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Abstract

A method to build impedance boundary conditions incorpogathe effect of rapid variations of a perfectly conductswgface
on the scattering of a scalar, E-polarized, time-harmoléctemagnetic wave is presented. The amplitude and trenegf the
variations are assumed to be comparable to each other ardidasncampared to the wavelength. The derivation of the iraped
boundary conditions is based on a decomposition of the fieltivd parts. The first part describes the overall behaviorhef t
wave and the second one deals with its small scale variatiims effective boundary conditions are rigorously corcded for
periodic surfaces presenting a large-scale global paitgdio suppress the boundary effects and a small local gddalescribe
the rapid variations. Numerical examples prove that thehotetan even be heuristically extended to more general gmgbl In
this respect, there are reported some results related toutherical treatment of small details on a smooth surfaceaimdugh
surfaces without resorting to refined meshes.

Index Terms

Electromagnetic Scattering, Impedance Boundary CommtidcRough Surfaces, Small Details, Homogenization, Pieriod
Surfaces.

I. INTRODUCTION

DDRESSING electromagnetic scattering by surfaces pregesbme rapid variations may be a challenge for numerical
methods. An accurate solution requires a very refined mesbhwdtcordingly excessively increases the computational
cost. Moreover an excessive overmeshing may induce somenuahlocking effects which can damage the approximating
properties of the numerical scheme. Such kind of difficalieise when the scatterer surface presents a localizetivapation
of a small amplitude relatively to the wavelength. In whdtdws, such variations will be regarded as ‘small detal&hen
the rapid variations spread out along a large part of theasarf'rough surface’ is a more appropriate terminology. e,
for the standpoint adopted here, details can be consideve articular case of rough surfaces. Our objective is thus t
reproduce the effect of the rapid variations by means of fac#fe impedance boundary condition (IBC) obtained tigtoa
homogenization process. As a result, it becomes possilalim ag tackle the solution of the scattering problem by sajva
discrete problem of a quite reasonable size. Such boundaemgitions are called Leontovitch conditions and are in thenf
nx (E xn) = Z(nx H) whereZ is the equivalent impedancE, H are respectively the electric and the magnetic field and
n is the unit normal to the surface. In the scalar case (2D mpthé$s condition is sometimes referred to as a Fourier-Robi
boundary condition and is writtenu + d,u = 0.

This kind of effective boundary conditions was also progb&a a long time to incorporate the effect of a thin coating
in the scattering of electromagnetic waves by a perfecttydoating obstacle (cf., e.g., [1], [2], [3], [4], [5]). Coeming the
rough surfaces, Senior [4], [6] has developed an IBC whi&kegdnto account a statistically uniform roughness. Howebe
rapidly oscillating surfaces, considered in this work, andortunately outside the range of validity of this apptoa®@ur aim
in the present paper is precisely to introduce an appraptaE and to prove its efficiency in some applications conicgrn
the treatment of small details and rough surfaces.

In section Il, we present an adaptation of the techniquegldped in [7] to determine a two-scale asymptotic expansion
of the total wave. In particular, we show how this expansian be used to build a first-order IBC, written on a flat surface
and involving slowly varying coefficients only. Then we stipdescribe the numerical schemes used to solve the prablem
respectivey related to the highly oscillating exact swgfand to the flat approximate one. The results for the exathur
will be used as a reference solution to test the domain oflialof the homogenization procedure. In section 11-B, welgp
the IBC approach to uniformly periodic surfaces. Such a kihdurfaces constitutes a particular case of the theoryakes
it possible to measure the accuracy of the homogenizationegs in terms of some well-defined parameters such as the
amplitude, the period or the shape characterizing the tiang of the surface. In section Ill, we use the theory in 8 f
form to deal with two-scale surfaces. The method is thenibtcally adapted to include the treatment of both smalhiet
in section IV and multiscale random rough surfaces in sactio
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Il. THEORETICAL ASPECTS
A. The two-scale model

We begin with the description of the surfaces that can beidered within the framework of the present theory. A sample
of the surface is selected and reproduced by periodicityegécted in Fig. 1. This is a classical way to proceed (cf.,,e.g
[8], [9] ) used, for example, in the small perturbation methdhe sample of the surface of periddand its attached cell are

Fig. 1. Finite profile reproduced periodically

defined as follows
Q={(r,y) eR*:0<a <L, y>y()}, IP={(zycR:0<zr<L, y=1)}

whered is a given small positive parameter characterizing the lsamaplitude as well as the rapid variations of the surface.
This characterization is expressed by means of a functiesgmting a two-scale variation

