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AbstractThe task is to monitor walking patterns and give early warning of falls usingfoot switch and mercury trigger sensors. We describe a dynamic belief networkmodel for fall diagnosis which, given evidence from sensor observations, outputsbeliefs about the current walking status and makes predictions regarding futurefalls. The model represents possible sensor error and is parametrised to allowcustomisation to the individual being monitored.
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1 IntroductionThe task is to monitor the stepping patterns of elderly people, or recoveringpatients. Not only are actual falls to be detected causing an alarm to be raised,but irregular walking patterns, stumbles and near falls are to be monitored, andearly warning of possible falls made in time for giving assistance. The monitoringis performed using two kinds of sensors: foot-switches which provide informationabout a foot step; and a mercury sensor which is triggered by a change in heightsuch as going from standing upright to lying horizontal, and hence indicates afall has occurred. Timing data for the observations is also given.Previous work in this domain performed fall diagnosis with a simple statemachine [6], however this does not allow representation of either degrees of beliefas to the person's ambulatory status, or of the uncertainty in the sensor readings.Dynamic belief networks integrate a mechanism for inference under uncertaintywith a secure Bayesian foundation, and are suitable for domains, such as the falldiagnosis problem, where the world changes and the focus is reasoning over time.In this paper we present a dynamic belief network model for the fall diagnosisproblem, an interesting practical application of an AI approach to the real worldproblem of medical monitoring.The organisation of this paper is as follows. The fall diagnosis problem isdescribed in detail in Sect. 2. Sect. 3 gives an introduction to dynamic beliefnetworks. In Sect. 4 we develop a complete belief network model for the falldiagnosis problem, with results given in Sect. 5. Extensions to the basic networkare described in Sect. 6.2 The Fall Diagnosis ProblemDavies [6] describes a project with Prof. Ian Brown at Monash University, Dept.of Electrical Engineering, for monitoring the stepping pattern of elderly peopleand patients. Step data is obtained using foot-switches and sent via a mobiledata network to a remote monitoring station, which attempts to detect falls andnear falls by using a state transition diagram, shown in Fig. 1. This model wasdeveloped by Davies in conjunction with expert medical practitioners.The sensor observations are as follows: L: data from the left foot switch;R: data from the right foot switch; M: data from a mercury switch indicates achange in height. Each sensor observation is accompanied by a time, which isthe time duration of the sensor observation. This timing information is crucialin performing fall diagnosis: y is the threshold time below which a foot switchreading is considered a stumble; x is the threshold time below which the mercurytrigger is taken to indicate a fall (a slow change in height would be consistentwith intended sitting or lying down). 11Davies used the threshold times of x = 2s, y = 0:8s.3
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Figure 1: Davies's State Machine for the fall diagnosis problem [3]The states of the state machine are as follows. start is a state of ignorance,entered when a slow mercury trigger is recorded, or when the machine is restartedafter a fall alarm. left-foot, right are walking states, indicating which foot iscurrently forward in the process of walking. Normal stepping patterns, indicatedby an observation time interval of > y, should see the state machine alternatebetween these two states. possible-fall-danger is an intermediate waiting state,entered after any abnormally fast step which may have been a stumble, as the nextinput will determine if the patient is really stumbling or if the reading was a loneoccurrence. The stabilising state will be reached after possible-fall-danger ifa slow-controlled step is observed. The imminent-fall state will be reached afterpossible-fall-danger if another quick step is observed. The system currentlyincrements a counter storing the number of near falls detected in the day. Thefall state will be