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This is a survey of nonlinear approximation, especially that part of the sub-ject which is important in numerical computation. Nonlinear approximationmeans that the approximants do not come from linear spaces but rather fromnonlinear manifolds. The central question to be studied is what, if any, are theadvantages of nonlinear approximation over the simpler, more established, lin-ear methods. This question is answered by studying the rate of approximationwhich is the decrease in error versus the number of parameters in the approx-imant. The number of parameters usually correlates well with computationale�ort. It is shown that in many settings the rate of nonlinear approximationcan be characterized by certain smoothness conditions which are signi�cantlyweaker than required in the linear theory. Emphasis in the survey will beplaced on approximation by piecewise polynomials and wavelets as well astheir numerical implementation. Results on highly nonlinear methods suchas optimal basis selection and greedy algorithms (adaptive pursuit) are alsogiven. Applications to image processing, statistical estimation, regularity forPDEs, and adaptive algorithms are discussed.
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52 R. A. DeVoreCONTENTS1 Nonlinear approximation: an overview 522 Approximation in a Hilbert space 563 Approximation by piecewise constants 604 The elements of approximation theory 815 Nonlinear approximation in a Hilbert space:a second look 956 Piecewise polynomial approximation 967 Wavelets 1078 Highly nonlinear approximation 1219 Lower estimates for approximation: n-widths 13110 Applications of nonlinear approximation 135References 1461. Nonlinear approximation: an overviewThe fundamental problem of approximation theory is to resolve a possiblycomplicated function, called the target function, by simpler, easier to com-pute functions called the approximants. Increasing the resolution of thetarget function can generally only be achieved by increasing the complexityof the approximants. The understanding of this trade-o� between resolutionand complexity is the main goal of constructive approximation. Thus thegoals of approximation theory and numerical computation are similar, eventhough approximation theory is less concerned with computational issues.The di�ering point in the two subjects lies in the information assumed tobe known about the target function. In approximation theory, one usuallyassumes that the values of certain simple linear functionals applied to thetarget function are known. This information is then used to construct anapproximant. In numerical computation, information usually comes in adi�erent, less explicit form. For example, the target function may be thesolution to an integral equation or boundary value problem and the numer-ical analyst needs to translate this into more direct information about thetarget function. Nevertheless, the two subjects of approximation and com-putation are inexorably intertwined and it is impossible to understand fullythe possibilities in numerical computation without a good understanding ofthe elements of constructive approximation.It is noteworthy that the developments of approximation theory and nu-merical computation followed roughly the same line. The early methodsutilized approximation from �nite-dimensional linear spaces. In the begin-ning, these were typically spaces of polynomials, both algebraic and trigono-metric. The fundamental problems concerning order of approximation weresolved in this setting (primarily by the Russian school of Bernstein, Cheby-



Nonlinear approximation 53shev, and their mathematical descendants). Then, starting in the late 1950scame the development of piecewise polynomials and splines and their incor-poration into numerical computation. We have in mind the �nite elementmethods (FEM) and their counterparts in other areas such as numericalquadrature, and statistical estimation.It was noted shortly thereafter that there was some advantage to be gainedby not limiting the approximations to come from linear spaces, and thereinemerged the beginnings of nonlinear approximation. Most notable in thisregard was the pioneering work of Birman and Solomyak (1967) on adapt-ive approximation. In this theory, the approximants are not restricted tocome from spaces of piecewise polynomials with a �xed partition; rather,the partition was allowed to depend on the target function. However, thenumber of pieces in the approximant is controlled. This provides a goodmatch with numerical computation since it often represents closely the costof computation (number of operations). In principle, the idea was simple:we should use a �ner mesh where the target function is not very smooth(singular) and a coarser mesh where it is smooth. The paramount questionremained, however, as to just how we should measure this smoothness inorder to obtain de�nitive results.As is often the case, there came a scramble to understand the advantagesof this new form of computation (approximation) and, indeed, rather exoticspaces of functions were created (Brudnyi 1974, Bergh and Peetre 1974),to de�ne these advantages. But to most, the theory that emerged seemedtoo much a tautology and the spaces were not easily understood in termsof classical smoothness (derivatives and di�erences). But then came theremarkable discovery of Petrushev (1988) (preceded by results of Brudnyi(1974) and Oswald (1980)) that the e�ciency of nonlinear spline approxima-tion could be characterized (at least in one variable) by classical smoothness(Besov spaces). Thus the advantage of nonlinear approximation becamecrystal clear (as we shall explain later in this article).Another remarkable development came in the 1980s with the develop-ment of multilevel techniques. Thus, there were the roughly parallel devel-opments of multigrid theory for integral and di�erential equations, waveletanalysis in the vein of harmonic analysis and approximation theory, andmultiscale �lterbanks in the context of image processing. From the view-point of approximation theory and harmonic analysis, the wavelet theorywas important on several counts. It gave simple and elegant unconditionalbases (wavelet bases) for function spaces (Lebesgue, Hardy, Sobolev, Besov,Triebel{Lizorkin) that simpli�ed some aspects of Littlewood{Paley theory(see Meyer (1990)). It provided a very suitable vehicle for the analysis of thecore linear operators of harmonic analysis and partial di�erential equations(Calder�on{Zygmund theory). Moreover, it allowed the solution of various



54 R. A. DeVorefunctional analytic and statistical extremal problems to be made directlyfrom wavelet coe�cients.Wavelet theory provides simple and powerful decompositions of the targetfunction into a series of building blocks. It is natural, then, to approximatethe target function by selecting terms of this series. If we take partial sumsof this series we are approximating again from linear spaces. It was easyto establish that this form of linear approximation o�ered little, if any,advantage over the already well established spline methods. However, itis also possible to let the selection of terms to be chosen from the waveletseries depend on the target function f and keep control only over the numberof terms to be used. This is a form of nonlinear approximation which iscalled n-term approximation. This type of approximation was introducedby Schmidt (1907). The idea of n-term approximation was �rst utilized formultivariate splines by Oskolkov (1979).Most function norms can be described in terms of wavelet coe�cients.Using these descriptions not only simpli�es the characterization of functionswith a speci�ed approximation order but also makes transparent strategiesfor achieving good or best n-term approximations. Indeed, it is enough toretain the n terms in the wavelet expansion of the target function that arelargest relative to the norm measuring the error of approximation. Viewedin another way, it is enough to threshold the properly normalized waveletcoe�cients. This leads to approximation strategies based on what is calledwavelet shrinkage by Donoho and Johnstone (1994). Wavelet shrinkage isused by these two authors and others to solve several extremal problemsin statistical estimation, such as the recovery of the target function in thepresence of noise.Because of the simplicity in describing n-term wavelet approximation, itis natural to try to incorporate a good choice of basis into the approxima-tion problem. This leads to a double stage nonlinear approximation problemwhere the target function is used both to choose a good (or best) basis froma given library of bases and then to choose the best n-term approximationrelative to the good basis. This is a form of highly nonlinear approximation.Other examples are greedy algorithms and adaptive pursuit for �nding ann-term approximation from a redundant set of functions. Our understand-ing of these highly nonlinear methods is quite fragmentary. Describing thefunctions that have a speci�ed rate of approximation with respect to highlynonlinear methods remains a challenging problem.Our goal in this paper is to be tutorial rather than complete in our de-scription of nonlinear approximation. We spare the reader some of the �neraspects of the subject in search of clarity. In this vein, we begin in Section 2by considering approximation in a Hilbert space. In this simple setting theproblems of linear and nonlinear approximation are easily settled and thedistinction between the two subjects is readily seen.



Nonlinear approximation 55In Section 3, we consider approximation of univariate functions by piece-wise constants. This form of approximation is the prototype of both splineapproximation and wavelets. Understanding linear and nonlinear approx-imation by piecewise constants will make the transition to the fuller aspectsof splines (Section 6) and wavelets (Section 7) more digestible.In Section 8, we treat highly nonlinear methods. Results in this subject arein their infancy. Nevertheless, the methods are already in serious numericaluse, especially in image processing.As noted earlier, the thread that runs through this paper is the followingquestion: what properties of a function determine its rate of approximationby a given nonlinear method. The �nal solution of this problem, when itis known for a speci�c method of approximation, is most often in terms ofBesov spaces. However, we try to postpone the full impact of Besov spacesuntil the reader has, we hope, developed signi�cant feeling for smoothnessconditions and their role in approximation. Nevertheless, it is impossibleto understand this subject fully without �nally coming to grips with Besovspaces. Fortunately, they are not too di�cult when viewed via moduli ofsmoothness (Section 4) or wavelet coe�cients (Section 7).Nonlinear approximation is used signi�cantly in many applications. Per-haps the greatest success for this subject has been in image processing. Non-linear approximation explains the thresholding and quantization strategiesused in compression and noise removal. It also explains how quantizationand thresholding may be altered to accommodate other measures of error.It is also noteworthy that it explains precisely which images can be com-pressed well by certain thresholding and quantization strategies. We discusssome applications of nonlinear methods to image processing in Section 10.Another important application of nonlinear approximation lies in the solu-tion of operator equations. Most notable, of course, are the adaptive �niteelement methods for elliptic equations (see Babu�ska and Suri (1994)) as wellas the emerging nonlinear wavelet methods in the same subject (see Dahmen(1997)). For hyperbolic problems, we have the analogous developments ofmoving grid methods. Applications of nonlinear approximation in PDEs aretouched upon in Section 10.In approximation theory, one measures the complexity of the approxima-tion process by the number of parameters needed to specify the approxim-ant. This agrees in principle with the concepts of complexity in informationtheory. However, it does not necessarily agree with computational complex-ity, which measures the number of computations necessary to render theapproximant. This is particularly the case when the target function is notexplicitly available and must be computed through a numerical process suchas in the numerical solution of integral or di�erential equations. We shallnot touch on this �ner notion of computational complexity in this survey.Good references for computational complexity in the framework of linear



56 R. A. DeVoreand nonlinear approximation is given in the book of Traub, Wasilkowskiand Wo�zniakowski (1988), the paper of E. Novak (1996), and the referencestherein.Finally, we close this introduction with a couple of helpful remarks aboutnotation. Constants appearing in inequalities will be denoted by C andmay vary at each occurrence, even in the same formula. Sometimes we willindicate the parameters on which the constant depends. For example, C(p)(respectively, C(p; �)) means the constant depends only on p (respectively,p and �). However, usually the reader will have to consult the text tounderstand the parameters on which C depends. More ubiquitous is thenotation A � B; (1.1)which means there are constants C1; C2 > 0 such that C1A � B � C2A.Here A and B are two expressions depending on other variables (paramet-ers). When there is any chance of confusion, we will indicate in the text theparameters on which C1 and C2 depend.2. Approximation in a Hilbert spaceThe problems of approximation theory are simplest when they take place ina Hilbert space H. Yet the results in this case are not only illuminating butvery useful in applications. It is worthwhile, therefore, to begin with a briefdiscussion of linear and nonlinear approximation in this setting.LetH be a separable Hilbert space with inner product h�; �i and norm k�kHand let �k, k = 1; 2; : : :, be an orthonormal basis forH. We shall consider twotypes of approximation corresponding to the linear and nonlinear settings.For linear approximation, we use the linear space Hn := spanf�k : 1 �k � ng to approximate an element f 2 H. We measure the approximationerror by En(f)H := infg2Hn kf � gkH: (2.1)As a counterpart in nonlinear approximation, we have n-term approxima-tion, which replaces Hn by the space �n consisting of all elements g 2 Hthat can be expressed as g =Xk2� ck�k; (2.2)where � � N is a set of indices with #� � n.1 Notice that, in contrast toHn, the space �n is not linear. A sum of two elements in �n will in general1 We use N to denote the set of natural numbers and #S to denote the cardinality of a�nite set S.



Nonlinear approximation 57need 2n terms in its representation by the �k. Analogous to En, we havethe error of n-term approximation�n(f)H := infg2�n kf � gkH: (2.3)We pose the following question. Given a real number � > 0, for whichelements f 2 H do we haveEn(f)H �Mn��; n = 1; 2; : : : ; (2.4)for some constant M > 0? Let us denote this class of f by A�((Hn)),where our notation reects the dependence on the sequence (Hn), and de�nejf jA�((Hn)) as the in�mum of all M for which (2:4) holds. A� is called anapproximation space: it gathers under one roof all f 2 H which have acommon approximation order. We denote the corresponding class for (�n)by A�((�n)).We shall see that it is easy to describe the above approximation classes interms of the coe�cients in the orthogonal expansionf = 1Xk=1hf; �ki�k: (2.5)Let us use in this section the abbreviated notationfk := hf; �ki; k = 1; 2; : : : : (2.6)Consider �rst the case of linear approximation. The best approximationto f from Hn is given by the projectionPnf := nXk=1 fk�k (2.7)onto Hn and the approximation error satis�esEn(f)2H = 1Xk=n+1 jfkj2: (2.8)We can characterize A� in terms of the dyadic sumsFm := 0@ 2mXk=2m�1+1 jfkj21A1=2 ; m = 1; 2; : : : : (2.9)Indeed, it is almost a triviality to see that f 2 A�((Hn)) if and only ifFm �M2�m�; m = 1; 2; : : : ; (2.10)



58 R. A. DeVoreand the smallest M for (2:10) is equivalent to jf jA�((Hn)). To some, (2:10)may not seem so pleasing since it is so close to a tautology. However, it usu-ally serves to characterize the approximation spaces A�((Hn)) in concretesettings.It is more enlightening to consider a variant of A�. Let A�2 ((Hn)) denotethe set of all f such thatjf jA�2 ((Hn)) :=  1Xn=1[n�En(f)H]2 1n!1=2 (2.11)is �nite. From the monotonicity of Ek(f)H, it follows thatjf jA�2 ((Hn)) �  1Xk=0 22k�E2k(f)2H!1=2 : (2.12)The condition for membership in A�2 is slightly stronger than membershipin A�. The latter requires that the sequence (n�En) is bounded while theformer requires that it is square summable with weight 1=n.The space A�2 ((Hn)) is characterized by1Xk=1 k2�jfkj2 �M2 (2.13)and the smallest M satisfying (2:13) is equivalent to jf jA�2 ((Hn)). We shallgive the simple proof of this fact since the ideas in the proof are used often.First of all, note that (2:13) is equivalent to1Xm=1 22m�F 2m � (M 0)2 (2.14)with M of (2:13) and M 0 of (2:14) comparable. Now, we have22m�F 2m � 22m�E2m�1(f)2H;which, when using (2:12), gives one of the implications of the asserted equi-valence. On the other hand,22m�E2m(f)2H = 22m� 1Xk=m+1F 2kand therefore1Xm=0 22m�E2m(f)2H � 1Xm=0 22m� 1Xk=m+1F 2k � C 1Xk=1 22k�F 2k ;which gives the other implication of the asserted equivalence.



Nonlinear approximation 59Let us digest these results with the following example. We take for Hthe space L2(T) of 2�-periodic functions on the unit circle T which has theFourier basis f(2�)� 12 eikx : k 2 Zg. (Note here the indexing of the basisfunctions on Z rather than N.) The space Hn := spanfeikx : jkj � ng is thespace Tn of trigonometric polynomials of degree � n. The coe�cients withrespect to this basis are the Fourier coe�cients f̂(k) and therefore (2:13)states that A�2 ((Tn)) is characterized by the conditionXk2Znf0g jkj2�jf̂(k)j2 �M: (2.15)If � is an integer, (2:15) describes the Sobolev space W�(L2(T)) of all 2�-periodic function with their �th derivative in L2(T) and the sum in (2:15)is the square of the semi-norm jf jW�2 (L2(T)). For noninteger �, (2:15) char-acterizes, by de�nition, the fractional order Sobolev space W�(L2(T)). Oneshould note that one half of the characterization (2:15) of A�2 ((Tn)) givesthe inequality  1Xn=1[n�En(f)H]2 1n!1=2 � Cjf jW�(L2(T)) (2.16)which is slightly stronger than the inequalityEn(f)H � Cn��jf jW�(L2(T)); (2.17)which is more frequently found in the literature.Using (2:10), it is easy to prove that the space A�((Tn)) is identical withthe Besov space B�1(L2(T)) and, for noninteger �, this is the Lipschitz spaceLip(�;L2(T)). (We introduce and discuss amply the Besov and Lipschitzspaces in Sections 3.2 and 4.5.)Let us return now to the case of a general Hilbert space H and nonlinearapproximation from �n. We can characterize the space A�((�n)) by usingthe rearrangement of the coe�cients fk. We denote by k(f) the kth largestof the numbers jfjj. We �rst want to observe that f 2 A�((�n)) if and onlyif n(f) �Mn���1=2 (2.18)and the in�mum of all M which satisfy (2:18) is equivalent to jf jA�((�n)).Indeed, we have �n(f)2H =Xk>nk(f)2: (2.19)Therefore, if f satis�es (2:18), then clearly�n(f)H � CMn��;so that f 2 A�((�n)) and we have one of the implications in the asserted



60 R. A. DeVorecharacterization. On the other hand, if f 2 A�((�n)), then2n(f)2 � n�1 2nXm=n+1 m(f)2 � n�1�n(f)2H � jf j2A�((�n))n�2��1:Since a similar inequality holds for 2n+1(f), we have the other implicationof the asserted equivalence.It is also easy to characterize other approximation classes such as theA�2 ((�n)), which is the analogue of A�2 ((Hn)). We shall formulate suchresults in Section 5.Let us return to our example of trigonometric approximation. Approx-imation by �n is n-term approximation by trigonometric sums. It is easyto see the distinction between linear and nonlinear approximation in thiscase. Linear approximation corresponds to a certain decay in the Fouriercoe�cients f̂(k) as the frequency k increases, whereas nonlinear approxim-ation corresponds to a decay in the rearranged coe�cients. Thus, nonlinearapproximation does not recognize the frequency location of the coe�cients.If we reassign the Fourier coe�cients of a function f 2 A� to new fre-quency locations, the resulting function is still in A�. Thus, in the nonlinearcase there is no correspondence between rate of approximation to classicalsmoothness as there was in the linear case. It is possible to have large coef-�cients at high frequency just as long as there are not too many of them.For example, the functions eikx are obviously in all of the spaces A� eventhough their derivatives are large when k is large.3. Approximation by piecewise constantsFor our next taste of nonlinear approximation, we shall consider in thissection several types of approximation by piecewise constants correspond-ing to linear and nonlinear approximation. Our goal is to see in this verysimple setting the advantages of nonlinear methods. We begin with a targetfunction f de�ned on 
 := [0; 1) and approximate it in various ways bypiecewise constants with n pieces. We shall be interested in the e�ciency ofsuch approximation, that is, how the error of approximation decreases as ntends to in�nity. We shall see that, in many cases, we can characterize thefunctions f which have certain approximation orders (for instance O(n��),0 < � � 1). Such characterizations will illuminate the distinctions betweenlinear and nonlinear approximation.3.1. Linear approximation by piecewise constantsWe begin by considering approximation by piecewise constants on parti-tions of 
 which are �xed in advance. This will be our reference point forcomparisons with nonlinear approximation that follow. This form of linear



Nonlinear approximation 61approximation is also important in numerical computation since it is thesimplest setting for FEM and other numerical methods based on approx-imation by piecewise polynomials. We shall see that there is a completeunderstanding in this case of the properties of the target function neededto guarantee certain approximation rates. As we shall amplify below, thistheory explains what we should be able to achieve with proper numericalmethods and also tells us what form good numerical estimates should take.Let N be a positive integer and let T := f0 =: t0 < t1 < � � � < tN := 1gbe an ordered set of points in 
. These points determine a partition � :=�(T ) := fIkgNk=1 of 
 into N disjoint intervals Ik := [tk�1; tk), 1 � k � N .Let S1(T ) denote the space of piecewise constant functions relative to thispartition. The characteristic functions f�I : I 2 �g form a basis for S1(T ):each function S 2 S1(T ) can be represented uniquely byS =XI2� cI�I : (3.1)Thus S1(T ) is a linear space of dimension N .For 0 < p � 1, we introduce the error in approximating a functionf 2 Lp[0; 1) by the elements of S1(T ):s(f; T )p := infS2S1(T ) kf � SkLp[0;1): (3.2)We would like to understand what properties of f and T determine s(f; T )p.For the moment, we shall restrict our discussion to the case p = 1 whichcorresponds to uniformly continuous functions f on [0; 1) to be approximatedin the uniform norm (L1-norm) on [0; 1). The quality of approximation thatS0(T ) provides is related to the mesh length�T := max0�k<N jtk+1 � tkj: (3.3)We shall �rst give estimates for s(f; T )1 and then later ask in what sensethese estimates are best possible. We recall the de�nition of the Lipschitzspaces Lip�. For each 0 � � � 1 and M > 0, we let LipM � denote the setof all functions f on 
 such thatjf(x)� f(y)j �M jx� yj�:Then Lip� := [M>0LipM �. The in�mum of all M for which f 2 LipM � isby de�nition jf jLip�. In particular, f 2 Lip1 if and only if f is absolutelycontinuous and f 0 2 L1; moreover, jf jLip 1 = kf 0kL1 .If the target function f 2 LipM �, thens(f; T )1 �M(�T =2)�: (3.4)Indeed, we de�ne the piecewise constant function S 2 S1(T ) byS(x) := f(�I); x 2 I; I 2 �n;



62 R. A. DeVorewith �I the midpoint of I. Then, jx� �I j � �T =2, x 2 I, and hencekf � SkL1[0;1) �M(�T =2)�; (3.5)which gives (3:4).We turn now to the question of whether the estimate (3:4) is the best wecan do. We shall see that this is indeed the case in several senses. First,suppose that for a function f we know thats(f; T )1 �M��T ; (3.6)for every partition T . Then, we can prove that f is in Lip� and moreoverjf jLip� �M . Results of this type are called inverse theorems in approxim-ation theory whereas results like (3:4) are called direct theorems.To prove the inverse theorem, we need to estimate the smoothness of ffrom the approximation errors s(f; T )1. In the case at hand, the proofis very simple. Let ST be a best approximation to f from S1(T ) in theL1(
)-norm. (A simple compactness argument shows the existence of bestapproximants.) If x; y are two points from 
 that are in the same intervalI 2 �(T ), then from (3:6)jf(x)� f(y)j � jf(x)� ST (x)j + jf(y)� ST (y)j+ jST (x)� ST (y)j � 2s(f; T )1 � 2M��T (3.7)because ST (x) = ST (y) (ST is constant on I). Since we can choose T sothat �T is arbitrarily close to jx� yj, we obtainjf(x)� f(y)j � 2M(�T )� � 2M jx� yj� (3.8)which shows that f 2 Lip� and jf jLip� � 2M .Here is one further observation on the above analysis. If f is a functionfor which s(f; T )1 = o(�T ) holds for all T , then the above argument givesthat f(x + h) � f(x) = o(h), h ! 0, for each x 2 
. Thus f is constant(its derivative is 0 everywhere). This is called a saturation theorem in ap-proximation theory. Only trivial functions can be approximated with orderbetter than O(�T ).The above discussion is not completely satisfactory for numerical ana-lysis. In numerical algorithms, we usually have only a sequence of partitions.However, with some massaging, the above arguments can be applied in thiscase as well. Consider, for example, the case where�n := fk=n : 0 � k � ng (3.9)consists of n equally spaced points from 
 (with spacing 1=n). Then, foreach 0 < � � 1, a function f satis�essn(f)1 := s(f;�n)1 = O(n��) (3.10)if and only if f 2 Lip� (see DeVore and Lorentz (1993)). The saturation



Nonlinear approximation 63result holds as well. If sn(f)1 = o(n�1) then f is constant. Of course thedirect estimates in this setting follow from (3:4). The inverse estimates area little more subtle and use the fact that the sets �n mix; that is, eachpoint x 2 (0; 1) falls in the `middle' of many intervals from the partitionsassociated to �n. If we consider partitions that do not mix then, whiledirect estimates are equally valid, the inverse estimates generally fail. Acase in point are the dyadic partitions whose sets of breakpoints �2n arenested. A piecewise constant function from S1(�2n) will be approximatedexactly by elements from S1(�2m), m � n, and yet these functions are noteven continuous.An analysis similar to that given above holds for approximation in Lp, for1 � p <1, and even for 0 < p < 1. To explain these results, we de�ne thespace Lip(�;Lp(
)), 0 < � � 1, 0 < p � 1, which is the set of all functionsf 2 Lp(
) for whichkf(�+ h)� fkLp[0;1�h) �Mh�; 0 < h < 1: (3.11)Again, the smallest M � 0 for which (3:11) holds is jf jLip(�;Lp(
)).By analogy with (3:4), there are ST 2 S1(T ) such thats(f; T )p � kf � ST kLp(
) � Cpjf jLip(�;Lp(
))��T (3.12)with the constant Cp depending at most on p. Indeed, for p � 1, we cande�ne ST by ST (x) := aI(f); x 2 I; I 2 �(T ); (3.13)with2 aI(f) := 1jIj ZI f dxthe average of f over I. With this de�nition of ST one easily derives (3:12);see Section 2 of Chapter 12 in DeVore and Lorentz (1993). When 0 < p < 1,we replace aI(f) by the median of f on the interval I (see Brown and Lucier(1994)).Inverse estimates follow the same lines as the case p =1 discussed above.We limit further discussion to the case �n of equally spaced breakpointsgiven by (3:9). Then, if f satis�essn(f)p := s(f;�n)p �Mn��; n = 1; 2; : : : ; (3.14)for some 0 < � � 1, M > 0, then f 2 Lip(�;Lp(
)) andjf jLip(�;Lp(
)) � CpM:2 We shall use the notation jEj to denote the Lebesgue measure of a set E throughoutthis paper.



