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Figure 1: (Left) Rayleigh-Taylor instability, 4 phases. (Center) liquids of varying viscosity, 5 phases. (Right) burning oil in water, 4 phases.

Abstract

The particle level set method has proven successful for the simu-
lation of two separate regions (such as water and air, or fuel and
products). In this paper, we propose a novel approach to extend this
method to the simulation of as many regions as desired. The various
regions can be liquids (or gases) of any type with differing viscosi-
ties, densities, viscoelastic properties, etc. We also propose tech-
niques for simulating interactions between materials, whether it be
simple surface tension forces or more complex chemical reactions
with one material converting to another or two materials combin-
ing to form a third. We use a separate particle level set method for
each region, and propose a novel projection algorithm that decodes
the resulting vector of level set values providing a “dictionary” that
translates between them and the standard single-valued level set
representation. An additional difficulty occurs since discretization
stencils (for interpolation, tracing semi-Lagrangian rays, etc.) cross
region boundaries naively combining non-smooth or even discon-
tinuous data. This has recently been addressed via ghost values, e.g.
for fire or bubbles. We instead propose a new paradigm that allows
one to incorporate physical jump conditions in data “on the fly,”
which is significantly more efficient for multiple regions especially
at triple points or near boundaries with solids.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling;

Keywords: multiphase fluids, liquids, gases, level sets

1 Introduction

Earlier works on fluid simulation focused on single phase flows
such as smoke [Foster and Metaxas 1997b; Stam 1999; Fedkiw
et al. 2001] or free surface flows such as water [Foster and Fedkiw
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2001; Enright et al. 2002]. More recently, researchers have con-
sidered more complex phenomena including fire [Lamorlette and
Foster 2002; Nguyen et al. 2002], bubbles [Hong and Kim 2005],
viscoelasticity [Goktekin et al. 2004], etc. Although the level set
method allows for the simulation of two distinct fluids, such as fuel
and products [Nguyen et al. 2002] or water and air [Hong and Kim
2005], it does not handle the complex phenomena associated with
the interactions of more than two fluids. In this paper, we propose a
novel method that allows one to simulate multiple (more than two)
liquids (and gases), including complex interactions between the dif-
ferent fluids.

A few researchers have begun to tackle the difficulties associated
with using multiple level sets (without particles) to represent mul-
tiple regions. One approach is to use a different level set for each
region as in [Merriman et al. 1994; Ruuth 1998; Smith et al. 2002].
Each level set is independently evolved forward in time leading to
contradictions in the representation of the interface, which are re-
solved via projection (or slowly, via a penalty method as in [Zhao
et al. 1996]) eliminating points that have been classified as inside
more than one region or not inside any region. The other main ap-
proach uses n level sets to represent up to 2n regions [Vese and
Chan 2002]. For example, two level sets can be used to repre-
sent four regions classified via all possible sign combinations (i.e.
“++”, “+−”, “−+” and “−−”). This approach intrinsically re-
moves the need for projection, but typically suffers from biasing ar-
tifacts especially where more than two regions intersect. So while
it is quite useful in computer vision especially when there are many
regions, it has not enjoyed similar success in physics-based appli-
cations where the number of distinct materials is typically small
enough that it is not inefficient to use a separate level set for each
allowing for a non-biased simulation of the underlying physics. In
fact, level set methods are typically only applied in a lower dimen-
sional band near the interface making them cheap as compared to
the physical equations that need to be solved everywhere. More-
over, regardless of the number of level sets used, the particle level
set method still requires one set of particles for each region, so its
cost remains unchanged. Finally, we note that all these approaches
are predated by [Gascuel 1993], which proposed a method for re-
moving overlaps of implicitly represented deformable objects, al-
though gaps between objects were not addressed making the work
inapplicable to fluids where vacuum regions need to be properly
addressed.