reached from imminent-fallwith any triggering of the mercuryswitch, in which case the system sounds a local alarm and places an emergencycall to the base station. This fall state is also reached from states other thanimminent-fall, however in these cases the time data for the mercury switchmust be < x seconds.This state machine model has a number of limitations. First, there is norepresentation of degrees of belief in the current state of the person's ambulation.Second there is no distinction between actual states of the world and observationsof that state, for example, the fall state is really a fall-alarm state. That is,there is no explicit representation of the uncertainty in the sensor observation4



[14]. Possible sensor errors include:� False positives: the sensor wrongly indicates that an action (left, right,lowering action) has occurred (also called clutter, noise or false alarms).� False negatives: an action occurred but the sensor was not triggered andno observation was made (also called missed detection).� Wrong time data: the sensor readings indicate the action which occurred,however the time interval reading is incorrect.Also, in Davies's representation, there is no di�erence between a sequenceof alternate foot steps, and a sequence of same foot steps (hopping); we wouldexpect that the latter should probably increase the concern about an imminentfall.3 Dynamic Belief Networks3.1 Belief NetworksBelief networks are directed acyclic graphs, where nodes correspond to randomvariables, which we assume to take discrete values (although in general theyneed not be discrete). In this paper the variables pertain to the world state orthe sensor observations. The relationship between any set of state variables canbe speci�ed by a joint probability distribution. The nodes in the network areconnected by directed arcs, which may be thought of as causal or in
uence links.The connections also specify the independence assumptions between nodes. Eachnode has associated with it a probability distribution, which, for each combinationof the variables of the parent nodes (called a conditioning case), gives a probabilityof each value of the node variable. The probability distribution for a node withno predecessors is the prior distribution. Evidence can be speci�ed about thestate of any of the nodes in the network | root nodes, leaf nodes or intermediatenodes. This evidence is propagated through the network a�ecting the overall jointdistribution (as represented by the conditional probabilities). There are a numberof exact and approximate inference algorithms available for performing beliefupdating [16]; in this paper we are not concerned with the particular algorithm.3.2 Why Dynamic Belief Networks?Belief networks have been been used in various applications, such as medicaldiagnosis [20] and model-based vision [12], which initially were more static, i.e.essentially the nodes and links do not change over time. Such approaches in-volve determining the structure of the network; supplying the prior probabilities5



for root nodes and conditional probabilities for other nodes; adding or retract-ing evidence about nodes; repeating the inference algorithm for each change inevidence.Some work has been done on the dynamic construction of belief networks [2, 3],but the desired output is still a single static network. More recently researchershave used belief networks in dynamic domains such as the fall diagnosis problem,where the world changes and the focus is reasoning over time [7, 11, 15, 10]Such dynamic applications include robot navigation and map learning based ontemporal belief networks [7], monitoring diabetes [1], monitoring robot vehicles[13], oil forecasting [5], [17], forecasting sleep apnea [4], automated vehicle control[8] and tra�c plan recognition [18]. For such applications the network grows overtime, as the state of each domain variable at di�erent times is represented by aseries of nodes. These dynamic networks are Markovian, which constrains thestate space to some extent, however it is also crucial to limit the history beingmaintained in the network.3.3 A Generic DBN StructureA generic dynamic belief network structure for monitoring application is shownin Fig. 2 [15]. The types of nodes are: World nodes, which describe the cen-tral domain variables (for example, position, heading, velocity) variables; Eventnodes, which represent a change in