64 R. A. DeVoreThe saturation theorem is also valid: if sn(f)p = o(n�1), n!1, then f isconstant.In summary, we know precisely when a function satis�es sn(f)p = O(n��),n = 1; 2; : : :; it should be in the space Lip(�;Lp(
)). This provides a guide tothe construction and analysis of numerical methods based on approximationby piecewise constants. For example, suppose that we are using S1(�n) togenerate a numerical approximation Anu to a function u which is known tobe in Lip(1; Lp(
)). The values of u would not be known to us but wouldbe generated by our numerical method. The estimates (3:4) or (3:12) tell uswhat we could expect of the numerical method in the best of all worlds. Ifwe are able to prove that our numerical method satis�esku�AnukLp(
) � Cpjf jLip(1;Lp(
))n�1; n = 1; 2; : : : ; (3.15)we can rest assured that we have done the best possible (save for the numer-ical constant Cp). If we cannot prove such an estimate then we should tryto understand why. Moreover, (3:15) is the correct form of error estimatesbased on approximation by piecewise constants on uniform partitions.There are numerous generalizations of the results given in this section.First of all, piecewise constants can be replaced by piecewise polynomialsof degree r with r arbitrary but �xed (see Section 6.2). One can requirethat the piecewise polynomials have smoothness Cr�2 at the breakpointswith an identical theory. Of course, inverse theorems still require somemixing condition. Moreover, all of these results hold in the multivariatecase as is discussed in Section 6.2. We can also do a more subtle analysis ofapproximation orders where O(n��) is replaced by a more general statementon the rate of decay of the error. This is important for a fuller understandingof approximation theory and its relationship to function spaces. We shalldiscuss these issues in Section 4 after the reader has more familiarity withmore fundamental approximation concepts.3.2. Nonlinear approximation by piecewise constantsIn linear approximation by piecewise constants, the partitions are chosen inadvance and are independent of the target function f . The question ariseswhether there is anything to be gained by allowing the partition to depend onf . This brings us to try to understand approximation by piecewise constantswhere the number of pieces is �xed but the actual partition can vary withthe target function. This is the simplest case of what is called variable knotspline approximation. It is also one of the simplest and most instructiveexamples of nonlinear approximation.If T is a �nite set of points 0 =: t0 < t1 < � � � < tn := 1 from 
, we denoteby S1(T ) the functions S which are piecewise constant with breakpointsfrom T . Let �n := [#T=n+1S1(T ), where #T denotes the cardinality of T .



Nonlinear approximation 65Each function in �n is piecewise constant with at most n pieces. Note that�n is not a linear space; for example, adding two functions in �n resultsin a piecewise constant function but with as many as 2n pieces. Givenf 2 Lp(
), 0 < p � 1, we introduce�n(f)p := infS2�n kf � SkLp(
); (3.16)which is the Lp-error of nonlinear piecewise constant approximation to f .As noted earlier, we would like to understand what properties of f de-termine the rate of decrease of �n(f)p. We shall begin our discussion withthe case p = 1, which corresponds to approximating the continuous func-tion f in the uniform norm. We shall show the following result of Kahane(1961). For a function f 2 C(
) we have�n(f)1 � M2n ; n = 1; 2; : : : ; (3.17)if and only if f 2 BV, i.e., f , is of bounded variation on 
 and jf jBV :=Var
(f) is identical with the smallest constant M for which (3:17) holds.We sketch the proof of Kahane's result since it is quite simple and in-structive. Suppose �rst that f 2 BV with M := Var
(f). Since f is, byassumption, continuous, we can �nd T := f0 =: t0; : : : ; tn := 1g such thatVar[tk�1;tk)f �M=n, k = 1; : : : ; n. If ak is the median value of f on [tk�1; tk],and Sn(x) := ak, x 2 [tk�1; tk), k = 1; : : : ; n, then Sn 2 �n and satis�eskf � SnkL1(
) �M=2n; (3.18)which shows (3:17).Conversely, suppose that (3:17) holds for someM > 0. Let Sn 2 �n satisfykf � SnkL1(
) � (M + �)=(2n) with � > 0. If x0 := 0 < x1 < � � � < xm := 1is an arbitrary partion for 
 and �k is the number of values that Sn attainson [xk�1; xk), then one easily sees thatjf(xk)�f(xk�1)j � 2�kkf �SnkL1(
) � �k(M+�)n ; k = 1; 2; : : : ;m: (3.19)Since Pmk=1 �k � m+ n, we havemXk=1 jf(xk)� f(xk�1)j � mXk=1 �k(M+�)n � (M + �)(1 + mn ): (3.20)Letting n!1 and then �! 0 we �ndmXk=1 jf(xk)� f(xk�1)j �M; (3.21)which shows that Var
(f) �M .There are elements of the above proof that are characteristic of nonlin-ear approximation. Firstly, the partition providing (3:17) depends on f .
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0.2 0.4 0.6 0.8 1Fig. 1. Best selection of breakpoints for f(x) = x1=2 when n = 6Secondly, this partition is obtained by balancing the variation of f overthe intervals I in this partition. In other types of nonlinear approxima-tion, VarI(f) will be replaced by some other expression B(f; I) de�ned onintervals I (or other sets in more general settings).Let us pause now for a moment to compare Kahane's result with whatwe know about linear approximation by piecewise constants in the uniformnorm. In both cases, we can characterize functions which can be approx-imated with e�ciency O(n�1). In the case of linear approximation fromS1(Tn) (as described in the previous section), this is the class of functionsLip (1; L1(
)) or, equivalently, functions f for which f 0 2 L1(
). On theother hand, for nonlinear approximation, it is the class BV of functions ofbounded variation. It is well known that BV = Lip(1; L1(
)) with equival-ent norms. Thus in both cases the function is required to have one orderof smoothness but measured in quite di�erent norms. For linear approxim-ation the smoothness is measured in L1, the same norm as the underlyingapproximation. For nonlinear approximation the smoothness is measuredin L1. Thus, in nonlinear approximation, the smoothness is measured in aweaker norm. What is the signi�cance of L1? The answer lies in the Sobolevembedding theorem. Among the spaces Lip(1; Lp(
)), 0 < p � 1, p = 1is the smallest value for which this space is embedded in L1(
). In otherwords, the functions in Lip(1; L1(
)) barely get into L1(
) (the space inwhich we measure error) and yet we can approximate them quite well.An example might be instructive. Consider the function f(x) = x� with0 < � < 1. This function is in Lip(�;L1(
)) and in no higher-order Lip-schitz space. It can be approximated by elements of S1(Tn) with order
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Fig. 2. Linear and nonlinear approximation in Cexactly O(n��). On the other hand, this function is clearly of boundedvariation (being monotone) and hence can be approximated by the elementsof �n to order O(n�1). It is easy to see how to construct such an approxim-ant. Consider the graph of f as depicted in Figure 1. We divide the rangeof f (which is the interval [0; 1)) on the y-axis into n pieces correspondingto the y values yk := k=n, k = 0; 1; : : : ; n. The preimage of these points isthe set fxk := (k=n)1=� : 0 � k � ng, which forms our set T of breakpointsfor the best piecewise polynomial approximant from �n.It will be useful to have a way of visualizing spaces of functions as theyoccur in our discussion of approximation. This will give us a simple way tokeep track of various results and also add to our understanding. We shalldo this by using points in the upper right quadrant of the plane. The x-axiswill correspond to the Lp spaces except that Lp is identi�ed with x = 1=pnot with x = p. The y axis will correspond to the order of smoothness.For example y = 1 will mean a space of smoothness order one (or onetime di�erentiable, if you like). Thus (1=p; �) corresponds to a space ofsmoothness � measured in the Lp-norm. For example, we could identifythis point with the space Lip(�;Lp) although when we get to �ner aspectsof approximation theory we may want to vary this interpretation slightly.Figure 2 gives a summary of our knowledge so far. The vertical linesegment (marked L) connecting (0; 0) (L1) to (0; 1) (Lip(1; L1)) corres-pond to the spaces we engaged when we characterized approximation orderfor linear approximation (approximation from S1(Tn)). For example, (0; 1)(Lip(1; L1)) was the space of functions with approximation order O(n�1).
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Fig. 3. Linear and nonlinear approximation in LpOn the other hand, for nonlinear approximation from �n, we saw that thepoint (1; 1) (Lip(1; L1)) describes the space of functions which are approx-imated with order O(n�1). We shall see later (Section 4) that the point(�; �) on the line connecting (0; 0) to (1; 1) (marked NL) describes the spaceof functions approximated with order O(n��) (a few new wrinkles come inhere which is why we are postponing a precise discussion).More generally, approximation in Lp, 0 < p � 1, is depicted in Figure 3.The spaces corresponding to linear approximation lie on the vertical linesegment (marked L) connecting (1=p; 0) (Lp) to (1=p; 1) (Lip(1; Lp), whereasthe line segment (marked NL) emanating from (1=p; 0) with slope one willdescribe the nonlinear approximation spaces. The points on this line are ofthe form (1=�; �) with 1=� = �+1=p. Again, this line segment in nonlinearapproximation corresponds to the limiting spaces in the Sobolev embeddingtheorem. Spaces to the left of this line segment are embedded into Lp; thoseto the right are not.There are various generalizations of nonlinear piecewise constant approx-imation which we shall address in due course. For univariate approximation,we can replace piecewise constant functions by piecewise polynomials of �xeddegree r with n free knots with a similar theory (Section 6.3). However, mul-tivariate approximation by piecewise polynomials leads to new di�culties,as we shall see in Section 6.5.Approximation by piecewise constants (or more generally piecewise poly-nomials) with free knots is used in numerical PDEs. It is particularly usefulwhen the solution is known to develop singularities. An example would be a



Nonlinear approximation 69nonlinear transport equation in which shocks appear (see Section 10). Thesigni�cance of the above results to the numerical analyst is that it clari�eswhat is the optimal performance that can be obtained by such methods.Once the norm has been chosen in which the error is to be measured, thenwe understand the minimal smoothness that will allow a given approxima-tion rate. We also understand what form error estimates should take. Forexample, consider numerically approximating a function u by a piecewiseconstant function Anu with n free knots. We have seen that, in the case ofuniform approximation, the correct form of the error estimate isku�AnukL1(
) � C jujBVn : (3.22)This is in contrast to the case of �xed knots where jujBV is replaced byku0kL1(
). A similar situation exists when error is measured in other Lp-norms, as will be developed in Section 6.The above theory of nonlinear piecewise constant approximation also tellsus the correct form for local error estimators. Approximating in L1, weshould estimate local error by local variation. Approximating in Lp, thevariation will be replaced by other set functions obtained from certain Besovor Sobolev norms (see Section 6.1).3.3. Adaptive approximation by piecewise constantsOne disadvantage of piecewise constant approximation with free knots is thatit is not always easy to �nd partitions that realize the optimal approxima-tion order. This is particularly true in the case of numerical approximationwhen the target function is not known to us but is only approximated aswe proceed numerically. One way to ameliorate this situation is to gener-ate partitions adaptively. New breakpoints are added as new information isgained about the target function. We shall discuss this type of approxima-tion in this section with the goal of understanding what is lost in terms ofaccuracy of approximation when adaptive partitions are used in place of freepartitions. Adaptive approximation is also important because it generalizesreadily to the multivariate case when intervals are replaced by cubes.The starting point for adaptive approximation is a function E(I) which isde�ned for each interval I � 
 and estimates the approximation error on I.Namely, let E(f; I)p be the local error in approximating f by constants inthe Lp(I)-norm: E(f; I)p := infc2R kf � ckLp(I): (3.23)Then, we assume that E satis�esE(f; I)p � E(I): (3.24)



70 R. A. DeVoreIn numerical settings, E(I) is an upper bound for E(f; I)p obtained fromthe information at hand. It is at this point that approximation theory andnumerical analysis sometimes part company. Approximation theory assumesenough about the target function to have an e�ective error estimator E , aproperty not always veri�able for numerical estimators.To retain the spirit of our previous sections, let us assume for our illustra-tion that p = 1 so that we are approximating continuous functions in theL1(
) norm. In this case, a simple upper bound for E(f; I)1 is providedby E(f; I)1 � VarI(f) � ZI jf 0(x)jdx; (3.25)which holds whenever these quantities are de�ned for the continuous func-tion f (i.e., f should be in BV for the �rst estimate, f 0 2 L1 for the second).Thus, we could take for E any of the three quantities appearing in (3:25).A common feature of each of these error estimators is thatE(I1) + E(I2) � E(I1 [ I2); I1 \ I2 = ;: (3.26)We shall restrict our attention to adaptive algorithms that create parti-tions of 
 consisting of dyadic intervals. Our development parallels com-pletely the standard treatment of adaptive numerical quadrature. We shalldenote by D := D(
) the set of all dyadic intervals in 
; for speci�city wetake these intervals to be closed on the left end-point and open on the right.Each interval I 2 D has two children. These are the intervals J 2 D suchthat J � I and jJ j = jIj=2. If J is a child of I then I is called the parent ofJ . Intervals J 2 D such that J � I are descendants of I those with I � Jare ancestors of I.A typical adaptive algorithm proceeds as follows. We begin with ourtarget function f , an error estimator E , and a target tolerance � whichrelates to the �nal approximation error we want to attain. At each step ofthe algorithm we have a set G of good intervals (on which the local errormeets the tolerance) and a set B of bad intervals (on which we do notmeet the tolerance). Good intervals become members of our �nal partition.Bad intervals are further processed: they are halved and their children arechecked for being good or bad.Initially, we check E(
). If E(
) � � then we de�ne G = f
g, B := ; andwe terminate the algorithm. On the other hand, if E(
) > �, we de�ne G = ;,B := f
g and proceed with the following general step of the algorithm.General step. Given any interval I in the current set B of bad intervals,we process it as follows. For each of the two children J of I, we check E(J).If E(J) � �, then J is added to the set of good intervals. If E(J) > �, thenJ is added to the set of bad intervals. Once a bad interval is processed it isremoved from B.



Nonlinear approximation 71The algorithm terminates when B = ;, and the �nal set of good intervalsis denoted by G� := G�(f). The intervals in G� form a partition of 
, that is,they are pairwise disjoint and their union is all of 
. We de�neS� := XI2G� cI�I ; (3.27)where cI is a constant that satis�eskf � cIkL1(I) � E(I) � �; I 2 G�:Thus, S� is a piecewise constant function approximating f to tolerance �:kf � S�kL1(
) � �: (3.28)The approximation e�ciency of the adaptive algorithm depends on thenumber N�(f) := #G�(f) of good intervals. We are interested in estimatingN� so that we can compare adaptive e�ciency with free knot spline approx-imation. For this we recall the space L logL, which consists of all integrablefunctions for whichkfkL logL := Z
 jf(x)j(1 + log jf(x)j) dxis �nite. This space contains all spaces Lp, p > 1, but is strictly containedin L1(
). We have shown in DeVore (1987) that any of the three estimatorsof (3:25) satisfy N�(f) � C kf 0kL logL� : (3.29)We shall give the proof of (3:29), which is not di�cult. It will allow usto introduce some concepts that are useful in nonlinear approximation andnumerical estimation, such as the use of maximal functions. The Hardy{Littlewood maximal function Mf is de�ned for a function in L1(
) byMf(x) := supI3x 1jIj ZI jf(y)jdy; (3.30)where the sup is taken over all intervals I � 
 which contain x. ThusMf(x) is the smallest number that bounds all of the averages of jf j overintervals which contain x. The maximal function Mf is at the heart ofdi�erentiability of functions (see Chapter 1 of Stein (1970)). We shall needthe fact (see pages 243{246 of Bennett and Sharpley (1988)) thatkfkL logL � Z
Mf(y) dy: (3.31)



72 R. A. DeVoreWe shall use Mf to count N�. We assume that G� 6= f
g. Suppose thatI 2 G�. Then the parent J of I satis�es� < E(J) � ZJ jf 0(y)jdy � jJ jMf 0(x); (3.32)for all x 2 J . In particular, we have� � jJ j infx2IMf 0(x) � jJ jjIj ZIMf 0(y) dy = 2ZIMf 0(y) dy: (3.33)Since the intervals in G� are disjoint, we haveN�� � 2XI2G� ZIMf 0(y) dy = 2Z
Mf 0(y) dy � Ckf 0kL logL;where the last inequality uses (3:31). This proves (3:29).In order to compare adaptive approximation with free knot splines, weintroduce the adaptive approximation erroran(f)1 := inff� : N�(f) � ng: (3.34)Thus, with the choice � = (Ckf 0kL logL)=n, and C the constant in (3:29), ouradaptive algorithm generates a partition G with at most n dyadic intervalsand, from (3:28), we havean(f)1 � kf � S�kL1(
) � C kf 0kL logLn : (3.35)Let's compare an(f)1 with the error �n(f)1 for free knot approximation.In free knot splines we obtained the approximation rate �n(f)1 = O(n�1)if and only if f 2 BV. This condition is slightly weaker than requiring thatf 0 is in L1(
) (the derivative of f should be a Borel measure). On the otherhand, assuming that f satis�es the slightly stronger condition f 0 2 L logL,we �nd an(f)1 � C=n. Thus, the cost in using adaptive algorithms is slightfrom the viewpoint of the smoothness condition required on f to producethe order O(n�1).It is much more di�cult to prove error estimates for numerically basedadaptive algorithms. What is needed is a comparison (from above and be-low) of the error estimator E(I) with the local approximation error E(f; I)por one of the good estimators like RI jf 0j. Nevertheless, the above results areuseful in that they give the form such error estimators E(I) should take andalso give the form the error analysis should take.There is a comparable theory for adaptive approximation in other Lp-norms and even in several variables (Birman and Solomyak 1967).



Nonlinear approximation 733.4. n-term approximation: a �rst lookThere is another view toward the results we have obtained thus far, which isimportant because it generalizes readily to a variety of settings. In each ofthe three types of approximation (linear, free knot, and adaptive), we haveconstructed an approximant of the formS =XI2� cI�I ; (3.36)where � is a set of intervals and the cI are constants. Thus, a generalapproximation problem that would encompass all three of the above is toapproximate using sums (3:36) where #� � n. This is called n-term ap-proximation. We formulate this problem more formally as follows.Let ��n be the set of all piecewise constant functions that can be writtenas in (3:36) with #� � n. Then, ��n is a nonlinear space. As in our previousconsiderations, we de�ne the Lp-approximation error��n(f)p := infS2��n kf � SkLp(
): (3.37)Note that we do not require that the intervals of � form a disjoint partition;we allow possible overlap in the intervals.It is easy to see that the approximation properties of n-term approxima-tion is equivalent to that of free knot approximation. Indeed, �n � ��n ��2n, n = 1; 2; : : :, and therefore�2n(f)p � ��n(f)p � �n(f)p: (3.38)Thus, for example, a function f satis�es ��n(f)p = O(n��) if and only if��n(f)p = O(n��).The situation with adaptive algorithms is more interesting and enlight-ening. In analogy to the above, one de�nes �an as the set of functions Swhich can be expressed as in (3:36), but now with � � D and �an de�nedaccordingly. The analogue of (3:38) would compare �an and am. Of course,�an � an, n � 1. But no comparison acn � �an, n = 1; 2; : : :, is valid for any�xed constant c � 1. The reason is that adaptive algorithms do not createarbitrary functions in �an. For example, the adaptive algorithm cannot havea partition with just one small dyadic interval; it automatically carries withit a certain entourage of intervals. We can explain this in more detail byusing binary trees.Consider any of the adaptive algorithms of the previous section. Given an� > 0, let B� be the collection of all I 2 D such that E(I) > � (the collectionof bad intervals). Then, whenever I 2 B�, its parent is too. Thus B� is abinary tree with root 
. The set of dyadic intervals G� is precisely the setof good intervals I (i.e., E(I) � �) whose parent is bad. The ine�ciencyof the adaptive algorithm occurs when B� contains a long chain of intervals



74 R. A. DeVoreI1 � I2 � � � � � Im with Ik the parent of Ik+1 with the property that theother child of Ik is always good, k = 1; : : : ;m� 1. This occurs, for example,when the target function f has a singularity at some point x0 2 Im but issmooth otherwise. The partition G� will contain one dyadic interval at eachlevel (the sibling Jk of Ik). Using free knot partitions, we would zoom infaster on this singularity and thereby avoid this entourage of intervals Jk.There are ways of modifying the adaptive algorithm to make it compar-able to approximation from �an, which we now briey describe. If we areconfronted with a long chain I0 � I1 � � � � � Im of bad intervals fromB�, the adaptive algorithm would place each of the sibling intervals Jk ofIk, k = 0; : : : ;m, into the good partition. We can decrease the numberof intervals needed in the following way. We �nd the shortest subchainI0 = Ij0 � Ij1 � � � � � Ij` = Im for which E(Ij�1 n Ij) < �, j = 1; : : : ; `.Then, it is su�cient to use the intervals Iji , i = 0; : : : ; `, in place of theintervals Jk, k = 0; : : : ;m, in the construction of an approximant from �an(see DeVore and Popov (1987) or Cohen, DeVore, Petrushev and Xu (199x)for a further elaboration on these ideas).3.5. Wavelets: a �rst look; the Haar systemThe two topics of approximating functions and representing them are closelyrelated. For example, approximation by trigonometric sums is closely relatedto the theory of Fourier series. Is there an analogue in approximation bypiecewise constants? The answer is yes. There are in fact several represent-ations of a given function f using a basis of piecewise constant functions.The most important of these is the Haar basis, which we shall now describe.Rather than simply introducing the Haar basis and giving its properties,we prefer to present this topic from the viewpoint of multiresolution analysis(MRA) since this is the launching point for the construction of wavelet bases,which we shall discuss in more detail in Section 7. Wavelets and multilevelmethods are increasingly coming into favour in numerical analysis.Let us return to the linear spaces S1(�n) of piecewise constant functionson the partition of 
 with spacing 1=n. We shall only need the case n = 2kand we denote this space by Sk := S1(�2k). The characteristic functions �I ,I 2 Dk(
), are a basis for Sk. If we approximate well a smooth function f bya piecewise constant function S =PI2Dk cI�I from Sk, then the coe�cientscI will not change much: cI will be close to cJ if I is close to J . We wouldlike to take advantage of this fact to �nd a more compact representationfor S. That is, we should be able to �nd a more favourable basis for Sk forwhich the coe�cients of S are either zero or small.The spaces Sk form a ladder: Sk � Sk+1, k = 0; 1; : : :. We let Wk :=Sk+1 	 Sk be the orthogonal complement of Sk in Sk+1. This means that



Nonlinear approximation 75Wk consists precisely of the functions in w 2 Sk+1 orthogonal to Sk:Z
w(x)S(x) dx = 0; for all S 2 Sk:We then have Sk+1 = Sk �Wk; k = 0; 1; : : : : (3.39)Thus Wk represents the detail that must be added to Sk in order to obtainSk+1.The spaces Wk have a very simple structure. Consider, for example,W :=W0. Since S1 = S0+W0, and S1 has dimension 2 and S0 dimension 1,the space W1 will be spanned by a single function from S1. Orthogonalitygives us that this function is a nontrivial multiple ofH(x) := �[0;1=2) � �[1=2;1) = � 1; 0 � x < 1=2;�1; 1=2 � x < 1: (3.40)H is called the Haar function. More generally, it is easy to see that Wk isspanned by the following (normalized) shifted dilates of H:Hj;k(x) := 2k=2H(2kx� j); j = 0; : : : ; 2k � 1: (3.41)The function Hj;k is a scaled version of H �tted to the interval 2�k[j; j +1)which has L2(
)-norm one: kHj;kkL2(
) = 1.From (3:39), we �ndSm = S0 �W0 � � � � �Wm�1: (3.42)It follows that �
 together with the functions Hj;k, j = 0; : : : ; 2k � 1, k =0; : : : ;m� 1, form an orthonormal basis for Sm which is, in many respects,better than the old basis �I , I 2 Dm. But, before taking up that point, wewant to see that we can take m ! 1 in (3:42) and thereby obtain a basisfor L2(
).It will be useful to have an alternative notation for the Haar functionsHj;k. Each j; k corresponds to the dyadic interval I := 2�k[j; j + 1). Weshall write HI := Hj;k = jIj�1=2H(2k � �j): (3.43)From (3:42) we see that each S 2 Sm has the representationS = hS; �
i�
 + XI2[0�k<mDkhS;HIiHI ; (3.44)where hf; gi := Z
 f(x)g(x) dx (3.45)is the inner product in L2(
).



