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Abstract— Characterizing the performance of im- as well as spatial homogeneity constraints. STAPLE
age segmentation approaches has been a persistenis straightforward to apply to clinical imaging data,
challenge. Performance analysis is important since it readily enables assessment of the performance of
segmentation algorithms often have limited accuracy an automated image segmentation algorithm, and
and precision. Interactive drawing of the desired enables direct comparison of human rater and al-
segmentation by human raters has often been the gorithm performanc
only acceptable approach, and yet suffers from intra-
rater and inter-rater variability. Automated algo-
rithms have been sought in order to remove the
variability introduced by raters, but such algorithms
must be assessed to ensure they are suitable for the
task.

The performance of raters (human or algorith- I. INTRODUCTION

mic) generating segmentations of medical images has Medical image segmentation has long been rec-

been difficult to quantify because of the difficulty of . - : .
obtaining or estimating a known true segmentation ©9nized as a difficult problem. Many interactive

for clinical data. Although physical and digital phan- ~and automated algorithms have been proposed, and
toms can be constructed for which ground truth is in practice approaches specifically tuned to the
'f‘”lIOW“ f(l)r real(_j")/ ?S_t'matedx such phhanto_rfmfw_s (Ijo ”(f)t important characteristics of the application are often
ully reflect clinical images due to the difficulty of = o, -cassfyl. When selecting, designing or optimizing
constructing phantoms which reproduce the full range . . .

of imaging characteristics and normal and patholog- Particular algorithms for a segmentation task, the
ical anatomical variability observed in clinical data. performance characteristics of the algorithms must
Comparison to a collection of segmentations by raters be assessed.

is an attractive alternative since it can be carried Characterizing the performance of image seg-
out directly on the relevant clinical imaging data. mentation approaches has also been a persistent

However, the most appropriate measure or set of L L
measures with which to compare such segmentations challenge. Quantitative performance analysis is im-

has not been clarified and several measures are usedportant since segmentation algorithms often have
in practice. limited accuracy and precision. Interactive drawing

We present here an Expectation-Maximization al- of the desired segmentation by domain experts has
gorithm for Simultaneous Truth and Performance often been the only acceptable approach, and yet
Level Estimation (STAPLE). The algorithm consid- e ¢ from intra-expert and inter-expert variability

ers a collection of segmentations and computes a dis ti : d .
probabilistic estimate of the true segmentation and 2Nd IS iMé consuming and expensive to carry out.

a measure of the performance level represented by Automated algorithms have been sought in order
each segmentation. The source of each segmentationto remove the variability introduced by experts, but

in the collection may be an appropriately trained gytomated algorithms must be assessed to ensure
human rater or raters, or may be an automated they are suitable for the task.

segmentation algorithm. The probabilistic estimate .

of the true segmentation is formed by estimating an ~ Méasurement tools are often characterized by
optimal combination of the segmentations, weighting assessment of their accuracy and precision. The
each segmentation depending upon the estimated per- accuracy of a human or an algorithm in creating a
formance level, and incorporating a prior model for

the spatial distribution of structures being segmented  This paper is accepted to appear in IEEE TMI in 2004.

Index Terms— Segmentation, validation,
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segmentation is the degree to which the segmeaecuracy, good automated segmentation algorithms
tation corresponds to the true segmentation, amdso typically require less time to apply and have
so the assessment of accuracy of a segmentatiogtter precision than interactive segmentation by an
requires a reference standard, representing the trempert.
segmentation, against which it may be compared. The most appropriate way to carry out the
Precision is determined by the reproducibility of theomparison of a segmentation to a group of ex-
segmentations obtained repeatedly from the samert segmentations is so far unclear. A number
image [1]. The precision may be assessed withoaf metrics have been proposed to compare seg-
comparison to a reference standard. High accuranyentations. Simply measuring the volume of seg-
and high precision are both desirable properties. mented structures has often been used [6], [7].
An ideal reference standard for image segmentaiwo segmentation methods may be compared by
tion would be known to high accuracy and wouldassessing the limits of agreement [8] of volume
reflect the characteristics of segmentation problenestimates derived from the segmentations. However,
encountered in practice. There is a tradeoff betweenlume estimates may be quite similar when the
the accuracy with which the reference standard maggmented structures are located differently, have
be known and the degree to which the referenakfferent shapes or have different boundaries [9]
standard reflects segmentation problems encousnd so alternative measures have been sought [10].
tered in practice, that is between the accuracy andOther measures used in practice include mea-
the realism of the reference standard. The accsures of spatial overlap, such as the Dice and Jac-
racy of segmentations of medical images has beeard Similarity Coefficients [11], [12]. For example,
difficult to quantify in the absence of an acceptedpatial overlap has been used to compare manual
reference standard for clinical imaging data. segmentations with segmentations obtained through
Synthetic images can be constructed with knownonrigid registration [13]. Furthermore, measures
true segmentation (high accuracy) but typically lackspired by information theory have been applied
characteristics encountered in practice. Phantorjist], [15]. In many applications, assessment of
can be built and imaged, which increases the rboundary differences is useful and the Hausdorff
alism of the model by incorporating the imagingneasure and modifications have been used for this
system characteristics, but also reduces the fidelif¥/6]. Agreement measures for comparing different
with which the true segmentation is known. Al-experts, such as the kappa statistic, have also been
though such physical and digital phantoms [2]explored [17].
[3] have an important role to play in quantify- A reference standard has sometimes been formed
ing algorithm performance, such phantoms donlty taking a combination of expert segmentations.
fully reflect clinical images due to the difficulty For example, a voting rule used in practice selects
of constructing phantoms that reproduce the fullll voxels where some majority of experts agree
range of imaging characteristics (such as partitthe structure to be segmented is present [18], [19].
volume artifact, intensity inhomogeneity artifactThis simple approach unfortunately doesn't provide
and noise). In addition, such phantoms typicallguidance as to how many experts should agree
cannot reproduce both the normal and pathologichéfore the structure is considered to be present.
anatomical variability observed in clinical dataFurthermore vote counting strategies treat each
Therefore, alternative approaches have an importardter equally without regard to potential variability
role, as it is not necessarily possible to generalize quality or performance amongst the voters, and
performance measurements on a phantom to tHees not allow for a priori information regarding
results expected in practice. the structure being segmented to be incorporated.
Cadavers provide a more realistic model ofn the case of binary segmentations, a majority vote
anatomy, but the true segmentation can only be at least unique in the case of an odd number
estimated, and such models differ from in vivo dataf voters. However, in the case of multi-category
[4], [5]. Patient data provides the most realistisegmentations, the category with the most votes
model for a given application task, but is the mostay not be unique and may not reflect the overall
difficult for which to identify a reference standard.preferred choice of the voters. Preferential voting
A common alternative to phantom studies hastrategies, operating on votes or class probabilities,
been to carry out behavioral comparisons: an autbhave been examined in the context of classifier
mated algorithm is compared to the segmentatiofission [20]. Examples include the Borda count
generated by a group of experts, and if the alg¢21] for preferential vote ordering, class probability
rithm generates segmentations sufficiently similasombining strategies (the Product Rule and the Sum
to the experts, it is considered to be an acceptalfRule which can be used to express the Min Rule,
substitute for the experts. In addition to acceptablbe Max Rule, the Median Rule and the Majority



Vote Rule as described by [22]), and strategiesonvergence is reached. Convergence to a local
which assume each classifier has expertise inn@aaximum is guaranteed. Since we obtain both an
subset of the decision domain [23]-[25]. Similar isestimate of the true segmentation and performance
sues in combining decisions from multiple raters gparameters from a collection of segmentations and
studies arise in content-based collaborative filtering prior model, the algorithm is straightforward
[26] and in meta-analysis of diagnostic tests [27}0 apply to clinical imaging data. The algorithm
[28]. Estimating performance in the presence danables the assessment of the performance of an
an imperfect or limited reference standard has alsmtomated image segmentation algorithm, and pro-
been explored [29], [30]. The most appropriate voteides a simple method for direct comparison of
ordering or decision combining strategy remainkuman and algorithm performance.
unclear. This article is organized as follows: In Sectjoh Il
We present here a new algorithm, Simultaneowse describe the STAPLE algorithm. We describe
Truth And Performance Level Estimation (STA-how STAPLE can be appropriately initialized both
PLE), which takes a collection of segmentationgshen there is no or limited prior information and
of an image, and computes simultaneously a prolhen rich prior information is available. We de-
abilistic estimate of the true segmentation and scribe how convergence of the estimation scheme
measure of the performance level represented g/ detected. In Sectioh ]Il we describe the appli-
each segmentation. The source of each segmemtion of the STAPLE algorithm to digital phan-
tation in the collection may be an appropriatelyoms where the true segmentation is known by
trained human rater or raters, or it may be aoonstruction and investigate the characterization of
automated segmentation algorithm. Our algorithreegmentations by synthetic raters with predefined
is formulated as an instance of the Expectatiorsensitivities and specificities. We demonstrate that
Maximization (EM) algorithm [31], [32] and builds STAPLE accurately estimates the performance level
upon our earlier work [33], [34]. In the formula- parameters and the true segmentation. We demon-
tion of our algorithm described here, the expertrate the use of STAPLE with data from several
segmentation decision at each voxel is directlglinical applications in order to compare with previ-
observable, the hidden true segmentation is a binaoysly reported validation measures and to illustrate
variable for each voxel, and the performance levehow the algorithm may be used in practice. The
or quality, achieved by each segmentation is repreemputational complexity and the run time of the
sented by sensitivity and specificity parameters. Wadgorithm are reported, and indicate the algorithm
also describe a generalization of the algorithm toonverges rapidly in practical applications.
unordered multi-category labels, suitable for when
the hidden true segmentation at each voxel is one Il. METHOD
of an unordered finite SEt.Of labels. . We describe in this section an EM algorithm
The completedata consists of the segmentation

decisi i h | which « r estimating the hidden true segmentation and
Ecisions at each VOXel, WnICh areé Known, anfe formance level parameters from a collection of
the true segmentation, which is not known. |

we did know the true segmentation, it would be egmentations and a prior model.