the state of a world node; Observation nodes,which represent direct observations of world nodes, or the observable e�ects ofan event. Time is discretised at irregular intervals, usually divided by the occur-rence of discrete events. Each time slice within the network represents the staticenvironment during that time interval. The structure within time slices is oftenregular. These networks are typically highly connected, particularly between ad-jacent time slices. The conditional probability distributions (CPDs) are shown inrectangular boxes. The CPDs of nodes with parents in the previous time slice areusually a function of the time interval. After addition of sensor observations asevidence to the DBN (indicated by dark shading), belief updating is performed,providing prediction for the values of the world nodes at time slice T + 1.Note the distinction between the two types of observation nodes in this model:O(T ) for the direct observation of a world variable, and O(Ti,Ti+1) for the obser-vation of a change in the state of a world node, that is, the observation of anevent. They provide the foundation for the dynamic construction of the network,identifying when the nodes for a new time slice should be added. An example ofevent observation is the robot vehicle monitoring in [14]: the environment (a lab-oratory in which a robot vehicle roams) is divided into regions by the light-beamsensors, which provide observations on events where an agent (person or robot)moves between regions. 6
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While the fact that there is no obvious upper limit on the time betweenreadings may seem to make it di�cult to de�ne the state space of the T node,recall that a monitoring DBN is extended to the next time slice when a sensorobservation is made, say n tenths of a second. If we ignored error in time data,we could add a T with a single value n.In order to represent the uncertainty in the sensor data, we say it can takevalues within an interval around the sensor time reading that generates the ad-dition of a new time slice to the DBN. If there is some knowledge of the patientsexpected walking speed, values in this range can be added also. The time obser-vation node, TO, has the same state space as T.There is a new copy of each node added for each time slice; we will indicatethe time slice by the subscript. The possibility of adding more time slices isshown by the dashed arcs to the right.Note that there is no need to explicitly include imminent-fall or fall inthe status node. The belief of a fall in the current time slice i is given by theposterior obtaining after adding evidence and running the inference algorithm,that is, bel(Falli=T), 3, and a warning about an imminent fall can be based onthe predictions for the next time slice, that is whether bel(Falli+1) is greaterthan some warning threshold.Structure and Conditional Probability DistributionsWorld and Event Nodes. The CPDs for the nodes A, F, Fall and S are givenin Table 1. The model for walking is represented by the arcs from Fi to Ai, andFi, Ai and Si to Fi+1.We assume that normal walking involves alternating left and right steps.Where the left and right are symmetric, only one combination is included inthe table. We have priors for starting on both feet (r) or already being o� theground (s). Because we have restricted the possible actions to moving either feetor neither, there is no way for this model to re
ect a person getting to their feet;we are assuming use of the model will begin with the person upright, and if not,they stay o� their feet. Looking at the CPD for Fi+1, we can see that a left stepcan have the walker �nish on one foot or both feet, depending on whether it is ahalf or full step. By de�nition, if a person �nishes on a particular foot, it rulesout some actions; for example, if Fi+1 = left, the action could not have beenright. These zero conditional probability are omitted from the table.The CPD for Fi+1 for the conditioning cases where Si+1 = stumbling is exactlythe same as for ok except the p and q probability parameters will have lowervalues, representing the higher expectation of a fall; that is, p0i < pi, q0i < qi, forall relevant i.3Also given by bel(Fi=off); the redundancy is useful for describing the problem, but couldbe removed to improve computational e�ciency.9