76 R. A. DeVoreLet Pm denote the orthogonal projector onto Sm. Thus, Pmf is the bestL2(
)-approximation to f from Sm. It is the unique element in Sm suchthat f � Pmf is orthogonal to Sm. Using the orthonormal basis of (3:44),we see that Pmf = hf; �
i�
 + XI2[0�k<mDkhf;HIiHI : (3.46)Since dist(f;Sm)L2(
) ! 0, m ! 1, we can take the limit in (3:46) toobtain f = hf; �
i�
 +XI2Dhf;HIiHI (3.47)In other words, �
 together with the functionsHI , I 2 D, form an orthonor-mal basis, called the Haar basis, for L2(
).Some of the advantages of the Haar basis for Sm over the standard basis(�I , I 2 Dm) are obvious. If we wish to increase our resolution of thetarget function by approximating from Sm+1 rather than Sm, we do notneed to recompute our approximant. Rather, we merely add a layer ofthe decomposition (3:47) to the approximant corresponding to the waveletspaceWm+1. Of course, the orthogonality ofWm to Sm means that this newinformation is independent of our previous information about f . It is alsoclear that the coe�cients of the basis function HI , I 2 Dm, tend to zero asm!1. Indeed, we havekfk2L2(
) = jhf; �
ij2 +XI2D jhf;HIij2: (3.48)Therefore, this series converges absolutely.3.6. n-term approximation: a second lookWe shall next consider n-term approximation using the Haar basis. This isa special case of n-term wavelet approximation considered in more detail inSection 7.4. Let �Hn denote the collection of all functions S of the formS = c�
 +XI2� cIHI ; (3.49)where � � D is a set of dyadic intervals with #� � n. As before, we let�Hn (f)p := infS2�Hn kf � SkLp(
) (3.50)be the error of n-term approximation.We shall consider �rst the case of approximation in L2(
) where thematter is completely transparent. In fact, in this case, in view of the norm



Nonlinear approximation 77equivalence (3:48), we see that a best approximation from �Hn is given byS = hf; �
i�
 +XI2�hf;HIiHI ; (3.51)where � � D is a set corresponding to the n biggest Haar coe�cients. Sincethere may be coe�cients of equal absolute values, best approximation fromPHn is not necessarily unique.Since we are dealing with an orthonormal system, we can apply the resultsof Section 2 to characterize the class of functions f which satisfy�Hn (f)2 �Mn��; n = 1; 2; : : : : (3.52)Namely, let n := n(f) be the absolute of the nth largest Haar coe�cient.It follows from the characterization (2:18) that, for any � > 0, a function fsatis�es (3:52) if and only if n(f) � M 0n�+1=2 : (3.53)Moreover, the smallest constant M in (3:52) is equivalent (independently off) to the smallest constant M 0 in (3:53).It is interesting to note that the above characterization holds for any� > 0; it is not necessary to assume that � � 1. It is not apparent howthe characterization (3:53) relates directly to the smoothness of f . We shallsee later, when we develop n-term wavelet approximation in more detail,that, for 0 < � < 1, (3:53) is tantamount to requiring that f have � ordersof smoothness in L� , where � is de�ned by 1=� = � + 1=2. We recall ourconvention for interpreting smoothness spaces as points in the upper rightquadrant of R2 , as described in Section 3.2. The point (1=�; �) lies onthe line with slope one which passes through (1=2; 0) (L2(
)). Thus, thecharacterization of n-term Haar approximation (in L2(
)) is the same asthe previous characterizations of free knot approximation.The study of n-term Haar approximation in L2(
) bene�ted greatly fromthe characterization of L2(
) in terms of wavelet coe�cients. The situationfor approximation in Lp(
), 1 < p < 1, can also be treated, although thecomputation of Lp(
) norms is more subtle (see (7:27)). It turns out that anorm close to the Lp norm is given bykfkpBp := jhf; �
ijp +XI2D khf;HIiHIkpLp(
); (3.54)which is known as the Bp norm. For approximation in the Bp norm, thetheory is almost identical to L2(
). Now, a best approximation from �Hn isgiven by S = hf; �
i�
 +XI2�hf;HIiHI ; (3.55)



78 R. A. DeVorewhere � � D is a set corresponding to the n biggest terms khf;HIiHIkLp(
).This selection procedure, to build the set �, depends on p becausekHIkLp(
) = jIj1=p�1=2:In other words, the coe�cients are scaled depending on their dyadic levelbefore we select the largest coe�cients.This same selection procedure works for approximation in Lp (DeVore,Jawerth and Popov 1992); however, now the proof is more involved and willbe discussed in Section 7.4 when we treat the more general case of wavelets.3.7. Optimal basis selection: wavelet packetsWe have shown in Section 2 that, in the setting of a Hilbert space, it is asimple matter to determine a best n-term approximation to a target func-tion f using elements of an orthonormal basis. A basis is good for f if theabsolute value of the coe�cients of f , when they are reordered according todecreasing size, tend rapidly to zero. We can increase our approximatione�ciency by �nding such a good basis for f . Thus, we may want to includein our approximation process a search over a given collection (usually calleda library) of orthonormal bases in order to choose one which is good forour target function f . This leads to another degree of nonlinearity in ourapproximation process since now we have the choice of basis in addition tothe choice of best n terms with respect to that basis. From a numerical per-spective, however, we must be careful that this process can be implementedcomputationally. In other words, we cannot allow too many bases in ourselection: our library of bases must be computationally implementable. Inthe case of piecewise constant approximation, such a library of bases wasgiven by Coifman and Wickerhauser (1992) and is a special case of what areknown as wavelet packet libraries.We introduce some notation which will simplify our description of waveletpacket libraries. If g is a function from L2(R), we letgI(x) := jIj�1=2g(2nx� k); I = 2�n[k; k + 1): (3.56)If g is supported on 
 = [0; 1), then gI will be supported on the dyadicinterval I. We also introduce the following scaling operators which appearin the construction of multiresolution analysis for the Haar function. For afunction g 2 L2(R), we de�neA0g := g(2�) + g(2 � �1)); A1g := g(2�) � g(2 � �1)): (3.57)If g is supported on 
, the functions A0g, A1g are also supported on 
and have the same L2 norm as g. Also, the functions A0g and A1g areorthogonal, that is, Z
A0gA1g = 0:



Nonlinear approximation 79Let 0 := �
 and 1 := H be the characteristic and Haar functions. Theysatisfy 0 = A00; 1 = A10: (3.58)In the course of our development of wavelet packets we will apply the oper-ators A0 and A1 to generate additional functions. It is most convenient toindex these functions on binary strings b. Such a b is a string of 0s and 1s.For such a string b, let b0 be the new string obtained from b by appending 0to the end of b and let b1 be the corresponding string obtained by appending1 to the end of b. Then, we inductively de�neb0 := A0b; b1 := A1b: (3.59)In particular, (3:58) gives that 00 := A00 = �
 and 01 := A10 = H.Note that there is redundancy in that two binary strings b and b0 representthe same integer in base 2 if and only if b = b0 .We can now describe the wavelet packet bases for Sm with m � 1, a �xedinteger. We associate to each binary string b its length #b, and the space�b := spanf(b)I : I 2 Dm�#bg: (3.60)The functions (b)I form an orthonormal basis for �b. While the two func-tions b and b0 may be identical for b 6= b0, the subspaces �b and �b0 are notthe same because b and b0 will have di�erent lengths. For any binary stringb, we have �b = �b0 � �b1; (3.61)and the union of the two bases (given by (3:60)) for �b0 and �b1 give analternative orthonormal basis for �b.The starting point of multiresolution analysis and our construction of theHaar wavelet was the decomposition Sm = Sm�1 �Wm�1 given in (3:42).In our new notation, this decomposition is�0 = �00 � �01: (3.62)In multiresolution analysis, the process is continued by decomposing Sm�1 =Sm�2 �Wm�2 or, equivalently, �00 = �000 ��001. We take Wm�2 = �001 inour decomposition and continue. Our new viewpoint is that we can applythe recipe (3:57) to further decompose �01 = Wm�1 into two orthogonalsubspaces as described in (3:61). Continuing in this way, we get other or-thogonal decompositions of Sm and other orthonormal bases which span thisspace.We can depict these orthogonal decompositions by a binary tree as givenin Figure 4. Each node of the tree can be indexed by a binary string b.The number of digits k in b corresponds to its depth in the tree. Associatedto b are the function b and the space �b, which has an orthonormal basis
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Fig. 4. The binary tree for wavelet packetsconsisting of the functions (b)I , I 2 Dm�k. If we move down and to theleft from b we append digit 0 to b, while if we move down one level on theright branch we append digit 1. The tree stops when we reach level m.The above construction generates many orthonormal bases of Sm. Wecan associate each binary b to the dyadic interval Ib whose left end-point isb=2#b and whose length is 2�#b, where #b is the number of digits in b (thelevel of b in the tree). If we take a collection B of such b, such that the Ib,b 2 B, are a disjoint cover of 
, then Sm = �0 =Lb2B �b. The union of allthe bases for these spaces form an orthonormal basis for Sm. For example,in Figure 4, the solid nodes correspond to such a cover. The same storyapplies to any node b of the tree. The portion of the tree starting at b hasthe same structure as the entire tree and we obtain many bases for �b byusing interval decompositions of Ib as described above.Several of the bases for Sm are noteworthy. By choosing just 
 in theinterval decomposition of 
, we obtain just the space �0 and its basis (0)I =�I , I 2 Dm. The choice B = f00 � � � 0g [ f01; 001; : : :g corresponds to thedyadic intervals 2�m[0; 1), 2�m+1[1=2; 1]; : : :, [1=2; 1) and gives the Haarbasis. We can also take all the nodes at the lowest level (level m) of thetree. These nodes each correspond to spaces of dimension one. The basisobtained in this way is the Walsh basis from Fourier analysis.It is important to note that we can e�ciently compute the coe�cients ofa function S 2 Sm with respect to all of the spaces �b by using (3:57). Forexample, let b be the generator of �b. Then, �b = �b0��b1. If S 2 Sm andcb;I := hS; (b)Ii, I 2 Dm�k are the coe�cients of S with respect to thesefunctions, then, for I 2 Dm�k�1,cb0;I = 1p2(cb;I0 + cb;I1); cb1;I = 1p2(cb;I0 � cb;I1); (3.63)where I0 and I1 are the left and right halves of I. Similarly, we can obtainthe coe�cients cb;I0 ; cb;I1 from the coe�cients cb0;I ; cb1;I . Thus, for example,



Nonlinear approximation 81starting with the coe�cients for the basis at the top (or bottom) of the tree,we can compute all other coe�cients with O(m2m) operations.For all numerical applications, the above construction is su�cient. Onechooses m su�ciently large and considers all bases of Sm given as above. Fortheoretical reasons, however, one may want bases for L2(
). This can beaccomplished by letting m ! 1 in the above depiction, thereby obtainingan in�nite tree.A typical adaptive basis selection algorithm, for approximating the targetfunction f , chooses a coe�cient norm that measures the spread of coef-�cients, and �nds a basis that minimizes this norm. As we have seen inSection 2, n-term approximation e�ciency using orthonormal bases is re-lated to `� norms of the coe�cients. Thus, a typical algorithm would beginby �xing a su�ciently large value of m for the desired numerical accuracy,choosing � > 0, and �nding a basis for the `� norm, as we shall now describe.If f is our target function, we let S = Pmf be the orthogonal projectionof f onto Sm. The coe�cients hf; (b)Ii = hS; (b)Ii can be computed e�-ciently as described above. Let B be any orthonormal subcollection of thefunctions (b)I and de�neN� (B) := N� (f;B) :=XB jhf; (b)Iij� : (3.64)We want to �nd a basis B for �0 which minimizes (3:64). To do this, webegin at the bottom of the tree and work our way up, at each step exchangingthe current basis for a new one if the new basis gives a smaller N� .For each node b at the bottom of the tree (i.e., at level m), the space �bhas dimension one and has the basis fbg. A node occurring at level m� 1corresponds to the space �b. It has two bases from our collection. The �rstis f(b)IgI2D1 ; the second is fb0; b1g. We compare these two bases andchoose the one, which will be denoted by Bb, that minimizes N� (B). Wedo this for every node b at level m � 1. We then proceed up the tree. Ifbases have been chosen for every node at level k, and if b is a node at levelk� 1, we compare N� (f((b)I)I2Dk�1g) with N� (Bb0 [Bb1). The basis thatminimizes N� is denoted by Bb and is our best basis for node b. At theconclusion, we shall have the best basis B0 for node 0, that is, the basiswhich gives the smallest value of N� (B) among all wavelet packet bases forSm. This algorithm requires O(m2m) computations.4. The elements of approximation theoryTo move into the deeper aspects of nonlinear approximation, it will be ne-cessary to call on some of the main tools of approximation theory. We haveseen in the study of piecewise constant approximation that a prototypicaltheorem characterizes approximation e�ciency in terms of the smoothness of



82 R. A. DeVorethe target function. For other methods of nonlinear approximation, it is notalways easy to decide the appropriate measure of smoothness which char-acterizes approximation e�ciency. There are, however, certain aids whichmake our search for this connection easier. The most important of these isthe theory of interpolation of function spaces and the role of Jackson andBernstein inequalities. This section will introduce the basics of interpolationtheory and relate it to the study of approximation rates and smoothness.In the process, we shall engage three types of spaces: approximation spaces,interpolation spaces, and smoothness spaces. These three topics are intim-ately connected and it is these connections which give us insight on how tosolve our approximation problems.4.1. Approximation spacesIn our analysis of piecewise constant approximation, we have repeatedlyasked the question: which functions are approximated at a given rate likeO(n��)? It is time to put questions like this into a more formal framework.We shall consider the following general setting in this section. There willbe a normed space (X; k � kX), in which approximation takes place. Ourapproximants will come from spaces Xn � X, n = 0; 1; : : :, and we introducethe approximation errorEn(f)X := dist(f;Xn)X := infg2Xn kf � gkX : (4.1)In the case of linear approximation, n will usually be the dimension of Xn, ora quantity closely related to dimXn. In nonlinear approximation, n relatesto the number of free parameters. For example, n might be the numberof knots (breakpoints) in piecewise constant approximation with free knots.The Xn can be quite general spaces; in particular, they do not have tobe linear. But we shall make the following assumptions (some only forconvenience):(i) X0 := f0g(ii) Xn � Xn+1(iii) aXn = Xn, a 2 R, a 6= 0(iv) Xn +Xn � Xcn for some integer constant c � 1 independent of n(v) each f 2 X has a best approximation from Xn(vi) limn!1En(f)X = 0 for all f 2 X.Assumptions (iii), (iv), and (vi) are the most essential. The others can beeliminated or modi�ed with a similar theory.It follows from (ii) and (vi) that En(f)X monotonically decreases to 0 asn tends to 1.We wish to gather under one roof all functions which have a commonapproximation rate. In analogy with the results of the previous section, we



Nonlinear approximation 83introduce the space A� := A�(X), which consists of all functions f 2 X forwhich En(f)X = O(n��); n!1: (4.2)Our goal, as always, is to characterize A� in terms of something we know,such as a smoothness condition. It turns out that we shall sometimes needto consider �ner statements about the decrease of the error En(f)X . Thiswill take the form of slight variants to (4:2), which we now describe.Let N denote the set of natural numbers. For each � > 0 and 0 < q <1,we de�ne the approximation space A�q := A�q (X; (Xn)) as the set of allf 2 X such thatjf jA�q := ( �P1n=1[n�En(f)X ]q 1n�1=q ; 0 < q <1;supn�1 n�En(f)X ; q =1; (4.3)is �nite, and further de�ne kfkA�q := jf jA�q +kfkX . Thus, the case q =1 isthe spaceA� described by (4:2). For q <1, the requirement for membershipin A�q gets stronger as q decreases:A�q � A�p ; 0 < q < p � 1:However, all of these spaces correspond to a decrease in error like O(n��).Because of the monotonicity of the sequence (En(f)X), we have the equi-valence jf jA�q � ( �P1k=0[2k�E2k(f)X ]q�1=q ; 0 < q <1;supk�0 2k�E2k(f)X ; q =1: (4.4)It is usually more convenient to work with (4:4) than (4:3).The next sections will develop some general principles which can be usedto characterize the approximation spaces A�q .4.2. Interpolation spacesInterpolation spaces arise in the study of the following problem of analysis.Given two spaces X and Y , for which spaces Z is it true that each linear op-erator T mapping X and Y boundedly into themselves automatically mapsZ boundedly into itself? Such spaces Z are called interpolation spaces forthe pair X, Y and the problem is to construct and, more ambitiously, tocharacterize the spaces Z. The classical result in this direction is the Riesz{Thorin theorem, which states that the spaces Lp, 1 < p < 1, are interpol-ation spaces for the pair L1,L1 and the Calder�on{Mitjagin theorem, whichcharacterizes all the interpolation spaces for this pair as the rearrangementof invariant function spaces (see Bennett and Sharpley (1988)). There aretwo primary methods for constructing interpolation spaces Z: the complex



84 R. A. DeVoremethod as developed by Calder�on (1964a) and the real method of Lions andPeetre (see Peetre (1963)). We shall only need the latter in what follows.Interpolation spaces arise in approximation theory in the following way.Consider our problem of characterizing the approximation spaces A�(X) fora given space X and approximating subspaces Xn. If we obtain informationabout A�(X) for a given value of �, is it possible to parlay that informa-tion into statements about other approximation spaces A�(X), with � 6= �?The answer is yes: we can interpolate this information. Using these ideas,we can usually characterize approximation spaces as interpolation spacesbetween X and a suitably chosen second space Y . Thus, our goal of charac-terizing approximation spaces gets reduced to that of characterizing certaininterpolation spaces. Fortunately, much e�ort has been put into the prob-lem of characterizing interpolation spaces, and characterizations (usually assmoothness spaces) are known for most classical pairs of spaces X, Y . Thus,our approximation problem is solved.An example might motivate the reader. In our study of approximation bypiecewise constants, we saw that Lip(1; Lp(
)) characterizes the functionswhich are approximated with order O(n�1) in Lp(
) by linear approximationfrom S1(�n). Interpolation gives that the spaces Lip(�;Lp(
)) characterizethe functions which are approximated with order O(n��), 0 < � < 1. Asimilar situation exists in nonlinear approximation.Our description of how to solve the approximation problem is a littleunfair to approximation theory. It makes it sound as if we reduce the ap-proximation problem to the interpolation problem and then call upon theinterpolation theory for the �nal resolution. In fact, one can go both ways,that is, one can also think of characterizing interpolation spaces by approx-imation spaces. Indeed, this is often how interpolation spaces are character-ized. Thus, both theories shed considerable light on the other, and this isthe view we shall adopt in what follows.As mentioned, we shall restrict our development to the real method ofinterpolation using the Peetre K-functional, which we now describe. Let X,Y be a pair of normed linear spaces. We shall assume that Y is continuouslyembedded in X (Y � X and k �kX � Ck �kY ). (There are a few applicationsin approximation theory where this is not the case and one can make simplemodi�cations in what follows to handle those cases as well.) For any t > 0,we de�ne the K-functionalK(f; t) := K(f; t;X;Y ) := infg2Y kf � gkX + tjgjY ; (4.5)where k � kX is the norm on X and j � jY is a semi-norm on Y . We shallalso meet cases where j � jY is only a quasi-semi-norm, which means thatthe triangle inequality is replaced by jg1 + g2jY � C(jg1jY + jg2jY ) with an



Nonlinear approximation 85absolute constant C. To spare the reader, we shall ignore this distinction inwhat follows.The functionK(f; �) is de�ned on R+ and is monotone and concave (beingthe pointwise in�mum of linear functions). Notice that, for each t > 0,K(f; t) describes a type of approximation. We approximate f by functionsg from Y with the penalty term tjgjY . The role of the penalty term isparamount. As we vary t > 0, we gain additional information about f .K-functionals have many uses. As noted earlier, they were originallyintroduced as a means of generating interpolation spaces. To see that ap-plication, let T be a linear operator which maps X and Y into themselveswith a norm not exceeding M in both cases. Then, for any g 2 Y , we haveTf = T (f � g) + Tg and thereforeK(Tf; t) � kT (f � g)kX + tjTgjY �M(kf � gkX + tjgjY ): (4.6)Taking an in�mum over all g, we haveK(Tf; t) �MK(f; t); t > 0: (4.7)Suppose further that k�k is a function norm de�ned for real-valued functionson R+ . We can apply this norm to (4:7) and obtainkK(Tf; �)k �MkK(f; �)k: (4.8)Each function norm k�k can be used in (4:8) to de�ne a space of functions(those functions for which the right side of (4:8) is �nite) and this spacewill be an interpolation space. We shall restrict our attention to the mostcommon of these, which are the �; q norms. They are analogous to the normswe used in de�ning approximation spaces. If 0 < � < 1 and 0 < q � 1,then the interpolation space (X;Y )�;q is de�ned as the set of all functionsf 2 X such thatjf j(X;Y )�;q := ( �R10 [t��K(f; t)]q dtt �1=q ; 0 < q <1;supt>0 t��K(f; t); q =1; (4.9)is �nite.The spaces (X;Y )�;q are interpolation spaces. The usefulness of thesespaces depends on understanding their nature for a given pair (X;Y ). Thisis usually accomplished by characterizing the K-functional for the pair. Weshall give several examples of this in Sections 4.4{4.5.Here is a useful remark which we shall have need for later. We can applythe �; q method for generating interpolation spaces to any pair (X;Y ). Inparticular, we can apply the method to a pair of �; q spaces. The question iswhether we get anything new and interesting. The answer is no: we simplyget �; q spaces of the original pair (X;Y ). This is called the reiteration the-orem of interpolation. Here is its precise formulation. Let X 0 := (X;Y )�1;q1



86 R. A. DeVoreand Y 0 := (X;Y )�2;q2 . Then, for all 0 < � < 1 and 0 < q � 1, we have(X 0; Y 0)�;q = (X;Y )�;q; � := (1� �)�1 + ��2: (4.10)We make two observations which can simplify the norm in (4:9). Firstly,using the fact that Y is continuously embedded inX, we obtain an equivalentnorm by taking the integral in (4:9) over [0; 1]. Secondly, since K(f; :) ismonotone, the integral over [0; 1] can be discretized. This gives that thenorm of (4:9) is equivalent tojf j(X;Y )�;q � ( �P1k=0[2k�K(f; 2�k)]q�1=q ; 0 < q <1;supk�0 2k�K(f; 2�k); q =1 (4.11)(see Chapter 6 of DeVore and Lorentz (1993) for details).In this form, the de�nitions of interpolation spaces and approximationspaces are almost identical: we have replaced E2k by K(f; 2�k). It shouldtherefore come as no surprise that one space can often be characterized bythe other. What is needed for this is a comparison between the error En(f)and the K-functionalK. Of course, this can only be achieved if we make theright choice of the space Y in the de�nition of K. But how can we decidewhat Y should be? This is the role of the Jackson and Bernstein inequalitiesgiven in the next subsection.4.3. Jackson and Bernstein inequalitiesIn this subsection, we shall make a considerable simpli�cation in the searchfor a characterization of approximation spaces and bring out fully the con-nection between approximation and interpolation spaces. We assume thatX is the space in which approximation takes place and assume that we can�nd a positive number r > 0 and a second space Y continuously embeddedin X for which the following two inequalities hold.Jackson inequality: En(f)X � Cn�rjf jY , f 2 Y , n = 1; 2; : : :.Bernstein inequality: jSjY � CnrkSkX , S 2 Xn, n = 1; 2; : : :.Whenever these two inequalities hold, we can draw a comparison betweenEn(f)X and K(f; n�r;X; Y ). For example, assume that the Jackson in-equality is valid and let g 2 Y be such thatkf � gkX + n�rjgjY = K(f; n�r):(In fact we do not know of the existence of such a g, and so an � should beadded into this argument, but to spare the reader we shall not insist uponsuch precision in this survey.) If S is a best approximation to g from Xn,then En(f)X � kf � SkX � kf � gkX + kg � SkX� kf � gkX + Cn�rjgjY � CK(f; n�r); (4.12)



Nonlinear approximation 87where the last inequality makes use of the Jackson inequality.By using the Bernstein inequality, we can reverse (4:12) in a certain weaksense (see Theorem 5.1 of Chapter 7 in DeVore and Lorentz (1993)). Fromthis one derives the following relation between approximation spaces andinterpolation spaces.Theorem 1 If the Jackson and Bernstein inequalities are valid, then foreach 0 <  < r and 0 < q � 1 the following relation holds betweenapproximation spaces and interpolation spacesAq (X) = (X;Y )=r;q (4.13)with equivalent norms.Thus, Theorem 1 will solve our problem of characterizing the approxim-ation spaces if we know two ingredients:(i) an appropriate space Y for which the Jackson and Bernstein inequal-ities hold(ii) a characterization of the interpolation spaces (X;Y )�;q.The �rst step is the di�cult one from the viewpoint of approximation (espe-cially in the case of nonlinear approximation). Fortunately, step (ii) is oftenprovided by classical results in the theory of interpolation. We shall men-tion some of these in the next sections and also relate these to our examplesof approximation by piecewise constants. But for now we want to make avery general and useful remark concerning the relation between approxim-ation and interpolation spaces by stating the following elementary result ofDeVore and Popov (1988b).Theorem 2 For any space X and spaces Xn, as well as for any r > 0 and0 � s � 1, the spaces Xn, n = 1; 2; : : :, satisfy the Jackson and Bernsteininequalities for Y = Ars(X). Therefore, for any 0 < � < r and 0 < q � 1,we have A�q (X) = (X;Ars(X))�=r;q: (4.14)In other words, the approximation family A�q (X) is an interpolation family.We also want to expand on our earlier remark that approximation canoften be used to characterize interpolation spaces. We shall point out that, incertain cases, we can realize the K-functional by an approximation process.We continue with the above setting. We say a sequence (Tn), n = 1; 2; : : :,of (possibly nonlinear) operators, with Tn mappingX intoXn, provides nearbest approximation if there is an absolute constant C > 0 such thatkf � TnfkX � CEn(f)X ; n = 1; 2; : : : :



