
PRAM ComputationsResilient to Memory Faults?B.S. Chlebus A. Gambin P. IndykInstytut Informatyki, Uniwersytet Warszawski, Banacha 2, 02-097 Warszawa, Poland.E-mail: chlebus@mimuw.edu.pl, aniag@zaa.mimuw.edu.pl, indyk@mimuw.edu.plAbstract: PRAMs with faults in their shared memory are investigated. Ef-�cient general simulations on such machines of algorithms designed for fullyreliable PRAMs are developed.The PRAM we work with is the Concurrent-Read Concurrent-Write (CRCW)variant. Two possible settings for error occurrence are considered: the errorsmay be either static (once a memory cell is checked to be operational it remainsso during the computation) or dynamic (a potentially faulty cell may crash atany time, the total number of such cells being bounded). A simulation consistsof two phases: memory formatting and the proper part done in a step-by-stepway. For each error setting (static or dynamic), two simulations are presented:one with a O(1)-time per-step cost, the other with a O(log n)-time per-stepcost. The other parameters of these simulations (number of processors, mem-ory size, formatting time) are shown in table 1 in section 6. The simulationsare randomized and Monte Carlo: they always operate within the given timebounds, and are guaranteed to be correct with a large probability.1 IntroductionParallel Random Access Machine (PRAM) is a popular model to design parallel algo-rithms (see [10, 12]). It is a multiprocessor system in which every processor acts like aRAM, and all of them share the global memory. PRAM abstracts from real multipro-cessor computers by disregarding the mechanism and cost of communication betweenthe processors and the external memory. This facilitates the design and analysis ofparallel algorithms.The standard ideal (CRCW) PRAM has the following properties:1. The processors are tightly synchronized, with no explicit cost of synchronization;2. Every processor is always operational;3. Every memory cell can be accessed by any processor;4. Every memory cell can be accessed in one step;5. Every memory cell can be read from or written to with no errors occurring.? This research was partially supported by EC Cooperative Action IC-1000 (project ALTEC: Algorithms forFuture Technologies).



Recently there has been a lot of research done concerning PRAM variants obtainedby dropping or relaxing some of these properties. Asynchronous PRAMs were inves-tigated in [6, 9, 17, 20]. PRAMs with faulty processors were studied by Kanellakisand Shvartsman [15] and Kedem et al. [16]. PRAMs with a di�erentiated cost of ac-cess to memory were considered by Aggarwal et al. [2] and Gibbons [9]. Valiant [24]considered the XPRAM model, where processors have a direct access only to theirlocal memory, and access other cells by passing messages to the respective processors.There is also a closely related model of distributed memory machine, see a surveypaper by Meyer auf der Heide [8].Issues of distributed computing with faulty shared memory have been investigatedby Afek et al [1] and Jayanti et al [13]. The problem of exploring the use of randomiza-tion to tolerate memory failures in synchronous models was posed by Afek et al. [1],and in asynchronous models with large granularity by Aumann et al. [3].In this paper we consider a faulty-memory PRAM. Except for possible memoryfaults, this model has all the remaining properties of the ideal PRAM: it is fullysynchronized, each shared memory cell can be accessed in one step by any processor,and the processors are always operational. A read instruction places the read valuein a designated register of the processor, and similarly, a write instruction places thevalue stored in a register into the accessed memory word, unless it is faulty. There is amechanism to react to errors in read and write operations, as follows. If the accessedmemory word is faulty, then some designated register shows a special "faulty" value,and the respective processor knows that the attempted instruction failed due to amemory error.We present simulation algorithms, which emulate the ideal PRAM on the faulty-memorymachine. They are Monte-Carlo algorithms, that is, they are randomized andcorrect with a high probability. More precisely, they always operate within the statedtime bounds, but may produce incorrect results with a small probability.The rest of the paper is organized as follows. In Section 2, we introduce notationsand concepts, and discuss the models of faults occurrence. The operations of broad-casting and spreading are described in Section 3. Static faults are handled by thealgorithms A and B presented in Section 4, and dynamic faults by the algorithms Cand D of Section 5. Conclusions and further research are discussed in Section 6.Proofs of the theorems will be described in the �nal version.2 PreliminariesThe PRAM model considered in this paper is