straightforward to estimate the performance param- o )

eters by maximum likelihood estimation. Since thé: Description of STAPLE Algorithm

complete data is not available, the complete dataConsider an image of N voxels, and the task of
log likelihood cannot be constructed and insteasegmenting a structure in that image by indicating
must be estimated. Doing so requires evaluatirthe presence or absence of the structure at each
the conditional probability density of theidden voxel. Letp = (p1,p2,...,pr)" be a column vector
true segmentation given the segmentation decisioos R elements, with each element a sensitivity
and a previous estimate of the performance levphrameter characterising one &f segmentations,

of each segmentation generator. The expectatiandq = (q1, ¢z, ...,qr)” be a column vector oR?

of the complete data log likelihood with respecelements, with each element a specificity parameter
to this density is then calculated, and from thisharacterising the performance of one Bfseg-
estimate of the complete data log likehood, thmentations. LelD be anN x R matrix describing
performance parameters are found by maximuthe binary decisions made for each segmentation
likelihood estimation (or maximum a posterioriat each voxel of the image. L&t be an indicator
(MAP) estimation when a prior distribution for thevector of N elements, representing the hidden bi-
parameters is considered). We iterate this sequentary true segmentation, where for each voxel the
of estimation of the conditional probability of thestructure of interest is recorded as present (1) or
true segmentation and performance parameters uriisent (0). Let the complete data {@@, T) and let



the probability mass function of the complete dateegarded as an observable function of the complete
be f(D, T|p, q). data. Here the complete data is the segmentation

Our goal is to estimate the performance levalecisionsD augmented with the true segmentation
parameters of the experts characterised by paranoé-each voxell'. This true segmentatidi is called
ters (p,q) which maximize the complete data logthe missing or hidden data, and is unobservable. Let
likelihood function

(P, &) = argmaxIn f(D, T|p, q). @y 0; = (pj,q;)", Vjel...R (4)

If we knew the true segmentation, we coulde the unknown parameters characterizing perfor-
construct a2 x 2 conditional probability table, mance of segmentationand
by comparing the decisiofy;; of segmentatiory 0160, 0 5
(for j = 1,...,R) as to presence or absence of = (619> 0r], ®)
a structure at voxel with the true segmentation. he complete set of unknown parameters for the
Recall the definition of sensitivity and specificity, segmentations that we wish to identify. Let
where p; represent the ‘true positive fraction’ Of £(D, T|9) denote the probability mass function of
sensitivity (relative frequency oD;; = 1 when the random vector corresponding to the complete
T, =1), data. We write the complete data log likelihood

p; =PH(Dy; = 1|T; = 1) ) function as

and ¢; represent the ‘true negative fraction’ or InLc{8} = In f(D, T|0). (6)
specificity (relative frequency oD;; = 0 when

T, = 0) The EM algorithm approaches the problem of

maximizing the incomplete data log likelihood
qj = Pr(D;; = 0|T; = 0). (3) equation

The parameterp;,q; € [0,1] are assumed to In 2{6} = In f(D|0) (@)

be characteristic of the rater, and may be equal L . . L
for different raters but in general are not. W y proceeding iteratively with estimation and max-

assume that the segmentation decisions are gﬂization of the complete data log likelihood func-
conditionally independent given the true segmer%'—on' ;Ask;[he coglrple_ztte_ datal log d“kbe“htOOd fu;_;:_tlonl
tation and the performance level parameters, th?iggctgtizﬁr\é?veﬁ’tL(aISo[JE;Zr?/;eble é’ s ;?% |ﬂ|](;na
is (Dij|Ti;pj,q]') 1 (Dij"Tivpj/aqj’)! v ] #

j'. This model expresses the assumption that tﬁgrrent estimate of. Computing the conditional

raters derive their segmentations of the same ima%épectatlon of the complete data log likelihood

independently from one another and that the quali netion Is referred to as the_ E_-step_, and |_denF|—
of the result of the segmentation is captured by th ing the parameters that maximize this function is
o e referred to as the M-step.
sensitivity and specificity parameters. . 0) i
Implicit in this model is the notion that the In more detail, leBt be some initial value for

experts have been trained to interpret the imag SThen, on the first iteration, the E-step requires
in a similar way, the segmentation decisions ma e calculation of

differ due to random or systematic rater differences, Q(9|9(0)) — B {lnf(D, T|0)‘D,0(0)}

and that a probabilistic estimate of the true segmen-

tation can be formulated as an optimal combination - Z In f(D, T|)f(T|D,8).
of the observed decisions and a prior model. T

We now present the version of the EM algorithm h . h o 0)
that we have developed for this problem whict Ne M-step requires the maximization Q{96™)

enables us to estimate the solution of Equafipn ?2’16)” the parameter space @fThat is, we choose
Detailed descriptions of the EM algorithm and ~ Such that

generalizations are available [31], [32] and our ex- Q(0(1)|0(0)) > Q(GIB(O)) (9)
position closely follows those sources. The essence -

of the EM algorithm is the observation that certairfor all . The E-step and M-step are then repeated as
maximum likelihood estimation problems would beabove where at each iteratiénthe current estimate
considerably simplified if some missing data wer@*) and the observed segmentation decisi@hs
available, and this is the case for our problemare used to calculate the conditional expectation of
The observable data, the segmentation decisionstia¢ complete data log likelihood function, and then
each voxel, is regarded as being incomplete andtise estimate oB**1 is found by maximization

(8)



of Q(816*)). The E- and M- steps are iteratedous estimate of the performance parameters.

until convergence. It has been shown [31] that the
incomplete data likelihood function is not decreaseg(T|D, ")) =

f(D|T, 8% V) f(T)

after an EM iteration, and so local convergence S FDIT 0% ) f(T)

is guaranteed when the likelihood function has an

upper bound.

The key requirements necessary to carry out the

IL|IL 7.0 ) )

’ (k—1) ’
EM algorithm are to have a specification of the ZT{ ~--ZT1'V I {Hj f(Dy|T;, 0 )}f(Ti)
complete data, and to have the conditional probabil-
ity density of the complete data given the observed [, [Hj F(Di|T;,p; =1, Qj(kl))] f(To)

data. We describe below how the E-step and M-step:

are formulated for our estimation problem.
The performance parameters at iteratiorthat

L[S TL A0 2y 0.0,0-0)] ()

maximize the conditional expectation of the log

likelihood function are given by

0% — arg max B [In f(D, To)‘D,w“)}

=arg mng {ln W ’Dﬂ(k—l)] .
(10)
Hence, on expressingf®) as (p®, q®),
(", q®)) = arg maxE[
p.qa
In f(D’T7p7q)f(T7p7q) ’ (11)

f(T,p,q)f(p,q)
]:)7 p(k’—l)7 q(k—l):|

and so we have

(5%,a®) = arg e £ In/(DIT, . ) (T))
P,q
D,p(’“l)7q(’“1)],
(12)
where (p®),q(¥)) is the estimate of the expert

performance level parameters at iteratibn and
the last follows under the assumption tHat is

such that at each voxel i we have
F(T|D;, p#=Y g1 =
ZTI_/ HJ f(D’Lj|717,/7pJ(k71)7 Qj(kil))f(Ti,)

where f(T;) is the prior probability ofT;, and

the conditional independence of the segmentations
allows us to write the joint probability as a product
of rater-specific probabilities. A voxelwise inde-
pendence assumption has been made here, and in
Sectior{ TI-E it is shown how voxelwise dependence
can be efficiently modeled.

Since the true segmentation is treated as a bi-
nary random variable, the conditional probability
F(T; = 0Dy, p*=Y, q*=V) is simply 1 — f(T; =
1|D;, p*—1, q*~1). We store for each voxel the
estimate of the probability that the true segmenta-
tion at each voxel iF; = 1. Sectior{ TI-D describes
a generalization to segmentations with unordered
multi-category labels.

Now consider Equation 13 fdF; = 1 andT; = 0
respectively. Factoring over the raters and using the
definition of p; andg;, we can write:

o = 1T = D [[ 1Dy = 1,9, ,¢,V)

=fm=10 I »% ][I a-p,"*)

j:Dij=1 j:D;j=0

(14)

independent of the performance level parametefd

so thatf(T,p,q) = f(T)f(p,q).