88 R. A. DeVoreWe say this family is stable on Y ifjTnf jY � Cjf jY ; n = 1; 2; : : : ;with an absolute constant C > 0.Theorem 3 Let X, Y , (Xn) be as above and suppose that (Xn) satis�esthe Jackson and Bernstein inequalities. Suppose further that the sequence ofoperators (Tn) provides near best approximation and is stable on Y . Then,Tn realizes the K-functional, that is,kf � TnfkX + n�rjTnf jY � CK(f; n�r;X; Y )with an absolute constant C.For a proof and further results of this type, we refer the reader to Cohen,DeVore and Hochmuth (1997).4.4. Interpolation for L1, L1The utility of the K-functional rests on our ability to characterize it andthereby characterize the interpolation spaces (X;Y )�;q. Much e�ort wasput forward in the 1970s and 1980s to establish such characterizations forclassical pairs of spaces. The results were quite remarkable in that the char-acterizations that ensued were always in terms of classical entities that havea long-standing place in analysis. We shall give several examples of this.In the present section, we limit ourselves to the interpolation of Lebesguespaces, which are classical to the theory. In later sections, we shall discussinterpolation of smoothness spaces, which are more relevant to our approx-imation needs.Let us begin with the pair L1(A; d�); L1(A; d�) with (A; d�) a givensigma-�nite measure space. Hardy and Littlewood recognized the import-ance of the decreasing rearrangement f� of a �-measurable function f . Thefunction f� is a nonnegative, nonincreasing function de�ned on R+ which isequimeasurable with f :�(f; t) := �fx : jf(x)j > tg = jfs : f�(s) > tgj; t > 0; (4.15)where we recall our notation for jEj to denote the Lebesgue measure of aset E. The rearrangement f� can be de�ned directly viaf�(t) := inffy : �(f; t) � yg: (4.16)Thus, f� is essentially the inverse function to �(f; t). We have the followingbeautiful formula for the K-functional for this pair (see Chapter 6 of DeVoreand Lorentz (1993)): K(f; t; L1; L1) = Z t0 f�(s) ds; (4.17)



Nonlinear approximation 89which holds whenever f 2 L1 + L1. From the fact thatZA jf jp d� = Z 10 (f�(s))p dsit is easy to deduce from (4:17) the Riesz{Thorin theorem for this pair.With the K-functional in hand, we can easily describe the (�; q) interpol-ation spaces in terms of Lorentz spaces. For each 0 < p < 1, 0 < q � 1,the Lorentz space Lp;q(A; d�) is de�ned by the condition the set of all �-measurable f such thatkfkLp;q := � (R10 [t1=pf�(t)]q dtt )1=q; 0 < q <1;sup t1=pf�(t); q =1; (4.18)is �nite. Of course, the form of the integral in (4:18) is quite familiar to us.If we replace f� by 1t R t0 f�(s) ds = K(f; t)=t and use the Hardy inequalities(see Chapter 6 of DeVore and Lorentz (1993) for details) we obtain that(L1(A; d�); L1(A; d�))1�1=p;q = Lp;q(A; d�); 1 < p <1; 0 < q � 1:(4.19)Several remarks are in order. The space Lp;1 is better known as weak Lpand can be equivalently de�ned by the condition�fx : jf(x)j > yg �Mpy�p: (4.20)The smallest M for which (4:20) is valid is equivalent to the norm in Lp;1.The above results include the case when d� is purely atomic. This willbe useful for us in what follows, in the following context. Let N be the setof natural numbers and let `p = `p(N) be the collection of all sequencesx = (x(n))n2N for whichkxk`p := � (P1n=1 jx(n)jp)1=p; 0 < p <1;supn2N jx(n)j; p =1; (4.21)is �nite. Then, `p(N) = Lp(N; d�) with � the counting measure. Hence,the above results apply. The Lorentz spaces in this case are denoted by `p;q.The space `p;1 (weak `p) consists of all sequences that satisfyx�(n) �Mn�1=p (4.22)with (x�(n)) the decreasing rearrangement of (jx(n)j). This can equivalentlybe stated as #fn : jx(n)j > yg �Mpy�p: (4.23)The interpolation theory for Lp spaces applies to more than the pair(L1; L1). We formulate this only for the spaces `p;q which we shall uselater. For any 0 < p1 < p2 <1, 0 < q1; q2 � 1, we have(`p1;q1 ; `p2;q2)�;q = `p;q; 1=p := 1��p1 + �p2 ; 0 < q � 1; (4.24)



90 R. A. DeVorewith equivalent norms. For 1 � p1; p2 � 1, this follows from (4:19) by usingthe reiteration theorem (4:10). The general case needs slight modi�cation(see Bergh and L�ofstr�om (1976)).Interpolation for the pair (L1; L1) is rather unusual in that we have anexact identity for the K-functional. Usually we only get an equivalent char-acterization of K. One other case where an exact identity is known is inter-polation between C and Lip 1, in which caseK(f; t;C;Lip 1) = 12 �!(f; 2t); t > 0;where ! is the modulus of continuity (to be de�ned in the next section) and�! is its concave majorant (see Chapter 6 of DeVore and Lorentz (1993)).4.5. Smoothness spacesWe have introduced various smoothness spaces in the course of discussingapproximation by piecewise constants. In this section, we want to be abit more systematic and describe the full range of smoothness spaces thatwe shall need in this survey. There are two important ways to describesmoothness spaces. One is through notions such as di�erentiability andmoduli of smoothness. Most smoothness spaces were originally introducedinto analysis in this fashion. A second way is to expand functions intoa series of building blocks (for instance Fourier or wavelet) and describesmoothness as decay conditions on the coe�cients in such expansions. Thatthese descriptions are equivalent is at the heart of the subject. We shallgive both descriptions. The �rst is given here in this section; the second inSection 7 when we discuss wavelet decompositions.We begin with the most important and best known smoothness spaces,the Sobolev spaces. Suppose that 1 � p � 1 and r > 0 is an integer.If 
 � Rd is a domain (for us this will mean an open, connected set), wede�ne W r(Lp(
)) as the collection of all measurable functions f de�ned on
 which have all their distributional derivativesD�f , j�j � r, in Lp(
). Herej�j := j�1j+ � � �+ j�dj when � = (�1; : : : ; �d). The semi-norm for W r(Lp(
))is de�ned by jf jW r(Lp(
)) := Xj�j=r kD�fkLp(
)); (4.25)and their norm by kfkW r(Lp(
)) := jf jW r(Lp(
)) + kfkLp(
). Thus, Sobolevspaces measure smoothness of order r in Lp when r is a positive integer and1 � p � 1. Their de�ciency is that they do not immediately apply whenr is nonintegral or when p < 1. We have seen several times already theneed for smoothness spaces for these extended parameters when engagingnonlinear approximation.



Nonlinear approximation 91We have seen in the Lipschitz spaces that one way to describe smoothnessof fractional order is through di�erences. We have previously used only�rst di�erences; now we shall need di�erences of arbitrary order which wepresently de�ne. For h 2 Rd , let Th denote the translation operator whichis de�ned for a function f by Thf := f(�+ h) and let I denote the identityoperator. Then, for any positive integer r, �rh := (Th � I)r is the rthdi�erence operator with step h. Clearly �rh = �h(�r�1h ). Also,�rh(f; x) := rXk=0(�1)r�k�rk�f(x+ kh): (4.26)Here and later we use the convention that �rh(f; x) is de�ned to be zerowhen any of the points x; : : : ; x+ rh are not in 
.We can use �rh to measure smoothness. If f 2 Lp(
), 0 < p � 1,!r(f; t)p := supjhj�t k�rh(f; �)kLp(
) (4.27)is the rth order modulus of smoothness of f in Lp(
). In the case p = 1,L1(
) is replaced by C(
), the space of uniformly continuous functions on
. We always have that !r(f; t)p ! 0 monotonically as t ! 0. The fasterthis convergence to 0 the smoother is f .We create smoothness spaces by bringing together all functions whosemoduli of smoothness have a common behaviour. We shall particularlyneed this idea with the Besov spaces which are de�ned as follows. There willbe three parameters in our description of Besov spaces. The two primaryparameters are �, which gives the order of smoothness (for instance thenumber of derivatives), and p, which gives the Lp space in which smoothnessis to be measured. A third parameter q, which is secondary to the twoprimary parameters, will allow us to make subtle distinctions in smoothnessspaces with the same primary parameters.Let � > 0, 0 < p � 1, and 0 < q � 1. We take r := [�]+1 (the smallestinteger larger than �). We say f is in the Besov space B�q (Lp(
)) ifjf jB�q (Lp(
)) := ( �R10 [t��!r(f; t)p]q dtt �1=q ; 0 < q <1;supt>0 t��!r(f; t)p; q =1; (4.28)is �nite. This expression de�nes the semi-norm on B�q (Lp(
)); the Besovnorm is given by kfkB�q (Lp(
)) := jf jB�q (Lp(
)) + kfkLp(
). Here, we havecomplete analogy with the de�nitions (4:3) and (4:9) of approximation andinterpolation spaces.The Besov spaces give a full range of smoothness in that � can be anypositive number, and p can range over (0;1]. As noted earlier, q is asecondary index which gives �ner gradations of smoothness with the sameprimary indices.



92 R. A. DeVoreWe shall next make some further remarks which will help clarify Besovspaces, especially their relationship to other smoothness spaces such as theSobolev and Lipschitz spaces. We assume from here on that the domain 
is a Lipschitz domain (see Adams (1975)) { slightly weaker conditions on 
su�ce for most of the following statements.We have taken r as the smallest integer larger than �. Actually, anychoice of r > � will de�ne the same space with an equivalent norm (seeChapter 2 of DeVore and Lorentz (1993)). If we take � < 1 and q =1, theBesov space B�1(Lp(
)) is the same as Lip(�;Lp(
)) with an identical semi-norm and norm. However, when � = 1, we get a di�erent space because theBesov space uses !2 in its de�nition but Lip(1; Lp(
)) uses !1. In this case,the Besov space is larger since !2(f; t)p � 2max(1=p;1)!1(f; t)p. SometimesB11(C(
)) is called the Zygmund space.For the same reason that Lip 1 is not a Besov space, the Sobolev spaceW rp (Lp(
)), 1 � p � 1, p 6= 2, r an integer, is not the same as the Besovspace Br1(Lp(
)). The Besov space is slightly larger. We could describethe Sobolev space W rp (Lp(
)), 1 < p � 1, by replacing !r+1 by !r inthe de�nition of Br1(Lp(
)). When � is nonintegral, the fractional orderSobolev space W�(Lp(
)) is de�ned to be B�p (Lp(
)). Two special casesare noteworthy. When p = 2, the Besov space Br2(L2(
)) is the same as theSobolev spaceW r(L2(
)); this is an anomaly that only holds for p = 2. TheLipschitz space Lip(1; L1(
)) is the same as BV when 
 is an interval inR1 . In higher dimensions, we use Lip(1; L1(
)) as the de�nition of BV(
);it coincides with some but not all of the many other de�nitions of BV.Increasing the secondary index q in Besov spaces gives a larger space, i.e.,B�q1(Lp(
)) � B�q2(Lp(
)); q1 < q2:However, the distinctions between these spaces are small.The Sobolev embedding theorem gives much additional information aboutthe relationship between Besov spaces with di�erent values of the paramet-ers. It is easiest to describe these results pictorially. As earlier, we identifya Besov space with primary indices p and � with the point (1=p; �) in theupper right quadrant of R2 . The line with slope d passing through (1=p; 0)is the demarcation line for embeddings of Besov spaces into Lp(
) (see Fig-ure 5). Any Besov space with primary indices corresponding to a pointabove that line is embedded into Lp(
) (regardless of the secondary indexq). Besov spaces corresponding to points on the demarcation line may ormay not be embedded in Lp(
). For example the Besov spaces B�� (L� (
))with 1=� = �=d + 1=p correspond to points on the demarcation line andthey are embedded in Lp(
). Points below the demarcation line are neverembedded in Lp(
).
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(1/p,0) (Lp)

Sobolev embedding line

Fig. 5. Sobolev embedding4.6. Interpolation of smoothness spacesThere is a relatively complete description of interpolation between Sobolevor Besov spaces. We shall point out the results most important for our lateruse.Let us �rst consider interpolation between Lp(
) and a Sobolev spaceW r(Lp(
)). Interpolation for this pair appears often in linear approxima-tion. One way to describe the interpolation spaces for this pair is to knowits K-functional. The remarkable fact (proved in the case of domains byJohnen and Scherer (1977)) is thatK(f; tr; Lp(
);W r(Lp(
)) � !r(f; t)p; t > 0: (4.29)This brings home the point we made earlier that K-functionals can usuallybe described by some classical entity (in this case the modulus of smooth-ness). From (4:29), it is a triviality to deduce that(Lp(
);W r(Lp(
)))�;q = B�rq (Lp(
)); 0 < � < 1; 0 < q � 1; (4.30)with equivalent norms. From the reiteration Theorem (4:10) for interpola-tion we deduce that, for �1 < �2 and any 0 < q1; q2 � 1, we have for any0 < � < 1, 0 < q � 1,(B�1q1 (Lp(
)); B�2q2 (Lp(
)))�;q = B�q (Lp(
)); � := (1� �)�1 + ��2: (4.31)We can also replace B�1q1 (Lp(
)) by Lp(
) and obtain(Lp(
); B�r (Lp(
)))�;q = B��q (Lp(
)); 0 < � < 1; 0 < q � 1; (4.32)for any 0 < r � 1.
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(1/p,0) (Lp(Ω))

(1/p,r) ( W r(Lp(Ω)))

α (1/p,α ) (Bα(Bq (Lp(Ω)))

r

Fig. 6. Graphical interpretation of interpolation between Lp(
) and W r(Lp(
))We can interpret these results pictorially as in Figure 6. The space Lp(
)corresponds to the point (1=p; 0), and W r(Lp(
)) corresponds to the point(1=p; r). Thus, (4:30) states that the interpolation spaces for this pair cor-respond to the Besov spaces on the (vertical) line segment connecting thepoints (1=p; 0) and (1=p; r). A similar picture interprets (4:31) and (4:32).This pictorial interpretation is very instructive. When we want to inter-polate between a pair of spaces (X;Y ), we identify them with their corres-ponding points in the upper quadrant of R2 . The points on the line segmentconnecting them are the interpolation spaces and, in fact, given the para-meter �, the interpolation space corresponds to the point on this line segmentwhich divides the segment by the ratio � : 1 � �. However, care should betaken in this interpretation regarding the second parameter q, since it doesnot enter into the picture. In some cases, we can take any value of q, as isthe case for the examples considered so far. However, in some cases that weshall see shortly, this interpretation only holds for certain q appropriatelychosen.Let us consider another example, which corresponds to interpolation in acase where the line segment is horizontal. DeVore and Scherer (1979) haveshown that, if 1 � p1 < p2 � 1, then the (�; p) interpolation between So-bolev spaces W r(Lp1(
)) and W r(Lp2(
)) gives Sobolev spaces W r(Lp(
))when 1p = 1��p1 + �p2 , while changing �; p into the more general �; q gives themodi�ed Sobolev spaces W r(Lp;q(
)) which use the Lorentz spaces Lp;q(
)in their de�nition (which we do not give).



Nonlinear approximation 95There are characterizations for the �; q interpolation spaces for many otherpairs of Besov spaces (see Bergh and L�ofstr�om (1976) or Cohen, DeVore andHochmuth (1997), for example). However, we shall restrict our further dis-cussion to the following special case, which occurs in nonlinear approxima-tion. We �x a value of p 2 (0;1) and consider the Besov spaces B�� (L� (
))where � and � are related by 1� = �d + 1p: (4.33)These spaces all correspond to points on the line segment with slope dpassing through (1=p; 0) (which corresponds to Lp(
)). We have the fol-lowing interpolation result for the pair (Lp(
); B�� (L� (
))):(Lp(
); B�� (L� (
)))�;q = B��q (Lq(
)); provided 1q = ��d + 1p: (4.34)In other words, interpolating between two Besov spaces corresponding topoints on this line, we get another Besov space corresponding to a point onthis line provided we choose the secondary indices in a suitable way.We shall obtain more information about Besov spaces and their inter-polation properties in Section 7 when we discuss their characterization bywavelet decompositions.5. Nonlinear approximation in a Hilbert space:a second lookLet us return to the example of approximation in a Hilbert space whichbegan our discussion in Section 2. We continue with the discussion andnotation of that section.We have seen that for nonlinear (n-term) approximation in H we couldcharacterize Ar1((Hn)) for any r > 0 by the conditionn(f) �Mn�r�1=2; (5.1)with n(f) the rearranged coe�cients. We now see that (5:1) states thatthe sequence fk := hf; �ki is in weak `�(r) (`�(r);1), with �(r) de�ned by1�(r) = r + 12 ;and the smallest M for which (5:1) holds is equivalent to the weak `� norm.We can now characterize all of the approximation spaces A�q (H) in termsof the coe�cients fk. Recall that Theorem 2 shows that, for any r > 0, thenonlinear spaces �n(H), satisfy Jackson and Bernstein inequalities for thespace Y := Ar1(H) and A�q (H) = (H;Ar1(H))�=r;q: (5.2)



96 R. A. DeVoreThe mapping f ! (fk) is invertible and gives an isometry between Hand `2(N) and also between Ar1 and `�;1(N). We can interpolate, and de-duce that this mapping is an isometry between A�q (H) and `�(�);q(N) with� de�ned by 1=� = �+ 1=2. Hence, we have the following complete charac-terization of the approximation spaces for nonlinear n-term approximation.Theorem 4 For nonlinear n-term approximation in a Hilbert space H, afunction f is in A�q (H)) if and only if its coe�cients are in `�(�);q, �(�) :=(�+ 1=2)�1, and jf jA�q (H) � k(fk)k`� (�);q.6. Piecewise polynomial approximationNow that we have the tools of approximation �rmly in hand, we shall sur-vey the main developments of nonlinear approximation, especially as theyapply to numerical computation. We shall begin in this section with piece-wise polynomial approximation. The reader should keep in mind the caseof piecewise constant approximation that we used to motivate nonlinearapproximation.6.1. Local approximation by polynomialsAs the name suggests, piecewise polynomial approximation pieces togetherlocal polynomial approximants. Therefore, we need to have a good under-standing of local error estimates for polynomial approximation. This is anold and well-established chapter in approximation and numerical computa-tion, which we shall briey describe in this section.For each positive integer r, we let Pr denote the space of polynomials ind variables of total degree < r (polynomials of order r). Let 0 < p � 1 andlet I be a cube in Rd . If f 2 Lp(I), the local approximation error is de�nedby Er(f; I)p := infP2Pr kf � PkLp(I): (6.1)The starting point for estimating the e�ciency of piecewise polynomialapproximation in Lp is to have good estimates for Er(f; I)p. Perhaps thesimplest of these is the estimateEr(f; I)p � CjIjr=djf jW r(Lp(I)); (6.2)which holds for 1 � p � 1, j�jW r(Lp(I)) the Sobolev semi-norm of Section 4.5,and the constant C depending only on r. This is sometimes known as theDeny{Lions lemma in numerical analysis. There are several proofs of thisresult available in the literature (see, for instance, Adams (1975)), usuallyby constructing a bounded projector from Lp onto Pr. It can also be provedindirectly (see DeVore and Sharpley (1984)).



Nonlinear approximation 97The estimate (6:2) remains valid when I is replaced by a more generaldomain. Suppose, for example, that O is a domain that satis�es the uniformcone condition (see Adams (1975)) and is contained in a cube I with jIj1=d �Cdiam(O). If f 2 W r(Lp(O)), then it can be extended to a function onI with comparable norm (Adams (1975) or DeVore and Sharpley (1984)).Applying (6:2) for I we deduce its validity on O with a constant C nowdepending on r and O. We shall use this in what follows for polyhedraldomains. The constant C then depends on r and the smallest angle in O.Similar remarks apply to the other estimates for Er(f; I)p that follow.Using the ideas of interpolation introduced in Section 4 (see (4:29)), oneeasily derives from (6:2) thatEr(f; I)p � Cr!r(f; jIj; I)p; (6.3)with !r the rth order modulus of smoothness of f introduced in Section 4.5.This is called Whitney's theorem in approximation and this estimate isequally valid in the case p < 1. The advantage of (6:3) over (6:2) is thatit applies to any f 2 Lp(I) and it also implies (6:2) because of elementaryproperties of !r.Whitney's estimate is not completely satisfactory when it is necessary toadd local estimates over varying cubes I. A more suitable form is obtainedby replacing !r(f; jIj; I)p bywr(f; I)p :=  1jIj Zjsj�jIj1=d ZI j�rs(f; x)jp dxds!1=p : (6.4)Then, we have (see, for instance, DeVore and Popov (1988a))Er(f; I)p � Crwr(f; I)p; (6.5)which holds for all r � 1 and all 0 < p � 1 (with the obvious change innorms for p =1).It is also possible to bound Er(f; I)p in terms of smoothness measured inspaces Lq, q 6= p. Such estimates are essentially embedding theorems andare important in nonlinear approximation. For example, in analogy with(6:2), we have for each 1 � q; p � 1 and r > d(1=q � 1=p)+,Er(f; I)p � CrjIjr=d+1=p�1=q jf jW r(Lq(I)): (6.6)We shall sketch a simple idea for proving such estimates, which is at theheart of proving embedding theorems. We consider q � p (the other case istrivial). It is enough to prove (6:6) in the case I = [0; 1]d since it follows forother cubes by a linear change of variables. For each dyadic cube J � I, letPJ be a polynomial in Pr that satis�eskf � PJkLq(J) � Er(f; J)q;



98 R. A. DeVoreand de�ne Sk :=PJ2Dk(I) PJ�J , where Dk(I) is the collection of all dyadicsubcubes of I of side length 2�k. Then, S0 = PI and Sk ! f in Lp(I).Therefore, Er(f; I)p � kf � PIkLp(I) � 1Xk=0 kSk+1 � SkkLp(I): (6.7)Now, for each polynomial P 2 Pr and each cube J , we have kPkLp(J) �CjJ j1=p�1=qkPkLq(J) with the constant depending only on r (see Lemma 3.1of DeVore and Sharpley (1984) for the simple proof). From this, it followsthat kSk+1 � SkkpLp(I) = XJ2Dk+1(I) kSk+1 � SkkpLp(J)� C2�kd(1�p=q) XJ2Dk+1(I) kSk+1 � SkkpLq(J):Now on J , we have Sk+1 � Sk = PJ 0 � PJ where J 0 is the parent of J . Wewrite PJ 0 � PJ = PJ 0 � f + f � PJ and use (6:2) (with p replaced by q) oneach di�erence to obtainkSk+1 � SkkpLp(I) � C2�kd(rp=d+1�p=q) XJ2Dk+1(I) jf jpW r(Lq(J 0))� C2�kd(rp=d+1�p=q)0@ XJ2Dk+1(I) jf jqW r(Lq(J 0))1Ap=q= C2�kd(rp=d+1�p=q)jf jpW r(Lq(I)):Here we used the facts that k � k`p � k � k`q if q � p and that a point x 2 Iappears at most 2d times in a cube J 0, as J runs over the cubes in Dk(I).If we use this estimate in (6:7), we arrive at (6:6).We can also allow q < 1 and nonintegral r in (6:6) if we use the Besovspaces. Namely, if r > 0 satis�es r � d(1=q � 1=p)+, thenEr(f; I)p � CrjIjr=d+1=p�1=qjf jBrq ((Lq(I)): (6.8)Notice that we can allow r=d+1=p� 1=q = 0 in (6:8), which corresponds tothe embedding of Brq (Lq(I)) into Lp(I). The case r=d > (1=q � 1=p)+ canbe proved as above using the set subadditivity of j � jqBrq (Lq(J)). For proofs ofthese results for Besov spaces see DeVore and Popov (1988a).Finally, as we have remarked earlier, by using extensions, these results canbe established for more general domains such as domains with a uniform cone



Nonlinear approximation 99condition. In particular, for any polyhedron C, we haveEr(f; C)p � Crdiam(C)r=d+1=p�1=q jf jW r(Lq(C)); (6.9)with the constant depending only on r, d, the number of vertices of C,and the smallest angle in C. Similarly, we have the extension of (6:8) topolyhedra.6.2. Piecewise polynomial approximation: the linear caseFor the purpose of orienting the results on nonlinear approximation whichfollow, we shall in this section consider approximation by piecewise polyno-mials on �xed partitions. These results will be the analogue of approxima-tion by piecewise constants on uniform partitions given in Section 3.1. Forconvenience, we shall consider approximation on the unit cube 
 := [0; 1]d.The following results can be established for more general domains by usingextension theorems similar to what we have mentioned earlier in this section.By a partition of 
, we mean a �nite collection � := fCg of polyhedronsC which are pairwise disjoint and union to 
. Given such a collection, wede�ne the partition diameterdiam(�) := maxC diam(C): (6.10)We assume that the number of vertices of each cell C is bounded independ-ently of C 2 �.Let Sr(�) denote the space of piecewise polynomials of order r relativeto �. That is, a function S is in Sr(�) if and only if it is a polynomial oforder r on each cell C 2 �. For 0 < p � 1, we lets�(f)p := infS2Sr(�) kf � SkLp(
): (6.11)We shall �x 1 � p � 1 and estimate s�(f)p. A similar analysis holds forp < 1 with Sobolev norms replaced by Besov norms.We assume that each cell C is contained in a cube J � I with jJ j1=d �Cdiam(C) with C depending only on c�. Hence, by extending f to this cube(if it is not already de�ned there) we see that, for each C 2 �, there is apolynomial PC 2 Pr which satis�es (6:9):kf � PCkLp(C) � Cdiam(�)rjf jW r(Lp(C)): (6.12)If we raise the estimates in (6:12) to the power p (in the case p < 1) andadd them, we arrive ats�(f)p � Cdiam�rjf jW r(Lp(
)): (6.13)Of course, (6:12) is well known in both approximation and numericalcircles. It is the proper form for numerical estimates based on piecewise



