the exact version
calculated via matrix decompositions.

The problem of choosing smoothing parameters in the log likelihood case with
Gaussian response data with unknown noise variance has been extensively studied.
In that case f; = Ey; and I(f) = Y.i_,(v; — fi)?. In that case it can be shown

7. This is the usual formulation in the Statistics literature for the log likelihood for a
member of an exponential family.
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(Craven and Wahba 1979) that

iy _ (i — ) .
(yi Fi ) = (1— ha) (1.66)
which gave rise to the GCV estimate V())

1N (g2
V(A) == izt (Ui = i) : (1.67)

(1)

which is known to have various theoretically optimum properties (See Li (1986),
W). The randomized trace version of it can be found in Girard (1991,1998),
who showed that the randomized version was essentially as good as the exact
version for large data sets, Hutchinson (1989), who used Bernoulli data for the
perturbations, Wahba, Johnson, Gao and Gong (1995) who further compared exact
and randomized versions of GCV, Gong, Wahba, Johnson and Tribbia (1998)
where it was applied to a complex variational problem with multiple smoothing
parameters, Golub and vonMatt (1997), who did extensive simulations. Wahba
(1982a, 1985b) and Villalobos and Wahba (1987) considered variational problems
in RKHS with Gaussian data and linear inequality constraints as side conditions,
where a GCV function adapted to inequality constraints was used. It can be seen
in Wahba (1982a) how GCV (\) has jumps as data points move in and out of the

active constraint set as A varies.

Acknowledgements

I would like to thank the organizers of the NIPS 97 SVM Workshop for inviting me
to speak. I would especially like to thank Chris Burges for graciously providing me
with some unpublished numerical results of his on estimating the misclassification
rate, and for Olvi Mangasarian for some very helpful comments and for providing
pointers to some important references. A lively dinner discussion with Trevor Hastie
and Jerry Friedman at NIPS 96 contributed to the ideas in this paper. I am grateful
to David Callan for his patient help as a sounding board and in producing this
document, and to Fangyu Gao for the plots. This work was partly supported by
NSF under Grant DMS-9704758 and NIH under Grant R01 EY09946.

Appendix: Proof of the Leaving Out One Lemma
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The hypotheses of the Lemma give

9(u(f DI () < 9(ulfi 1)
for any f. for which u(f.) # ,u(fgzl]) and, in particular

g NN < gu(f ™ 1)

1998/07/01 20:11



20

Generic author design sample pages

Support Vector Machines, Reproducing Kernel Hilbert Spaces and the Randomized GACV

for any f. for which u(f.) # u(fgi]). Thus, letting J(f) = [|h]|3,, (in an obvious
notation), we have

g(u

(£ D)+ 9ids) +nAI(F) = gl A" + 3 gwi f7) +nAI(f)
j#i J#i
> g(u( NN+ gy 157 +na ()
J#i

giving the result.
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