B. E-step: Estimation of the conditional expecta-

tion of the complete data log likelihood function.

b = 71 = 0) [T F(Ds T = 0,9, 4,

=fT@=0 [ «® I a-¢™)

j:Dij:O j:D,szl
(15)

In this section the estimator for the unobservedherej : D;; = 1 denotes the set of indices for
true segmentation is derived. We first derive awhich the decision of ratej at voxel: (i.e. D;;)
expression for the conditional probability densityhas the value 1.

function of the true segmentation given the expe

rt With these expressions, we can now write a

decisions (observed segmentations) and the pregbsmpact expression for the conditional probability



of the true segmentation at each voxel. Using the so for each exper,
notation common for EM algorithms, we refer to

i i i (k-1).
this as the weight variabl&/; : (0;®,¢;®) = arg maXZ B

w* Y = (T, = 1Dy, p*Y, g+ D) S ii‘?’éi-‘zi:[
(k—1) _
Tk ?)Z 1) - (16) WV in f(DyIT: = 1,p),4)+
a; 4D (1= W D) In £(Dy;|T; = 0,p5,45)]

= arg max Z Wi(kfl) Inp;

pj,qj i:DijII
+ > =W ( - )

The WeightWi(k’l) indicates the probability of D=1
thg true segmgntation at voxebeing gqual to one. + Z Wi(m) In(1 — p;)
It is a normalized product of the prior probability i:Dy, =0
of T; = 1, the sensitivity of each of the experts (k—1)
that decided the true segmentation was one and (1 + _ Z (1—=W;" ") Ing;
- sensitivity) of each of the experts that decided the Di;=0
true segmentation was zero. A necessary condition at a maximum of the

| q | he E . above with respect to parameter is that the
n order to compiete the E-step, we requirg o yoriative equal zero. Differentiating(8]6*))

an expression for the conditional expectation Qt/ith r -
o : . espect to parameter;, and equating to O,
the complete data log likelihood function. Thi ields (s?milarly f}grq-) & q g
J

is dramatically simplified when we consider onl
the terms necessary for finding the parameters that

maximize the function, and this is derived in the *) D iD= Wi(k’l)
next section. P = SRR (18)
i
k—1
(k) Zi:Dij:O(l - Wz( ))
q; = (k—1) (19)
Zi(l - VV7 )

We can interpret the weight estimaWi(k’l)
as the strength of belief in the underlying true
segmentation being equal to 1. In the case of
C. M-step: Estimation of the Performance Paramperfect knowledge about the true segmentation, i.e.
eters by Maximization. w1 € {0.0,1.0}, the estimator of sensitivity
given by Equation 18 corresponds to the usual
definition of sensitivity as the true positive fraction.

Given the estimated weight variablé@i(k’l), When the true segmentation is a continuous param-

- L L ; (k—1) ;
which represent the conditional probabilities of th&ter, i.e.W;"~* & [0, 1] as here, the estimator can
of the true segmentation, we can find the values 8€ interpreted as the ratio of the-th expert true
the expert performance level parameters that maRositive detections to the total amount of structure

imize the conditional expectation of the completdi = 1 voxels believed to be in the data, with each
data log likelihood function. voxel detection weighted by the strength of belief

in 7; = 1. Similarly, the specificity estimator of
Considering Equatiop 12, and noting that sincequatiorf IP is a natural formulation of an estimator
InJ[, f(T3) is free of (p, q) it follows that for the specificity given a degree of belief in the
underlyingT; = 0 state.

Summary

(p(k),q(k)) = arg Igé}lxz Z E [ STAPLE estimates the performance parameters,
g (17) and a probabilistic estimate of the true segmenta-
In f(Dy;|T;, pj. q;)| D, p* Y, ] tion, by iterated estimation. The first step of each



iteration is estimation of the conditional probability

of the true segmentation given the expert decision (k+1)

and previous performance parameter estimates

given by Equation[ 16, and the second step is argmaxZE [mf(Dilei,@j)ID,ng)
updated estimation of the performance parameters '

given by Equatiof 18 and Equatipn]19. _ argmaxZZW(k) In f(Dy|T; = s,0;)

= arg maxz Z

s’ :Dj;=s’

D. An Extension to Unordered Multi-Category La- Z Wi n f(Dy; = ' Ti = 5,0,)
bels
= argmaxz Z Z W(k) Inf;ss (21)
In this section we provide a generalization of the s #Dij=s" s

estimation strategy to the case when the truth is aNoting the constraint that each row of the rater
label from a finite set of unordered categories. Fqrarameter matrix must sum to one to be a proba-
example, consider a brain MRI tissue segmentatidgility mass function,

application where we are interested to identify the

true label as one of white matter, gray matter or ZQJS’S =1 (22)
cerebrospinal fluid. Rather than being restricted to '

two labels only, here we allowf to take on one of We can find the parameters that maximize the
L labels whereT; € {0,1,..., L—1} and similarly above expression by formulating the constrained
the segmentation decisions may also be one of the@timization problem:

L labels, D;; € {0,1,...,L — 1}, andD is an

N x R matrix describing the decisions made for
each segmentation at each voxel of the image. Iy

S Y wlmee+

this case, we characterize each rater performance by 891" TS Dy =s' s

0;, anL x L matrix of parameters where the element

of the matrix characterizes the probability rager AZojs,s

will decide labels’ is present when the true label s’

is s. The perfect rater would have a performance Z wk L 1 I

matrix with 1 on the diagonal and O in each off- i " O
iD=

diagonal element.

In order to evaluate the conditional expectation Therefore, we find

of the complete data log likelihood for this case, S W

. . (k+1) i:Djj=s s
we need to compute the conditional probability Oiss = = B (23)
that the true label at voxel is s given the set

of segmentations and the previous estimate of ffd on substituting the constraint from Equafioh 22

performance characteristics. Similarly to the binary)'e have "
case, we find that gD _ 2 ips—s Wi (24)
js's (k)
Zi VVsi
Note that in the case of binary decisions, this pa-
w® = F(T; = sDy 0(k)) (20) rameter estimator simplifies to the same expression

*) as was derived in the binary case.

(T = s) 1, f(D4|Ti = 5,0;™)
Yoo f(Ti =5 Hj f(Di;|T; = ¢, 9§k)) E. A Model for Estimation of Spatially Correlated
Structures

The estimate of the posterior probability ©f
With this conditional probability, we can evaluateobtained from Equatiof 13 is correct under the
the complete data log likelihood function, withassumption that the true segmentation has no spatial
the goal of identifying the performance parametersorrelation - that is, at any given voxel the probabil-
by maximum likelihood estimation. Consideringity of the true segmentation is independent of the
each rater separately, we find the new parametene segmentation of the neighboring or adjacent
est|mate39 (k+1) by: voxels. In practical applications it is often the case




that the true segmentation has an underlying spatdirwise interactions:

homogeneity. - o | 1 S U(T))
One mechanism to capture this is to provide J(T) = 7 XP <T>
a spatially varying probability forf(T; = 1) to s
reflect prior information about the spatial distribu- exp (W>
tion of theT;. For example, when assessing brain T
segmentations of white matter, a probabilistic atlas _ b eXp(Zi U(Ti))é_
of the distribution of white matter derived from a Al T Z
large group of subjects can provide the prior true 22 V(T Ty)
segmentation probabilities at each voxel [35]-[37]. eXp (T>
However, a probabilistic atlas is not available for Ral )
all structures of interest. = Hf(Ti)% exp (El 2, ‘T/(T“TJ)>
A second mechanism for incorporating spatial g
homogeneity is to introduce a Markov Random
Field (MRF) model. This allows milder assump-
tions than the strong voxelwise independence as- Inf(T) = Zlﬂ () +InZy —InZ
sumption used above. Constructing a fully general i
probability model on random fields such dsis + 1 ZZV(T“TJ') (26)
a daunting prospect due to the huge size of such a TS5

model — just representing full covariation statistics .
would be difficult. A useful compromise that par- The above natural model allows us to incorporate

tially relaxes the independence assumption is ttfeModel for spatial homogeneity of the true seg-
MRE model. in which the conditional dependenc@entat'on in our estimation scheme. One choice of
of a given voxel on all of the others is equal tMRF model that has low computational complexity

its conditional dependence on the voxels in a loc&"d Which is applicable here, is the mean field
neighborhood. approximation. An extensive investigation of this

I ith the Isi dels of f has been reported by Elfadel [44] and it has been
Beginning with the Ising [38] models of ferro- usged to impose a spatial homogeneity constraint

magnetism, these models have frequently been usg image segmentation [39], [47] and for motion
to model phenomena that exhibit spatial COherenC@stimation from images [48]. The mean field ap-

including medical image segmentation problemgq.imation has been used for constrained surface

[39]-{41]. reconstruction, and its use has been motivated by
While the estimators which use MRF modelshe fact that it is the minimum variance Bayes

are usually more complex to implement, exact estestimator of the true field [49].

mates may be obtained in reasonable (polynomial) The mean field of the estimated true segmenta-

time [42], [43] and efficient approximation schemesion at iterationk (that is, the mean field o),

are also available [44], [45]. can be found by an embedded iteration process. It
The Hammersley-Clifford theorem [46] estabis found by initializing with the voxelwise inde-

lishes a one to one correspondence between MRP&ndent estimate, and then iterating the following

and probability models written in Gibbs form, agelation to convergence [47, page 47]:

follows:

Wil:) — %exp(ln f(T;=s)
f(T) = %exp(_E(T) ), + IHIZIf(Dij‘Ti = 5»0§k_1))
Z = Zexp(_ET(T)), (25) - ZZJWWSZ) 27)
T m n
—E(T)=) UT)+ V(T,, Ty). with
1) =3 UE) + Y V) s