the Concurrent-Read Concurrent-Write(CRCW) one. There are two speci�c variants used. In Collision, if many (more thanone) processors attempt to write to a memory cell then a special collision symbol getswritten. In Collision+, if many processors attempt to write to a memory cell, thenthere are two cases: if all the values of the processors are equal then this common valuegets written, otherewise the collision symbol is written to the cell. The algorithms ofsection 3 and 4 are designed for Collision, and of section 4 for Collision+. See [5] formore on the relative power of these variants of the CRCW PRAM.We use the following notations. The simulated ideal PRAM is denoted by CI , andthe simulating faulty-memory PRAM by CF . Two main parameters of a simulationalgorithm are the size of memory and the number of processors. The machine CI has



n processors: p1, p2, : : :, pn, and n memory cells: s1, : : :, sn. The machine CF has Nprocessors: P1, P2, : : :, PN , and M memory cells: S0, : : :, SM�1. The number M isalways assumed to be greater than n. A PRAM cell stores O(log n) bits. A processorof a PRAM has its own local memory, its cells are referred to as registers. The machineCI has O(1) registers per processor. All the registers of processors of CF are assumedto be always operational and fully reliable. A processor of CF has also O(1) registers.Memory words of CF are sometimesmarked. This means setting some bits of them tospeci�c values, the remaining bits to be used to simulate memory words of CI .There are two criteria by which (shared) memory errors are categorized.Static versus Dynamic: if certain memory cells have become faulty before a com-putation starts, and no new faulty cells occur during the course of a computation,then the errors are static, otherwise the faults are called dynamic.Deterministic versus Probabilistic: In the probabilistic case, each memory cellcan be faulty with some �xed probability q, and any two cells are faulty independentlyof each other. In the deterministic version, at most q �M memory cells of CF are faulty,for a constant parameter q, where 0 < q < 1.These two classi�cations are independent of each other, and this creates four set-tings for errors: deterministic static, deterministic dynamic, probabilistic static, andprobabilistic dynamic. These combinations require further explanations. Conceptu-ally, a setting can be imagined to be created in two steps. First, it is decided whichcells are (potentially) faulty: in the deterministic case by selecting a subset of q �Melements from among the memory cells of CF , and in the probabilistic setting, bydeciding randomly and independently for each cell, whether it can be faulty. In thestatic case, all the selected cells become faulty, and in the dynamic case, it is assumedthat there is an adversary who selects the step of simulation at which a given cellbecomes faulty.All the algorithms developed in this paper use randomization, and they can han-dle deterministic errors. They are automatically good against probabilistic memoryfailures, and hence probabilistic errors are not discussed as a special case. In whatfollows, it is always assumed that the faults are deterministic.Similar models of error occurrence have been considered in the literature in thecase of faulty processors. Probabilistic and dynamic faults of processors were studiedby Kedem et al. [16] and Diks and Pelc [7]. Martel et al. [17] designed randomizedsimulations for deterministic processor errors.For every presented simulation, the simulating machine CF has to have the sizeof its memory within certain bounds for the simulation to run in the speci�ed timewith a large probability. To express this concisely, the notation g(n) = ��(f(n)) isused. It means that the inequalities c1 � f(n) � g(n) � c2 � f(n) hold, for a su�cientlylarge constant c1 and c2 > c1. The criterion for being "su�ciently large" depends onthe context. For instance, if CF is said to have the memory of size M = ��(f(n)),then "su�ciently large c1" may be a function of both the constant q, determiningthe number of faulty memory cells of CF , and the required bound 1 � n�� on theprobability.Simulations are divided into two phases: formatting and the simulation proper.During formatting the memory is explored and organized, typically to construct amechanism to access (some of) the operational memory cells. Then follows the properpart of simulation, performed in a step-by-step fashion. A step of CI consists of three