Yy = 75(1.) = 58(:5;1'/5) = 5S(Za0)|a=w/6a

where the partial functions — s(z,e) andx — s(e,z/d) are respectively a periodic function of peridd describing the
slow change in the shape of the surface, and a periodic fimcfi periodd = § L, accounting for the oscillations assumed to
be fast comparatively to the wavelength. For theoreticappses only, we further assume thét:= L/d = 1/6 is an integer
so that the two-scale function— ~;5(x) is indeed globally periodic of periodl. The surfaces so considered present two-scale
variations, slow and fast. The amplitude of the variatiohthe surface is comparable with the period of the fast csdlhs.

Implicitly, the function s(z, o) is supposed to be sufficiently derivable with respect to the variablesz and o. Such
an amount of regularity clearly does not match most of thdiegons, even those considered in section IV in this work.
However, it can be considered as a convenient frameworkigiraya theoretical basis for the homogenization proceasith
subsequently built. It is a quite common practice to makeéngegularity assumptions in theoretical convergence stufsee,
for instance [10]).

We focus on the E-polarized case, that is, on a two-dimeasiime-harmonic wave where the electric field is completely
characterized by a unique componeft This component completely describes the total wave, asdum be induced by an
incident plane wave/" defined in the same way. Any plane wavg,exp(ik,z + ikyy), wherek, andk, are related to the

wavenumber by: = , /k2 + k2 > 0, can be considered aska-quasi-periodic function of period in the variablez. Recall
that a functiorx — w(z) is k,-quasi-periodic of period. if the following property holds

w(x + L) = e*f=Ly(z), forall z € R.

As a result, the total wave® can also be assumed to bg-quasi-periodic of period. as a function ofr and satisfies the
following boundary-value problem for the Helmholtz eqoati
Au® + E?u® =0 in Q9
u’ =0 on I'?, _ (1)
(outgoing) Radiation Condition (RC) on — u'¢.

The radiation condition is the classical quasi-periodie @cf., e.9., [11], [12]) expressed from the Floquet serigsaasions
of the scattered wave [13].

B. The two-scale asymptotic expansion

1) The two-scale decomposition of the fielin approach, which applies to several kinds of partial défeial equations,
has been developed in [7]. It consists in seeking a decomiposf the solution as a sum of two functions, respectively
depending on a slow and a fast variable, destined to respBctiandle the overall behavior of the solution, far enoérgim



the boundary, and its rapid variations, significant in a tairer near the boundary only. In this work, we decomposedted t
wave v’ as follows

u&(x7y) = Ué(may) +H6(x70'77-)|a:z/6, T=y/d" (2)
For each fixedr, (o,7) — II°(x, 0, 7), defined as a function dfr, 7) on the elementary celD,
D:={(o,7)eR*:0<0<d, 7> s(z,0)},

is implicitly assumed to be the restriction io of a periodic function inr of periodd. The local elementary celD is depending
on z implicitly. The functionII? is a boundary layer corrector vanishing as well as any ofetivdtives ag- — co. Physically,
II°(z,0,7) corresponds to evanescent modes generated by the fasatomedl described by the periodicity of the surface in
o =z /6. The fast variable- := y/4 is used to represent the rapid decrease of these modes apepkis. As this is seen
below, the dependence oF (z, o, 7) on the slow variable: is not only destined to fit the low variations of the surface isu
also induced by a phase term characterizingthgeriodicity. The variable: of II° plays the role of a parameter in the local
problem set in terms of the fast variables 7).

The overall behaviour ofi°, far enough from the surface, is described B%(z,y), a function depending on the slow
variablesz andy only. Similarly to«?®, U? is supposed to bé,-pseudo-periodic of period but is defined on

Q:={(z,y) eR*:0<z<L,y>0}.

As a motivation of such a decomposition, it is sufficient tmsider the form of a single fast evanescent Floquet moderfor a
uniformly periodic surface. A general Floquet mode of orderan be written as follows

@y (2, y) = VIR,

with ~, = k, + 27p/d. For p sufficiently large, that is, a fast evanescent mablg.can be approximated by

_2mp

27mp
STt e— g Y,

(I)I)(x7y) ~ e’ikw$e
In terms of the large period := d/¢, this can be also written as a functionafo andr

) & eika® Lo T = op(x,0,7).