100 R. A. DeVorepolynomials of order r. It is the Jackson inequality for this type of ap-proximation. By interpolation (as described in Section 4.2), we obtain thefollowing estimate s�(f)p � C!r(f;diam�)p; (6.14)where !r(f; _)p = !r(f; �;
)p is the rth order modulus of smoothness of f inLp(
) as introduced in Section 4.5. The advantage of (6:14) is that it doesnot require that f is in W r(Lp(
)) and in fact applies to any f 2 Lp(
).For example, if f 2 Lip(�;Lp(
)), then (6:14) impliess�(f)p � Cjf jLip(�;Lp(
))jdiam�j�: (6.15)We would now like to understand to what extent estimates like (6:15) arebest possible. It is not di�cult to prove that, if f 2 Lp(
) is a function forwhich s�(f)p �M jdiam�j� (6.16)holds for every partition �, then f 2 Lip(�;Lp(
)) and the smallest M forwhich (6:16) holds is equivalent to jf jLip(�;Lp(
)). Indeed, for each h 2 Rdand each x 2 
 such that the line segment [x; x + rh) � 
, there is apartition � with diam(�) � jhj and dist(x; @C) � const jhj for every C 2 �.This allows an estimate for j�rh(f; x)j by using ideas similar to the inverseestimates for piecewise constant approximation given in Section 3.1.We note that the direct and inverse theorems relating approximation orderto smoothness take the same form as those in Section 3.1. Using our inter-pretation of smoothness spaces given in Figure 6, we see that the approxima-tion spaces for this form of linear approximation correspond to points on thevertical line segment joining (1=p; 0) (Lp) to (1=p; r) (Lip(r; Lp). Thus theonly distinction from the piecewise constant case considered in Section 3.1is that we can allow � to range over the larger interval [0; r] because we areusing piecewise polynomials of order r. Also, note that to achieve approxim-ation order O(n��) we would need spaces Sr(�n) of linear space dimension� nd, that is, we have the curse of dimensionality.More generally, if we only know (6:16) for a speci�c sequence of partitions(�n), we can still prove that f 2 Lip(�;Lp(
)) provided the partitions mixsu�ciently so that each x falls in the middle of su�ciently many C. We donot formulate this precisely but refer readers to Section 2 of Chapter 12 ofDeVore and Lorentz (1993) for a precise formulation in the univariate case.Mixing conditions are not valid in most numerical settings. Indeed, thetypical numerical case is where approximation takes place from a sequenceSr(�n), where �n is a re�nement of �n�1. This means that the spacesare nested: Sr(�n�1) � Sr(�n), n = 1; 2; : : :. In this case, one can provethe inverse theorems only for a smaller range of �. It is easy to see thatrestrictions are needed on �. For example, functions f in Sr(�n) will be



Nonlinear approximation 101approximated exactly form � n. But functions in Sr(�n) do not have muchsmoothness because they are discontinuous across the faces of the partition.This can be remedied by considering approximation by elements of Sr(�n)which have additional smoothness across the faces of the partition. We donot formulate inverse theorems in this case but refer the reader to Section 3of Chapter 12 in DeVore and Lorentz (1993) where similar univariate resultsare proved.We should mention, however, that considering splines with smoothnessbrings out new questions concerning direct estimates of approximation like(6:12). It is not easy to understand the dimension of spaces of smoothmultivariate piecewise polynomials, let alone their approximation power (seeJia (1983)).As the reader can now see, there are still interesting open questions con-cerning the approximation power of splines on general partitions, whichrelate the smoothness of the splines to the approximation power. These aredi�cult problems and have to a large extent been abandoned with the ad-vent of box splines and, later, wavelets. These two developments shifted theviewpoint of spline approximation away from partitions and more towardthe spanning functions. We shall get into this topic more in Section 7 whenwe discuss wavelet approximation.6.3. Free knot piecewise polynomial approximationTo begin our development of nonlinear approximation by piecewise polyno-mials we shall consider the case of approximating a univariate function fde�ned on 
 = [0; 1] by piecewise polynomials of �xed order r. The theoryhere is the analogue of piecewise constants discussed in Section 3.2.Let the natural number r be �xed and for each n = 1; 2; : : :, let �n := �n;rbe the space of piecewise polynomials of order r with n pieces on 
. Thus,for each element S 2 �n there is a partition � of 
 consisting of n disjointintervals I � 
 and polynomials PI 2 Pr such thatS =XI2�PI�I : (6.17)For each 0 < p � 1, we de�ne the error of approximation�n(f)p := �n;r(f)p := infS2�n;r kf � SkLp(
): (6.18)The case p =1 is su�ciently di�erent that we shall restrict our discussionto the case p < 1 and refer the reader to DeVore and Lorentz (1993) orPetrushev and Popov (1987) for the case p =1.We can characterize the functions f that can be approximated with anorder like O(n��). We recall the approximation spacesA�q (Lp(
)) = A�q (Lp(
); (�n)):
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Fig. 7. Nonlinear approximation in LpAccording to the theory in Section 4, we can characterize these approxima-tion spaces if we establish Jackson and Bernstein inequalities for this type ofapproximation. We �x the space Lp(
) in which approximation is going totake place. The space Y will be the Besov space Br� (L� (
)), 1=� = r + 1=pwhich was de�ned in Section 4.5. To understand this space, we return to ourpicture of smoothness spaces in Figure 7. The space Lp(
) of course corres-ponds to the point (1=p; 0). The space Br� (L� (
)) corresponds to the point(1=�; r), which lies on the line with slope one that passes through (1=p; 0).As we have noted several times before, this line corresponds to the limitingcase of the Sobolev embedding theorem. Thus, we are in complete analogywith the case of piecewise constant approximation described in Section 3.2.The following inequalities were established by Petrushev (1988)�n(f)p � Cn�rjf jBr� (L� (
)) (6.19)jSjBr� (L� (
)) � CnrkfkLp(
) (6.20)with the constants C depending only on r. The �rst of these is the Jacksoninequality and the second the companion Bernstein inequality.Let us say a few words about how one proves these inequalities, since thetechniques for doing so appear often in nonlinear approximation. To provethe Jackson inequality, for each f 2 B�� (L� (
)), we must �nd a favourablepartition of 
 into n disjoint intervals. This is done by balancing �(I) :=jf j�B�� (L� (I)). The key here is that, with a proper renormalization of the Besovnorm, � is set subadditive. Thus, we can �nd intervals Ij, j = 1; : : : ; n, sothat �(Ij) = �(
)=n. This gives our desired partition. We then use (6:8)



Nonlinear approximation 103to bound the local approximation error on each Ij , add these and arriveat (6:19) (see Chapter 12 of DeVore and Lorentz (1993) for more details).Therefore, as was the case in our introduction of nonlinear approximation bypiecewise constants, we �nd our optimal partitions by a balancing suitableset function, in the present case �.The proof of the Bernstein inequality is also very instructive. If S 2 �n,then S =PI2� I where � is a partition of 
 into n intervals and I = PI�Iwith PI 2 Pr. For each such I , it is not di�cult to calculate its Besov normand �nd jI jB�� (L� (
)) � CkIkLp(I); (6.21)with C an absolute constant. Then, using the subadditivity of j � j�B�� (L� (
)),we �nd thatjSj�B�� (L� (
)) � XI2� jI j�B�� (L� (
))� XI2� kIk�Lp(
)� Cn1��=p XI2� kIkpLp(
)!�=p = Cn��kSk�Lp(
):With the Jackson and Bernstein inequalities in hand, we can now refer toour general theory in Section 4 and obtain the following characterization ofthe approximation spaces: for each 0 < � < r, 0 < q � 1, 0 < p <1,A�q (Lp(
)) = (Lp(
); Br� (L� (
)))�=r;q : (6.22)Therefore, we have a solution to our problem of characterizing the approxim-ation spaces A�q (Lp(
)) to the extent that we understand the interpolationspaces appearing in (6:22). Fortunately, we know a lot about these inter-polation spaces. For example, for each 0 < � < r, there is one value of q forwhich this interpolation space is a Besov space. Namely, if 1=q = � + 1=p,then A�q (Lp(
)) = (Lp(
); Br� (L� (
))�=r;q = B�q (Lq(
)): (6.23)For other values of q these interpolation spaces can be described in vari-ous ways. We defer a discussion of this until we treat nonlinear waveletapproximation where these interpolation spaces will reappear.Returning to our picture of smoothness spaces, we see that the approxim-ation spaces A�q (Lp(
)) correspond to the point (1=�; �) with 1=� = �+1=p.Thus, these spaces lie on the line with slope one passing through (1=p; 0). Inother words, we have the same interpretation as in nonlinear approximationby piecewise constants except that now � can range over the larger interval(0; r) corresponding to the order r of the piecewise polynomials.



104 R. A. DeVoreWe have emphasized that the Besov spaces B�� (L� (
)), 1=� = � + 1=p,which occur in characterizing free knot spline approximation, lie on the de-marcation line in the Sobolev embedding theorem. This is an indication thatthese spaces are quite large when compared to the Besov spaces B�q (Lp(
))which appear in characterizing linear approximation. Some examples mightfurther drive this point home. Any function f which is a piecewise poly-nomial (with a �nite number of pieces) is in all of these spaces, that is, wecan take � arbitrarily large. Indeed, f can be approximated exactly once nand r are large enough and hence this result follows from (6:22). A simpleargument shows that this remains true for any piecewise analytic functionf . Hence, any such function can be approximated to accuracy O(n��) forany � > 0 with nonlinear piecewise polynomial approximation. Another in-structive example is the function f(x) = x ,  > �1=p (so that f 2 Lp(
)).This function satis�es (see de Boor (1973))�n;r(f)p = O(n�r):This can be proved by balancing the approximation errors.6.4. Free knots and free degreeThere are many variants of piecewise polynomial approximation. One of themost important is to allow not only the partition to vary with f but alsothe orders (degrees) of the polynomial pieces. Approximation of this typeoccurs in the h-p method in FEM which has been introduced and studiedby Babu�ska and his collaborators (see Babu�ska and Suri (1994)). While thetheory for this type of approximation is far from complete, it will be usefulto mention a few facts that separate it from the free knot case discussedabove.Let ��n denote the set of all piecewise polynomialsS =XI2�PI�I ; (6.24)where � is a partition and for each I 2 � there is a polynomial PI of orderrI with PI2� rI � n. As usual, we let��n(f)p := infS2��n kf � SnkLp(
): (6.25)Clearly, for each r = 1; 2; : : :, we have ��nr(f)p � �n;r(f)p because �n;r ���nr. To see that ��n can be considerably better than �n;r, we consider thefollowing example, which was studied in DeVore and Scherer (1980). Letf(x) = x� with � > 0. We have seen that �n;r(f)p � n�r. On the otherhand, it is shown in the above reference that��n(f) � Ce�cpn; c := p2� 1 (6.26)



Nonlinear approximation 105and that this estimate cannot be improved in the sense of a better exponen-tial rate.6.5. Free partition splines: the multivariate caseUp to this point our discussion of nonlinear approximation has been almostentirely limited to approximating univariate functions. The question arises,for example, whether the results of the previous section on free knot splineapproximation can be extended to the multivariate case.For the moment, we restrict our discussion to the bivariate case and ap-proximation on 
 := [0; 1]2. In this case, we consider the space �#n;r consist-ing of all functions S = XT2�PT�T (6.27)with � = fTg a partition of 
 consisting of n triangles and the PT polyno-mials of total order r on T for each T 2 �. Let�#n;r(f)p := infS2�#n;r kf � SkLp(
): (6.28)Here # is used to make a distinction from the univariate case.There is no known characterization of A�q (Lp(
); (�#n;r)) for any values of�; p; q. This remains one of the most interesting and challenging problemsin nonlinear approximation. We shall mention some of the di�culties en-countered in trying to characterize these approximation classes, since thishas inuenced developments in multivariate nonlinear approximation.A �rst remark is that the space �#N does not satisfy assumption (iv) ofSection 4.1: that is, for no constant c do we have �#n + �#n � �#cn. Forinstance, consider a partition �1 of 
 consisting of n vertical strips of equalsize, each divided into two triangles, and the corresponding partition �2made from horizontal strips. Let S1 be a piecewise polynomial relative to �1and S2 another piecewise polynomial relative to �2. Then the sum �1+�2will be a piecewise polynomial which in general requires 4n2 triangles in itspartition.Even more relevant to our problem is a result (communicated to us byJonathan Goodman) that constructs functions f(x) and g(y) which indi-vidually can be approximated with order O(1=n) by the elements of �#nbut whose sum can only be approximated to order O(1=pn). Thus, theapproximation spaces A�q (Lp(
)) are not linear. This precludes their char-acterization by classical smoothness spaces, which are always linear.Here is another relevant comment. The starting point for proving directestimates for nonlinear piecewise polynomial approximation are good localerror estimates for polynomial approximation, such as those given in Sec-



106 R. A. DeVoretion 6.1. The appropriate local error estimators for polynomial approxima-tion on general triangles are not known. They should take into considerationthe shape and orientation of the triangles. For example, less smoothness ofthe target function should be required in directions where the triangle isthin, more in directions where the triangle is fat. While one may guess ap-propriate error estimators, none have been utilized successfully in nonlinearschemes.Given the situation described above concerning nonlinear piecewise poly-nomial approximation, it comes as no surprise that other avenues were ex-plored to handle nonlinearity in the multivariate case. The most successfulof these has been n-term approximation, which took the following viewpoint.In the univariate case the elements in the space �n can also be desribed as asum of n (or perhaps Cn) fundamental building blocks. In the case of piece-wise constants these are simply the characteristic functions �I of intervalsI. In the general case of univariate, nonlinear piecewise polynomial approx-imation the building blocks are B-splines. Therefore, one generalization of�n to the multivariate case would take the form of n-term approximationusing multivariate building blocks. The �rst examples were for box splines(DeVore and Popov 1987) but this was later abandoned for the more com-putationally favourable wavelets. We shall discuss wavelets in Section 7.6.6. Rational approximationAnother natural candidate for nonlinear approximation is the set of rationalfunctions. Let Rn(Rd) denote the space of rational functions in d variables.Thus, an element R in Rn is the quotient, R = P=Q, of two polynomialsP ,Q (in d variables) of total degree � n. We de�ne the approximation errorrn(f)p := infR2Rn kf �RkLp(
): (6.29)The status of rational approximation is more or less the same as for piece-wise polynomials. In one variable, we haveA�q (Lp(
); (Rn)) = A�q (Lp(
); (�n;r)); 0 < � < r: (6.30)Thus, on the one hand the approximation problem is solved but on the otherhand the news is somewhat depressing since there is nothing to gain or lose(in the context of the approximation classes) in choosing rational functionsover piecewise polynomials.The characterizations (6:30) were proved by Pekarski (1986) and Pet-rushev (1988) by comparing �n to rn. A typical comparison is given by theinequalities rn(f)p � Cn�� nXk=1 k��1�k;r(f)p; n � r; (6.31)



Nonlinear approximation 107which hold for all 1 � p < 1, � > 0 and approximation on an inter-val. Similar inequalities reverse the roles of �n;r(f)p and rn(f)p. Thus theapproximation classes for univariate rational approximation coincide withBesov spaces when 1=q = � + 1=p (see (6:23)). In a strong sense, rationalapproximation can be viewed as piecing together local polynomial approxi-mants similar to piecewise polynomials.We should also mention the work of Peller (1980), who characterized theapproximation classes for rational approximation in the BMO metric (whichcan be considered as a slight variant of L1). In the process, Peller charac-terized interpolation spaces between BMO and the Besov space B11(L1) andfound the trace classes for Hankel operators, thus unifying three importantareas of analysis.There are some direct estimates for multivariate rational approximation(see, for example, DeVore and Yu (1990)) but they fall far short of beingoptimal. The characterization of approximation spaces for multivariate ra-tionals has met the same resistance as piecewise polynomials for more orless the same reasons.There have been several other important developments in rational approx-imation. One of these was Newman's theorem (see Newman (1964)) whichshowed that the function f(x) = jxj satis�es rn(f)1 = O(e�cpn) (a verystunning result at the time). Subsequently, similar results were proved forother special functions (such as e�jxj�) and even asymptotics for the errorrn(f) were found. A mainstay technique in these developments was Pad�eapproximation. This is to rational functions what Taylor expansions are topolynomials. A �rst reference for Pad�e approximation is the book of Baker(1975).7. WaveletsWavelets were ripe for discovery in the 1980s. Multigrid methods in numer-ical computation, box splines in approximation theory, and the Littlewood{Paley theory in harmonic analysis all pointed to multilevel decompositions.However, the great impetus came from two discoveries: the multiresolutionanalysis of Mallat and Meyer (see Mallat (1989)) and most of all the discov-ery by Daubechies (1988) of compactly supported orthogonal wavelets witharbitrary smoothness.Wavelets are tailor-made for nonlinear approximation and certain numer-ical applications. Computation is fast and simple, and strategies for generat-ing good nonlinear approximations are transparent. Since wavelets provideunconditional bases for a myriad of function spaces and smoothness spaces,the characterization of approximation classes is greatly simpli�ed. Moreover,wavelets generalize readily to several dimensions.



108 R. A. DeVoreThere are many excellent accounts of multiresolution and wavelet theory.We shall introduce only enough of the theory to set our notation and provideus with the vehicle we need for our development of nonlinear approxima-tion. The Haar function is a wavelet (albeit not a very smooth one) and(3:47) is typical of wavelet decompositions. We shall begin our discussionof multiresolution by considering approximation from shift invariant spaceswhich provides the linear theory for wavelet approximation.In the development of wavelets and multiresolution analysis, one needsto make modest assumptions on the re�nement function ' so the theorydevelops smoothly. We shall not stress these assumptions, and in fact inmany cases not even mention them, in order to keep our exposition shortand to the point. The reader needs to consult one of the following referencesto �nd precise formulations of the results we state here: Daubechies (1992),Meyer (1990), DeVore and Lucier (1992).7.1. Shift invariant spacesIn multiresolution analysis, there are two fundamental operations we per-form on functions: shift and dilation. If f is de�ned on Rd and j 2 Zd, thenf(� � j) is the (integer) shift of f by j. Meanwhile, if a > 0 is a real numberthen f(a�) is the dilate of f by a. In this section, we consider spaces invari-ant under shifts. We then dilate them to create new and �ner spaces. Themain goal is to understand the approximation properties of these dilatedspaces.We shall not discuss shift invariant spaces in their full generality in orderto move more directly to multiresolution analysis. The results stated belowhave many extensions and generalizations (see de Boor, DeVore and Ron(1993) and the references therein).Let ' be a compactly supported function in L2(Rd). We de�ne ~S(') as theset of all �nite linear combinations of the shifts of '. The space S := S(')is de�ned to be the closure of ~S(') in L2(Rd). We say that S is the principalshift invariant (PSI) space generated by '.For each k � 0, the space Sk := Sk(') is de�ned to be the dilate of S by2k. A function T is in Sk if and only if T = S(2k�) with S 2 S('). Thespace Sk is invariant under the shifts j2�k, j 2 Zd. We shall be interestedin the approximation properties (in the L2(Rd )-norm) of Sk as k !1. Welet Ek(f) := Ek(f)2 := infS2Sk kf � SkL2(Rd); k = 0; 1; : : : : (7.1)The approximation properties of Sk are related to polynomial reproduc-tion in S. It was Schoenberg (1946) who �rst recognized that polynomial re-production could be described by the Fourier transform '̂ of '; subsequently,Strang and Fix (1973) used Fourier transforms to describe approximation



Nonlinear approximation 109properties. We say ' satis�es the Strang{Fix condition of order r 2 N if'̂(0) 6= 0; and Dj'̂(2k�) = 0; k 2 Zd n f0g; jjj < r: (7.2)When ' satis�es the Strang{Fix condition of order r then S(�) locally con-tains all polynomials of order r (degree < r). (Actually, this and resultsstated below require a little more about ' in terms of smoothness, which wechoose not to formulate exactly.) Moreover, it is easy to prove the Jacksoninequality: for all f in the Sobolev space W r(L2(Rd )), we haveEk(f) � C2�krjf jW r(L2(Rd)); k = 0; 1; : : : : (7.3)The companion Bernstein inequality to (7:3) isjSjW r(L2(Rd)) � C2krkSkL2(Rd); S 2 Sk: (7.4)It is valid if ' is in W r(L2(Rd )). Under these conditions on ', we can usethe general results of Section 4.3 to obtain the following characterization ofapproximation spaces:A�q (L2(Rd)) = B�q (L2(Rd )); 0 < � < r; 0 < q � 1: (7.5)Notice that this is exactly the same characterization as for the other typesof linear approximation we have discussed earlier. There is a similar theoryfor approximation in Lp(Rd ), 1 � p � 1, and even 0 < p < 1.7.2. Multiresolution and wavelet decompositionsMultiresolution adds one essential new ingredient to the setting of the pre-vious section. We require that the spaces Sk are nested, that is, Sk � Sk+1,which is of course equivalent to S0 � S1. This is in turn equivalent torequiring that ' is in S1.We shall limit our discussion to the multiresolution analysis that leadsto the biorthogonal wavelets of Cohen, Daubechies and Feauveau (1992).These are the wavelets used most often in applications. Accordingly, westart with the univariate case and assume that ' is a function for which thespaces Sk = Sk(') of the previous section provide approximation:dist(f;Sk)L2(R) ! 0: (7.6)We know that this will hold, for example, if ' satis�es the Strang{Fix con-dition for some order r > 0. We assume further that the shifts '(� � j),j 2 Z, are a Riesz basis for S and that the dual basis is given by the shiftsof a compactly supported function ~' whose dilated spaces Sk( ~') also forma multiresolution analysis. Duality means thatZR '(x� j) ~'(x� k) dx = �jk: (7.7)with �jk the Kronecker delta.