parts: reading a memory cell, internal computation, writing to the same memory cell,and this is mimicked by CF . The time of formatting is denoted by Tf , and the timeof a one-step simulation by Ts, which is also referred to as the step overhead. Thesimulation algorithms are Monte Carlo and no synchronization between consecutivesteps of CI is needed. So algorithms operating in time t on CI can be simulated onCF to run in time Tf + Ts � t, and be correct with a high probability.A property �(n) is said to hold with a high probability (abbreviated to whp) if, forsome � > 0, �(n) holds with the probability at least 1�n��, for a su�ciently large n.Throughout the paper, whenever this phrase is used, or the expression 1�n�� is usedexplicitly as a bound on the probability, the value of � can be made arbitrarily largeby manipulating other constants, for instance those involved either in the bounds onthe number of memory cells, or the formatting time, or the step overhead.3 Broadcasting and SpreadingIn this section we consider two tasks that will be often performed during simulations.Broadcasting propagates a value known by one processor to the other processors.Spreading distributes log n values, known by log n processors, through the memorysuch that every value occupies 
(M= log n) cells.algorithm broadcast-1Each processor repeats the following two steps c1 � log n times, for a constant c1.1. If the value v is not known then select randomly a memory cell S and read S. If Scontains v then learn v.2. If v is known then select randomly a memory cell S and write v to S.Theorem1. If N = �(n) and M = �(n) then algorithm broadcast-1 operates intime O(log n) to propagate the value v among all the processors with the probability1� n��, for � > 0. 2The broadcasting algorithm may be also used when M = O(n) does not hold. In thiscase each processor performs the body of algorithm broadcast-1, that is, its twosteps, O(�qM=N + 1� � logN) times. This algorithm is called broadcast-2.Theorem2. Algorithm broadcast-2 propagates successfully the given value amongall the processors, with the probability 1� n��, for � > 0. 2Suppose that processor Pi knows value vi, for 1 � i � log n, where vi 6= vj for i 6= j.Then spreading is accomplished by the following algorithm:algorithm spread1. For each 1 � i � log n, processor Pi writes vi into c2 log n randomly chosen memorycells, for a constant c2.2. For each 1 � i � N , processor Pi repeats c3 log n times, for a constant c3:2.1 If no value is known then select randomly a memory cell S and read it; if Scontains vj then learn vj; otherwise



2.2 If some value vj is known then select randomly a memory cell S and write vjto S.Theorem3. If N = �(n) and M = �(n) then, after O(log n) steps of algorithmspread, every vi occurs in 
(n= log n) operational cells with the probability 1� n��,for � > 0. 24 Static FaultsIn this section we consider static faults: once a memory cell is checked to be non-faulty,it is guaranteed to remain such through the whole computation. The �rst algorithmis used later as a subroutine. It builds a binary tree over n cells. Once this is done,the address of the root is made known to every processor, and accessing the ith cellis performed by traversing the tree to the ith leaf.algorithm t1. Each processor Pi selects randomly an operational memory cell xi: this is done byrepeatedly reading random memory cells, until such an operational one is foundthat is not claimed by other processors. Then Pi marks xi.2. Processor P1 broadcasts the address of x1 to all the remaining processors.3. All the processors build a binary tree: First, cell x1 is used to store the addressesof x2 and x3. Then, iteratively, the cell xi is used to store the addresses of x2i andx2i+1.Lemma4. algorithm t can be implemented to run successfully in time O(log n)with the probability 1� n��, for � > 0. 24.1 Algorithm ASuppose that the simulating machine CF has N = n log n processors and M = ��(n)memory cells. The presented simulation has O(1)-time step overhead with a highprobability.Divide the processors of CF into n groups: P1, P2, : : :, Pn, each consisting oflog n processors. Group Pi is to simulate the ith processor pi of CI . Let Ul denotethe memory cell of CF simulating the lth memory cell sl of CI . To locate Ul, theprocessors in a group compute addresses D1(l), D2(l), : : :, where the address functionDj is de�ned as Dj(x) = x+ dj (modM), for the numbers dj being random elementsfrom the interval [0;M � 1]. Only one of these addresses is designated as Ul, even ifmany are of operational memory cells. To visualize the underlying idea, consider thebipartite graph with edges (x; y), where x is the address of a memory cell in CI andy is of the form Dj(x), and the memory cell with address Dj(x) in CF is operational.Then a perfect matching in this graph gives a viable addressing scheme on CF tosimulate CI . For every group Pi there is a special memory cell used for inter-processorcommunication, denoted by ci. There are d log n address functions, where the numberd is a parameter. The following algorithm initializes the memory such that among thememory words Dj(l), for a �xed 1 � j � d log n, exactly one (operational) is markedas Ul.