2) The two-scale asymptotic expansidBach term of the decomposition (2) is expanded as follows

(I);D(xvy

U(x,y) = Z M u(z,y), T°(z,0,7) = Z oI (x, 0, T). 3)
n=0 n=0

The determination of the first few terms of these asymptogmaesions as in [14] will be used to construct a process fengi
the computation of an accurate approximatioru6fmuch more easily than by solving the problem (1) directlytuadly, the
two-scale asymptotic expansion presented here can alsbthmed by the technique of correctors [5]. However, thes@né
approach constitutes a more simple and systematic proeedhich, at the same time, provides a better insight into the
approximation process.

3) Interior equations:Insert (2) and (3) in the Helmholtz equatidxw.’ + k2u® = 0. The chain rule yields

AT (z,2/8,y/6) = (62 Ag 11° + 2671 0,0,11° + O211°) (2,0, 7)| y—s /5, 7=y /5
leading to

Z 5"_2(A077-H" +20,0,11" 1 + a%Hn—Q + k212 4 (A + k2)u"_2) = 0. 4)

n>2

{ §2(A, 110 + 071 (A, T +20,0,119)+

Equating to zero the coefficient of any poweroin (4), we get
(Ao 11" + 20,0, 11" + (8§ + k2) H”‘Q) (z,0,7) + (Au™ + k2u") (z,y) =0.

The condition onlI?, for 7 — oo that expresses thai’ represents evanescent modes, uncoupteandII”, yielding for u™

Au™ + E2u™ =0 in Q 5)
RC onu® — « and onu™,
and for the first two term$I° and IT*
A, 11°=0and A, ,II' +20,0,11° =0 in D,
lim 11°(z,0,7) =0, lim II'(z,0,7) = 0. (6)



System (6), satisfied byI° andII', has to be regarded as a family of systems depending smomththe parametet.
However, as it will be shown below in the implementation of timethod, only a limited number of such systems are really

solved.
4) Equations resulting from the boundary conditioRlug (2) and (3) in the boundary condition. Up to and inclgdihe
terms ind, this can be written

u’(z,s(x,0)) + %z, 0, 8(x,0)) + 5(u'(z,8s(x,0)) + ' (2,0, s(x,0))) = O(6?).

Discarding once more all the termsdh and using a Taylor expansion i we get an approximate expression for the boundary
condition, explicit relatively to the parametér

u®(x,0) + 11°(x, 0, 5(x, 0)) + §(s(x, 0)9yu’(x,0) + u'(2,0) + ' (z, 0, s(z,0)) = 0.

Again, equating to 0 the constant termdiras well as the coefficient @fin the above condition, we are led to the following
system
%z, 0,s(z,0)) +u’(z,0) =0
{ Y (z,0,8(x,0)) + s(z,0)0,u’(x,0) + u'(x,0) =0
Systems (5) and (6) are thus coupled by the boundary condifip
In (5), the slow variable “does not see” the rough surfacee &guations are posed in the dom&irwith the flat boundary
I:={(z,00eR?:0< 2 < L}.

()

C. Determination of the first order terms

We limit the determination of the asymptotic expansion te kwest order terms that are involved in the construction of
the impedance boundary condition used below, thatlsu!, II° andII'.
The problem satisfied bji® has the following statement

A, -II°=0in D,
{ 7 ®)

%z, 0, s(z,0)) + u’(x,0) = 0.

It can be proved [15] thall’(z, 0, 7) is constant, as a function d¢f, 7), and that it is uniquely determined. As it vanishes
for 7 — oo, I%(z,0,7) = 0 so thatu®(z,0) = 0. We have thus established that the crudest approximati¢heo$olution is
simply obtained by solving the problem on the mean flat serfadthout having to take any limit as— 0. In other words,
the roughness is not seen at order 0

Aul 4+ E2u® =0in Q,

u®(z,0) =0,

RC onu® — u",

Now, we come to the determination of the first-order termstiFiwe gather the conditions satisfied Hy

Y (z,0,s(z,0)) + s(z,0)0yu’(z,0) + ul(x,0) = 0, (9)
lim ! (z,0,7) = 0.