At each point in the domain, we have a vector ~φ(~x) =
(φ1(~x), . . . ,φn(~x)). Since the individual level set functions (the φi’s)
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will generally give contradictory geometric information, a consis-
tent approach to interpreting the vector-valued level set function is
needed. We do this by creating a level set “dictionary” that trans-
lates between the vector ~φ and the traditional single level set repre-
sentation at each point in the domain. Our novel projection method
makes this translation straightforward for both theoretical and prac-
tical purposes (e.g. allowing the incorporation of previous level set
simulation techniques). Moreover, our method is purely geometric
and thus does not interfere with the underlying physics. It also pre-
serves the signed distance property of the various level set functions
(unlike for example [Merriman et al. 1994]).

Our method provides for the straightforward simulation of multiple
liquids (and air) with varying densities, viscosities, or viscoelastic
properties. We also consider complex interactions between fluids
such as surface tension forces and reactions (e.g. the burning of a
premixed fuel as in [Nguyen et al. 2002]). Such interactions typi-
cally involve discontinuous material properties across the interface,
e.g. pressure jumps due to surface tension. [Nguyen et al. 2002]
and [Hong and Kim 2005] advocated using the ghost fluid method
(GFM) to avoid the visual errors associated with nonphysically
smearing out these discontinuities. We propose a novel paradigm
that automatically detects when discontinuous information is com-
bined across (any number of) interfaces, computes jump conditions
and ghost values “on the fly,” and returns appropriate values. This
reduces the memory requirements associated with storing ghost val-
ues for multiple region interactions, and furthermore makes the im-
plementation of the algorithms straightforward. We note that it also
simplifies the treatment of complex solid objects (see e.g. [Guen-
delman et al. 2005]).

2 Previous Work

Besides the works already mentioned above, earlier computer
graphics research on the Navier-Stokes equations includes [Kass
and Miller 1990; Chen and Lobo 1994; Foster and Metaxas 1996;
Foster and Metaxas 1997a]. There has also been work on explo-
sions [Neff and Fiume 1999; Yngve et al. 2000; Feldman et al.
2003; Rasmussen et al. 2003], flow on surfaces [Stam 2003], chem-
ically reacting gases [Ihm et al. 2004], octree implementations
[Losasso et al. 2004], RLE implementations [Houston et al. 2006],
tetrahedral meshes [Feldman et al. 2005] hybridized vortex particle
approaches [Selle et al. 2005] and sand [Zhu and Bridson 2005].
Various authors have also addressed viscosity [Carlson et al. 2002;
Rasmussen et al. 2004; Hong and Kim 2005], surface tension [En-
right et al. 2003; Hong and Kim 2003; Losasso et al. 2004; Hong
and Kim 2005] and fire [Stam and Fiume 1995; Lamorlette and Fos-
ter 2002; Nguyen et al. 2002; Melek and Keyser 2005]. Some of the
most recent interesting areas include control [Treuille et al. 2003;
McNamara et al. 2004; Fattal and Lischinski 2004; Rasmussen et al.
2004; Mihalef et al. 2004; Shi and Yu 2005], solid fluid coupling
[Carlson et al. 2004; Guendelman et al. 2005; Wang et al. 2005;
Losasso et al. 2006], and SPH [Premoze et al. 2003; Keiser et al.
2005]. In fact, [Müller et al. 2005] tackles the problem of interact-
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Figure 2: Each of the three regions is independently evolved in
time, after which the interface locations do not agree. There are
vacuums where all φi are positive, and overlaps where more than
one φi is negative. The dotted black line shows the new interface
locations after our projection step.

Figure 3: A kinematically controlled sphere splashing into a multi-
layer pool (300×300×200 grid, 4 phases).

ing multiple fluids from the SPH standpoint.

3 Multiple Level Sets

Each level set function is independently evolved in time, after
which the interface locations do not agree (because of numerical er-
rors) as shown for example in Figure 2. We propose a novel method
for fixing the level set functions removing overlaps and vacuums
while preserving an accurate interface location.

3.1 Projection Method

We first make the following observations about an arbitrary vector
~φ of level set values at a point~x. (O1) If φ j is the smallest element,~x
is in region j. This assigns~x to the region it is deepest inside when it
is inside more than one region (overlap), or the region it is closest to
when it is outside every region (vacuum). (O2) If O1 holds and φk
is the second smallest element, only φ j and φk are needed to locally
represent the interface. Basically, ~x is in region j, and the closest
point on an interface lies between region j and region k. Region k
is the region~x is closest to not counting the region it is in.