This is the stationary Gibbs form, whetgé and where Wilf) is the mean field estimate of the
T are constants and’ is called the energy func- conditional probability that spatial sitehas label
tion. SelectingE(T) as above, we can factor thiss, Jg, describes the degree of spatial compatibility
standard form into a term depending solely on thieetween labek and labeln, m indexes the spatial
single site voxel prior and a term depending osites in the neighborhood of site and Z is a



normalizing constant. This MRF approximation ideraction neighborhood structure leads to
easily computed and is suitable for any number of In f(T|D (k) q(k)) ~
labels, and allows a model of spatial homogeneity R ’ ’
to be incorporated into the iterative estimation
scheme of Equatiof 16, Equati¢n|18 and Equa- Z Z Brn(TnTn + (1= Tin) (1 = Tn))+
tion [13. mN:M:l ®
In our experiments with binary true segmen- Zln i T
tations we have investigated an alternative MRF < bk )
representation which has twin virtues. First, it com-
putes an exact solution to the maximum a posteriori (30)
estimate of the true segmentation, and secondly, it
is very computationally efficient. With this methodwhere a term in Equation 29 not dependingZGin
a single estimate of the true segmentation incorp§as been ignored in Equatign]30 as it does not
rating the MRF is obtained following convergencélter the estimate of the true segmentation, and
of the EM iteration scheme described above. IS an interaction weight between voxeis and »
We can express the prior probability of the fieldhat encodes the strength of the prior probability

T by taking Equatiof 26, omitting the constants9f true segmentations. I, > 0 then voxels

and lettingV’ (T3, T}) = By (T T+ (1— Ty ) (1— m and n are neighbors, and,,,,, = 0 V m. If
T,)), so that we have Bmn = 0, ¥ m,n, then we have the first model

presented above with no neighborhood interaction
In f(T) Zlnf(Ti)“" prior probability. The nonzero inFeract.ion wei.ght is
- often chosen a§,,,,, = 3, V m,n, in a given neigh-

S

borhood, or an appropriately scaled modification
Zzﬁm"(Tan AT =Tn)) ot this depending on the distance between voxels
" (28) along each coordinate axis, and acts such that as
(3 grows larger, the estimated true segmentation is
where3,,,, = 0 for voxels that are not neighbors. smoother and more spatially homogeneous.

Let the voxels in the neighborhood of voxgl  This particular MRF model is attractive because
be denoted by)i, note as above the neighborhoodt enables us to capture the intuitive notion of
dependence of the true segmentation is independé@nspatially correlated true segmentation, and also
of the single site prior probability and recall ¢ because it has been shown by Greig et al. [42]

{0,1}. that it can be solved exactly with an efficient
The true segmentatiofi; V i will be estimated network flow algorithm. Greig et al. demonstrated
by maximizing the posterior probability: the equivalence between exact maximum a poste-

riori estimation with the above binary MRF model
f(TD, p®™, q*) and a maximum flow-minimum cut network flow

(k) (k) problem. Since efficient (polynomial in number of
> f(DIT, ™, ¢ ) /(T) edges and vertices) algorithms for the minimum
o [TTI £ (01T, 5%, ;) F(T2) £(Tai)  cut problem are known, this equivalence enables

i J a rapid estimation of the true segmentatibnv i
oc [ ] £(Toi) F(T: = )™ F(T3 = 0)' =7 to be found by solving
; where
1-T; \ : al(k)
;= In
H f(D|T; = prj(k)7 Qj(k)) bgk)
; IW('“) (32)
o [ #(@oi) (@) (67 =l (1 - W(k.)) :

The equivalent network flow problem consists of
(29) N+2 vertices, with a source and a sink¢ and

the N voxels of the image. For each voxel with
Taking the logarithm of this expression for the\; > 0 there is a directed edg@, ¢) from source
posterior probability and assuming a pairwise ins to voxel i with capacityc,; = A;, and for each
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voxel with \; < 0 there is a directed edgg, ¢) 1) Initialization: STAPLE is most conveniently
from voxel ¢ to sink ¢ with capacityc;; = —\;. initialized by providing starting estimates for the
There is an undirected edge between pairs of voxelensitivity and specificity parameters. In the ab-
m,n with capacity ¢,,, = Bmn. A cut of this sence of other information regarding the relative
network is a partitioning of the vertices into twoquality of the experts or the true segmentation,
groups,B=sUi:T; =1andW =tUi:T; =0 initializing the sensitivity and specificity parameters
consisting of edges with a vertex i and avertex to the same value and equal across all raters is
in W. The capacity of the cut i€'(T"), the sum of recommended. This is equivalent up to a scaling
the capacities of the edges of the cut. A minimurfactor to forming an initial estimate through a
cut is a cut of smallest capacity. Greig et al. [42yoting rule (such as assigning initial probabilities
showed that the minimum cut of this network iof voxels based on the frequency of selection by
equivalent to the exact MAP solution of the binaryexperts). In our experience with synthetic data and
MRF problem, since clinical experiments, successful estimation results
were obtained by initializing all of the sensitivity

N and specificity parameters to the same values, with
) :ZTi max(0, =)+ values close to but not equal to 1 : for example,
= selectingp” = ¢\* = 0.99999 v ;.

An alternative strategy for initialization, useful
when such information is available, is to provide
N N an initial true segmentation estimate. An interesting
Z Zﬁiﬁ' T, — T;)2 ;trategy for certa_in problt_am_s is to use a probat_JiIis-

tic atlas to provide an initial true segmentation.
For example, one may use a probabilistic atlas
differs from Equation[ 31 only by the sign andof the brain [37], [51] to provide an initial true
a term that does not depend up@h Therefore, segmentation estimate for the tissues of the brain.
the minimum cut network is also the maximum a We have used the estimated true segmentation
posteriori MRF solution. from the voxelwise independent STAPLE to ini-

When the minimum cut of this network is foundtialize the STAPLE algorithm when incorporating
all the voxels for whicHl; = 0 are on the sink side an MRF prior.
of the minimum cut and all the voxels for which 2) Convergence:The EM algorithm is guaran-

T; = 1 are on the other side. Our implementatioteed to converge to a local optimum. Detecting
uses the Edmonds-Karp maximum flow-minimuneonvergence of EM algorithms has been a topic of
cut algorithm [50] with the multi-resolution solu- study, as have strategies for accelerating conver-
tion strategy suggested by Greig et al. [42]. gence [32]. STAPLE estimates both performance

This model allows us to proscribe a spatially corparameters and the true segmentation, and con-
related true segmentation in our estimation frama€rgence may be detected by monitoring these. A
work, and creates a more locally homogeneous trgémple and good measure of convergence is the
segmentation estimate. A recent extension of thigte of change of the sum of the true segmentation
maximum flow-minimum cut strategy removing theProbability, obtained by summmg the estimated
restriction to binary labels has been described [43)eight at each voxelS;, = YL, W; evaluated
Thus to model local spatial homogeneity of the trugt each iteratiork. We have found that iterating
segmentation for multi-category data, a Markowntil Si —S,_1 = 0 using double precision IEEE
random field model can be used and both tharithmetic is both accurate and fast. In the case of
mean field approximation [44] and maximum flow-L unordered multi-category labels and large three-
minimum cut exact solver are suitable [43]. dimensional volumes we have found it convenient

to use a relative convergence based on the change in

the normalized trace of the estimated expert perfor-
F. Initialization Strategy and Detection of Conver/hance parameters. We iterate until the normalized
gence trace changes by less than some small amount, for

examplee = 1 x 10~7, where the normalized trace
The STAPLE algorithm requires specification ofs given by:

some model parameters, and may be initialized with

either performance level parameters or a probabilis- 1 &
tic true segmentation. We describe suitable strate- LR Ztr
gies for initialization and detecting of convergence

of the estimation process below. Our experience has been that STAPLE conver-

> (1 - T)max(0, M)+ (33)

=1

i=1 j=1

(34)
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gence generally occurred in less than 20 iteratiomseasure. We assessed repeated segmentations by a
in several clinical segmentation validation probsingle expert for the task of identifying the prostate

lems. peripheral zone from magnetic resonance images.
3) Model Parameters: Selection of different We compared the STAPLE assessment of the seg-
global or spatially varying prior probability(7; = mentations to a measure of spatial overlap. A brain

1) may alter the local maxima to which the alphantom was used to compare STAPLE to a voting
gorithm converges. This is illustrated below irrule. Synthetic segmentations and segmentations by
experiments with synthetic data. medical students were evaluated.