T—00

{ A, II' =0in D,

In (9), variablex plays the role of a fixed parameter. To construct a funclidrsatisfying (9), we first introduce the auxiliary
problem

az,0,8(x,0)) = s(x,0), (10)

A, a=0in D,
« bounded ag — +oo.

which has one and only one solutiendepending smoothly om as this was established in [15]. In view of the two first
equations of (9)I1! is necessary in the form

' (z,0,7) = —a(z,0,7)0,u’ (x,0) — u'(x,0) (11)

It was also established in [15] that
h(z) = lim a(z,o0,7).
Finally, the third condition in (9)lim, .., I1*(z,0,7) = 0 determines the boundary condition reducing with (11) the
determination ofu! to the solution of the following problem
Aul + E2ul =0 in Q,
ul(z,0) + h(z)9yu’(z,0) =0,
RC onu!.



D. Construction of the impedance boundary condition

Instead of solving two boundary-value problems to deteemit+ Ju!, it is more convenient to construct an equivalent
impedance boundary condition on the flat surface leadingtiousmdary-value problem whose solution gives an approximat
u° = u® + du' + O(4?) including the zero and first order terms.

The construction starts from the following simple obseprat The truncated expansiarf + du' satisfies the Helmholtz
equation as well as the radiation condition. It is indeedsjida to write an explicit boundary condition faf +du! satisfied up
to a term ind2. More precisely, in view of the above conditions, satisfiespectively by."(z,0) andu! (x, 0)+h(z)d,u’(z,0),
we have

(u°(z,0) + 6u'(z,0)) + 6h(2)9y (u’(z,0) + du' (z,0)) = §*h(z)dyu' (z,0).

Neglecting the term ins2, we are led to the homogenized problem, related to an impedboundary condition, which is
actually solved in order to determing

AW + K’ = 0 in €,
u’(x,0) + 6h(x)d,u’ (x,0) = 0, (12)
RC onu® — 4",

Recall thath(z) is obtained from the solution of the local problem (10) focteaalue ofx.

E. Numerical solution of the exact and the impedance bounudalue problems for periodic surfaces

An adaptation of the Finite Element Method (FEM) to problenwelving a periodic boundary condition, known as periodic
FEM (cf., [16], [15], [17]) is used to solve problem (1) nurizadly on a very refined mesh. The obtained solution is used as
a reference solution to test the domain of validity of the bgenization procedure.

The periodic FEM is also used to determine an approximateevér the coefficient:(x) of the IBC by solving the
corresponding boundary-value problem (10).

Problem (12) on the flat boundary is solved by a collocatiorthae. Its solution is expanded in Floquet modes whose
coefficients are determined by enforcing the IBC{at= 0}.

Two solutionsu; anduy are compared by means of the following energy error

N
€2 = Z |u1,n — U2,n|2 (13)

n=—N

wherew; , andus , stand for the coefficients of their respective propagatieeg|fet modes.

[1l. PERIODIC SURFACES
A. Uniformly periodic surfaces

1) Homogenization of uniformly periodic surfacéale first consider uniformly periodic surfaces, that is, aoefs described
by a function(z, o) — s(x,0) which is constant inc. This particular case is of course within the scope of thevalibeory.
Special features make this example particularly suitedhieck the validity of the homogenization procedure. Fifse &€xact
problem can be solved accurately on one small cell only.neunore, as the period of the surface is assumed to be small
as compared to the wavelengthonly the fundamental Floquet's mode is propagative. Heimmediately above the surface
roughness, the total field admits the following decompositi

u’(z,y) = u"(x,y) + Roe'*==+tkv¥) 1 evanescent terms.

Problem (12) can be solved for any multipleof d and in particular forL = d. Its solution is completely characterized by
Ry which can be viewed as the reflection coefficient of the intideave.
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Fig. 2. Periodic surfaces: sine, step and triangular shaped
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Fig. 3. Periodic surfaces: high step, positive sine, sinahisolute value



2) IBC computation:The various shapes of the unit cell, that are consideredjepeted in Fig. 2 and Fig. 3 respectively.
We first examine how: = h(z) = lim a(o,7) depends on the size and on the shape of the elementary cell.

Since the surface is metallic, the modulus of the reflectioefficient is of course equal to 1. For the six geometric shape
given in Fig. 2 and Fig. 3, all the cells have a same maximumHiei,. Actually, only the ratiai/hq is relevant. By decreasing
this ratio from 1 to some small valug we can consider a geometry which becomes more and mordatiag!

The variation ofh as a function of the cell size for the six cell shapes is ptbtteFig. 4. Recall that the results do not
depend on frequency as mentioned above provided the sizeeafdll D remains small compared to the wavelength. Some

observations can be carried out.