Given these observations, we desire the following properties for nu-
merical robustness and backward compatibility with the standard
single level set function for two phases. (P1) If φ j is the smallest
element, it is the only negative element and its magnitude represents
the distance to the interface. This is consistent with observation 1,
but also makes φi a signed distance function in region i for all i.
Moreover, it removes overlaps since only one φi is negative, and
removes vacuums since the smallest φi is negative. (P2) If P1 holds
and φk is the second smallest element, φk =−φ j. This is consistent
with observation 2, and it makes the level set for the region a point
is closest to but not inside a signed distance function as well. More-
over, all other φi are positive and bigger than φk and not relevant.

These observations and properties are consistent with the standard
single level set function methodology. A standard single level set

(a) (b)

Figure 4: (Left) Two level sets initialized so that properties 1 and
2 hold. (Right) After evolving in time, we obtain the solid lines
with overlap (both negative in the middle). The dotted lines show
an example result after projection. Not only has the overlap been
removed, but the interface location is preserved.
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(a) (b)

Figure 5: (Left) The solid lines have overlap on the left (two φi
negative) and a vacuum on the right (all φi positive). The aver-
age of the smallest two level sets at any point is subtracted from
~φ to obtain the dotted lines. Not only has the overlap and vacuum
been removed, but the smallest φi is preserved and negative at each
point preserving interface locations and inside/outside information.
(Right) Results after reinitializing each level set to a signed distance
function.

function φ can be broken into two separate functions φ1=φ and φ2 =
−φ , and be shown to satisfy the above observations and properties.
This readily gives us a dictionary that translates between ~φ and φ .
That is, once we take an arbitrary level set vector ~φ and project
it to satisfy properties 1 and 2, we can use φ j and φk as if they
were φ1 and φ2 in the appropriate order. The only discrepancy lies
in how the exact interface is handled where φ j = φk = 0. For the
standard level set function, this is equivalent to φ1 = φ2 = φ = 0
and is typically nominally assigned to the negative level set, i.e.
we define the regions via φ ≤ 0 and φ > 0. This is equivalent to
assigning the point to region 1 when φ1 and φ2 are both zero. To
extend this to multiple level sets, we assign a point where both φ j
and φk are zero to region j or k depending on whether j < k.

We illustrate our method in one spatial dimension. Figure 4a shows
two level set functions that satisfy properties 1 and 2, and Figure
4b shows a property violating version after evolving in time. Based
on property 1, the interface location is defined as the point where
the minimum φi changes from one level set to the other. This is
the location where the two level sets intersect in the figure, and
we want our projection method to preserve the interface location to
avoid biasing. Thus, our projection method computes the average
value of the two level set functions and subtracts this average from
both of them. At points where the two level sets intersect, their av-
erage equals their individual values, and thus subtracting off their
averages sets them both to zero preserving the interface location.
Otherwise, at points where one level set is larger than the other,
subtracting their average makes them the same magnitude but op-
posite sign preserving the region a given point is inside. The result
is shown as dotted lines in the figure. If both level sets are reini-
tialized to signed distance functions, we obtain the result shown in
Figure 4a which satisfies all desired properties. The same projec-
tion method can be generalized to an arbitrary vector of level sets
by subtracting the average of the smallest two φi from all of the φi.
An example of this is shown in Figure 5.

Notably our method is unbiased preserving signed distance infor-
mation. For example, consider Figure 4a and Figure 5b where the
level sets are all signed distance functions to begin with. Because
property 2 holds, the two smallest φi are equal and opposite in sign
making their average identically zero at every point. Thus, subtract-
ing the average leaves all the the φi unchanged preserving signed
distance. This surprisingly simple algorithm has all the proper-
ties we desire. Notably, [Merriman et al. 1994] is similar in spirit
to our own, but while they preserve the interface location and in-
side/outside information, they do not preserve signed distance thus

Figure 6: Rayleigh-Taylor instability (3003 grid, 4 phases).

introducing biasing into the algorithm.