Table 1: CPDs for step action node A, the foot node F, the Fall node and thewalking status node SP(F0=leftkrightj) = (1-r-s)/2P(F0=bothj) = rP(F0=offj) = sP(A=leftjF=right) = u alternate feetP(A=rightjF=right) = v hoppingP(A=nonejF=right) = 1-u-v stationaryP(A=fleftkrightgjF=both) = w=2 start with left or rightP(A=nonejF=both) = 1-w stationaryP(A=nonejF=off) = 1 can't walk when o� feetP(Fi+1=leftjFi=right,Ai=left,Si+1=ok) = p1 succ. alternate stepP(Fi+1=bothjFi=right,Ai=left,Si+1=ok) = q1 half-stepP(Fi+1=offjFi=right,Ai=left,Si+1=ok) = 1-p1-q1 fall probP(Fi+1=leftjFi=left,Ai=left,Si+1=ok) = p2 succ. hopP(Fi+1=bothjFi=left,Ai=left,Si+1=ok) = q2 half-hopP(Fi+1=offjFi=left,Ai=left,Si+1=ok) = 1-p2-q2 fall probP(Fi+1=leftjFi=both,Ai=left,Si+1=ok) = p3 succ. �rst stepP(Fi+1=bothjFi=both,Ai=left,Si+1=ok) = q3 unsucc. �rst stepP(Fi+1=offjFi=both,Ai=left,Si+1=ok) = 1-p3-q3 fall probP(Fi+1=leftjFi=left,Ai=none,Si+1=ok) = p4P(Fi+1=offjFi=left,Ai=none,Si+1=ok) = 1-p4 fall when on left footP(Fi+1=rightjFi=right,Ai=none,Si+1=ok) = p5P(Fi+1=offjFi=right,Ai=none,Si+1=ok) = 1-p5 fall when on right footP(Fi+1=bothjFi=both,Ai=none,Si+1=ok) = p6P(Fi+1=offjFi=both,Ai=none,Si+1=ok) = 1-p6 fall when on both feetP(Fi+1=offjFi=off,Ai=left,Si+1=any) = 1 no \get up" actionP(Fall=T j Fi+1=off,Fi=fleftkrightkbothg) = 1 from upright to groundP(Fall=F j Fi+1=any,Fi=off) = 1 can't fall if on groundP(Si+1=okjTi=t) = 1 if t � yP(Si+1=stumblingjTi=t) = 1 if t < y10



If there are any variations on walking patterns for an individual patient, forexample if one leg was injured, the DBN can be customised by varying the prob-ability parameters, s, r, pi, qi, u, v and w, and removing the assumption that leftand right are completely symmetric. For example, we can relax the assumptionthat the person is equally likely to start on the left foot as the right. Note thathaving di�erent p parameters indicates di�erent expectations of a fall when theperson is walking compared to hopping. Also, a person can end up o� their feeteven if the status node S is indicating ok.The fall event node Fall has Fi and Fi+1 as predecessors; a fall only occurswhen the subject was on his or her feet to start with (Fi 6= off), and �nishes o�their feet (Fi+1 = off). 4The value of walking status node S is determined solely by the time betweensensor readings (see next section for an extension which takes into account statushistory). In this DBN model, the T node has no predecessors. One possiblemodel is to have uniform priors, or the prior can also be modi�ed, based onsensor observations over time, to re
ect an individual's ordinary walking speed.Observation Nodes. When constructing the conditional probability distribu-tions for the various observation nodes, the con�dence in the observation is givenby some value based on a model of the sensor's performance and is empiricallyobtainable; pos is the sensitivity of the positive sensor data, neg is the speci�cityof the negative sensor data (or, 1-neg is the probability of ghost data). We makethe default assumption that missing or wrong data are equally likely | this neednot be the case and can be replaced by any alternative plausible values.Each observation node has a single predecessor: the mercury trigger obser-vation node M has predecessor F; the foot-step action observation node AO haspredecessor A; the time observation node TO has predecessor T. The conditionalprobability distributions for M, AO and TO are shown in Table 2. Note that theCPD for the case where the sensor is defective is uniform over the other timevalues; this could easily be changed to cluster around the true time interval. Ifthe timing sensor fails and no data is obtained, fall diagnosis becomes impossible,so we do not handle the case of missing time data.Note that when the monitoring begins, we do not need to have a known startstate; we need only have a prior over the possible starting positions. Because thestandard left foot, right foot, walking model, is represented by the conditionalprobability distribution between Fi and Fi+1, if the �rst data received is a leftSi, then after belief updating, the belief vector will include bel(Fi=off) = 0,bel(Fi=left) < 0.25, bel(Fi=left) > 0.25 and bel(Fi=left) > 0.25. The4We do not model the situation Davies described where the mercury trigger data is ignored ifthe time is � x; this would be more correctly modelled by: adding an additional value, sittingto the state F; adding an additional value, sit, to the action A; adding another alternative,sat, to the fall event fall; adding a connection from Ti to Ai; changing the CPD for Ai to saythat if the time is above the threshold, then the sit action is possible.11