« For a highly oscillating surface (that is, as the period tetw zero),h tends to a maximum valuknax close to the
maximum heighthy of the ruggedness.

« The slower the oscillations are, the deeper the penetrafidhe wave is.

« The larger the period of the elementary cell is, the betteruhderneath geometry becomes visible by the incident wave.

0.12

Equivalent height

0.08

—-— positive sine
--- sine
abs(sine)
——- triangle

0.140

0.130
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0.120

04
Cell period ( height = 0.15)

— step
——- high step

0.110
0.0 0.2

Fig. 4. Equivalent heights as a function of the cell period

Cell period (height h=0.15)

3) The scattering problem solutiorThe reflected wave corresponding to the effective IBC in [mab(12) is a plane wave
Re!k==+kyy) completely expressed by means of the reflection coefficient

1+ ik, ho

R::H—z'kyha'

Comparison ofR and the coefficienR, relative to the reference solution gives a precise handifntpe error induced by the
homogenization process. Since boR| and|R,| are equal to 1, the approximation & by R is more adequately measured

in terms of their phase angle.

In Fig. 5, we have plotted the phase anglesif and R versus the angle of incidence of the incident wave for the sin
shape and for various values @fexpressed in units of wavelength. Three conclusions carréderd
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Fig. 5.
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o—> d=lambda/50 — Arg(R0)
o— —o d=lambda/50 — Arg(R)

40 60 80 100
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Phase angle of the reflection coefficient versus tlggeanf incidence for the sine profile



« Accurate results are obtained fér= /20, and with an acceptable error far= \/10.

o The results are more accurate for oblique than for normatlémces.

» Even beyond the validity range of the method related to aorehat can be reasonably accepted, that is,dfor A/5,

the homogenization process continues to give better sethdin the approximation by a flat plate in a significant way.

Remark and interpretation. Due to the uniqueness of the solution to problem (10), posetié elementary cellp(x)
is necessarily real. Let us consider the reflection of thédemt wave by the plandy = hé} : the reflected wave is then
Ree!F=2kuy) with

Req — _eQikyh(S — R+ 0(62)

The reflection coefficient® and Req are equal up to a term if¥. The parametek(z) can hence be regarded as a normalized
slowly variable height which takes into account the fasiataons of surface on the scattering of the incident wave.

4) Homogenization versus refined samplingMe compare the accuracy of the results delivered by the hemipation
process with those obtained directly by solving on meshegadabus size. The reference solution is still the one oleidin
above on a very refined mesh. The respective errors for tieessiape, defined as in (13), are plotted in Fig. 6. We consider a
sine shape whose amplitude and period are equal. The follpwdluesd = A/10 andd = \/20 were successively considered.

Convergence of direct FEM solution
f=0.2 Ghz

Convergence of direct FEM solution
f=0.1 Ghz
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Fig. 6. Sine of height\/10 and /20

Three features can be pointed out.
« The direct computation requires 40 points per wavelengthi0 points per wavelength respectively to yield the same
accuracy than the homogenization process.

As it has been already observed, the IBC approach begindliteidaccurate results at = A/10. The error in the phase
is then less thah degrees.

Better accuracy can be observed for a roughness of a smaibnéss.

Now, we address the approximation delivered by the IBC fae sshapes having the same amplitugd0 and various
periods. The results are reported in Table | including tHosehe flat plate.

Period A/30 | 0.1\ | 0.2\ | 0.3x | 0.4\ | 0.5\ 0.875\

Flat surf.| 67.5 | 60.22 | 51.1° | 43.5 | 36.9 | 30.9° | 11.¢

IBC 6.5 4.7 2.7 1.0 0.7 2.4 11°
TABLE |

ERROR FOR A FIXED AMPLITUDE AND A VARYING PERIOD

Results obtained using IBC are in good agreement with thereate solution for periods up to/3. This is obviously
beyond the expected domain of validity of the method.

B. Two-scale periodic surfaces

1) Numerical solution of the scattering problerA: simple two-scale periodic surface can be obtained by agttirthe fast
oscillations of an uniformly periodic surface a slow vadatterm. More precisely, the shape is obtained as a supdgos
of two sine functions, with respectively a large peribdof several wavelengths, and a short perigdmall compared to the
wavelength (Fig. 7). The effective condition now dependshanslow variabler. As an example, we consider a surface with
a large periodL = 8\, A being the wavelength, a small peridd= A\/10, and an amplitude./10.