For two regions (hence two level sets) the result produced by our
method is identical to that of the traditional single level set (or par-
ticle level set) method. If the two level set functions at time n are
negatives of each other, i.e. φ n

1 =−φ n
2 , after advection we still have

φ∗
1 = −φ∗

2 because they are evolved with the same method. Then
projection leaves φ∗

1 and φ∗
2 unchanged, since their identically zero

average is subtracted off. This is also true for more than two regions
away from multiple junctions (e.g., triple points).

3.2 Particle Level Set Method

Each level set has an associated set
of particles that are seeded near the
boundary of its interior region as shown
in the figure to the right. Following the
standard particle level set algorithm, for
each level set function we rebuild φ−

using that level set’s particles, and re-
build φ+ using all the particles from all
other regions. For efficiency, we ignore
particles that are far from the interface of the region in question.
Typically, particles are used to correct the level set function both
after advection and after reinitialization. We apply our projection
method to every grid point after each of these particle correction
steps. Then for each grid point, all geometric information can be
computed from the level set function that is negative at that point.
When level set values are needed in between grid points, we inter-
polate ~φ to that location and apply our projection method on the fly
to find the resulting negative φi. Note that the first projection step
is important because reinitialization preserves the interface location
of each level set individually, but not their intersections which cor-
respond to the pre-projected interface locations. The second pro-
jection removes any numerical drift introduced by reinitialization,
and we note that a method such as [Merriman et al. 1994] could not
be used for this step because it does not preserve signed distance.

Advancing the incompressible velocity field to the next time step
and particle advection are the most expensive parts of our algo-
rithm. These steps depend mostly on the fluid volume and surface
area, respectively, rather than the number of regions. The cost of
advecting and reinitializing the level set functions remains fixed at
twice the usual cost, since two level sets are updated locally near
each interface instead of one. Thus, the cost of updating the level
set function scales with the surface area just as in the standard single
level set method regardless of the number of regions.
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Figure 7: Viscous letters splash into a pool of water, then change into low density inviscid fuel bubbling up and burning when they hit the
surface (350×200×350 grid, 10 phases).

4 Multiple Liquids

We model the fluids using the incompressible Navier-Stokes equa-
tions

∇ ·~u = 0 (1)

~ut +(~u ·∇)~u+∇p/ρ = (∇ · τ)/ρ +~f (2)

where ~u = (u,v,w) is the velocity, ρ is the density, τ is the viscous
stress tensor, and ~f accounts for body forces, e.g. gravity, vorticity
confinement, etc. For simplicity, we first consider the inviscid case.
First, an intermediate velocity field ~u? is computed

(~u?−~un)/∆t +(~un ·∇)~un = ~f (3)

using a semi-Lagrangian advection scheme as in [Stam 1999].
Next, we compute the pressure via

∇ · (∇p/ρ) = ∇ ·~u?/∆t. (4)

and use it to make the velocity field divergence free

(~un+1 −~u?)/∆t +∇p/ρ = 0. (5)

4.1 Poisson Equation

We follow the method of [Nguyen et al. 2002]. For multiple fluid
regions, equation (4) is a Poisson equation with discontinuous coef-
ficients. The equation is separable so we can consider each dimen-
sion independently. A standard second order accurate discretization
of the left hand side in one spatial dimension at a grid node i is(

βi+1/2(pi+1 − pi)/∆x−βi−1/2(pi − pi−1)/∆x
)

/∆x (6)

where β = 1/ρ . For inviscid flow, [Kang et al. 2000] showed that
the flux in equation (4) is continuous across the interface satisfying

β
−p−x = β

+ p+
x (7)

where the − and + superscripts represent values from different
sides of the interface. Thus if ρ (and hence β ) varies across the
interface then so must px. Consider the case where an interface
lies between nodes xi and xi+1. We define θ = |φ(xi)|/(|φ(xi)|+
|φ(xi+1)|) and approximate equation (7) with one-sided differences
as

β
−(pI − pi)/(θ∆x) = β

+(pi+1 − pI)/((1−θ)∆x) (8)

and solve for the interface pressure pI = (θβ+ pi+1 + (1 −
θ)β−pi)/(θβ+ +(1−θ)β−) which can be substituted into either

the left or the right hand side of equation (8) to obtain β̂ (pi+1 −
pi)/∆x where β̂ = (β−β+)/(θβ+ + (1− θ)β−). Thus, the dis-
continuity between grid nodes i and i + 1 is readily handled by re-
placing βi+1/2 with β̂ in equation (6). βi−1/2 is treated similarly.