110 R. A. DeVoreThe fact that ' 2 S1 implies that ' is re�nable:'(x) =Xk2Zck'(2x � k): (7.8)The compact support of ' implies that there is only a �nite number ofnonzero coe�cents ck in (7:8). They are called the re�nement mask for '(in image processing they are called the (low pass) �lter coe�cients). Thedual function ~' satis�es a corresponding re�nement equation with maskcoe�cients ~ck.Let h�; �i denote the inner product in L2(R) and let P be the projectorPf :=Xj2Zhf; ~'(� � j)i'(� � j) (7.9)which maps L2(R) onto S. By dilation, we obtain the corresponding pro-jectors Pk which map L2(R) onto Sk, k 2 Z. We are particularly interestedin the projector Q := P1 � P0 which maps L2(R) onto a subspace W ofS1. The space W is called a wavelet space; it represents the detail which,when added to S0, gives S1 via the formula S = PS +QS, S 2 S1. One ofthe main results of wavelet/multiresolution theory is that W is a PSI spacegenerated by the function (x) =Xk2Zdk ~'(2x� k); dk := (�1)k~c1�k: (7.10)Also, the shifts  (� � j), j 2 Z, form a Riesz basis for W whose dualfunctionals are represented by ~ (� � j) where ~ is obtained from ' in thesame way  was obtained from ~'. In other words,Qf =Xj2Z2�khf; ~ (� � j)i (� � j): (7.11)Of course, by dilation, we obtain the spaces Wk, the projectors Qk and therepresentation Qkf =Xj2Z2khf; ~ (2k � �j)i (2k � �j): (7.12)From (7:6), we know that Pkf ! f , k ! 1. It can also be shown thatPkf ! 0, k ! �1, and therefore we havef = 1Xk=�1(Pk+1f � Pkf) =Xk2ZXj2Z2khf; ~ (2k � �j)i (2k � �j): (7.13)The factor 2k multiplying the inner product arises from scaling. This isthe biorthogonal wavelet decomposition of an arbitrary f 2 L2(R). Wewould like to simplify the wavelet notation and better expose the nature of



Nonlinear approximation 111the representation (7:13). For this we shall use the following convention. Toj 2 Zd, k 2 Z, we associate the dyadic cube I = 2�k(j+
) with 
 := [0; 1]d,the unit cube in Rd . To each function � de�ned on Rd , we let�I(x) := jIj�1=2�(2k � �j): (7.14)The cube I roughly represents the support of �I ; in the case that � = �
 or� = H with the H the Haar function, then I is precisely the support of �I .Let D be the set of all dyadic intervals in R and Dk those dyadic intervalsof length 2�k. We can now rewrite (7:13) asf = XI2D cI(f) I ; cI(f) := hf;  Ii: (7.15)The Riesz basis property of the  I gives thatkfkL2(R) �  XI2D jcI(f)j2!1=2 : (7.16)The special case of orthogonal wavelets is noteworthy. In this case, onebegins with a scaling function ' whose shifts are an orthonormal systemfor S('). Thus ~' = ' and the space W is orthogonal to S0: each functionS 2W satis�es ZR SS0 dx = 0; S0 2 S0: (7.17)The decomposition S1 = S0 �W is orthogonal and the functions  I , I 2 Dare an orthonormal basis for L2(R).We turn now to the construction of wavelet basis in several dimensions.There are several possibilities. The most often used construction is thefollowing. Let ' be a univariate scaling function and  its correspondingwavelet. We de�ne  0 := ',  1 :=  . Let E0 denote the collection of verticesof the unit cube [0; 1]d and E the set of nonzero vertices. For each vertexe = (e1; : : : ; ed) 2 E0, we de�ne the multivariate functions e(x1; : : : ; xd) :=  e1(x1) � � � ed(xd) (7.18)and de�ne 	 := f e : e 2 Eg. If D = D(Rd) is the set of dyadic cubes inRd , then the collection of functionsf eI ; I 2 D; e 2 Eg (7.19)forms a Riesz basis for L2(Rd); an orthonormal basis if  is an orthogonalwavelet. The dual basis functions ~ eI have an identical construction startingwith ~' and ~ . Thus, each f 2 L2(Rd) has the wavelet expansionf = XI2DXe2E ceI(f) eI ; ceI(f) := hf; ~ eIi: (7.20)



112 R. A. DeVoreAnother construction of multivariate wavelet bases is to simply take thetensor products of the univariate basis  I . This gives the basis R(x1; : : : ; xd) :=  I1(x1) � � � Id(xd); R := I1 � � � � Id; (7.21)where the R are multidimensional parallelepipeds. Notice that the supportof the function  R corresponds to R and is nonisotropic. It can be long inone direction and short in another. This is in contrast to the previous baseswhose supports are isotropic. We shall be almost exclusively interested inthe �rst basis.7.3. Characterization of function spaces by wavelet coe�cientsWavelet coe�cients provide simple characterizations of most function spaces.The norm in the function space is equivalent to a sequence norm applied tothe wavelet coe�cients. We shall need such characterizations for the case ofLp spaces and Besov spaces.It is sometimes convenient in the characterizations that follow to choosedi�erent normalizations for the wavelets, and hence coe�cients, appearingin the decomposition (7:20). In (7:20) we have normalized the wavelets anddual functions in L2(Rd). We can also normalize the wavelets in Lp(Rd),0 < p � 1, by taking eI;p := jIj�1=p+1=2 eI ; I 2 D; e 2 E; (7.22)with a similar de�nition for the dual functions. Then, we can rewrite (7:20)as f =XI2DXe2E ceI;p(f) eI;p; ceI;p(f) := hf; ~ eI;p0i; (7.23)with 1=p+ 1=p0 = 1. We also de�necI;p(f) :=  Xe2E jceI;p(f)jp!1=p : (7.24)One should note that it is easy to go from one normalization to another.For example, for any 0; p; q � 1, we have I;p = jIj1=q�1=p I;q; cI;p(f) = jIj1=p�1=qcI;q(f): (7.25)The characterization of Lp spaces by wavelet coe�cients comes from theLittlewood{Paley theorem of harmonic analysis. One cannot simply char-acterize the Lp spaces by `p norms of the wavelet coe�cients. Rather, one



Nonlinear approximation 113must go through the square functionS(f; x) :=  XI2D cI;2(f)2jIj�1�I(x)!1=2 =  XI2D cI;p(f)2jIj�2=p�I(x)!1=2(7.26)which incorporates the interaction between dyadic levels. Here, as earlier,�I is the characteristic function of the interval I. For 1 < p <1, one haskfkLp(Rd) � kS(f; �)kLp(R) (7.27)with the constants of equivalency depending only on p. Notice that, in thecase p = 2, (7:27) reduces to (7:16). One can �nd proofs of (7:27) (whichuse techniques of harmonic analysis such as maximal functions) in Meyer(1990) or DeVore, Konyagin and Temlyakov (1998).The equivalence (7:27) can be extended to the range p � 1 if the space Lpis replaced by the Hardy space Hp and more assumptions are made of thewavelet  . In this sense, most of the theory of approximation given belowcan be extended to this range of p.We have introduced the Besov spaces B�q (Lp(Rd )) for 0 < q; p � 1, � > 0,in Section 4.5. The following is the wavelet characterization of these spaces:jf jB�q (Lp(Rd) � 8>><>>: �P1k=�1 2k�q �PI2Dk cI;p(f)p�q=p�1=q ; 0 < q <1;supk2Z2k� �PI2Dk cI;p(f)p�1=p ; q =1: (7.28)Several remarks are in order to explain (7:28).Remark 7.1 Other normalizations for the coe�cients cI(f) are frequentlyused. The form of (7:28) then changes by the introduction of a factor jIj�into each term, with � a �xed constant.Remark 7.2 We can de�ne spaces of functions for all � > 0 by using theright side of (7:28). However, these spaces will coincide with Besov spacesonly for a certain range of � and p that depend on the wavelet  . In thecase 1 � p � 1, we need that(a)  2 B�q (Lp(Rd)), for some � > �,(b)  has r vanishing moments with r > �.When p < 1, we also need that r > d=p� d (see the following remark).Remark 7.3 When p < 1, (7:28) characterizes the space B�q (Hp(Rd))(with the correct range of parameters) where this latter Besov space canbe de�ned by replacing the Lp modulus of smoothness by the Hp modulusof smoothness (see Kyriazis (1996)). However, if � > d=p� d, this space isthe same as B�q (Lp(Rd )).



114 R. A. DeVoreRemark 7.4 For a �xed value of 1 � p < 1, the spaces B�� (L� (Rd)),1=� = �=d + 1=p, occur, as we know, in nonlinear approximation. If wechoose the wavelets normalized in Lp, then the characterization (7:28) be-comes simply jf jB�� (L� (Rd)) �  XI2D cI;p(f)�!1=� : (7.29)7.4. Nonlinear wavelet approximationIn this and the next subsections, we shall consider n-term approximationby wavelet sums. The results we present hold equally well in the univariateand the multivariate case. However, the notation is somewhat simpler inthe univariate case. Therefore, to spare the reader, we shall initially treatonly this case. At the end of the section we shall formulate the results formultivariate functions.The idea of how to utilize wavelets in nonlinear approximation is quiteintuitive. If the target function is smooth on a region we can use a coarseresolution (approximation) on that region. This amounts to putting terms inthe approximation corresponding to low frequency-terms from dyadic levelk with k small. On regions where the target function is not smooth we usehigher resolution. This is accomplished by taking more wavelet functions inthe approximation, that is, terms from higher dyadic levels. The questionsthat arise from these intuitive observations are:(i) exactly how should we measure smoothness to make such demarcationsbetween smooth and nonsmooth?(ii) how do we allocate terms in a nonlinear strategy?(iii) are there precise characterizations of the functions that can be approx-imated with a given approximation order by nonlinear wavelet approx-imation?Fortunately, all of these questions have a simple and de�nitive solution,which we shall presently describe.We shall limit ourselves to the case of biorthogonal wavelets and approx-imation in Lp, 1 < p <1. Again, one can work in much more generality. Aswill be clear from our exposition, what is essential is only the equivalence offunction norms with norms on the sequence of wavelet coe�cients. Thus, theresults we present hold equally well for approximation in the Hardy spaceHp (Cohen, DeVore and Hochmuth 1997) and for more general wavelets.It will also be convenient to consider approximation on all of Rd (initiallyon R). In the following section, we shall discuss briey how results extendto other domains.Let ', ~' be two re�nable functions which are in duality as described in



Nonlinear approximation 115Section 7.2 and let  and ~ be their corresponding wavelets. Then, eachfunction f 2 Lp(R) has the wavelet decomposition (7:15). We let �wn denotethe set of all functions S =XI2� aI I ; (7.30)where � � D is a set of dyadic intervals of cardinality #� � n. Thus �wn isthe set of all functions which are a linear combination of n wavelet functions.In analogy with our previous studies, we de�ne�wn (f)p := infS2�wn kf � SkLp(R): (7.31)We can characterize the approximation classes for n-term wavelet approx-imation by proving Jackson and Bernstein inequalities and then invokingthe general theory of Section 4.3. The original proofs of these inequalitieswere given in DeVore, Jawerth and Popov (1992) but we shall follow Cohen,DeVore and Hochmuth (1997) which introduced some simpler techniques.Given a �nite set � of intervals, for each x 2 R, we let I(x) be thesmallest interval in � that contains x. If there is no such interval, thenwe de�ne I(x) := R and expressions like jI(x)j�1 are interpreted as zero.The following lemma of Temlyakov (199xa) is a powerful tool in estimatingnorms of wavelet sums.Lemma 1 Let 1 < p < 1 and � be a �nite set. If f 2 Lp(R) has thewavelet decomposition f =XI2� cI;p(f) I;p; (7.32)with jcI;p(f)j �M , for all I 2 �, thenkfkLp(R) � C1M#�1=p; (7.33)with C1 an absolute constant. Similarly, if jcI;p(f)j �M , for all I 2 �, thenkfkLp(R) � C2M#�1=p; (7.34)with C2 > 0 an absolute constant.We shall sketch the proof of (7:33) (which is valid for 0 < p < 1) sinceit gives us a chance to show the role of I(x) and the square function. Theproof of (7:34) is similar. We havekfkLp(R) � kS(f)kLp(R) = Ck XI2� c2I;pjIj�2=p�I!1=2 kLp(R)� CMk XI2� jIj�2=p�I!1=2 kLp(R) � CMkjI(x)j�1=pkLp(R):



116 R. A. DeVoreIf J 2 �, then the set ~J := fx : I(x) = Jg is a subset of J . It follows thatkfkpLp(R) � CMp ZRd jI(x)j�1 dx � CMpXJ2�Z ~J jJ j�1 � CMp#�;which proves (7:33).We shall now formulate the Jackson inequality for n-term wavelet ap-proximation. Let r be the number of vanishing moments of  . Recall that ralso represents the order of polynomials that are locally reproduced in S(').Recall also that, for 0 < � < 1, a sequence (an) of real numbers is in theLorentz space w`� := `�;1 if and only if#fn : janj > �g �M � ��� (7.35)for all � > 0. The norm k(an)kw`� is the smallest value ofM such that (7:35)holds. Also, k(an)kw`� � k(an)k`� :Theorem 5 Let 1 < p < 1, and s > 0, and let f 2 Lp(R) and cI :=cI;p(f), I 2 D, be such that (cI)I2D is in w`� , 1=� = s+ 1=p. Then,�n(f)p � Cn�sk(cI)kw`� ; n = 1; 2; : : : ; (7.36)with the constant C depending only on p and s.We sketch the proof. We have#fI : jcI j > �g �M � ���for all � > 0 with M := k(cI)kw`� . Let �j := fI : 2�j < jcI j � 2�j+1g.Then, for each k = 1; 2; : : :, we havekXj=�1#�j � CM �2k� (7.37)with C depending only on � .Let Sj := PI2�j cI I and Tk := Pkj=�1 Sj . Then Tk 2 �N with N =CM �2k� . We have kf � TkkLp(R) � 1Xj=k+1 kSjkLp(R): (7.38)We �x j > k and estimate kSjkLp(R). Since jcI j � 2�j+1 for all I 2 �j ,we have, from Lemma 1 and (7:37),kSjkLp(R) � C2�j#�1=pj � CM �=p2j(�=p�1):



Nonlinear approximation 117We therefore conclude from (7:38) thatkf � TkkLp(R) � CM �=p 1Xj=k+1 2j(�=p�1) � CM(M2k)�=p�1because �=p� 1 < 0. In other words, for N �M �2k� , we have�N (f)p � CMN1=p�1=� = CMN�s:From the monotonicity of �n it follows that the last inequality holds for allN � 1.Let us note a couple of things about the theorem. First of all there isno restriction on s. However, for large s, the set of functions satisfying(cI;p(f)) 2 w`� is not a classical smoothness space. We can use the the-orem to obtain Jackson inequalities in terms of Besov spaces by using thecharacterization of Besov spaces by wavelet coe�cients. Recall that thischaracterization applies to Bs� (L� (R)) provided the following two propertieshold:(i)  has r vanishing moments with r > s(ii)  is in B�q (L� ) for some q and some � > s.That is,  must have su�cient vanishing moments and su�cient smoothness.Under these assumptions, we have the following result.Corollary 1 Let 1 < p < 1, let s > 0 and let f 2 Bs� (L� (R)), 1=� =s+ 1=p. If  satis�es the above two conditions (i) and (ii), then�n(f)p � Cjf jBs� (L� (R))n�s; n = 1; 2; : : : ; (7.39)with C depending only on p and s.We have cI;� (f) = cI;p(f)jIj1=��1=p = cI;p(f)jIjs=d. Thus, from (7:29) we�nd jf jBs� (L� (R)) = k(cI)k`� � k(cI)kw`� :Hence (7:39) follows from Theorem 5.7.5. The Bernstein inequality for n-term wavelet approximationThe following theorem gives the Bernstein inequality which is the companionto (7:39).Theorem 6 Let 1 < p < 1, and let the assumptions of Theorem 5 bevalid. If f =PI2� cI;p(f) I;p with #� � n, we havekfkBs� (L� (R)) � CnskfkLp(R): (7.40)



118 R. A. DeVoreWe sketch the simple proof of this inequality. We �rst note that, for eachI 2 �, we have cI jIj�1=p�I � S(f);because the left side is one of the terms appearing in the square functionS(f). Hence, with I(x) de�ned as the smallest interval in � that containsx, we have, from (7:29),jf j�Bs� (L� (R)) = ZRXI2� jcI j� jIj�1�I = ZRXI2� c�I jIj��=p�I jIj�1+�=p�I� C ZR S(f)�XI2� jIj�1+�=p�r � C ZR S(f; x)� jI(x)j�1+�=p dx� C �ZR S(f; x)p��=p�ZR jI(x)j�1�1��=p dx� Cn1��=pkS(f)k�Lp(R) � Cn1��=pkfk�Lp(R):7.6. Approximation spaces for n-term wavelet approximationThe Jackson and Bernstein inequalities of the previous sections are equallyvalid in Rd . The only distinction is that n�s should be replaced by n�s=d.The proofs are identical to the univariate case except for the more elaboratenotation needed in the multivariate formulation.With the Jackson and Bernstein inequalities in hand, we can apply thegeneral machinery of Section 4.3 to obtain the following characterization ofthe approximation spaces for n-term wavelet approximation. We formulatethe results for the multivariate case.Let 1 < p < 1 and s > 0 and let 1=� := s=d + 1=p. If  satis�es thevanishing moments and smoothness assumptions needed for the Jackson andBernstein inequalities, then, for any 0 <  < s and any 0 < q � 1,A=dq (Lp(Rd )) = (Lp(Rd ); Bs� (L� (Rd )))=s;q: (7.41)Several remarks are in order about (7:41).Remark 7.5 We have seen the interpolation spaces on the right side of(7:41) before for free knot spline approximation and d = 1.Remark 7.6 For each  there is one value of q where the right side is aBesov space; namely, when 1=q = =d + 1=p, the right side of (7:41) is theBesov space Bq (Lq(Rd )) with equivalent norms.Remark 7.7 There is a description of the interpolation spaces on the rightof (7:41) in terms of wavelet coe�cients. Namely, a function is in the space(Lp(Rd ); Bs� (L� (Rd)))=s;q if and only if (cI;p(f))I2D is in the Lorentz space



Nonlinear approximation 119`�;q where 1=� := =d+ 1=p and, in fact, we havejf jA=dq (Lp) � k(cI;p(f))k`�;q :This veri�es Remark 7.6 that, in the case that q = �, then A=d� (Lp(Rd)) =B�(Rd )) with equivalent norms.These results can be proved by a slightly �ner analysis of n-term waveletapproximation (see Cohen, DeVore and Hochmuth (1997) and Temlyakov(199xa))There is a further connection between n-term approximation and inter-polation that we wish to bring out. Let p, s, and � have the same meaning asabove. For each n, let fn denote a best n-term approximation to f in Lp(Rd )(which can be shown to exist { see Temlyakov (199xa)). It follows from whatwe have proved and Theorem 3 of Section 4.3 that, for n = 1; 2; : : :, we haveK(f; n�s; Lp(Rd); Bs� (L� (Rd ))) = kf � fnkLp(Rd) + n�sjfnjBs� (L� (Rd)):In other words, fn realizes this K-functional at t = n�s.In summary, n-term wavelet approximation o�ers an attractive alternativeto free knot spline approximation on several counts. In one space dimension(the only case where free knot spline approximation is completely under-stood), it provides the same approximation e�ciency and yet is more easilynumerically implementable (as will be discussed subsequently).7.7. Wavelet decompositions and n-term approximation on domains in RdIn numerical considerations, we usually deal with functions de�ned on a�nite domain 
 � Rd . The above results can be generalized to that setting inthe following way. We assume that the boundary @
 of of 
 is Lipschitz (it ispossible to work under slightly weaker assumptions). Under this assumption,it follows that any function f in the Besov space B�q (
) can be extended toall of Rd in such a way that the extended function Ef satis�esjEf jB�q (Lp(Rd)) � Cjf jB�q (Lp(
)): (7.42)We refer the reader to DeVore and Sharpley (1984, 1993) for a discussionof such extensions. The extended function Ef has a wavelet decomposition(7:23) and the results of the previous section can be applied. The n-termapproximation to Ef will provide the same order of approximation to fon 
 and one can delete in the approximant all terms corresponding towavelets that are not active on 
 (that is, all wavelets whose support doesnot intersect 
).While the above remarks concerning extensions are completely satisfact-ory for theoretical considerations, they are not always easily implementable



120 R. A. DeVorein numerical settings. Another approach which is applicable in certain set-tings is the construction of a wavelet basis for the domain 
. This is partic-ularly suitable in the case of an interval 
 � R. Biorthogonal wavelet basescan be constructed for an interval (see Cohen, Daubechies and Vial (1993))and can easily be extended to parallelepipeds in Rd and even polyhedraldomains (see Dahmen (1997) and the references therein).7.8. Thresholding and other numerical considerationsWe have thus far concerned ourselves mainly with the theoretical aspectsof n-term wavelet approximation. We shall now discuss how this form ofapproximation is implemented in practice. We assume that approximationtakes place on a domain 
 � Rd which admits a biorthogonal basis asdiscussed in the previous section. For simplicity of notation, we assume thatd = 1. We shall also assume that the wavelet decomposition of the targetfunction f is �nite and known to us. This provides a good match with certainapplications such as image processing. When the wavelet decomposition isnot �nite, one usually assumes more about f that allows truncation of thewavelet series while retaining the desired level of numerical accuracy.In the case of approximation in L2(
), the best n-term approximationto a target function f is obtained by choosing the n terms in the waveletseries (7:20) of f for which the coe�cients are largest. A similar strategyapplies in the case of Lp(R) approximation. Now, we write f in its waveletexpansion with respect to Lp normalized wavelets (see (7:23)) and choosethe n-terms for which jcI;p(f)j is largest. The results of Section 7.4 showthat this approximant will provide the Jackson estimates for n-term waveletapproximation. It is remarkable that this simple strategy also gives a nearbest approximant fn to f . Temlyakov (199xa) has shown thatkf � fnkLp(
) � C�n(f)p; n = 1; 2; : : : ; (7.43)with a constant C independent of f and n.In numerical implementation, one would like to avoid the expensive sortinginherent in the above description of n-term approximation. This can be doneby employing the following strategy known as thresholding. We �x the Lp(
)space in which approximation error is to be measured. Given a tolerance� > 0, we let ��(f) denote the set of all intervals I for which jcI;p(f)j > �and de�ne the hard thresholding operatorT�(f) := XI2��(f) cI(f) I = XjcI(f)j>� cI(f) I : (7.44)If the target function f is in weak `� , with 1=� = s+ 1=p, then it followsfrom the de�nition of this space that#(��) �M � ��� (7.45)



Nonlinear approximation 121Table 1. Thresholding valuesThreshold Number of coe�cients Error� M���� M�=p�1��=pM�1=(ps)�1=(s�) M1=s��1=s �MN�1=� N MN�swith M the weak `� norm of the coe�cients. Moreover, arguing as in theproof of Theorem 5, we obtainkf � T�(f)kLp(
) � CM �=p�1��=p: (7.46)For example, if � = MN�1=� , then #(��(f)) � N and kf � T�(f)kLp(
) �CMN�s. In other words, thresholding provides the Jackson estimate. Inthis sense, thresholding provides the same approximation e�ciency as n-term approximation.The following table records the relationship between thresholding and n-term approximation. Here, M = jf j`�;1, � is a thresholding tolerance, � is aprescribed error, and N is a prescribed number of coe�cients.For example, the second row of this table gives bounds on the threshold-ing parameter and the number of coe�cients needed to achieve an errortolerance � > 0.Hard thresholding has a certain instability in that coe�cients just belowthe thresholding tolerance are set to zero and those just above are keptintact. This instability can be remedied by soft thresholding. Given � > 0,we de�ne s�(x) := 8<: 0; jxj � �;2(jxj � �) signx; � � jxj � 2�;x; jxj > 2�: (7.47)Then, the soft thresholding operatorT 0�(f) := XI2D s�(cI;p(f)) I;p (7.48)has the same approximation properties as T�.8. Highly nonlinear approximationNonlinear wavelet approximation in the form of n-term approximation orthresholding is simple and e�ective. However, two natural questions arise.How does the e�ectiveness of this form of approximation depend on thewavelet basis? Secondly, is there any advantage to be gained by adaptively



122 R. A. DeVorechoosing a basis which depends on the target function f? To be reason-able, we would have to limit our search of wavelet basis to a numericallyimplementable class. An example of such a class is the collection of wave-let packet bases de�ned in Section 3.7. We call such a class L of bases alibrary. We shall limit our discussion to approximation in a Hilbert spaceH and libraries of orthonormal bases for H. So our problem of nonlinearapproximation would be given a target function f 2 H, to choose both abasis B 2 L and an n-term approximation to f from this basis. We call suchan approximation problem highly nonlinear since it involves another layerof nonlinearity in the basis selection.A closely related form of approximation is n-term approximation from adictionary D � H of functions. For us, a dictionary will be an arbitrarysubset of H. However, dictionaries have to be limited to be computation-ally feasible. Perhaps the �rst example of this type of approximation wasconsidered by E. Schmidt (1907), who considered the approximation of func-tions f(x; y) of two variables by bilinear formsPmi=1 ui(x)vi(y) in L2([0; 1]2).This problem is closely connected with properties of the integral operatorwith kernel f(x; y).We mention some other important examples of dictionaries. In neuralnetworks, one approximates functions of d-variables by linear combinationsof functions from the setf�(a � x+ b) : a 2 Rd ; b 2 Rg;where � is a �xed univariate function. The functions �(a � x+ b) are planarwaves; also called ridge functions. Usually, � is required to have additionalproperties. For example, the sigmoidal functions, which are used in neuralnetworks, are monotone nondecreasing, tend to 0 as x! �1, and tend to1 as x!1.Another example, from signal processing, uses the Gabor functionsga;b(x) := eiaxe�bx2and approximates a univariate function by linear combinations of the ele-ments from D := fga;b(x� c) : a; b; c 2 Rg:Gabor functions are one example of a dictionary of space(time)-frequencyatoms. The parameter a serves to position the function ga;b in frequencyand c does the same in space. The shape parameter b localizes ga;b.The common feature of these examples is that the family of functions usedin the approximation process is redundant. There are many more functionsin the dictionary than needed to approximate any target function f . Thehope is that the redundancy will increase the e�ciency of approximation.