Fig. 7. The two-scale periodic surface

Since the IBC solution handles propagative modes only, e i§ computed sufficiently far from the surface, at a sidfitly
large heighth.,, so that no evanescent mode contributes to the direct refersolution there. Practically, it is sufficient to
take a few wavelengths. In Fig. 8, we have plotted the modaihasthe phase angle over a period for three computations:

1) the reference solution computed on a meshaff nodes per wavelength,

2) the FEM direct solution obtained with a coarse meshi@modes per\ only, clearly not sufficient to represent the

surface correctly,

3) the collocation solution obtained through an IBC comguising a coarser mesh of 5 nodes pesn the plane surface

{y = 0}. The reported tests have been achieved using an incidem ptave at normal incidence.

module at normal incidence phase at normal incidence

/{ §_\ 190.0
170.0
150.0
N J 1300

o v —-= () N0
05 N\ a (2) N100
S 3 —-= (N0

110.0 — (2)N100
@)

Fig. 8. (1) Direct solution af/10, (2) reference a#/100, (3) IBC

For the method (2), the error on the modulus is acceptabléshatge for the phase. The method (3) produces rather good
results both in magnitude and phase.

The same tests have been repeated for an incident wave atgé@ede The results are depicted in Fig. 9 and Fig. 10.
The modulus relative to the three solutions is plotted in BigAlthough the improvement gained by the IBC can be clearly
observed, it is small when compared with the solution oleidion the coarse mesh. By contrast, the error on the phase, ang|
reported in Fig. 10, clearly brings out the improvementiearout by the IBC.

incidence 60 degres

1.30 e (1) N10
-=-- (2) N100
PN -

Fig. 9. (1) Direct solution af\/10, (2) reference & /100, (3) IBC

Therefore, these tests can be considered as a first numealddtion and a justification of the homogenization praces

2) IBC solution versus direct FEM modelingVhen several Floquet modes are propagative, the moduluseosdattered
field becomes a parameter as significant as the phase angltheFfmllowing numerical computations, we use (13) again to
measure the error resulting from the approximation process



Phase error

incidence 60 deg

10.0

| arg(u)-arg(v) |

—
=== (2) N10

Fig. 10. (1) IBC, (2) Direct solution ak/10

We compare the results obtained by the IBC approach withetlodained by directly solving the scattering problem on
meshes of various sizesz respectively equal ta/10, A/20 and\/50. We have also considered three periodic surfaces whose
respective heighbmax is equal toA/20, A\/10 and \/5.

e s | A10 | A/20
xr
/10 32% | 43%
220 3% | 16% | 23%
3/50 % | 2%
IBC 0% | 4% | 0.6%
TABLE I
NORMAL INCIDENCE
h'f”/(]/x
N A5 | A/10 | A/20
xr
/10 3% | 20%
220 2% | 9% | 11%
3/50 0.6% | 1%
IBC 4% [ 0.4%] 0.1%
TABLE Il

60 DEGREES INCIDENCE

As reported in table Il and table Ill, the results based orhthogenization process are in good agreement with thecreder
solution forhmax < A/10. The accuracy reached by the IBC corresponds to that prévithen the scattering problem is solved
on a mesh of 50 points per wavelength in a direct fashion. Natehmax = A/5 is beyond the range of validity of the method,
thereby explaining the large error 24% in the results at normal incidence. However, for such a roegh, the error at oblique
incidence still remains acceptable.

IV. APPLICATION TO SMALL DETAILS
A. Introduction

Now we turn our attention to the case of a small detail inctida a periodic surface of perioll (a few wavelengths).
This case is not rigorously covered by the previous themakframework. But the small size of a detail well matcheshwit
the use of a multi-scale method. Here, we propose an heuggtension that permits the treatment of such a case. In the
theoretical model, the local behavior is characterized bgcal periodd being part of the data. It consists in assembling a
number of small cells to form the large cell of siZe= Nd = d/J, as represented in Fig. 11. We now indicate how this can
be heuristically extended to the current context.

Clearly, the local period no longer really exists now. Th# oésize d that is depicted in Fig. 12 can be understood as a
local periodic approximation reproducing the local bebavf the surface.
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Fig. 11. Periodic surface witlh, = Nd

Fig. 12. Detail

From obvious physical considerationsmust be small comparatively to the wavelength. It must alsdabger than the
mesh sizep to avoid any loss of information. These observations, a$ agethe quantitative results obtained in table |, indicate
that d should be approximately equal 29/3.