4.2 Viscosity

The viscous stress tensor for incompressible flow is τ = µ(∇~u +
(∇~u)T ). As discussed in [Rasmussen et al. 2004], a spatially con-
stant µ (within each region) implies that ∇ · τ = µ∆~u. Renaming
~un+1 in equation (5) to be ~u??, we next solve the three systems of
linear equations given by

~u??? =~u?? +∆t∇ · (ν∇~u???) (9)

where ν = µ/ρ . Note that we moved ρ under the divergence opera-
tor, under the assumption that it is spatially constant in each region.
Since the viscosity to density ratio is discontinuous across the inter-
face, we replace ν with ν̂ for differences that cross the interface in
the same manner as β is adjusted to β̂ when solving equation (4).
Then, we again solve for the pressure and make the flow divergence
free using ~u??? in place of ~u? in equations (4) and (5).

Figure 8: Different viscosity liquids interacting on an inclined
plane. (300×150×240 grid, 5 phases).
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Figure 9: (Left) One way coupling from liquid to air. (Right) Two
way coupling of liquid and air. Note the surface ripples and the
unstable stream of liquid in the fully coupled simulation.

Each component of equation (9) should conserve momentum, so
we require a unique flux between every two velocity values. The
physically correct flux in the incompressible flow context is rather
complicated (see its derivation in [Kang et al. 2000]). However,
considering equation (9) in isolation admits a simple approxima-
tion which [Hong and Kim 2005] showed was sufficient for visual
accuracy. In isolation, the flux is given by ν∇~u, and we assume
ν−∇~u− = ν+∇~u+ which is not actually true.1 Instead, correction
terms should be added for stencils that cross the interface, but these
terms couple the u, v, and w diffusion equations together making
them difficult to solve with a fully implicit method. For example,
see [Rasmussen et al. 2004] where variable viscosity couples the
three equations together.2 They explicitly add correction terms be-
fore solving for the velocity implicitly. We could take a similar ap-
proach allowing for a larger time step than a fully explicit method,
but it is still less efficient than a fully implicit method. [Kang et al.
2000] showed that the viscosity jump causes a jump in the pressure
and its derivatives as well3, but [Hong and Kim 2005] showed that
these too can be ignored for graphical purposes.

4.3 Viscoelasticity

[Goktekin et al. 2004] incorporated viscoelastic effects by adding
(µe/ρ)∇ · ε to the Navier-Stokes equations, where µe is the elastic
modulus and ε is the elastic strain tensor evolved in time via εt +
~u ·∇ε = (∇~u +(∇~u)T )/2− εPlastic

t . They solved this last equation
by first using semi-Lagrangian advection, and then incorporating
the right hand side which is the total strain rate minus the plastic
strain rate. [Irving 2007] points out that this ignores the rotation of
the strain tensors, yielding incorrect results when the fluid rotates.
Thus, [Irving 2007] proposes rotating the strain tensor by the curl
of the velocity field after the advection step. This is accomplished
by computing an explicit rotation matrix in the center of each cell,
and using it to rotate the strain tensor also stored in the center of
each cell. This has enabled high quality detailed viscoelastic fluid
computations, see e.g. Figure 13.