algorithm a (formatting)1. Processor P1 generates d log n random numbers d1; d2; : : : ; dd logn and places themin the shared memory organized as a list. This is performed by picking memorycells at random to place consecutive elements of the list.2. The address of the header of the list is broadcast to all the processors by thealgorithm broadcast-1.3. The processors scan the list, and each processor, which is kth in his group, remem-bers the kth block of d values in the list.4. A binary tree with n leaves is built by executing algorithm T. The ith leaf is thecommunication cell ci for group Pi.5. For each 0 � k � m, the kth cell Uk is selected from among the addresses D1(k),D2(k), : : :, Dd logn(k), and marked as such. This is done as follows. First the ad-dresses D1(1), D1(2), : : :, D1(n) are examined, then D2(1), D2(2), : : :, D2(n), andso on. For each l, the �rst Dj(l), which is operational and not reserved alreadygets marked as Ul and then written to cl to notify the remaining processors in Pl.In the step simulation, the task is to have the processors in some group Pi access amemory cell Ul.algorithm a (step simulation)1. Each processor in a group attempts to read the cell with address Dj(l), for each jthat it learned in Step 3 of formatting.2. The processor that accessed the cell designated as Ul writes its address to ci.3. The remaining processors in Pi read ci and then access Ul.Theorem5. Algorithm A can be implemented in such a way that the time of for-matting is Tf = O(log n) with the probability 1 � n��, and, once the formatting issuccessful, the step overhead is Ts = O(1). 24.2 Algorithm BLet the simulating PRAM CF have N = n= log n processors and M = ��(n) shared-memory cells. The algorithm B has O(log n)-time step overhead, which is optimal forthe available number of processors.Suppose that M = cM � n, for a constant cM > 0. Divide cM � n memory cells intocontiguous blocks of � � k cells, where k = log n + plog n + 1 and � > 1. A blockcontaining at least k operational cells is said to be good. The following inequalityestimates the number l of such blocks:l � cM � nk(�(1� q)� 1) + 1� � k(k(� � 1) + 1) � cM � n �(1� q)� 1�(k(� � 1) + 1)Choose cM and � in such a way that the inequality l � n= log n holds. The �rstn= log n good blocks B0, B1, : : :, are used to simulate the memory of CI . A block



Bi consists of the root r(i), plog n auxiliary cells, and log n normal cells. Auxiliarycells are interspersed among normal cells and partition them into groups of plog nelements. The jth normal cell of Bi simulates the cell i � logn+j of CI . The bits of theroot of a block are divided into plog n �elds F1, F2, : : :, a �eld Fj stores the o�set ofthe jth auxiliary cell in the block. Similarly, an auxiliary cell has its bits divided intoplog n �elds to store o�sets of the next plog n normal cells. The o�set of an auxiliarycell x is the number of cells between the beginning of the block and x; and for a normalcell y, the o�set of y is the number of cells between y and the auxiliary memory cellclosest to the left. Notice that an o�set is a number of size O(log n), hence it requireslog log n+O(1) bits to be stored. Since a memory word is assumed to be able to storeO(log n) bits, all the o�sets �t into the roots and auxiliary cells. Given the address ofa root r(i), the jth normal cell in Bi can be accessed in time O(1) by �rst locatingthe respective auxiliary cell, and then the normal cell. To this end, the �elds of rootand the respective auxiliary cell are extracted by applying standard arithmetic andboolean bit operations. We show next how to make the roots accessible in time O(1)with a high probability. The address functions D1, D2, : : : are de�ned similarly as inalgorithm A, the number d is a parameter.algorithm b (formatting)1. The blocks are divided into N = n= log n groups. Processor Pi counts the numberof good blocks in the ith group.2. A binary tree of M=� log n leaves is built by executing algorithm T . The tree isused next to assign consecutive numbers to good blocks as in the parallel pre�xalgorithm.3. Processor Pi sets the root and the auxiliary cells in block Bi to their proper values.4. Processor P1 generates a list of d log n random numbers d1; : : : ; dd logn and organizesthem as a list, similarly as in algorithm A.5. Processor Pi evaluates the address functions D1(i); : : : ;Dd logn(i). For every l, ifthe cell Dl(i) is operational and unmarked, then Pi marks it and sets to store apointer to the root r(i).6. Each processor Pi creates a list of log n memory cells to store the contents ofregisters of the processors that it is to simulate.algorithm b (step simulation)Each processor Pl simulates log n processors of CI . The contents of registers arestored in the list that Pl built in the last step of formatting. Pl scans the listand retrieves the addresses x1, x2, : : : of memory cells that need to be accessed.To locate x1, processor Pl tries addresses D1(i1), D2(i1), : : :,Dt1(i1), where i1 isthe number of block containing x1. The search terminates when a memory cellwith a pointer to the root is found. Then Pl is able to access x1 in time O(1).Processor Pl continues with Dt1+1(i2), Dt1+2(i2), : : :, Dt2(i2), terminating whena pointer to the second root is found. The remaining addresses are processedsimilarly, each time starting with the �rst unused yet address function.