Fig. 13. Various choices for the fictitious local period

Note that the numerical approximation of the scattered vempends on a second parameter: the mestpsiteaccounts for
the slow variations of the surface. Typical sizepois A/10 for FEM modelling whiled is of the order of\/3. The following
study will provide a good indication on the way to choose ¢higo parameters.

B. Optimal choice of the local period relatively the geometr

The error on the modulus is measured using (13). The refersolationsues are obtained using a very refined mesh (more
than 200 points per wavelength, see Fig. 14). The objecsive imake the error as small as possible for various shapes of
the detail: triangle, crenel and sine, whose size i$0 x \/10. The incident wave is at normal incidence. To bring out the
accuracy that is gained, we plot the solution, obtained with 0, corresponding to a crude approximation by a flat surface.
As expected, the best results correspond to valued tmetween\/5 and \/2. Values greater than are clearly beyond the

Error versus d

for some shapes

00 0.2 04 06 08 1.0 12
periode d

Fig. 14. Behaviour of the error relatively to the local fiictits period for some shapes

range of validity of the approximation. An interesting clusion is that the choice for the local peridds not at all critical
provided it is taken within the indicated range of values.
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C. Optimal choice of the local period relatively to the angleincidence
The same tests, as above for the crenel, but with an incideve at different incidences: 30, 60 and 80 degrees are ezport
in Fig. 15.

Error versus d

for some angles of incidence

period d

Fig. 15. Behaviour of the error relatively to the local fictits period for some angles of incidence

As expected the accuracy does not depend on the incidende dah¢ident wave. So, another interesting feature of this
approach is that the error is approximately the same forrajles of incidence.

V. APPLICATION TO ROUGH SURFACES

Since the homogenization process has led to an IBC which psesged through a differential operator, it makes sense
to extend this approach to a general rough surface, at leastformalist way. Actually, we follow the heuristic apprbac
previously introduced in section IV. We remain within tharfrework of the two-scale model. The local scale is obtained b
windowing the local surface and making it periodic. We thee shat a rough approximation is introduced by imposing a
periodic boundary condition on the left and the right of thedl cells but the remaining part of the derivation of the IBC
undertaken identically. The aim of the following numeritests is to show that the homogenization process still nesnai
good approximation procedure.

The test-case being considered here is a multiscale randoghrsurface highly oscillating. It is generated from the
Weierstrass function, whose infinite series is truncateé between 1 and.,

VI(L-DCPT)E R "
(b(gp_4) _ b(QD_4)(”2+1))% Z1(b(27D)n 008(27rb x + Qn))
n=

W(z)=n

where
« D is the fractal dimension parameter, characterizing thghoass which ranges from 1 to 2 to increase the ruggedness,
e 6, is a random phase,
« n? is the maximum variance,
o ny is the number of scales being considered,
« b is a positive irrational parameteb £ /7 here).

fractale surface
=1.8

T
— surface
- - heg

Fig. 16. Multiscale rough surface
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A very rough surface is obtained by choosifig= 1.8 (see Fig. 16). The root mean square height (rmsh) of the prafi
A/15 and /30, which corresponds to maximum heights of respectively and\/10. We are hence at the limit of validity of
the method which has been pointed out previously in the chgeridic surfaces in section II-B. The corresponding slamp
is represented in Fig. 16 as well as the IBC.

Like in section lll, appropriate choice for the local peridchas to be done. Its influence is evaluated below. To this end,
we use the following procedure.

« Define the IBC as a function constant by element, on an unifoesh. The related mesh size is denotepb¥his mesh

is further used to solve the homogenized problem.

« Use a cell, whose size is denoted dyycentered on the element on which the value of the IBC is beamgputed.

The errors on the results obtained the homogenization psoaee reported in Table IV for various valuesdyfp and 6.
They are computed as above in terms of (13) using a referexiaBom computed on a very refined mesh.

An interesting indication on the efficiency of the IBC apprbaan be brought out by considering the error relative to the
crudest approximation by a flat surface. For an incidenceGotiégrees, this error is 18.8 %. It reaches 37.2 % at normal
incidence.