Nonlinear approximation 123On the other hand, redundancy may slow down the search for good approx-imations.Results on highly nonlinear approximation are quite fragmentary and acohesive theory still needs to be developed. We shall present some of what isknown about this theory, both for its usefulness and in the hope of bringingattention to this interesting area.8.1. Adaptive basis selectionIt will be useful to begin by recalling the results of Sections 2 and 5 on n-termapproximation using the elements of an orthonormal basis. Let B := f�kg bean orthonormal basis for H and let �n(B) denote the functions in H whichcan be written as a linear combination of n of the functions �k, k = 0; 1; : : : ;and further let �n(f;B) := �n(f;B)H := infS2�n(B) kf � SkH (8.1)be the corresponding approximation error.We have seen that the decrease of the approximation errors �n(f;B) iscompletely determined by the rearranged coe�cients hf; �ki. As before, welet k(f;B) be the kth largest of the absolute values of these coe�cients.For example, we have seen that for any � > 0, a function f from H is inA�1 (i.e., �n(f;B) = O(n��), n ! 1), if and only if (n(f;B)) is in weak`� (i.e., in `�;1) with � := (� + 1=2)�1. Moreover,k(n(f;B))k`�;1 � jf jA�1 ; (8.2)with constants of equivalency independent of B.Suppose now that L = fBg is a library of such orthonormal bases B. Wede�ne the approximation error�Ln (f)H := infB2L�n(f;B)H: (8.3)The approximation classes A�q (H;L) are de�ned in the usual way (see Sec-tion 4.1). It is of great interest to characterize the approximation classes inconcrete settings since this would give us a clear indication of the advantagesof adaptive basis selection. A few results are known in discrete settings (see,for instance, Kashin and Temlyakov (1997)). We shall limit ourselves to thefollowing rather trivial observations.In view of (8:2), we have the upper estimate�Ln (f)H � Cn�� infB k(n(f;B))k`�;1 (8.4)with C an absolute constant. Moreover, for any � > 0, we have\BA�1(H; B) � A�1(H;L): (8.5)We can interpret these results in the following way. For each basis B, the



124 R. A. DeVorecondition (n(f)) 2 `�;1, � := (� + 1=2)�1 can be viewed as a smoothnesscondition on f relative to the basis B. Thus the in�mum on the right sideof (8:4) can be thought of as the in�mum of smoothness conditions relativeto the di�erent bases B. Similarly, we can view the classes A�1(H; B) assmoothness classes with respect to the basis B. The right side of (8:5) isan intersection of smoothness classes. Thus, an advantage of optimal basisselection is that we are allowed to take the basis B 2 L in which f issmoothest.In general (8:4) and (8:5) are not reversible. One can easily constructtwo basis B1, B2, and a target function f so that, as n varies, we alternatebetween the choices B1 and B2 as the best basis selection for varying n. Itis less clear whether this remains the case when the library is chosen to havesome structure as in the case of wavelet packets. Thus the jury is still out asto whether (8:4) and (8:5) can sometimes be reversed in concrete situationsand thereby obtain a characterization of A�1(H;L).The above discussion for q =1 generalizes to any 0 < q � 1.8.2. Two examples of wavelet librariesWe would be remiss in not mentioning at least a couple of simple examplesof libraries of bases that are useful in applications. The understanding ofthe approximation properties in such examples would go a long way towardunderstanding highly nonlinear approximation.Our �rst example is to generalize the wavelet packets of Section 3.7. Sincethe situation is completely analogous to that section, we shall be brief. Inplace of �
 and the Haar function H, we can take any orthogonal scalingfunction ' and its orthogonal wavelet  . We take for H the space L2(R).The function ' satis�es the re�nement equation (7:8) with re�nement coef-�cients ck, k 2 Z, and likewise the wavelet  satis�es (7:10). Therefore, theoperators of (3:57) are replaced byA0g :=Xk ckg(2 � �k); A1g :=Xk dkg(2 � �k): (8.6)Then, A0(') = ', and A1(') =  .Starting with 0 := ', we generate the functions b and the spaces �bexactly as in Section 3.7. The interpretation using the binary tree of Figure 4applies and gives the same interpretation of orthonormal bases for Sm(').These bases form the library of wavelet packet bases. For further discussionof wavelet packet libraries and their implementation, we refer the reader toWickerhauser (1994).For our second example, we take H = L2(R2) and again consider a com-pactly supported, re�nable function ' 2 L2(R) with orthonormal shifts andits corresponding orthogonal wavelet  . We de�ne  0 := ',  1 :=  . To



Nonlinear approximation 125each vertex e of the unit square [0; 1]2, each j = (j1; j2) 2 Z2, k = (k1; k2) 2Z2, we associate the function ej;k(x1; x2) := 2(k1+k2)=2 e1(2k1x1 � j1) e2(2k2x2 � j2): (8.7)Each of these functions has L2(R2 ) norm one. We let L denote the library ofall complete orthonormal systems which can be made up from the functionsin (8:7). In particular L will include the usual wavelet bases given in (7:19)and the hyperbolic basis (7:21), which is the tensor product of the univariatewavelet basis.As a special case of the above library consider ' = �[0;1) and  = H, withH the Haar function. We approximate functions de�ned on the unit square
 := [0; 1)2. The library L includes bases of the following type. We cantake an arbitrary partition P of 
 into dyadic rectangles R. On each R wecan take a standard or hyperbolic wavelet Haar bases. This library of basesis also closely related to the CART algorithm studied by Donoho (1997).8.3. Approximation using n-terms from a dictionarySuppose that D is a dictionary of functions from H. It will be convenientto assume (without loss of generality in n-term approximation) that eachg 2 D has norm one (kgkH = 1) and that �g 2 D whenever g 2 D . Oneparticular example of a dictionary is to start with an orthonormal basis Bfor H and to take D := f�b : b 2 Hg. We shall say that this is the dictionarygenerated by B. For each n 2 N, we let �n := �n(D ) denote the collectionof all functions in H which can be expressed as a linear combination of atmost n elements of D . Thus each function S 2 �n can be written in theform S =Xg2� cgg; � � D ; #� � n; (8.8)with the cg 2 R. It may be possible to write an element from �n(D ) in theform (8:8) in more than one way.For a function f 2 H, we de�ne its approximation error�n(f) := �n(f; D )H := infS2�n kf � SkH: (8.9)We shall be interested in estimates for �n (from above and below). Forthis purpose, we introduce the following way of measuring smoothness withrespect to the dictionary D .For a general dictionary D , and for any � > 0, we de�ne the class offunctionsKo� (D ;M ) := 8<:f =Xg2� cgg : � � D ; #� <1 and Xg2� jcgj� �M �9=; ;



126 R. A. DeVoreand we de�ne K� (D ;M) as the closure (in H) of Ko� (D ;M). Furthermore,we de�ne K� (D ) as the union of the classes K� (D ;M) over all M > 0. Forf 2 K� (D ), we de�ne the semi-normjf jK� (D) (8.10)as the in�mum of all M such that f 2 K� (D ;M). Notice that, when � = 1,K1 is the class of functions which are a convex combination of the functionsin D .The case when D is generated by a basis B is instructive for the resultsthat follow. In this case, n-term approximation from D is the same as n-term approximation from B which we have analysed in Sections 2 and 5.We have shown that if 1=� = �+ 1=2, then f is in the approximation classA�� (D ) if and only if Xk jhf; hkij�is �nite and this last expression is equivalent to jf j�A� (B). In particular, thisshows that �n(f; D )H � Cn��jf jK� (D ) (8.11)in the special case that D is given by an orthonormal basis B.We are now interested in understanding whether (8:11) holds for moregeneral dictionaries D . The results in the following section will show that(8:11) is valid for a general dictionary provided � � 1=2. The �rst resultof this type was due to Maurey (see Pisier (1980)) who showed that, in thecase � = 1=2, (8:11) is valid for any dictionary. An iterative algorithm togenerate approximants from �n(D ) that achieves this estimate (for � = 1=2)was given by Jones (1992). For � > 1=2, (8:11) is proved in DeVore andTemlyakov (1996). For � < 1=2 (1 � � � 2) there seems to be no obviousanalogue of (8:11) for general dictionaries.8.4. Greedy algorithmsThe estimate (8:11) can be proved for a general dictionary by using greedyalgorithms (also known as adaptive pursuit). These algorithms are oftenused computationally as well. We shall mention three examples of greedyalgorithms and analyse their approximation properties. In what follows, k�kis the norm in H and h�; �i is the inner product in H.The �rst algorithm, known as the pure greedy algorithm, can be appliedfor any dictionary D . Its advantage is its simplicity. It begins with a targetfunction f and successively generates approximants Gm(f) 2 �m(D ), m =1; 2; : : :. In the case that D is generated by an orthonormal basis B, Gm(f)is a best m-term approximation to f .



Nonlinear approximation 127If f 2 H, we let g = g(f) 2 D denote an element from D which maximizeshf; gi: hf; g(f)i = supg2Dhf; gi: (8.12)We shall assume for simplicity that such a maximizer exists; if not, suitablemodi�cations are necessary in the algorithms that follow. We de�neG(f) := G(f; D ) := hf; g(f)ig(f)and R(f) := R(f;D) := f �G(f):Then, G(f) is a best one-term approximation to f from D and R(f) is theresidual of this approximation.Pure greedy algorithm. Initially, we set R0(f) := R0(f;D) := f andG0(f) := 0. Then, for each m � 1, we inductively de�neGm(f) := Gm(f; D ) := Gm�1(f) +G(Rm�1(f));Rm(f) := Rm(f; D ) := f �Gm(f) = R(Rm�1(f)):The pure greedy algorithm converges to f for each f 2 H (see Davis,Mallat and Avellaneda (1997)). This algorithm is greedy in the sense thatat each iteration it approximates the residual Rm(f) as best possible by asingle function from D . If D is generated by an orthonormal basis, then itis easy to see that Gm(f) is a best m-term approximation to f from D and�m(f;B)H = kf �Gm(f)kH = kRm(f)kH:However, for general dictionaries, this is not the case, and in fact the ap-proximation properties of this algorithm are somewhat in doubt, as we shallnow describe.For a general dictionary D , the best estimate (proved in DeVore andTemlyakov (1996)) known for the pure greedy algorithm is that for eachf 2 K1(D ) we have kf �Gm(f)kH � jf jK1(D)m�1=6: (8.13)Moreover, the same authors have given an example of a dictionary D and afunction f which is a linear combination of two elements of D such thatkf �Gm(f)kH � Cm�1=2; (8.14)with C an absolute constant. In other words, for the simplest of functions f(which are in all of the smoothness classesK� (D )), the pure greedy algorithmprovides approximation of at most order O(m�1=2). Thus, this algorithmcannot provide estimates like (8:11) for � > 1=2.



128 R. A. DeVoreThere are modi�cations of the pure greedy algorithm with more favourableapproximation properties. We mention two of these: the relaxed greedy algo-rithm and the orthogonal greedy algorithm.Relaxed greedy algorithm. We de�ne Rr0(f) := Rr0(f; D ) := f andGr0(f) := Gr0(f;D) := 0. For m = 1, we de�ne Gr1(f) := Gr1(f; D ) := G1(f)and Rr1(f) := Rr1(f; D ) := R1(f). As before, for a function h 2 H, letg = g(h) denote a function from D which maximizes hh; gi. Then, for eachm � 2, we inductively de�neGrm(f) := Grm(f; D ) := �1� 1m�Grm�1(f) + 1mg(Rrm�1(f));Rrm(f) := Rrm(f; D ) := f �Grm(f):Thus, the relaxed greedy algorithm is less greedy than the pure greedyalgorithm. It makes only modest use of the greedy approximation to theresidual at each step. The number 1=m appearing at each step is the relax-ation parameter.Algorithms of this type appear in Jones (1992), who showed that therelaxed greedy algorithm provides the approximation orderkf �Grm(f)k � Cm�1=2; m = 1; 2; : : : : (8.15)for any f 2 K1(D ). Unfortunately, this estimate requires the knowledgethat f 2 K1(D ). In the event that this information is not available { aswould be the case in most numerical considerations { the choice of relaxationparameter 1=m is not appropriate.The relaxed greedy algorithm gives a constructive proof that (8:11) holdsfor a general dictionary D in the case � = 1=2. We shall discuss how to prove(8:11) in the next section. But �rst we want to put out on the table anothervariant of the greedy algorithm, called the orthogonal greedy algorithm,which removes some of the objections to the choice of the relaxation para-meter in the relaxed greedy algorithm.To motivate the orthogonal greedy algorithm, let us return for a mo-ment to the pure greedy algorithm. This algorithm chooses functions gj :=G(Rj(f)), j = 1; : : : ;m, to use in approximating f . One of the de�cienciesof the algorithm is that it does not provide the best approximation from thespan of g1; : : : ; gm. We can remove this de�ciency as follows.If H0 is a �nite-dimensional subspace of H, we let PH0 be the orthogonalprojector from H onto H0, that is, PH0(f) is the best approximation to ffrom H0.Orthogonal greedy algorithm. We de�ne Ro0(f) := Ro0(f;D) := f andGo0(f) := Go0(f;D) := 0. Then, for each m � 1, we inductively de�neHm := Hm(f) := spanfg(Ro0(f)); : : : ; g(Rom�1(f))g;



Nonlinear approximation 129Gom(f) := Gom(f;D) := PHm(f);Rom(f) := Rom(f;D) := f �Gom(f):Thus, the distinction between the orthogonal greedy algorithm and thepure greedy algorithm is that the former takes the best approximation bylinear combinations of the functions G(R0(f)); : : : ; G(Rm�1(f)) available ateach iteration. The �rst step of the orthogonal greedy algorithm is the sameas the pure greedy algorithm. However, they will generally be di�erent atlater steps.DeVore and Temlyakov (1996) have shown (as will be discussed in moredetail in the next section) that the orthogonal greedy algorithm satis�es theestimate kf �Gom(f;D)kH � jf jK1(D)m�1=2: (8.16)Thus, the orthogonal greedy algorithm gives another constructive proofthat (8:11) holds for a general dictionary D . However, one should note thatthe orthogonal greedy algorithm is computationally more expensive in thecomputation of the best approximation from Hm.From (8:16), it is easy to prove the following theorem from DeVore andTemlyakov (1996).Theorem 7 Let D be any dictionary, let � � 1=2 and 1=� = � + 1=2. Iff 2 K� (D ), then�m(f; D )H � Cjf jK�(D)m��; m = 1; 2; : : : ; (8.17)where C depends on � if � is small.We sketch the simple proof. It is enough to prove (8:17) for functions fwhich are a �nite sum f =Pj cjgj , gj 2 D, with Pj jcj j� � M � . Withoutloss of generality we can assume that the cj are positive and nonincreasing.We let s1 :=Pnj=1 cjgj and R1 := f � s1 =Pj>n cjgj . Now,c�n � 1n nXj=1 jcj j� � M �n ; n = 1; 2; : : : :Hence, cj �Mn�1=� , j > n and it follows thatXj>n cj =Xj>n c1��j c�j �M1��n1�1=�Xj>n c�j �Mn1�1=� :This gives that R1 is in K1(D ;Mn1�1=� ). Using (8:16), there is a functions2 which is a linear combination of at most n of the g 2 D such thatkf � (s1 + s2)k = kR1 � s2k � 2Mn1�1=�n�1=2 = 2Mn��;and (8:17) follows.



130 R. A. DeVore8.5. Further analysis of greedy algorithmsTo determine the performance of a greedy algorithm, we try to estimate thedecrease in error provided by one step of the pure greedy algorithm. Let Dbe an arbitrary dictionary. If f 2 H and�(f) := hf; g(f)i=kfkH; (8.18)where as before g(f) 2 D satis�eshf; g(f)i = supg2Dhf; gi;then R(f)2 = kf �G(f)k2H = kfk2H(1� �(f)2): (8.19)The larger �(f) is, the better the decrease of the error in the pure greedyalgorithm.The following theorem from DeVore and Temlyakov (1996) estimates theerror in approximation by the orthogonal greedy algorithm.Theorem 8 Let D be an arbitrary dictionary in H. Then, for each f 2K1(D ;M ) we have kf �Gom(f; D )kH �Mm�1=2: (8.20)Proof. We can assume that M = 1 and that f is in Ko1(D ; 1). We letfom := Rom(f) be the residual at step m of the orthogonal greedy algorithm.Then, from the de�nition of this algorithm, we havekfom+1kH � kfom �G(fom; D )kH :Using (8:19), we obtainkfom+1k2H � kfomk2H(1� �(fom)2): (8.21)Since f 2 Ko1(D ; 1), we can write f =PNk=1 ckgk with ck > 0, k = 1; : : : ; N ,and PNk=1 ck = 1. By the de�nition of the orthogonal greedy algorithm,Gom(f) = PHmf , and hence fom = f �Gom(f) is orthogonal to Gom(f). Usingthis, we obtainkfomk2H = hfom; fi = NXk=1 ckhfom; gki � �(fom)kfomkH:Hence, �(fom) � kfomkH:Using this inequality in (8:21), we �ndkfom+1k2H � kfomk2H(1� kfomk2H):It is now easy to derive from this that kfomk2H � 1=m. 2



Nonlinear approximation 1319. Lower estimates for approximation: n-widthsIn this section, we shall try to understand better the limitations of linear andnonlinear approximation. Our analysis thus far has relied on the conceptof approximation spaces. For example, we started with a sequence of linearor nonlinear spaces Xn and de�ned the approximation classes A�1 consist-ing of all functions that can be approximated with accuracy O(n��) by theelements of Xn. We have stressed the importance of characterizing these ap-proximation spaces in terms of something more classical such as smoothnessspaces and in fact we have accomplished this in many settings. In this way,we have seen among other things that the classical nonlinear methods ofapproximation (like free knot splines or n-term approximation) outperformtheir counterparts in linear approximation.To make these points more clearly, let us recall perhaps the simplestsetting for the results we have presented. Namely, we consider L2(
)-approximation, 
 := [0; 1), using the Haar wavelet H. Every function inL2(
) has a decompositionf = a�[0;1) + XI2D([0;1)) cI(f)HI ; cI(f) := hf;HIi; (9.1)with the HI normalized in L2(
) and a the average of f over 
.In linear approximation, we take as our approximation to f the partial sumof the series (9:1) consisting of the �rst n terms with respect to the naturalorder of dyadic intervals (this is the ordering which gives priority �rst tosize and then to orientation from left to right). For this approximation,we have seen that f is approximated in the norm of L2(
) with accuracyO(n��), 0 < � < 1=2, if and only if f 2 Lip(�;L2(
)). The upper limit of1=2 for the characterization comes about because the Haar wavelet H is inLip(1=2; L2(
)) but in no higher-order Lipschitz space.In nonlinear approximation, we approximated f by taking the partial sumof (9:1) which consists of the n terms with largest coe�cients. It is clear thatthis form of approximation is at least as e�cient as the linear approximation.We have seen that we can characterize the functions approximable with orderO(n��) by conditions on the wavelet coe�cients that roughly correspondto smoothness of order � in L� with 1=� = � + 1=2 (see Remark 7.7 onpage 118). In fact, it is easy to see that each function in Lip(�;L(
)) with > � is approximated with this order by the nonlinear method.Is this really convincing proof that nonlinear methods outperform linearmethods? Certainly it shows that this nonlinear wavelet method outper-forms the linear wavelet method. However, what can prevent some otherlinear method (not the wavelet method just described) from also containingthe Lip(�;L(
)) classes in its A�1? There is a way of deciding whetherthis is possible by using the concept of n-widths, which we now describe.



132 R. A. DeVoreThere are many de�nitions of n-widths. For our purpose of measuringthe performance of linear methods, the following de�nition of Kolmogorovis most appropriate. If X is a Banach space and K is a compact subset ofX, we de�ne dn(K) := infdim(Xn)=n supf2KE(f;Xn)X ; (9.2)where the in�mum is taken over all n-dimensional linear spaces and of courseE(f;Xn)X is the error in approximating f by the elements of Xn in the normof X. So dn measures the performance of the best n-dimensional space onthe class K.To answer our question posed above, we would like to know the n-widthof the unit ball U� of Lip(�;L(
)) in L2(
) (this unit ball is a compactsubset of L2(
) provided  > � = (�+ 1=2)�1). The Kolmogorov n-widthsof Besov and Lipschitz balls are known and can be found, for example,in Chapter 14 of Lorentz, von Golitschek and Makovoz (1996). We shalllimit our discussion to the results relevant to our comparison of linear andnonlinear approximation.We �x the space Lp(
), 
 = [0; 1), where approximation is to take place.While we shall discuss only univariate approximation in this section, allresults on n-widths hold equally well in the multivariate case. In Figure 8,we use our usual interpretation of smoothness spaces as points in the upperright quadrant to give information about the n-widths of the unit ballsU�r (Lq(
)) of the Besov spaces B�r (Lq(
)). The shaded region of that �gurecorresponds to those Besov spaces whose unit ball has n-width O(n��).Several remarks will complete our understanding of Figure 8 and what ittells us regarding linear and nonlinear methods.Remark 9.1 The n-width of U�r (Lq(
)) is never better than O(n��). Inother words, once we know the smoothness index � of the space, this providesa limit as to how e�ective linear methods can be.Remark 9.2 The sets U�r (Lp(
)) which correspond to the Besov spaceson the linear line (L) always have Kolmogorov n-width � n��. Thus, forthese spaces the classical methods of approximation such as polynomials or�xed knot splines provide the best order of approximation for these classes.Remark 9.3 For approximation in Lp(
), with 2 < p � 1, and for� > 1=p there is always a certain range of q (depicted in Figure 8 by theshaded region) where the Kolmogorov n-width of U�r (Lq
)) is still � n��.This is a rather surprising result of Kashin (1977). We know that classicalmethods cannot provide this order of approximation because we have char-acterized their approximation classes A�1(Lp(
)) and these classes do notcontain general functions from U�r (Lq(
)) once q < p. So there are lin-ear spaces with super approximation properties (which to a limited extent
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Fig. 8. Shaded region gives (1=q; �) such that U�r (Lq([0; 1)) hasn-width of order O(n��) in Lp, 2 � p �1mimic the advantages of nonlinear approximation). What are these spaces?Unfortunately these spaces are not known constructively. They are usuallydescribed by probabilistic methods. So, while their existence is known, wecannot put our hands on them and de�nitely can't use them numerically.Remark 9.4 The range of q where the super linear spaces come into playalways falls well short of the nonlinear line. Thus nonlinear methods alwaysperform better than linear methods, in the sense that their approximationclasses are strictly larger.Remark 9.5 We have not depicted the case p � 2 since in this case thereare no Besov balls U�r (Lq(
)) which have the order O(n��) save for the caseq � p which we already know from the classical linear theory.Remark 9.6 Now, here is an important point that is sometimes misun-derstood. It is not always safe to say that, for a speci�c target function,nonlinear methods will perform better than linear methods. Let us forgetfor a moment the super linear theory since it is not relevant in numericalsituations anyway. Given f , there will be a maximal value of � { let's callit �L { for which f is in B�1(Lp(
)). Then, we know that approximationfrom classical n-dimensional linear spaces will achieve an approximation rateO(n��L), but they can do no better. Let us similarly de�ne �N as the largestvalue of � for which f is in the space B�N1 (L) for some  > (� + 1=p)�1;then nonlinear methods such as n-term wavelet approximation will providean approximation error O(n��N ). If �N > �L, then certainly nonlinear



134 R. A. DeVoremethods outperform linear methods (at least asymptotically as n ! 1).However, if �L = �N then there is no gain in using nonlinear methods toapproximate the target function f .The questions we have posed for linear approximation can likewise beposed for nonlinear methods. For example, consider univariate approxim-ation in Lp(
), 
 = [0; 1). We know that classical nonlinear methods ap-proximate functions in B�1(L),  > (� + 1=p)�1 with accuracy n��. Butcan it be that other nonlinear methods do better? Questions of this typecan be answered by introducing nonlinear n-widths.There are several de�nitions of nonlinear n-widths, the most prominentof which is the Alexandrov width. However, we shall only be concernedwith the manifold n-width, which was introduced by DeVore, Howard andMicchelli (1989), since it �ts best with numerical methods. Let X be thespace in which we shall measure error (we shall assume that X is equippedwith a norm k �kX). By a (nonlinear) manifoldMn of dimension n, we shallmean the image of a continuous mappingM : Rn ! X. (Thus our manifoldsare not the manifolds of di�erential topology.) We shall approximate usingthe elements of Mn. For each compact set K � X, we de�ne the manifoldwidth �n(K;X) := infM;a supf2K kf �M(a(f))kX ; (9.3)where the in�mum is taken over all manifolds of dimension n and all con-tinuous parameter mappings a : K ! Rn .We make a couple of remarks which may help explain the nature of thewidth �n.Remark 9.7 For any compact set, we can select a countable number ofpoints which are dense in K and construct a one-dimensional manifold (acontinuous piecewise linear function of t 2 R) passing through each of thesepoints. Thus, without the restriction that the approximation arises througha continuous parameter selection a, we would always have �n(K) = 0.Remark 9.8 The function a also guarantees stability of the approximationprocess. If we perturb f slightly the continuity of a guarantees that theparameters a(f) only change slightly.The nonlinear widths of each of the Besov balls U�r (L� (
)) in the spaceLp(
)is known. If this ball is a compact subset of Lp(
), then the nonlinearn-width is �n(U�r (L� (
)) � n��; n!1: (9.4)This shows, therefore, that we cannot obtain a better approximation or-der for these balls than what we obtain via n-term wavelet approximation.However, n-term approximation, as it now stands, is not described as one



Nonlinear approximation 135of the procedures appearing in (9:3). However, this requires only a littlemassaging. Using certain results from topology, DeVore, Kyriazis, Leviatanand Tikhomirov (1993) have shown nonlinear approximation in terms ofsoft thresholding of the coe�cients can be used to describe an approxima-tion process which provides the upper estimate in (9:3). We shall not gointo the details of this construction.On the basis of the evidence we have thus far provided about linear andnonlinear methods, is it safe to conclude that the nonlinear methods such asn-term wavelet approximation are superior to other nonlinear methods? Theanswer is de�nitely not. We only know that if we classify functions accordingto their Besov smoothness, then for this classi�cation no other nonlinearmethods can do better. On the other hand, each nonlinear method willhave its approximation classes and these need not be Besov spaces. A casein point where we have seen this is the case of approximation in a Hilbertspace by n terms of an orthonormal basis. In this setting, we have seenthat the approximation classes depend on the basis and that smoothness ofa function for this type of approximation should be viewed as decay of thecoe�cients with respect to the basis. This will generally not be a Besovspace. In other words, there are other ways to measure smoothness in whichwavelet performance will not be optimal.Our discussion thus far has not included lower estimates for optimal basisselection or n-term approximation from a dictionary. We do not know of aconcept of widths that properly measures the performance of these highlynonlinear methods of approximation. This is an important open problemin nonlinear approximation because it would shed light on the role of suchmethods in applications such as image compression (see the section below).Finally, we want to mention the VC dimension of Vapnik and Chervon-enkis (see the book of Vapnik (1982)). The VC dimension measures the sizeof nonlinear sets of functions by looking at the maximum number of sign al-ternations of its elements. It has an important role in statistical estimationbut has not been fully considered in approximation settings. The paper ofMairov and Ratasby (199x) uses VC dimension to de�ne a new n-width andanalyses the widths of Besov balls. Their results are similar to those abovefor nonlinear widths.10. Applications of nonlinear approximationNonlinear methods have found many applications both numerical and ana-lytical. The most prominent of these have been to image processing, stat-istical estimation, and the numerical and analytic treatment of di�erentialequations. There are several excellent accounts of these matters: see Mallat(1998) for image processing; Donoho and Johnstone (1994), Donoho, John-stone, Kerkyacharian and Picard (1996) for statistical estimation; Dahmen