A spatially varying priorf(T; = 1) is suitable = The capacity of STAPLE to accurately estimate
for those structures for which a probabilistic atlas ighe true segmentation, even in the presence of
available. In addition we are interested in structures majority of raters generating correlated errors,
for which such an atlas is not available, and we hawgas demonstrated. The quantitative assessment of
used a single global prioy = f(T; = 1) V i. The segmentations of tissues from MRI of a newborn
prior v encodes information we have before seeinggfant was carried out in order to demonstrate the
the segmentation decisions, regarding the relatiwse of STAPLE with three-dimensional volumetric
probability of the structure we wish to segment irunordered multi-category data. Empirical timing
the data. In practice this information may not be&xperiments were also carried out to demonstrate
readily available, and we have found it convenierthe practicality of the estimation scheme. In all
to estimatey from the segmentations themselves agf our experiments the hardware platform for the
the sample mean of the relative proportion of thessessment of execution time was a Dell Precision

label in the segmentations: 650n workstation running Red Hat Linux 8.0, with
RN the implementation executing on a three gigahertz
_ 1 Intel Xeon CPU.
Y= RiN Zl Zl ng (35)
Jm A. Digital Phantom Experiments
In the case of multi-category labels, we have: 1) Estimation from Noisy Segmentations with
| BN Specified Segmentation and Performance Parame-
%= Ex > 6(Dijs) Vs (36) ters: Figure[] illustrates STAPLE estimation from
R j=11i=1 digital phantoms drawn from randomly generated

segmentations with specified sensitivity and speci-

whered(:, ) is the Kronecker delta which takes theficit rates and specified true segmentation. The
value 1 whenD;; ands are equal and O otherwise. Y - SP 9 ;
- true segmentation was set to be a square image

Similarly, when modeling a spatially homoge- ) '
neous true segmentation with our MRE model, 56 x 256 voxels, with the leftmost 128 columns

reacion sengis nd neghorond s LS N BRI e
ture must be specified. This may depend strong| 9 ‘ prior p y g

upon the nature of the structure, segmentations a(%idass isf(T; = 1) = 0.5. R = 10 segmentations
noise pattern of the segmentations under consid (°re generated_by rar_1dom|y sampling the specified
ation. In our experiments with synthetic data and"c segmentation Witt(p;, g;) = (0.95,0.90).
strong uncorrelated random noise in the segment nis generated ten random segmentations simulat-
tions, and a strongly homogeneous true segmen{QQ experts with |dent!cal sensitivity and specificity
tion we foundg,,, — B = 2.5 gave satisfactory r_ates. STA_PLE required 0.18 seco_nds wallclock
results. time to estimate the true segmentation and expert
parameters, and the estimates closely matched those
specified. Estimated sensitivity over the experts
. RESULTS was p = 0.950104 + 0.001201 (mean+ standard
We carried out experiments applying STAPLHEleviation) and sensitivity = 0.900035+0.001685.
to digital phantoms where the true segmentation iEhe estimated true segmentation closely matched
known by construction and investigated the chathe specified true segmentation, with the foreground
acterization of segmentations by synthetic experstructure being exactly estimated from raters with
with predefined sensitivities and specificities. As detection error rate g% and with TZGS false
described below, we found that STAPLE accupositives in a region with a detection error rate of
rately estimates the performance level parametet8%. The incorporation of an MRF prior model
and the true segmentation. We applied STAPLE twith four-connected neighborhood structure and an
segmentations from several clinical applications tmteraction strengtl = 2.5 resulted in a STAPLE
demonstrate the value of the approach in practicestimate converging exactly to the known true seg-
and to compare to a previously reported validatiomentation. The MRF model was applied to estimate
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the true segmentation by solving Equatjor} 33 ondeeld of view should be the foreground class, and
only, using the estimated true segmentation prolrith automatic estimation of the global prior using
abilities obtained from iterating STAPLE withoutEquation[3p. As can be seen, the estimated true
an MRF model to convergence, and required 3£egmentation can be influenced by the global prior
seconds to compute the exact MAP solution. Therobability.
false positives that occur without the MRF prior are In the case of assuming(7; = 1) = 0.12,
indicated with circles in Figurg¢]1.(e) to enhanceéhe estimated true segmentation exactly matches
their visibility, as they are single isolated pixelshe specified true segmentation and one of the
which are difficult to see in the reproduction ofexperts was identified as generating exactly the true
the figure, and to illustrate that there are no falssegmentation (p = q = 1.0), and the other two
positives in Figuré [1.(f). were estimated to have a sensitivity of 0.88 and
Figure[2 examines the application of STAPLEa specificity of 0.99 reflecting the erroneous shift
to noisy segmentations from unequal quality exn these two segmentations.
perts. Segmentations were generated fr&@m= In the case of assuming(7; = 1) = 0.5,
3 synthetic experts with parameters specified aRe estimated true segmentation equals the union
(p1,91) = (0.95,0.95), (p2,q2) = (0.95,0.90) and of each of the three segmentations (which still
(ps,q3) = (0.90,0.90). Only three observations does not occupy 50% of the image) and each of
of segmentations by these experts were generatéite experts was identified as havirlg,;, ¢;) =
leading to a small and noisy set of data from whicli0.66, 1.0), j = 1,2,3. This reflects the fact that
STAPLE was used to estimate the performana@e segmentations are not in agreement with the
parameters and the true segmentation. STAPL&ssumed global prior. If this was discovered in
was executed to convergence, requiring 0.22 sethe application of STAPLE to a clinical validation
onds wallclock time. Comparisons were made witproblem it would indicate either the need to re-
and without a spatial homogeneity prior modelleévaluate the global prior assumption or the need
with an MRF prior assuming four-nearest-neighbofior improved training of the experts generating the
pairwise interaction cligues and a homogeneousgmentations.
interaction strengthp = 2.5. The MRF model was
applied to estimate the true segmentation by solvin
Equation[ 3B once only, using the estimated tru
segmentation probabilities obtained from iterating Consider estimation of a true segmentation and
STAPLE without an MRF model to convergenceperformance parameters from segmentations gen-
and required 53 seconds to compute the exaetated by two groups of raterd/ of whom have
MAP solution. The increased run time is due tsignificant expertise, andv of whom have with
the greater amount of heterogeneity in the initidimited expertise. We can consider two important
STAPLE estimate. cases: whereMl > N and whereM < N. If
The results indicate the estimat&il found by we haveM > N then the errors of the inexpe-
STAPLE with the MRF prior exactly matches therienced raters don't exert significant influence and
specified true segmentation used for the simulare overcome by the correct information from the
tions, whereas without this constraint the estimatetore experienced raters, whereas by comparison,
T is somewhat noisier. In both cases the estimatéfd M < N then there is the possibility that the
performance level parameters were almost identicalexperienced raters may influence the estimation
to the specified values of the parameters. scheme to overcome the more experienced raters.
2) Influence of Prior Probability: Figure[3 il- In the caseM < N, if the inexperienced raters
lustrates synthetic segmentations which differ bgnake random errors, then as indicated by Fidure 2,
structural errors rather than random noise. Thaccurate estimation can still be achieved. Similarly,
true segmentation was specified, as were syntheiichey make uncorrelated structural errors then, as
expert segmentations, each having equal volume ot random errors, accurate estimation is possible.
different spatial location. STAPLE was initializedHowever, if they make correlated structural errors
with p? = q? = 0.99, V j and required 0.38 sec-the impact of the errors could be significant. With-
onds to converge. The STAPLE true segmentatiavut further external information, it is not possible to
estimate is shown for different prior assumptiongdiscriminate between the two groups, and to decide
The prior models information available before thevhich constitutes the expert raters and which the in-
data is seen. Three prior models are shown, firekperienced raters. For example, in a majority vot-
assuming globalf(T; = 1) = 0.12 which closely ing scheme, the inexperienced raters would collect
matches the segmentations, wifil; = 1) = 0.5 the most votes for the regions with correlated errors
which corresponds to a prior belief that half of theand hence a wrong segmentation estimate would

. Brain Phantom Experiments
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(a) Example of synthetic seg-(b) Example of synthetic seg-(c) Example of synthetic seg-
mentation. mentation. mentation.

(d) Example of synthetic seg- (e) STAPLE estimated true seg-(f) Estimated true segmentation
mentation. mentation. The estimate con-from STAPLE incorporating an
tains seven isolated single pixeIMRF prior. The estimate ex-
errors which are circled to en-actly matches the known true

able clearer visualization. segmentation.
Fig. 1. A specified true segmentation was randomly sampled to generate R=10 segmentati¢ps, wjth= (0.95,0.90) V j €

1...10. STAPLE converged in less than 20 iterations. The estimated performance parametep wele950104 + 0.001201
(mean+ standard deviation) angl = 0.900035 + 0.001685, which closely matches the specified parameters.

result. External information is incorporated in theve deleted all cortex labels from half of the rows of
STAPLE estimate through the prior probability forthe exact segmentation and triplicated this in order
the structure being segmented, and through the represent poor raters generating approximately
initialization. It is also straightforward to introducehalf of the correct labelling of the cortex, and
a prior probability density for the rater parametersncorrectly labelling the other half of the cortex as
enabling expert raters to be distinguished frorhackground. Triplicating this data ensures that the
inexperienced raters via parameters of such a primexperienced rater segmentations have correlated
distribution. errors.

We carried out an experiment to investigate the We ran the STAPLE algorithm on these four
performance of the STAPLE algorithm when presegmentations, to convergence, stopping when the
sented withA// = 1 and N = 3 raters, where the change in normalized trace was less than10-9,
task is brain cortical gray matter segmentation. Wend evaluated the effect of different initialization.
used a brain phantom created from a high resolutioife provided a range of different initial values for
high signal to noise brain MRI scan, for which ghe sensitivity and specificity of each of the four
consensus segmentation of the cortical gray mattéput segmentations, setting the ‘expert’ segmenta-
was available. The segmentation was made Iipn to have high initial sensitivity and specificity
automatic segmentation and consensus correcti@f;,o) = q(()o) = 0.9999999999), and then varying
of errors by experts [3]. We used the consenstke initial parameter assignments of the other three
segmentation to represent an exact ideal ‘experaéters (all equal) over the range of 0.05 to 0.95
segmentation that we want STAPLE to identify, anth steps of 0.05, and automatic estimation of all
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(b) Expert 2 segmentation. (c) Expert 3 segmentation.