0.1\ 0.2\ 0.3\ | 0.4\ | 0.5\

M10| 6=0" | 41% | 275%|29% | 48 % | 5.4 %
M10[60=60" | 1.8% | 1.3% | 2% |3.2%]| 42%
N5 | 6=0 4% |[285%| 2% |[3.9%]6.1%
N5 | 0=60" | 42% | 21% | 1.7%|32%| 48 %
M3 | 6=0 |187%] 10.1%| 6.7 % | 6.4 % | 5.2 %

TABLE IV
ERRORS FOR DIFFERENT MESH SIZES AND PERIODSd

Table IV provides the last ingredient concerning the styatef choosing the mesh sizeand the cell sizel. The best results
are obtained withi slightly larger thanp. This can be interpreted from the fact that the informationtained in the mesh
element is then fully used and the side-effect resultingiftbe fictitious periodic boundary conditions are reducechash as
possible. Note that the quality of the approximation is netyvsensitive to this choice as long ésemains small compared
to the wavelength. As a result, it is sufficient to use a mezh of the order\/5 or A/10 to produce satisfactory results.

A comparison of the homogenized solution with the referemte is depicted in Fig. 17 and Fig. 18. Two lines single out
the error forp = A/5 andd = A/3 and a more accurate solution obtained with- A\/10 andd = \/5.

Convergence of FEM Convergence of FEM
normal incidence incident angle 60 degres
20.0 15.0
G—OFEM O—OFEM
15.0 ——-1BC ——-1BC
10.0
s s
8 5
= 100 %
c =4
5.0
5.0
— S N — ~o R

0.0 0.0
0.0 20.0 40.0 60.0 80.0 100.0 0.0 20.0 40.0 60.0 80.0 100.0

Number of point per wavelength Number of point per wavelength

Fig. 17. Random surface D=1.8, rmsh:30

The results exhibit a good agreement with the referencetisnluThe accuracy reached is equivalent to that based on a
direct solution using 30 to 40 points per wavelength. The sizthe problem to be solved is reduced by a faéterhen using
the homogenization approach with= \/5 for this two-dimensional case.

Some results on the approximation of the modulus are reghanté=ig. 19 which shows a quite good agreement of the
overall behavior of the solution with the reference one.

Similar tests can be found in [15] as well as a descriptionto€tsastic surfaces in [18]. The good results, obtained, here
suggest that the fictitious periodic condition imposed angimall local cells does not significantly contribute to tkeerall error
induced by both the homogenization and the approximationgss which is itself very small. Note that, in this study, veee
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Convergence of FEM Convergence of FEM

normal incidence incident angle 60 degre

250
250
200 G—OFEM
——- IBC
200
5 5 150
® ®
e e
g 150 s
3 3
El 3 100
10.0
| - 50 \
* . - \\@\
00 00

0.0 10.0 20.0 30.0 0.0 10.0 20.0 30.0
Number of point per wavelength Number of point per wavelength

Fig. 18. Random surface D=1.8, rmshA5

Surface D=1.8 Surface D=1.8
=0.1 Ghz, incident angle 0 deg #=0.1 Ghz, incident angle 60 deg
1.40 T T 1.50 T T

1.30 | —— FEM| ] p——y]
——-BC —— 1BC

Fig. 19. Modulus of the field, rmsh/30

only dealt with the construction and the measure of the pevdoce of a procedure to solve the scattering problem neaibri
without resorting to a very fine sampling of the surface. Weehtackled no question concerning the electromagneticqrtigys
of the multiscale random surfaces. This is a large studysoaviin, demanding large scale computations. One of the ntiothsga
of this work, besides making such computations feasible, pracisely to accelerate them.

VI. CONCLUSION

The theoretical as well as the numerical results of thisystualve shown the relevance of the homogenization technique
in the solution of scattering of waves by a highly oscillgtisurface. Even if no theoretical foundation is available rion
periodic or multiscale surfaces, the approach gives quitalgesults for these cases too. The present limitationsetaged to
the maximum height of the roughness which must be less djan. The technique can be improved by using higher-order
IBCs. Combined with a numerical method like the Method of Mmits (MoM), FEM or FDTD, it can yield an efficient
solution technique for scattering and radiation problem&living small details or rough surfaces [19]. It can be comab
with a Monte-Carlo process to deal with random rough sugfasea straightforward application of the homogenizatiatess
presented in this work. In this paper, only perfectly conhgcsurface with TM polarization has been considered. Bsiten
to the other polarization and to the dielectric case shoolldW the same methodology leading to a transmission idstda
a boundary condition. This should yield the transmitted &l as the reflected field. The extension to the three dimeasio
case has been done theoretically [15] and its full study béllcovered in a forthcoming paper.
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