Table 2: CPDs for observation nodes M (mercury trigger), AO (foot switch), TO(time data)P(M=TjFall=T) = pos1 okP(M=FjFall=T) = 1-pos1 missingP(M=FjFall=F) = neg1 okP(M=TjFall=F) = 1-neg1 false alarmP(AO=leftjA=left) = pos2 okP(AO=rightjA=right) = pos2 okP(AO=rightjA=left) = (1-pos2)/2 wrongP(AO=leftjA=right) = (1-pos2)/2 wrongP(AO=nonejA=left) = (1-pos2)/2 missingP(AO=nonejA=right) = (1-pos2)/2 missingP(AO=nonejA=none) = neg2 okP(AO=leftjA=none) = (1-neg2)/2 false alarmP(AO=rightjA=none) = (1-neg2)/2 false alarmP(TO=xjT=x) = pos3 ok, y 6= x, T and TO have m values.P(TO=yjT=x) = 1� pos3/m-1, ok, y 6= x, T and TO have m values.DBN presented is one possible model for the fall diagnosis problem; many othervariations are possible. For example, the DBN does not handle the case whereboth foot switches provide data at the same time.5 ResultsThe results described in this section were obtained using the Lisp-based IDEALbelief network development environment [21] on a GNU Common Lisp platform.We present results of a Fall Diagnosis network modelled for a given set of param-eters: s = 0.0, r = 0.9, u = 0.7, v = 0.2, w = 0.1, p1 = 0.6, q1 = 0.3, p01 = 0.5,q01 = 0.4 p2 = 0.6, q2 = 0.3, p02 = 0.5, q02 = 0.4, p3 = 0.6, q3 = 0.3, p03 = 0.5, q03 =0.4, p4 = 0.95, p04 = 0.85, p5 = 0.95, p05 = 0.85, p6 = 0.9, p06 = 0.8, pos1 = 0.9,pos2 = 0.9, pos3 = 0.9, neg1 = 0.95, neg2 = 0.95. The T and TO time nodes had4 possible values, t1, t2, t3, and t4; the lowest, t1 was below the threshold y andmeant the subject was considered to be stumbling.After constructing the DBN, we entered a sequence of evidence, that is sim-ulated observations from the sensors, and performed belief updating after everynew piece of evidence was added. Table 3 shows the posterior probabilities, orbeliefs, of the values of nodes in the network across this sequence of data. Forreasons of space, we left out the initial S0 node and the T2 and TO2 nodes from themodel, and do not give all the beliefs, especially if they are uniform or otherwise12



obvious. Probabilities have been rounded to 4 decimal places. Evidence addedresults in a 1.0 belief for that value, shown in bold in the table; also bolded arethe beliefs described below in the text. The evidence sequence added, and thee�ect on the beliefs, was as follows.No evidence added: All beliefs are based on the parameters. Belief in an im-mediate fall is small, bel(Fall0 = T)=0.1194, but chance of being o� feetin 2 steps is higher, bel(F0=T)=0.2238.TO0 set to t1: This increases the probability that the person is stumbling, thatis, bel(S1 = stumbling)=0.9, which in turn slightly increases the belief ina fall, bel(Fall0 = T) = 0.1828.AO0 set to left: Foot switch information leads to a change in the belief in theinitial starting state; bel(F0=right) has increased from 0.05 to 0.2550, re-
ecting the model of alternate foot steps.M0 set to false: The negative mercury trigger data makes it very unlikely thata fall occurred, bel(Fall0=T)=0.0203.TO0 set to t2: \Resetting" of the original timing data makes it less likely theperson was stumbling, reducing the belief in a fall, bel(Fall0=T) = 0.0098.M0 set to true: However, resetting the mercury trigger data makes a fall mostprobable, bel(Fall0=T)=0.6285, although there is still the chance that thesensor has given a wrong reading.M1 set to false, TO1 set to t4, AO1 set to none: No action, and no mercurytrigger data con�rms the earlier fall, bel(Fall0=T)=0.7903, since if theperson is already on the ground they won't take a left or right step.6 Extensions to the Fall Diagnosis DBN6.1 Maintaining a HistoryThe states imminent-fall, possible-fall, and stabilising in the originalstate machine are an attempt to capture the idea that the history beyond thecurrent time interval gives information about the likelihood of a fall soon. This isrepresented in a DBN by the use of a history node [15], which maintains a countof how long the agent has been exhibiting one type of behaviour. For our domain,this would be a status history node, Hi, for each time slice; its predecessors arethe previous and current walking status nodes, Si�1 and Si. H then becomes apredecessor of Fi+1, and the CPD entries are changed so that the probability offalling is a function of the stumble count.13