(a) Expert 1 segmentation.

(d) STAPLE true segmentation(e) STAPLE true segmentation
estimate under voxelwise inde-estimate assuming spatially ho-
pendence assumption. mogeneous true segmentation.

Fig. 2. Segmentations generated frdin= 3 synthetic experts with parameters specifiedjas ¢1) = (0.95,0.95), (p2,¢2) =
(0.95,0.90) and (p3,q3) = (0.90,0.90). Only three observations of segmentations by these experts were generated, leading to

a small and noisy set of data from which STAPLE was used to estimate the performance parameters and the true segmentation.
STAPLE was executed to convergence, initialized witi; = 1) = 0.5 and(pg.o),q(.o)) = (0.99999, 0.99999), V j. Comparisons

were made with and without a spatial homogeneity prior modelled with an MRF prior assuming four-nearest-neighbor pairwise
interaction cliques and homogeneous interaction strefigth2.5. The results indicate the estimat@dfound by STAPLE with the

MRF prior exactly matches the specified true segmentation used for the simulations, whereas without this constraint the estimated
T is somewhat noisier. In both cases the estimated performance level parameters were very close to the parameters specified for
the random segmentations.

other parameters with a uniform spatial prior fomaximizing the conditional expectation of the com-
the cortex and background. plete data log likelihood functiorQ(8]6*)), some

We found STAPLE identified one of two differ- insight into the convergence behavior of STAPLE

ent estimated true segmentations, depending on fﬁ'et.thlst settflngoza(tl?) bf (?[Law? by com?a;rlng Ehe
initialization. The first closely matched the exac stimate of@(8]6™’) to the true complete data

segmentation, and the second closely matched likelihood function that can be calculated when

inexperienced rater segmentations. If the initializé[he exact true segmentation is known. The estimate

k . . .
tion indicated the ‘expert’ segmentation was supeQ(ale( )) evolves until the iteration converges, and
. . : in Figure b the estimated function is shown as
rior to the three inexperien r % =g\ o In .
[001 t(c)) ;] ejt _eel 263)p ?t ioﬁsgrgae}depéo% maqtjc h fhe estimated at each of the two points where the al-

experienced rater, and if the inexperienced rategsomhm converges. Shown in this figure is only the

were initialized outside this range (for examplepart of the estimated function that is necessary to

close in performance to the ‘expert), it converge élnd the sensitivity or the specificity parameters for

to the estimate close to that of the inexperience0 e of the input segme_ntatlons a_t atime, as th.'s de-
nds on only one variable and is therefore simple

raters. The phantom, consensus segmentation, S . . .
. . . 1o graphically represent. Such estimated functions
PLE estimate of the true segmentation and votin )
e shown for both for the experienced rater and the

rule estimate are illustrated in Figyrg 4. ) . ;
e inexperienced raters, together with the correspond-
Since the parameter estimates are obtained by
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(a) First synthetic segmenta-(b) Second synthetic segmenta{c) Third synthetic segmenta-
tion. tion, equal in size to the first but tion, equal in size to the first but
shifted to the left 10 voxels.  shifted to the right ten voxels.

LILIL]

(d) STAPLE true segmenta-(e) STAPLE true segmenta-(f) STAPLE true segmenta-
tion estimate for f(7; = tion estimate for f(7; = tion estimate with automatic
1) = 0.12 V i. The estimated 1) = 0.5 V . The estimated prior estimation. The estimated
performance parameters Wereperformance parameters wereperformance parameters were
(P1,61) = (1.0,1.0), (P2, ¢2) = (P, ;) = (0.66,1.0) V j. (P1,d1) = (1.0,1.0), (P2, ¢2) =
(3, ¢3) = (0.88,0.99). (13, 43) = (0.88,0.99).
Fig. 3. R = 3 synthetic true segmentations with equal volume but different spatial locations. STAPLE was initialized with
(p(.O), q(_o)) = (0.99,0.99), V j. The STAPLE true segmentation estimate is shown for the different prior probability assumptions:

f(7Ti :Jl) = 0.12 which closely matches the segmentatiofié]; = 1) = 0.5 which corresponds to a prior belief that half of
the field of view should be the foreground class, and with automatic estimation of the prior via Equation 35.

ing function from the exact complete data log like€onverges to the correct true segmentation estimate.
lihood. Figure[d shows that when the initializatiorStraightforward vote counting cannot overcome the
indicates the experienced rater is superior to th@esence of a majority of raters generating repeated
inexperienced raters, the estimated complete dat@uctural errors. It is expected that this situation is
log likelihood exactly matches the true completatypical, and represents a worst case for estimation
data log likelihood at convergence, and that if thef the true segmentation, and can be corrected by
initialization indicates all raters are equal then thenproved training or algorithmic modifications to
estimated complete data log likelihood indicates adllter the behavior of the raters.

raters have equal sensitivity and that the experi-
enced rater segmentation corresponds to an over-

segmentation, with worse specificity, as compared’ ) ] .
to the estimated true segmentation. Hence, in thel) Comparison of STAPLE with Votingfhree

presence of a majority of raters generating repeatgtfdical students carried out interactive segmenta-
structural errors, appropriate initialization or furthefion of the cortical gray matter of a single slice
external information through prior distributions orPf @ brain phantom [3]. Upon review and visual
rater parameters or the spatial distribution of theomparison of the segmentations, it was found that

true segmentation may be used to ensure STAPIQ¥Er most of the cortex the segmentations were
quite similar to the exact segmentation but in one

lllustration of Clinical Validation Applications
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(a) Phantom.

(c) STAPLE estimate. (d) Voting rule.

Fig. 4. Brain phantom and STAPLE estimated true segmentation with one expert and 3 inexperienced rater segmentations. Different
initialization leads to different estimates. Exact estimation of the true segmentation is possible with STAPLE but not with a majority
vote rule. The image that was segmented is shown in (a). The red color indicates the segmentation of the cortex from the consensus
segmentation in (b), and from the STAPLE estimate in (c). In (d) the area of most frequent selection by the raters and expert is
shown in red, and the light blue color represents the region selected only by the expert.

region the students had all made a misjudgemepérfect expert. We estimated the true segmentation
and incorrectly labeled one region as cortical graffom the expert and three medical student segmen-
matter when it should be labeled white matter. Wiations, by both vote counting and by STAPLE.

know that this is a misinterpretation on the part ofable[] quantifies the difference in performance

the students since the region has signal intensigstimates for this region between a vote counting
characteristics different from cortical gray matteestimate and the STAPLE algorithm. The region is

and our prior knowledge of anatomy indicates thehown in Figuré 6 together with the exact segmen-
cortex does not extend through this region. The cotation, an image showing the frequency of selection
sensus segmentation correctly labels this region anl each voxel as cortex by the medical students,
we used this consensus segmentation to represemraimage showing the frequency of selection of
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Sensitivity performance parameter. Sensitivity performance parameter. Sensitivity performance parameter.

(a) Exactln f(D,T|@) depen- (b) Estimated function of sensi- (c) Estimated function of sensi-

dence on sensitivity for inexpe- tivity from Q(6|0") after con- tivity from Q(86*)) after con-

rienced rater and expert. vergence from unequal ratervergence from equal rater ini-
initialization. tialization.
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Specificity performance parameter. Specificity performance parameter. Specificity performance parameter.

(d) Exactln (D, T|6) depen- (e) Estimated function of speci- (f) Estimated function of speci-

dence on specificity for inexpe- ficity from Q(8|0'*) after con- ficity from Q(8|8")) after con-

rienced rater and expert. vergence from unequal ratervergence from equal rater ini-
initialization. tialization.

Fig. 5. Comparison of exact and estimated complete data log likelihood function for estimation of rater sensitivity and specificity,
derived from brain phantom with one expert and 3 inexperienced rater segmentations.

each voxel when combining the medical students probability of selection ranging from 0 to 1 as
and exact segmentation and the STAPLE estimaiedicated by the color bar in Figure| 7.(b). It is
of the true segmentation. The figure illustrates thateresting to consider a voting rule scheme and to
the students incorrectly label some of the whiteompare that with the STAPLE result. One voting
matter as cortical gray matter, and that when voteile is to estimate the true segmentation by taking
counting is used to estimate the true segmentatiafi voxels where a majority of the segmentations
the frequent wrong selection overrules the expeiindicated the foreground was present. We achieved
This does not occur with the STAPLE estimatea similar binarization of the STAPLE probabilis-
The color coding of the frequency of selection igic true segmentation estimate, by thresholding at
as shown in Figurg]7. W; = 0.5, which gives a maximum likelihood esti-
2) Segmentation of Prostate Peripheral Zone: mate of the binary true segmentation. An alternative
Figure[T illustrates STAPLE applied to the analysis to apply the MAP estimation using the binary
of five segmentations by one expert of the peripfMRF model of Equation 33 which also provides
eral zone of a prostate as seen in a conventiormlbinary estimate of the true segmentation. We
MRI scan (T2w acquisitiorn).468750 x 0.468750 x ~ found that the binarized STAPLE true segmentation
3.0mm?). The goal of the operator was to segmergstimate cannot be obtained with a simple voting
the prostate peripheral zone to enable radiationle estimate from the segmentations. In order to
dose planning in support of brachytherapy [52Jobtain the binarized STAPLE result directly from
The STAPLE algorithm ran to convergence in 0.4&he manual segmentation in this case it would
seconds of wallclock time. be necessary to identify all the voxels indicated
For comparison with the STAPLE estimate of thes prostate peripheral zone by at least three of
true segmentation, an image color coded by prolhe five segmentations, and then all the voxels
ability of selection of each voxel is also presentedndicated by two of the high quality segmentations
The colors range from blue to red correspondingut not those voxels indicated by only two of the
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TABLE |
COMPARISON OFSTAPLEAND VOTING RULE ESTIMATES OF RATER PERFORMANCETHE STAPLEESTIMATE CORRECTLY
IDENTIFIES THE EXPERT AS HAVING SUPERIOR PERFORMANCE TO THAT OF THE THREE MEDICAL STUDENTS

Students
Segmentationg 1 ] 2 [ 3 expert
Estimate of rater performance from a voting rule.