5 Adding Air or Empty Regions

Often times, only the liquid region is of interest and the gas flow can
be ignored. Our system allows for the standard treatment of this by
setting an entire region to be empty, and subsequently extrapolating
velocity into that region from the liquid regions and using Dirich-
let boundary conditions during the pressure solve (see e.g.[Enright
et al. 2002]). However, when the gas flow is important, our method
trivially extends to simulate gas regions just as though they were
other liquid regions. This allows for straightforward incorporation
of smoke, fire, and even reactive gases as in [Ihm et al. 2004]. Be-
sides empty regions and air regions, there is yet a third way to model

1[Kang et al. 2000], equation (30) gives the jump across the interface
2[Rasmussen et al. 2004], equations (5)-(7)
3[Kang et al. 2000], equations (19) and (32)-(34)

Figure 10: Two drops with high surface tension collide. Green has
low density, red high density (3503 grid, 3 phases).

non-liquid regions. The animator may wish to simulate air, but not
have the air affect the liquid. This requires one way coupling from
liquid to air, but not vice versa. Figure 9 shows one way coupling
(left) as compared to two way coupling (right). One way coupling
is accomplished by using extrapolated velocities from the liquid to
the gas as boundary conditions for the liquid region, while gas ad-
vection is carried out normally. In addition, these extrapolated ve-
locities are used to overwrite the gas velocity at any grid points that
become liquid as the interface moves. The Poisson equation is first
solved for the liquid region setting Dirichlet boundary conditions in
the gas so that it has no effect (as is usual for empty regions), and
then a second Poisson equation is solved for the gas using Neumann
fixed velocity boundary conditions in the liquid so that it properly
drives the gas.

In free surface flow, the air region is modeled as
empty allowing it to vanish. Thus, characteristics co-
alesce as shown in the single grid cell in the figure to
the right. Eventually, liquid rushes into the cell from
all sides, and the air should disappear. However, air
particles faithfully follow these characteristics ending up trapped in
the center of the cell. Since this cell should be a sink for air, we sim-
ply delete the air particles as they approach the center of the sink.
Note that these sinks are easily detected by finding local minima
level set values in empty regions.

6 Surface Tension

The ghost fluid method (GFM) of [Fedkiw et al. 1999] uses the
physically correct interfacial jump conditions to define ghost val-
ues for discontinuous quantities which are then incorporated into
finite difference or interpolation stencils. [Hong and Kim 2005]
used the GFM to discretize the jumps in pressure caused by surface
tension effects, and [Hong 2005]4 showed that the method produces
far better visual results than a smeared out delta function approach.
Surface tension causes a jump in pressure across the interface equal
to σκ , where σ is a surface tension coefficient (defined pairwise
for the regions) and κ =−∇ · (∇φ/|∇φ |) is the interface curvature.
Consider the case where an interface lies between xi and xi+1. We
adjust pi+1 in equation (6) to account for the jump in pressure,(

β̂ ((pi+1 +σκΓ)− pi)/∆x−βi−1/2(pi − pi−1)/∆x
)

/∆x

4page 36
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Figure 11: Two submerged liquids meeting and reacting to create air (1503 grid, 4 phases).

where κΓ = θκi+1 +(1−θ)κi is computed with respect to the re-
gion containing xi, and βi+1/2 has been replaced by β̂ as explained
in section 4.1. The (β̂σκΓ)/∆x2 term can be moved to the right
hand side, so that the resulting matrix is unaffected allowing for the
use of fast symmetric linear system solvers such as the precondi-
tioned conjugate gradient method.

7 Surface Reactions

Our method incorporates surface reactions allowing one material
to turn into another. One example of this is the work on fire by
[Nguyen et al. 2002], but our framework allows for a more gen-
eralized treatment, e.g. Figure 11 shows two materials (submerged
beneath a third) coming together and reacting to form a fourth.

[Nguyen et al. 2002] used the GFM to model fire where the ex-
pansion of fuel into products admits jumps in both velocity and
pressure.5 As in the surface tension case, the pressure jump is in-
corporated directly into the Poisson equation. The velocity jump
needs to be handled whenever information is combined from dif-
ferent sides of the interface. They implement this by storing two
velocity fields, one for fuel and one for products, that inherently
store the jump conditions. While this only doubles their storage,
the storage requirements would scale linearly with the number of
different materials. We instead compute ghost values on the fly by
generalizing the concept of a scalar or vector field to encapsulate the
application of the jump condition. Our implementation wraps the
data in a lookup class that maintains a state variable indicating the
region for which values are being looked up. For example, when us-
ing semi-Lagrangian advection to update a face velocity in region i,
we create a lookup class instance and set its internal state to indicate
that any queried values should be returned with respect to region i.
Then the lookup class ensures that any data used to construct the ray
or interpolate is retrieved with the proper jump conditions already
applied. In this manner, existing interpolation and discretization
code is generalized with relative ease to account for discontinuities.
The lookup classes can also be used to incorporate object intersec-
tions in the same manner as jump discontinuities. For example, for
thin objects, a nested lookup class can be used to check for object
intersections and return the appropriate object ghost velocity as de-
scribed in [Guendelman et al. 2005], simplifying object interaction
implementations significantly.