136 R. A. DeVore(1997) and Dahlke, Dahmen and DeVore (1997) for applications to PDEs.We shall limit ourselves to a broad outline of the use of nonlinear approx-imation in image processing and PDEs.10.1. Image processingWe shall discuss the processing of digitized grey-scale images. Signals, col-our images, and other variants can be treated similarly but have their ownpeculiarities. A digitized grey-scale image I is an array of numbers (calledpixel values) which represent the grey scale. We assume 8-bit grey-scale im-ages, which means the pixel values range from 0 (black) to 255 (white). Weshall also assume (only for the sake of speci�city) that the array consists of1024� 1024 pixel values. Given such images, the generic problems of imageprocessing are: compression, noise reduction, feature extraction, and objectrecognition.To utilize techniques from mathematical analysis in image processing, it isuseful to have a model for images as functions. One such model is to assumethat the pixel values are obtained from an underlying intensity function fby averaging over dyadic squares. In our case, the dyadic squares are thosein Dm := Dm(
), 
 := [0; 1)2, with m = 10, thus resulting in 1024 squaresand the same number of pixel values. We denote the pixel values bypI = 1jIj ZI f(x) dx; I 2 Dm: (10.1)Of course, there is more than one function f with these pixel values. Sincethe pixel values are integers, another possibility would be to view them asinteger quantizations of the averages of f . In other words, other naturalmodels may be proposed. But the main point is to visualize the image asobtained from an intensity function f .CompressionA grey-scale image I of the type described is represented by its pixel array,I � (pI)I2Dm , which is a �le of size one megabyte. For the purposes oftransmission, storage, or other processing, we would like to represent thisimage with fewer bits. This can be accomplished in two ways. Losslessencoding of the image uses techniques from information theory to encodethe image in fewer bits. The encoded image is identical to the original; inother words the process of encoding is reversible. Lossy compression replacesthe original image by an approximation. This allows for more compressionbut with the potential loss of �delity. Lossless encoders will typically resultin compression factors of 2{1 which means the original �le is reduced byhalf. Much higher compression factors can be obtained in lossy compressionwith no perceived degradation of the original image (images compressed byfactors of 10{1 are typically indistinguishable from the original).
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Fig. 9. Schematic of a typical wavelet-based compression algorithmWe can use the techniques of approximation theory and functional analysisfor lossy compression. We view the intensity function as our target functionand consider methods for approximating it from the pixel values. Wavelet-based methods proceed as follows.We choose a multivariate scaling function ' and represent the image bythe series I � XI2Dm pI'I : (10.2)Here pI , I 2 Dm, are some appropriate extension of the pixel values. (Whenusing wavelets other than Haar, one has to do some massaging near theboundary, which we shall not discuss.) We use the Fast Wavelet Trans-form to convert pixel values to wavelet coe�cients. This gives the waveletrepresentation of I: I � P0 + m�1Xk=0 XI2DkXe2E aeI eI ; (10.3)where P0 consists of all the scaling function terms from level 0, and theother notation conforms to our multivariate wavelet notation of Section 7(see (7:20)).The problem of image compression is then viewed as nonlinear waveletapproximation and the results of Section 7 can be employed. Figure 9 givesa schematic of typical compression algorithms. We use thresholding to ob-tain a compressed �le (~aeI) of wavelet coe�cients which correspond to acompressed image ~I. The compressed coe�cient �le is further compressedusing a lossless encoder. The encoded compressed �le is our compressedrepresentation of the original image. We can reverse the process. From theencoded compressed �le of wavelet coe�cients, we apply a decoder and thenthe Inverse Fast Wavelet Transform to obtain the pixel values of the com-



138 R. A. DeVorepressed image ~I. The following remarks will help clarify the role of nonlinearapproximation in this process.Remark 10.1 We apply nonlinear wavelet approximation in the form ofthresholding (Section 7.8). We choose a value of p (corresponding to the Lpspace in which we are to measure error) and retain all coe�cients that satisfykaeI eIkLp > �. We replace by zero all coe�cients for which kaeI eIkLp ��. Soft thresholding can also be used in place of hard thresholding. Thisgives compressed wavelet coe�cients �aeI . The larger we choose � the morecoe�cients ~aeI will be zero. In most applications, p is chosen to be 2. Largervalues of p will emphasize edges, smaller values emphasize smoothness.Remark 10.2 Further compression, in terms of number of bits, can beattained by quantizing the compressed wavelet coe�cients. This meansthat �aeI is replaced by a number ~aeI which requires fewer bits in its binaryrepresentation. Quantization can be combined with thresholding by �nding~aeI with the fewest bits which satis�es k(aeI � ~aeI) eIkLp � �.Remark 10.3 The wavelet coe�cient �le consisting of the ~aeI is furthercompressed by using a lossless encoder such as run length encoding or arith-metic encoding. The position of the coe�cients must be encoded as well astheir value. This can be done by keeping the entire array of coe�cients innatural order (which will necessarily have many zero entries) or separatelyencoding positions.Remark 10.4 The most e�cient wavelet-based compression algorithms,such as the zero tree encoders (see Shapiro (1993) or Xiong, Ramchandranand Orchard (1997)) or bitstream encoder (see Gao and Sharpley (1997)),take advantage of the spatial correlation of the wavelet coe�cients. Forexample, if we represent the coe�cients by means of quadtrees with eachnode of the tree corresponding to one of the dyadic square I appearing in(10:3), then there will be many subtrees consisting only of zero entries, andone tries to encode these e�ciently.Remark 10.5 We can measure the e�ciency of compression by the error�n := kI � ~IkLp ; (10.4)where n is the number of nonzero coe�cients in the compressed wavelet �lefor ~I . Nonlinear approximation theory gives a direct relation between therate of decrease of �n and the smoothness of the intensity function f . Forexample, consider approximation in L2. If f is in the Besov class B�� (L� ),1=� = �=2 + 1=2, then �n � Cn��=2. Indeed, assuming this smoothnessfor f , one can show that the function in (10:2) inherits this smoothness(see Chambolle, DeVore, Lee and Lucier (1998)) and therefore the claimfollows from the results of Sections 7.6{7.7. An inverse theorem provides



Nonlinear approximation 139converse statements that deduce smoothness of the intensity function fromthe rate of compression. However, for these converse results one must thinkof varying m, that is, �ner and �ner pixel representations. The point is thatone can associate to each image a smoothness index � which measures itssmoothness in the above scale of Besov spaces, and relate this directly withe�ciency of wavelet compression (DeVore, Jawerth and Lucier 1992).Remark 10.6 In image compression, we are not interested in the numberof nonzero coe�cients of the compressed image per se, but rather the numberof bits in the encoded coe�cient �le. This leads one to consider the error�n := kI � ~IkLp ; (10.5)where n is the number of bits in the encoded �le of wavelet coe�cientsfor ~I. It has recently been shown by Cohen, Daubechies, Guleryuz andOrchard (1997) that a similar analysis to that developed here for nonlinearwavelet approximation exists for the error �n. For example, they show thatif a univariate intensity function f is in the Besov space B�1(Lq), withq > �+1=2, then with a proper choice of encoder one has �N � N��. Thismatches the error rate �n in terms of the number of coe�cients. Relatedresults hold in a stochastic setting (see Mallat and Falzon (1997) and Cohen,Daubechies, Guleryuz and Orchard (1997)).Remark 10.7 Adaptive basis selection for the wavelet packet library hasbeen used successfully in compression. Most applications have been to signalprocessing (in particular speech signals). There is, however, the interestingapplication of compressing the FBI �ngerprint �les. Rather than use adi�erent basis for each �le, the current algorithms choose one basis of thewavelet packet library chosen by its performance on a sample collection of�ngerprint �les.Noise reductionNoise reduction is quite similar to compression. If an image is corruptedby noise then the noisy pixel values will be converted to noisy wavelet coef-�cients. Large wavelet coe�cients are thought to carry mostly signal andshould be retained; small coe�cients are thought to be mostly noise andshould be thresholded to zero. Donoho and Johnstone have put forward al-gorithms for noise reduction (called wavelet shrinkage) which have elementssimilar to the above theory of compression. We give a brief description ofcertain aspects of this theory as it relates to nonlinear approximation. Werefer the reader to Donoho, Johnstone, Kerkyacharian and Picard (1996),and the papers referenced therein, for a more complete description of theproperties of wavelet shrinkage.Wavelet-based noise reduction algorithms are applied even when the noisecharacteristics are unknown. However, the theory has its most complete



140 R. A. DeVoredescription in the case that the pixel values are corrupted by Gaussian noise.This means we are given a noisy image ~I = I +N with noisy pixel values~pI = pI + �I ; (10.6)where the pI are the original (noise-free) pixel values and the �I are inde-pendent, identically distributed Gaussians with mean 0 and variance �20 . Ifwe choose an orthonormal wavelet basis for L2(
), 
 = [0; 1)2, then thewavelet coe�cients computed from the ~pI will take the form~ceI = ceI + �eI ; (10.7)where ceI are the original wavelet coe�cients of I and �eI are independent,identically distributed Gaussians with variance �202�2m. Wavelet shrinkagewith parameter � > 0 replaces ~ceI by the shrunk coe�cients s�(ceI) wheres�(t) := � (jtj � �)sign t; � < t;0; jtj � �; (10.8)Thus, large coe�cients (i.e., those larger than � in absolute value) are shrunkby an amount � and small coe�cients are shrunk to zero. We denote thefunction with these wavelet coe�cients byf� := P0 + m�1Xj=0 XI2DjXe2E s�(~ceI) I;e; (10.9)with the term P0 incorporating the scaling functions from the coarsest level.We seek a value of � which minimizes the expected errorE(kf � f�k2L2(
)): (10.10)Donoho and Johnstone propose the parameter choice �� = p2 ln 2m2m�0and show its near optimality in several statistical senses. One of the extremalproblems studied by them, as well as by DeVore and Lucier (1992), is thefollowing. We assume that the original image intensity function f comesfrom the the Besov space B�� (L� (
)), with � = (�=2+1=2)�1. We know thatthese spaces characterize the approximation space A�� (L2(
)) for bivariatenonlinear wavelet approximation. It can be shown that the above choice of� gives the noise reductionE(kf � f�k2) � C(�)kfk�B�� (L� (
))[�02�m]2�� : (10.11)The choice of � = �� gives an absolute constant c(��). A �ner analysisof this error was given by Chambolle, DeVore, Lee and Lucier (1998) andshows that choosing the shrinkage parameter to depend on � will result inan improved error estimate.Signi�cant improvements in noise reduction (at least in the visual qualityof the images) can be obtained by using the technique of cycle spinning, as



Nonlinear approximation 141proposed by Coifman and Donoho (1995). The idea behind their methodcan be described by the following analysis of discontinuities of a univari-ate function g. The performance of wavelet-based compression and noisereduction algorithms depends on the position of the discontinuities. If adiscontinuity of g occurs at a coarse dyadic rational, say 1=2, it will a�ectonly a few wavelet coe�cients. These coe�cients will be the ones that arechanged by shrinking. On the other hand, if the discontinuity occurs at a�ne level rational binary, say 2�m, then all coe�cients will feel this discon-tinuity and can potentially be a�ected by shrinkage. This less favourablesituation can be circumvented by translating the image, so that the dis-continuity appears at a coarse binary rational, and then applying waveletshrinkage to the translated image. The image is shifted back to the originalposition to obtain the noise reduced image. Since it is not possible to an-ticipate the position of the discontinuities, Coifman and Donoho proposeaveraging over all possible shifts. The result is an algorithm that involvesO(m22m) computations.Feature extraction and object recognitionThe time-frequency localization of wavelets allows for the extraction of fea-tures such as edges and texture. These can then be utilized for objectrecognition by matching the extraction to a corresponding template for theobject to be extracted. Edges and other discontinuities are identi�able bythe large wavelet coe�cients. These occur at every dyadic level. Retentionof high frequency (i.e., the highest level) coe�cients is like an artist's sketchof an image.Feature extraction has been a prominent application of adaptive basisselection and approximation from a dictionary. A dictionary of waveformsis utilized which is robust enough to allow the feature to be approximatedwith a few terms. Examples are the Gabor functions mentioned in Section 8.In some cases, an understanding of the physics of wave propagation can allowthe designing of dictionaries appropriate for the features to be extracted. Agood example of this approach in the context of Synthetic Aperture Radar isgiven by McClure and Carin (1997). The use of adaptive basis selection forfeature extraction is well represented in the book of Wickerhauser (1994).The application of greedy algorithms and approximation from dictionariesis discussed in detail in the book of Mallat (1998). Other techniques basedon wavelet decompositions can be found in DeVore, Lucier and Yang (1996)(in digital mammography), and DeVore et al. (1997) (in image registration).10.2. Analytical and numerical methods for PDEsTo a certain extent, one can view the problem of numerically recovering asolution u to a PDE (or system of PDEs) as a problem of approximating the



142 R. A. DeVoretarget function u. However, there is a large distinction in the informationavailable about u in numerical computation versus approximation theory.In approximation theory one views information such as point values of afunction or wavelet coe�cients as known, and constructs methods of ap-proximation using this information. However, in numerical methods forPDEs, the target function is unknown except through the PDE. Thus, theinformation the approximation theorist wants and loves so much is not avail-able except through numerical computation. In spite of this divergence ofviewpoints, approximation theory can be very useful in numerical compu-tation in suggesting numerical algorithms and, more importantly, to clarifythe performance expected from linear and nonlinear numerical methods.Adaptive methods are commonly used for numerically resolving PDEs.These methods can be viewed as a form of nonlinear approximation withthe target function the unknown solution u to the PDE. Most adaptivenumerical methods have not even been shown to converge and certainlyhave not been theoretically proven to have numerical e�ciency over linearmethods. Nevertheless, they have been very successful in practice and theire��ciency has been experimentally established.Nonlinear approximation can be very useful in understanding when andhow adaptive numerical methods should be used. For example, from theanalysis put forward in this paper, we know that adaptive piecewise polyno-mial methods, as well as the n-term wavelet approximation methods, haveincreased e�ciency over linear methods when the target function u has cer-tain types of singularities; speci�cally, singularities that would destroy thesmoothness of u in the Sobolev scale but would not impair its smoothnessin the Besov scale for nonlinear approximation.To be more precise, suppose that u is to be approximated in the Lp(
)norm with 
 a domain in Rd . Let �L be the largest value of � such that u is inthe Besov space B�1(Lp(
)). We know that u can be approximated by linearmethods such as piecewise polynomial or linear wavelet approximation withaccuracy O(n��L=d), with n the dimension of the linear space. However, wedo not know (unless we prove it) whether our particular numerical methodhas this e�ciency. If we wish to establish the e�ciency of our particularlinear numerical method, we should seek an estimate of the formku� unkLp(
) � CjujB�L1 (Lp(
))n��L=d; (10.12)where un is the approximate solution provided by our numerical method.In many papers, W�L(Lp(
)) is used in place of B�L1 (Lp(
). The form ofsuch estimates is familiar to the numerical analyst in �nite element methodswhere such estimates are known in various settings (especially in the casep = 2 since this can be related to the energy norm).Note that n is related to the numerical e�ort needed to compute theapproximant. However, the number of computations needed to compute an



Nonlinear approximation 143approximant with this accuracy may exceed Cn. This may be the case, forexample, in solving elliptic equations with �nite element methods, since thecoe�cients of the unknown solution must be computed as a solution to amatrix equation of size n� n.We can do a similar analysis for nonlinear methods. According to theresults reviewed in this article, the appropriate scale of Besov spaces togauge the performance of nonlinear algorithms are the B�q (Lq(
)) where1=q = �=d + 1=p (see Figure 3 in the case d = 1). Let �N be the largestvalue of � such that u is in the Besov space B�q (Lq(
)), 1=q = �=d +1=p. If �N > �L, then nonlinear approximation will be more e�cient thanlinear approximation in approximating u and therefore the use of nonlinearmethods is completely justi�ed. However, there still remains the questionof how to construct a nonlinear algorithm that approximates u with thee�ciency O(n��N=d). If we have a particular nonlinear numerical methodin hand and wish to analyse its e�ciency, then the correct form of an errorestimate for such a nonlinear algorithm would beku� unkLp(
) � CjujB�Nq (Lq(
))n��N=d; 1=q = �N=d+ 1=p: (10.13)How could we decide beforehand whether nonlinear methods o�er a be-ne�t over linear methods. This is the role of regularity theorems for PDEs.A typical regularity theorem infers the smoothness of the solution u to aPDE from information such as the coe�cients, inhomogeneous term, initialconditions, or boundary conditions. We shall discuss this in a little moredetail in a moment, but for now we want to make the point of what formthese regularity theorems should take. The most common regularity theor-ems are in the form of Sobolev regularity and are compatible with the lineartheory of numerical methods. Much less emphasis has been placed on theregularity in the nonlinear scale of Besov spaces but this is exactly what weneed for an analysis of adaptive, or other nonlinear, algorithms.To go a little further in our discussion, we shall consider two model prob-lems, one hyperbolic and the other elliptic, to elucidate the points discussedabove.Conservation lawsConsider the scalar univariate conservation law� ut + f(u)x = 0; x 2 R; t > 0;u(x; 0) = u0(x); x 2 R; (10.14)where f is a given ux, u0 a given initial condition, and u is the sought-aftersolution. This is a well studied nonlinear transport equation with transportvelocity a(u) = f 0(u) (see, for instance, the book of Godlewski and Raviart(1991)). We shall assume that the ux is strictly convex, which means thetransport velocity is strictly increasing. The important fact for us is that,



144 R. A. DeVoreeven when the initial condition u0 is smooth, the solution u(�; t) will developspontaneous shock discontinuities at later times t.The proper setting for the analysis of conservation laws is in L1 and,in particular, the error of numerical methods should be measured in thisspace. Thus, concerning the performance of linear numerical methods, thequestion arises as to the possible values of the smoothness parameter �L ofu(�; t) as measured in L1. It is known that, if the initial condition u0 is inBV = Lip(1; L1), then the solution u remains in this space for all later timet > 0. However, since this solution develops discontinuities, no matter howsmooth the initial condition is, the Sobolev embedding theorem precludesu being in any Besov space B�1(L1)) for any � > 1. This means that thelargest value we can expect for �L is �L = 1. Thus, the optimal performancewe can expect from linear methods of approximation is O(n�1), with n thedimension of the linear spaces used in the approximation. Typical numericalmethods utilize spaces of piecewise polynomials on a uniform mesh withmesh length h and the above remarks mean that the maximum e�ciencywe can expect for numerical methods is O(h), h ! 0. In reality, the bestproven estimates are O(ph) under the assumption that u0 2 Lip(1; L1).This discrepancy between the possible performance of numerical algorithmsand the actual performance is not unusual. The solution is known to havesu�cient regularity to be approximated, for example, by piecewise constantswith uniform mesh h to accuracy O(h), but algorithms which capture thisaccuracy are unkown.To understand the possible performance of nonlinear methods such asmoving grid methods, we should estimate the smoothness of the solution inthe nonlinear Besov scale B�� (L� )), 1=� = � + 1, corresponding to approx-imation in the L1-norm. A rather surprising result of DeVore and Lucier(1990) shows that, starting with a smooth initial condition u0, the solutionu will be in each of these Besov spaces for all � > 0. In other words, de-pending on the smoothness of u0, �N can be arbitrarily large. This meansthat nonlinear methods such as moving grid methods could provide arbitrar-ily high e�ciency. In fact, such algorithms, based on piecewise polynomialapproximation, can be constructed using the method of characteristics (seeLucier (1986) for the case of piecewise linear approximation).Unfortunately, the situation concerning numerical methods for multivari-ate conservation laws is not as clear. While the linear theory goes throughalmost verbatim, the nonlinear theory is left wanting. The proper form ofnonlinear approximation in the multivariate case would most likely be bypiecewise polynomials on free trianglulations. As we have noted earlier, it isan unsolved problem in nonlinear approximation to describe the smoothnessconditions that govern the e�ciency of this type of approximation. For afurther discussion of the multivariate case see DeVore and Lucier (1996).Because of their unique ability to detect singularities in a function, wavelet



Nonlinear approximation 145methods seem a natural candidate for numerical resolution of solutions toconservation laws. However, it is not yet completely clear how waveletsshould be used in numerical solvers. Attempts to use wavelets directly in atime-stepping solver have not been completely e�ective. Ami Harten (1994)and his collaborators have suggested the use of wavelets to compress thecomputations in numerical algorithms. For example, he proposes the use ofa standard time-stepping solver, such as Godunov, based on cell averagesfor computing the solution at time step tn+1 from the numerically computedsolution at time step tn, but to utilize wavelet compression to reduce thenumber of ux computations in the solution step.Elliptic equationsAn extensive accounting of the role of linear and nonlinear approximationin the solution of elliptic problems is given in Dahmen (1997) and Dahlke,Dahmen and DeVore (1997). We shall therefore limit ourselves to reiteratinga couple of important points about the role of regularity theorems and theform of nonlinear estimates. We consider the model problem4u = f on 
 � Rd ;u = 0 on @
 (10.15)of Poisson's equation on a domain 
 � Rd with zero boundary conditions.We are interested in numerical methods for recovering the solution to (10:15)and, in particular, in the question of whether nonlinear methods such asadaptive solvers are of any bene�t. We shall also limit our discussion toestimating error in the L2-norm, although various results are known forgeneral p.Consider �rst the case where f 2 L2(
) and 
 has a smooth boundary.Then, the solution u to (10:15) has smoothnessW 2(L2(
)). In our previousnotation, this means that �L = 2. In general, the solution will not havehigher smoothness in the nonlinear Besov scale B�q (Lq(
)), 1=q = �=d+1=2,for L2 approximation. Therefore �N = 2 and there is no apparent advantageto nonlinear methods. The solution can be approximated by linear spaces ofpiecewise polynomials of dimension n to accuracy O(n�2=d). This accuracycan actually be achieved by �nite element methods using uniformly re�nedpartitions. There is no evidence to suggest any better performance usingadaptive methods.If the boundary @
 of 
 is not smooth then the solutions (10:15) havesingularities due to corners or other discontinuities of @
 (see, for instance,Kondrat'ev and Oleinik (1983)). Regularity theory in the case of a non-smooth boundary is a prominent area of PDEs. For some of the deepestand most recent results see Jerison and Kenig (1995). For example, on ageneral Lipschitz domain, we can only expect that the solution u to (10:15)



146 R. A. DeVoreis in the Sobolev space W 3=2(L2(
)). Thus, in the notation given earlier inthis section, we will only have �L = 3=2.Because of the appearance of singularities due to the boundary, adaptivenumerical techniques are suggested for numerically recovering the solution u.We understand that to justify the use of such methods we should determinethe regularity of the solution in the scale of Besov spaces B�q (Lq(
)), 1=q =�=d+ 1=2. Such regularity has been studied by Dahlke and DeVore (1997).They prove, for example, that, for d = 2; 3; 4, we have u 2 B�q (Lq), 1=q =�=d+1=2, for each � < 2. In other words, �N > �L and the use of adaptivemethods is completely justi�ed. There are also more general results whichapply for any d > 1 and show that we always have �N > �L.We reiterate that the above results on regularity of elliptic equations onlyindicate the possibility of constructing nonlinear methods with higher e�-ciency. It remains a di�cult problem to construct adaptive methods andprove that they exhibit the increased accuracy indicated by the approxim-ation theory. The aim is to construct numerical methods that provide theerror estimate (10:13). We refer the reader to Dahmen (1997) for a com-prehensive discussion of what is known about adaptive methods for ellipticequations.AcknowledgementsThe author thanks Professors de Boor, Cohen, Oskolkov, Petrushev andTemlyakov for their valuable suggestions concerning this survey.REFERENCESR. A. Adams (1975), Sobolev Spaces, Academic Press, New York.I. Babu�ska and M. Suri (1994), `The p and h versions of the �nite element method:basic principles and properties', SIAM Review 36, 578{632.G. A. Baker, Jr. (1975), Essentials of Pad�e Approximants, Academic Press, NewYork.C. Bennett and R. Sharpley (1988), Interpolation of Operators, Academic Press,New York.J. Bergh and J. L�ofstr�om (1976), Interpolation Spaces: An Introduction, Springer,Berlin.J. Bergh and J. Peetre (1974), `On the spaces Vp (0 < p �1)', Boll. Unione Mat.Ital. 10, 632{648.M. Birman and M. Solomyak (1967), `Piecewise polynomial approximation of func-tions of the class W�p ', Mat. Sbornik 2, 295{317.C. de Boor (1973), `Good approximation by splines with variable knots', in SplineFunctions and Approximation (A. Meir and A. Sharma, eds), Birkh�auser,Basel, pp. 57{72.C. de Boor, R. DeVore and A. Ron (1993), `Approximation from shift invariantspaces', Trans. Amer. Math. Soc. 341, 787{806.
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