Table 3: Changing beliefs as evidence is added or changed.Node Val None TO0=t1 AO0=left M0=F TO0=t2 M0=T SETT0 t1 0.25 0.9000 0.9000 0.8914 0.0305 0.0535 0.0616t2 0.25 0.0333 0.0333 0.0361 0.9026 0.8812 0.8736t3 0.25 0.0333 0.0333 0.0361 0.0334 0.0326 0.0323t4 0.25 0.0333 0.0333 0.0361 0.0334 0.0326 0.0323TO0 t1 0.25 1.0 1.0 1.0 0.0 0.0 0.0t2 0.25 0.0 0.0 0.0 1.0 1.0 1.0F0 left 0.05 0.05 0.0870 0.0860 0.0856 0.0964 0.0911right 0.05 0.05 0.2550 0.2717 0.2515 0.2792 0.2767both 0.90 0.90 0.6581 0.6422 0.6628 0.6244 0.6322off 0.0 0.0 0.0 0.0 0.0 0.0 0.0A0 left 0.09 0.09 0.6403 0.6483 0.6453 0.6047 0.5427right 0.09 0.09 0.0356 0.0360 0.0359 0.0336 0.0302none 0.82 0.82 0.3241 0.3156 0.3188 0.3617 0.4271AO0 left 0.1265 0.1265 1.0 1.0 1.0 1.0 1.0right 0.1265 0.1265 0.0 0.0 0.0 0.0 0.0none 0.7470 0.7470 0.0 0.0 0.0 0.0 0.0Fall0 True 0.1194 0.1828 0.1645 0.0203 0.0098 0.6285 0.7903False 0.8806 0.8173 0.8355 0.9797 0.9902 0.3715 0.2096M0 True 0.1515 0.2053 0.1898 0.0 0.0 1.0 1.0False 0.8485 0.7947 0.8102 1.0 1.0 0.0 0.0S1 ok 0.75 0.1 0.1 0.1086 0.9695 0.9465 0.9383stum'g 0.25 0.9 0.9 0.8914 0.0305 0.0535 0.0617F1 left 0.0638 0.0425 0.2737 0.3208 0.5120 0.1921 0.0340right 0.0638 0.0425 0.0168 0.0197 0.0303 0.0114 0.0020both 0.7530 0.7322 0.5451 0.6391 0.4478 0.1680 0.1736off 0.1194 0.1828 0.1645 0.0203 0.0098 0.6285 0.7903T1 t1 0.25 0.25 0.25 0.25 0.25 0.25 0.0326t4 0.25 0.25 0.25 0.25 0.25 0.25 0.9006TO1 t4 0.25 0.25 0.25 0.25 0.25 0.25 1.0A1 left 0.0950 0.0749 0.0938 0.1099 0.1461 0.0548 0.0035right 0.0950 0.0749 0.2222 0.2605 0.3869 0.1451 0.0092none 0.8090 0.8502 0.6841 0.6296 0.4670 0.8001 0.9872AO1 left 0.1308 0.1137 0.1297 0.1434 0.1741 0.0966 0.0right 0.1308 0.1137 0.2389 0.2714 0.3788 0.1734 0.0none 0.7383 0.7730 0.6315 0.5851 0.4671 0.7301 1.0Fall1 True 0.1044 0.0975 0.0959 0.1124 0.1099 0.0412 0.0024False 0.8956 0.9025 0.9041 0.8876 0.8901 0.9588 0.9976M1 True 0.1387 0.1329 0.1315 0.1455 0.1434 0.0850 0.0False 0.8612 0.8671 0.8685 0.8545 0.8566 0.9150 1.0S2 ok 0.75 0.75 0.75 0.75 0.75 0.75 0.9673stum'g 0.25 0.25 0.25 0.25 0.25 0.25 0.0327F2 left 0.0673 0.0531 0.0898 0.1053 0.1472 0.0552 0.0258right 0.0673 0.0531 0.1335 0.1565 0.2291 0.08594 0.0076both 0.6415 0.6136 0.5164 0.6055 0.5040 0.1891 0.1740off 0.2238 0.2802 0.2603 0.1327 0.1197 0.6698 0.792714



6.2 Representing a consistent walking paceWe can also improve the model of what a person's ordinary walking pace isby adding an arc from Ti to Ti+1, which would allow a representation of theexpectation that the walking pace should remain fairly constant.6.3 Explaining incorrect dataThe DBN described in the previous section provides a mechanism for handling(by implicitly rejecting) certain inconsistent data. It represents adequately theunderlying assumptions about the data uncertainty, however it does not providean explanation of why the observed sensor data might be incorrect. We canrepresent the most usual source of incorrect data, namely a defective sensor, bythe addition of a sensor status node SS [14] for each sensor. Each sensor statusnode becomes a predecessor of the corresponding observation node, and there isa connection between sensor status nodes across time slices.7 ConclusionsWe have shown the development of a dynamic belief network model for fall di-agnosis which overcomes the limitations of previous work. Given evidence fromsensor observations, the model outputs beliefs about the current walking sta-tus and makes predictions regarding future falls. The model represents possiblesensor error, and is parametrised to allow customisation to the individual beingmonitored.Acknowledgements Thanks to Dr. Jon Oliver for suggesting this fall diagnosisproblem as an application for dynamic belief networks.References[1] S.A. Andreassen, J.J. Benn, R. Hovorks, K. G. Olesen, and R. E Carson. A prob-abilistic approach to glucose prediction and insulin dose adjustment: Descriptionof metabolic model and pilot evaluation study. Unpublished draft, 1991.[2] J.S. Breese. Construction of belief and decision networks. Technical Memoran-dum 30, Rockwell Palo Alto Laboratory, 444 High Street, Palo Alto, California94301, 1989.[3] Eugene Charniak and Robert Goldman. Plan recognition in stories and in life. InProc. of the Fifth Workshop on Uncertainty in Arti�cial Intelligence, pages 54{60,1989. 15
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