D 0.88660| 0.91366| 0.86856| 0.79768
q 0.99940| 0.99922| 0.99946| 0.99972
STAPLE estimate of rater performance.
P 0.88095| 0.91667| 0.88690 1.0
q 0.99890| 0.99872| 0.99904 1.0
Exact rater performance from consensus segmentaticn.
D 0.88095| 0.91667| 0.88690 1.0
q 0.99890| 0.99872| 0.99904 1.0
"2 "2 "2 "¢« "
Image Expert Students Voting rule STAPLE estimate

Fig. 6. Comparison of STAPLE and voting rule estimates of the true segmentation from segmentations of the cortex generated
by one expert and three medical students. The color coding of the frequency of selection is as shown [ Figure 7.

lower quality segmentations. Without knowledge ofo the analysis of expert segmentations of a brain
the relative quality of the segmentations such twmor [53], [54]. The hidden true segmentation was
weighted combination cannot be constructed. Thestimated from three expert segmentations, requir-
the true segmentation estimate depends cruciallyg 0.15 seconds to compute. The segmentation
upon the relative quality of the segmentations that enerated by the program was then assessed by
discovered by the STAPLE algorithm. The STAPLEevaluating the sensitivity and specificity estimators
result cannot be generated by a simple voting rulef Equatior]f I8 and Equatign [19 with regard to this
such as selecting voxels indicated by three out efstimated true segmentation. The predictive value
five segmentations. for tumor segmentation was also calculated. It is

3) Comparison of STAPLE with Dice Similaritydefined as P¥) = Pi(I; = s|Dy; = ),V s €
Coefficient.: The performance level estimates fof> .- --» L — 1, the posterior probability that the
segmentation of the prostate peripheral zone apdUctures is present when the rater says it is

recorded in TablE]I. In order to enable comparisoRr€Sent. and is easily computed with the STAPLE

of these estimates with the Dice Similarity Coefestimate of the rater performance parameters. This

ficient (DSC) [11], a popular measure of spatia@ssessment indicates the program is generating
overlap defined adSC = 2|ANB] where || is segmentations similar to that of the raters, with

the area of regio, | B| is the area of regioms, we Nigher sensitivity and predictive value than one
formed a binary estimate of the true segmentatio?f th_e _raters, but with lower sensitivity and Iowe_r
by thresholding at¥; — 0.5. We then computed predictive value than the two other raters. This

! Q_rovides feedback indicating in what way the algo-

the DSC between each of the individual segment h laorith t dtob dified
tions and the binarized STAPLE true segmentatioﬁ'. M or aigoriihm parameters need to be modiie
fQimprove the performance of the algorithm.

Comparing segmentations 2 and 4, we observe t
DSC is similar, approximately 0.95 in each case.

However, the STAPLE performance parameter e®. Assessment of Supervised Tissue Classification
timates indicate the two segmentations achieve thi$ the Neonate Brain

DSC differently — for example, segmentation 2 has g 455essment of tissue types, including cortical

higher sensitivity than segmentation 4, but Ioweéray matter, sub-cortical gray matter, myelinated
specificity. This indicates that despite the similajhite matter, unmyelinated white matter, and cere-
DSC vglues, segmentation 2 is an _over-_estlmate BFospinaI fluid, from volumetric MRI of newborn
the_penpheral zone, and segmentation 4 is an undgfe ts [54]-[56] has been useful in understanding
estimate of the peripheral zone. and characterising normal brain development and
4) Assessment of an Automated Segmentatithre processes of maturation [56], and the impact of
Algorithm: Figure [ illustrates STAPLE appliedinjury upon brain development [57], [58].
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(a) MRI of prostate

(c) Frequency of segmentation

|I".-.

(b) Region of peripheral zone

(d) STAPLE truth estimate

Fig. 7. Segmentation of the peripheral zone of the prostate is used in brachytherapy dose planning for the treatment of prostate
cancer. This figure illustrates MRI of the prostate, and of the prostate peripheral zone, the frequency of assignment of voxels to the
prostate peripheral zone in five repeated segmentations by the same expert, and finally the probabilistic true segmentation estimated
by STAPLE. The frequency of selection and true segmentation estimate are shown color coded in proportion to probability of the
prostate peripheral zone being present at each voxel, and this is rendered over the region of interest of the original MRI.

QUALITY ESTIMATES FOR THE FIVE PROSTATE SEGMENTATIONS GENERATED BY ONE EXPERAND DICE SIMILARITY
WITH |A| THE AREA OF REGIONA, COMPARING THE EXPERT SEGMENTATION WITH
THE TRUE SEGMENTATION ESTIMATE THRESHOLDED WITHV; > 0.5. RESULTS ARE SHOWN FOR TWO DIFFERENT

2|ANB|

COEFFICIENT(DSC),DSC = [AlT1B]

TABLE Il

ASSUMPTIONS OF THE PRIOR PROBABILITY OF PROSTATE PERIPHERAL ZONE AND DEMONSTRATE THAT THE PARAMETER

ESTIMATES OBTAINED DO NOT DEPEND STRONGLY ON THE PRIOR PROBABILITY ASSUMPTION

Expert segmentations 1 2 \ 3 \ 4 \ 5

F(T, =1) = 0.10

p 0.875090] 0.987198] 0.921549] 0.907344[ 0.880789

q 0.999163] 0.994918] 0.999435| 0.999739] 0.999446

DSC 0.927660| 0.957527| 0.954471| 0.949058| 0.932096
f(T; =1) = 0.02

p 0.878533] 0.991261] 0.936831] 0.918336] 0.894861

q 0.998328] 0.993993] 0.99932 | 0.999359] 0.999301

DSC 0.913083] 0.951027] 0.967157]| 0.954827] 0.944756

We evaluated the impact of repeated selection ektimation of the class-conditional probability den-
tissue type prototypes upon the classification of asity functions, which are then used to carry out
MRI of a newborn infant at term equivalent age. Asegmentation as previously described [54]. We se-
single operator repeatedly selected sample voxdécted a three-dimensional volumetric MRI scan
from the image in order to carry out non-parametriof the brain of a newborn infant which contained
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(a) Estimated true segmenta{b) Frequency of manual (c) Performance level assessment.
tion.

segmentation.

Expert D q PV
1 0.8951| 0.9999| 0.998
2 0.9993| 0.9857| 0.977
3 0.9986 | 0.9982| 0.954
Program| 0.9063| 0.9990| 0.963

Fig. 8. Region of interest from MRI with a brain tumor visible color coded overlays of the estimated true segmentation overlayed,
and frequency of expert selection of each voxel as tumor from three segmentations, color coded as before. The performance level
assessment of each of three raters and a semi-automatic algorithm for tumor segmentation program based upon the estimated
true segmentation is shown in (c). The estimated sensitivity, specificity and tumor predictive value are reported. The performance
assessment indicates that the program is performing with higher sensitivity than one rater but with lower sensitivity than the other
raters, while exhibiting higher specificity than two of the raters and lower specificity than one of the raters. This illustrates that
STAPLE can be used to evaluate the performance of segmentation algorithms through comparison to rater segmentations.