5See equations (2) and (3) for the jump conditions

[Nguyen et al. 2002] used only the normal component of the veloc-
ity to advect the fuel level set, which is sufficient for their WENO
scheme that was applied without particles. We instead use semi-
Lagrangian advection for the level set equation, and this requires
the tangential component of velocity as well in order to properly
trace characteristics. Since the tangential component is continuous
across the interface, we form the normal component as usual and
simply add the tangential component from the local fluid velocity.
The tangential component is required for particle advection as well.

8 Examples

To demonstrate the effectiveness of our approach, we simulated a
number of examples that range in resolution from 1503 to 3503 on a
number of 4 processor Opteron machines. The computational cost
for the examples range from 5 to 50 minutes per frame. Surface
tension was the main cause for the examples with slower simula-
tion times. We augmented a standard ray tracer to use the same
projection based querying of the level set functions that the simula-
tion uses, since rendering each level set independently can lead to
multiple intersections per interface (from numerical error).

Figure 12: Oil pouring into water, then catching on fire. Note that
the fiery ball is a separate phase of fluid, and that it deforms into the
shape of a droplet as it falls (2003 grid, 4 phases).
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Figure 13: An armadillo that starts out viscoelastic, becomes viscous and more dense than the water, then inviscid and lighter than the water,
and finally viscoelastic again before another viscoelastic liquid is dropped onto it (250×275×250 grid, 4 phases).

Figure 10 depicts two drops suspended in liquid. The lower drop
has a lower density than the surrounding fluid and the upper drop
has a higher density. Both drops have surface tension. Figure 3
depicts a kinematic sphere splashing into a number of liquids. The
air region is simulated as a Dirichlet region, and the liquids are of
increasing density from top to bottom. Figure 6 shows four layers
of fluid where the lower middle liquid is lighter than the top middle
liquid. This causes a Rayleigh-Taylor instability as the two liquids
switch places.

Figure 8 shows a number of different fluids on an inclined plane.
The liquid with the highest viscosity is blue, then green, then sil-
ver, and finally the clear water is simulated as inviscid. Figure 13
depicts a viscoelastic armadillo in a pool of water. The viscoelastic
property is then removed making it viscous only, then the viscosity
is turned off and the density is turned down making it bubble up
to the surface. The former armadillo is then changed back to vis-
coelastic and a newly introduced viscoelastic liquid is dropped on
top of it.

Figure 12 depicts flammable oil being released into a tank of water.
The oil rises to make a layer on the surface, which is then ignited.
This example uses a temperature based ignition model where the
temperature in actively burning regions is Tmax, but a lower Tignition
is needed to cause ignition of surrounding fluid. Figure 11 shows
two viscous liquids that react with each other creating a third (air)
that bubbles up to the surface. In Figure 7, eight letters with various
high densities and viscosities splash into a pool of water and sink
to the bottom. The air is treated as an empty region. In the second
part of the simulation, the letters are changed to be low density
fuels with surface tension, and the air is fully simulated. The letters
then rise through the water, bursting into flames as they break the
surface.

9 Conclusions and Future Work

Notably, the new technique does exacerbate the limitations of the
original particle level set method with regards to volume loss by
facilitating increased scene complexity. This is evident in the
Rayleigh-Taylor simulation depicted in Figure 6. In that example,
the majority of the mass loss occurs away from triple points, in re-
gions where our method is identical to the original particle level set
method (see section 3.1). Of course, this can be addressed by in-
creasing the particle count for the particle level set method or using
an adaptive octree or run length encoded type level set simulation,
at the expense of increased code complexity and/or CPU time.
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