significant signal intensity artifact. We evaluatedithm ran to convergence in 300 seconds, comput-
the amount of variability due to operator selectioing on the eight segmentations of the dataset of
of training points in this particularly challenging256 x 256 x 110 voxels, with each voxel assigned
scan, as the operator repeated the segmentationate of seven labels. The algorithm is computa-
tempting to best identify each of background, extraionally efficient and provides valuable information
cranial tissue (such as skin, muscle etc.), corticéthat enables the ranking of the different segmen-
gray matter, sub-cortical gray matter, myelinatethtions. This may be used for selecting between
white matter, unmyelinated white matter and ceredifferent segmentations, or for adjusting objectively
brospinal fluid as in [54], [56], [57]. These differentthe parameters of enhancement or segmentation
tissues are distinguished by subtle signal intensiglgorithms.
changes apparent from joint analysis of T1w, PDw
and T2w MRI. They also appear with unequal pro- IV. D1SCUSSION ANDCONCLUSION
portions and some are more difficult to identify than We have presented an algorithm for taking a
others (for example, myelinated white matter isollection of both binary and unordered multi-
more difficult to identify than cerebrospinal fluid). category segmentations and simultaneously con-
Table [ illustrates the assessment of neonatiructing an estimate of the hidden true segmen-
tissue classification, assessing the identification tdtion and an estimate of the performance level of
each type of tissue using predictive value (posteri@ach segmentation generator. This can be used to
probability). The mean predictive value is a simpleharacterize any type of segmentation generator,
measure with which to rank the segmentationgcluding new segmentation algorithms or human
based on overall quality. operators, by direct comparison to the estimated
We also assessed the computational requiremefitige segmentation. When prior information regard-
of the STAPLE algorithm. The E-step of Equading the expected anatomy is available, such as from
tion[2Q is linear in the number of voxel§, linear a statistical anatomical atlas, STAPLE provides
in the number of rater& and linear in the number estimates of performance parameters accounting for
of labels L. The M-step of Equatiofi 24 is linearthis external standard reference. This enables the
in the number of voxelsV, linear in the number assessment of the accuracy of the segmentation
of raters R and quadratic in the number of labelgyenerators. When such information is not avail-
L. The total number of iterations to convergencable, STAPLE provides estimates of performance
depends on the degree of agreement between therameters with respect to a weighted combination
input segmentations. Figure 9 illustrates the averagé the input segmentations and the appropriate
computation time per iteration as a function of thaveighting is computed automatically. This enables
number of raters. the assessment of the precision of the segmen-
This analysis illustrates the application of STAtation generators. STAPLE adds new information
PLE to the assessment of three-dimensional uregarding the difference between human and algo-
ordered multi-category data. The STAPLE algorithm performance beyond what is available from
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TABLE IlI
ASSESSMENT OF VARIABILITY OF TISSUE CLASSIFICATION FROM NEONATIMRI. THE PREDICTIVE VALUE FOR EACH TYPE OF
TISSUE AS DETERMINED FROM THESTAPLE ESTIMATES, AND THE MEAN PREDICTIVE VALUE, ARE REPORTED FOR EACH OF
EIGHT SEGMENTATIONS THE MEAN PREDICTIVE VALUE MAY BE USED TO RANK THE QUALITY OF THE SEGMENTATIONS
TISSUE TYPES ARE BACKGROUND(B), EXTRA-CRANIAL TISSUE (ECT), CORTICAL GRAY MATTER (CGM), CEREBROSPINAL
FLUID (CSF),MYELINATED WHITE MATTER (MWM), UNMYELINATED WHITE MATTER (UWM), AND SUB-CORTICAL GRAY
MATTER (SCG).

Segmentation B ECT CGM CSF | MWM | UWM SCG | mean PV
1 0.9999 | 0.6219| 0.8013| 0.7035| 0.3648 | 0.9403| 0.9097| 0.7631
2 1.000 | 1.000 | 0.9990| 1.000 | 0.6336| 0.9456| 0.9990| 0.9396
3 1.000 | 1.000 | 0.9990| 0.9870| 0.6339| 0.9888| 0.9967| 0.9436
4 1.000 | 0.8250| 0.6493| 0.8853| 0.4974| 0.9998| 0.8076| 0.8092
5 1.000 | 0.9586| 0.9816| 1.000 | 1.000 | 0.9967 | 0.9440| 0.9830
6 1.000 | 1.000 | 0.9997| 1.000 | 0.9997| 0.9846 | 0.9692| 0.9933
7 1.000 | 1.000 | 0.9186| 1.000 | 0.9997| 0.9977| 0.5000| 0.9166
8 1.000 | 1.000 | 0.7913| 1.000 | 0.9930| 0.9863| 0.9889| 0.9656

Average wallclock time per iteration versus number of raters. Average wallclock time per iteration versus number of voxels.
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Fig. 9. STAPLE average wallclock time per iteration as a function of the number of raters, and average wallclock time per iteration
as a function of the number of voxels.

previously reported spatial overlap measures sufibity parameters and the proportion of foreground
as the Dice Similarity Coefficient, and generates and background in each image. We compared a
plausible “true” segmentation estimate from clinbrain phantom for which the true segmentation is
ical data where alternative methods of obtainingnown to the STAPLE estimate of the true segmen-
ground truth estimates are often extremely difficullation, derived from both synthetic segmentations
or unattractive to use. with specified performance characteristics, and seg-
mentations carried out by medical students. We
We carried out experiments with a known truglemonstrated that STAPLE can identify the correct
segmentation and raters of pre-specified sensitivifegmentation even when a majority of segmenta-
and specificity, and demonstrated that STAPLE igons contain repeated errors, unlike a majority vote
able to correctly estimate the true segmentatiafile. We also demonstrated how to estimate perfor-
and the performance parameters from observatioptance parameters when the segmentations consist
of the segmentations. Sensitivity and specificityf unordered multi-category labels. We empirically
parameters depend on the relative proportion gkrified the runtime performance of the algorithm

the structure being segmented in the image, amghd found it is rapid and easily applied in practice.
it is useful to report the positive predictive value

and negative predictive value as these account forWe applied STAPLE to illustrative clinically
the relative proportion of the foreground and backmotivated segmentation problems, including the as-
ground. The predictive values (posterior probabilisessment of repeated segmentations of the prostate
ties) can be derived from the sensitivity and specperipheral zone for brachytherapy radiation dose
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planning, the assessment of an algorithm for brasssessment. If it is the case that the interior of a
tumor segmentation and the analysis of threeegion is easy to segment and the boundary is most
dimensional multi-category unordered labeling ofariable, the STAPLE estimated true segmentation
tissue type from MRI of a newborn infant. Wewill reflect this and the performance level estimates
compared the STAPLE analysis to commonly usedill reflect the variability of the algorithms or raters
alternative measures. We found the method conn the region of the boundary.

putationally efficient and straightforward to apply oy aigorithm estimates performance parameters
in practice. We found the STAPLE estimated trugnq {rye segmentation probabilities, from which
segmentation cannot be replicated with simple Vofre posterior probability of the correct label being
ing rules, and that the performance parameters a§fssent when a segmentation indicates that label is
important indicators of how segmentations dlf'ferpresent can be computed. Techniques for estimat-
whic.h aid in the interpretation of segmentatioqng bounds upon parameters estimated in the EM
quality compared to standard measures such as Tzﬁ]ﬁorithm have been developed [32, see Chapter 4]

Dice Similarity Coefficient. . _and it would be valuable to apply those techniques
We have described the STAPLE algorithm withare gis0.

several types of spatial constraints, including none h idered estimai f th
at all, a statistical atlas of prior probabilities for We have considered estimation of the true seg-

the distribution of the structure of interest, and’nentatlon and performance parameters for an en-

with Markov Random Field models for spatialtire scene, and in specified regions of interest. In
homogeneity. some applications it may be desirable to assess

Recently the application of the STAPLE algoperformance in sub-regions, for example, when

rithm [34] to the evaluation of tumor segmentation igh accuracy is required in some regions.and
was described [59]. The mean and standard dev wer accuracy may be tolerated in other regions.
\nalysis of this can be achieved by defining a

tion of sensitivity and specificity parameters, as es- X .
4 P yp fggion of interest and executing STAPLE only on

timated by STAPLE, were used to compare a rapid ; } .
interactive level-set based segmentation algorith IS region of mterest-..Note a}lso that the estimated
to hand contouring by raters for tumor segmentac’—?ns't'v'ty and_ spec.|f|C|ty will depend upon th?
tion. Another application of the STAPLE algorithmSlze of .th.e region _of.mterest, Whe'reas the posterior
[34] has been to identify an optimal combination oPrObab'“t'es (predictive values) will not.
image processing algorithms for intracranial cavity Our model assumes the expert segmentations
segmentation of brain MRI images [60]. are conditionally independent. The notion is that
The STAPLE algorithm [34] and generalizationghe segmentations are achieved independently but
have also been applied to the evaluation of se@vth each rater having the same true segmentation
mentations derived from nonrigid registration [61]goal in mind. If different raters differ in their
[62]. In this work comparisons were made betweegonception of the ideal true segmentation which
a majority vote rule, pairwise binary and unorderethey are attempting to express in their decisions
multi-category label estimates of the hidden trué;, this bias can be discovered and quantified
segmentation and performance. The advantage With the STAPLE algorithm. Running STAPLE on
the estimation scheme over a majority vote rule waepeated observations of a single raters’ segmen-
again demonstrated. tations enables the estimation of the rater-specific
true segmentation with the random variation of the
rater removed. However, rater specific bias, such
Future Work as structural errors, may remain. This could poten-
The representation we have chosen for our setially be addressed by calibrating the rater through
mentations involves individual labelling of eachsegmentation of a phantom, by standardizing the
voxel. This is particularly flexible and well suited tosegmentation protocol or by supervised training of
segmentations of structures of unknown topologyhe rater. Alternatively, repeating this process for
as is often the case when dealing with abnoseveral raters, each with a potentially different bias,
mal tissues. It may be interesting to consider allows a spatial model for how raters differ to be
generalization of this to segmentations representednstructed. Running STAPLE with the per-rater
by enclosed surfaces, such as is often found &stimated true segmentations as input would then
segmentations achieved by deformable models allow the estimation of the overall “true” segmen-
by level set methods. In segmentations obtainedtion — this effectively treats the bias of each rater
with such surface-oriented techniques, the region ag a perturbation away from the true segmentation
the surface boundary typically has the highest varihat is to be recovered. Further investigation of this
ability and is of most interest for the performancevould be valuable.
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