Theorem6. Algorithm B can be implemented in such a way that the time of format-ting is equal to Tf = O(log3=2 n) with the probability 1 � n��, and the step overheadis Ts = O(log n), with the probability 1� n�� for each step, for � > 0. 25 Dynamic FaultsDynamic faults are more challenging. In such a setting some form of duplication ordispersal of information stored in the memory of CF is inevitable, since a memorycell storing useful information may turn out to be faulty at any time. To simplifythe presentation and analysis, we assume that a memory word of CF may store thecontents of several words of CI .5.1 Algorithm CLet the simulating PRAM have N = n log2 n processors and M = ��(n log n)memory cells. We present a simulation that has a O(1)-time step overhead.The number d is a parameter. To simplify the notation, assume rather that thereare exactlyN = d2�n�log2 n processors of CF . Divide these processors into n groups P1,: : :, Pn of d2 � log2 n processors. Divide each group Pi into subgroups Pi;j of d � log nelements. The task of Pi is to simulate the processor pi of CI . It is assumed that,when the simulation starts, all the processors from group Pi know the initial state ofprocessor pi. In the course of the simulation, typically only a fraction of processorsin every group Pi know the current state of pi, these processors are called informed.Each informed processor knows that it is informed, otherwise it is aware that it isnot. After the computation of CI terminates, it may still take some time for all theprocessors of CF to get informed. This time period is called the termination delay.algorithm c (formatting)1. The processors generate d � log n random numbers di in [0;M � 1].2. The numbers di are distributed through the shared memory by executing thealgorithm spread on O(n log n) processors.3. Each processor Pk makes O(log n) attempts to learn some of the numbers di byreading memory cells selected at random. It stores the �rst r = O(1) of them,denote the respective address functions by Dk1 , : : :, Dkr . The number r is called afan, and is a parameter of the algorithm. If the processor is in Pi;j and it happensto get to know dj , then it stores dj .4. Steps 1 through 3 are repeated, for a new set of d � log n numbers denoted gj .Processor Pk learns the functions Gk1, : : :, Gkr .In Step 2, notice that whp there are only O(1) pairs i 6= j such that di = dj ,so Theorem 3 still holds. The generated random numbers de�ne address functionsDi(x) = x+ di (modM), and Gi(x) = x+ gi (modM). A memory cell Dj(x) (Gj(x),resp.) which is operational and such that its number is the value of only one of thefunctions D or G for exactly one argument is said to be D-useful (G-useful, resp.).D-useful cells simulate cells of CI , G-useful cells are used by groups of processors for



communication. We can mark each written value with the number of the simulatedcell, in the case of D-usefulness, or of the processor group, in the case of G-usefulness.Then a cell can be veri�ed as not being D-useful or G-useful if it is either not opera-tional or contains the collision symbol or does not contain the correct number.Suppose that pi needs to access sl in the current step.algorithm c (step simulation)1. (Read) If a processor Pk in Pi is informed, that is, Pk knows l, then it attemptsto read the memory cells Dk1(l), : : :, Dkr (l).2. If a processor Pk in Pi;j succeeded in Step 1 (that is, read at least one D-usefulcell), and Pk knows gj , then Pk writes the contents of its registers to Gj(i).3. If a processor Pk in Pi;j failed to read from an operational memory cell in Step 1(during this iteration, or in one of the previous iterations and has not succeededin Step 3 since then) then it attempts to read (at least one of) Gk1(i), : : :, Gkr (i).4. If a processor Pk in Pi failed in Steps 1 and 3, then it selects a memory cell C atrandom and attempts to read it. If C stores a number ga, then Pk attempts toread Ga(i). If the state of computation stored there means termination, then Pkstops.5. (Write) If a processor Pk in Pi;j succeeded in either Step 1 or Step 3, then it �rstperforms the internal computation of CI , and next writes to Dj(l).Denote D(x) = fDi(x) : 1 � i � d log ng, for 0 � x � n�1, and de�ne G(x) similarly.Lemma7. There are at least (1�q)2 � d log n + 1 cells in D(x) that are D-useful, withthe probability 1� n��, for � > 0, for a su�ciently large M = ��(n log n). The samefact holds for G(x). 2Let G = (A;B;E) be a bipartite graph, where E is the set of edges connectingelements of A and B. Graph G is said to have the (; �) weak-expansion property, for0 < ; � < 1, if, for every set X � A such that jXj � jAj, the set � (X) = fy 2B : (x; y) 2 Eg satis�es j� (X)j � �jBj. We will consider speci�c bipartite graphsde�ned as follows: A =Pi;j, B = D(x), there is an edge connecting a processor P in Awith Da(x) i� Da is among the address functions known by P after formatting. Thisgraph is denoted Dx;i;j . A similar graph Gi;j is de�ned as follows: A =Pi;j, B = G(i),there is an edge connecting a processor P in A with Ga(i) i� Ga is among the addressfunctions known by P after formatting.Lemma8. Graphs Dx;i;j and Gi;j have the (; �) weak-expansion property, for any0 < ; � < 1, with the probability at least 1 � n��, for � > 0 and a su�ciently largefan r. 2The performance of algorithm C is estimated in the following theorem:Theorem9. Algorithm C has the formatting time Tf = O(log n), the step overheadTs = O(1), and the termination delay O(log n), all with the probability at least 1�n��,for � > 0. 2



5.2 Algorithm DSuppose that CF has N = n processors and M = ��(n) memory cells. To be speci�c,M = cM � n. It is assumed that all the processors of CF know a primitive element ofGF (u), where u > log n= log log n is a power of 2. During a simulation, the contentsof a memory cell of CI are encoded, divided into pieces, and then distributed amongd log n memory cells of CF , for a constant parameter d. The numbers a and c are alsoparameters.algorithm d (formatting)1. Processors Pi generate d log n random numbers di in [0;M�1], and a log n randomnumbers aj in [0;M � 1].2. The numbers aj are distributed in the memory by executing spread.3. Each processor Pi, for 1 � i � d log n, repeats c log n times of the following twosteps: select randomly memory cell and read it; if aj was read then write di to thecell number (aj + i) modM .We recall some facts from the theory of error correcting codes, consult [4, 19] for moreinformation. Let C be sequence of codes C = C1 : : : Cn : : :, where Cn � �n, for somealphabet � of size s. Let Cn(j) denote the jth codeword of code Cn. C is calledasymptotically good if the lengths n, sizes Mn = jCnj, dimensions mn = blogsMncand minimum Hamming distances dn of codewords from Cn satisfy the following:the rate of the sequence R = lim infn!1 mnn , and the relative minimum distance� = lim infn!1 dnn are both strictly greater then zero. By the Gilbert-Varshamovbound (see [4, 19]), for any � 2 [0; 1 � 1s), there exists an asymptotically good codesuch that R > 0, that is,R � 1�Hs(�), whereHs(x) = �x logs x�(1�x) logs (1 � x)+x logs(s � 1). It is also known, see [19], that for n = s � 1 there exist codes, calledReed-Solomon (or simply RS) codes, with � � 1 � R. These codes can be quicklyencoded and decoded, and are used in our algorithm. We apply a technique called"concatenation" of codes, in which the �nal code is obtained by �rst encoding by acode with a large alphabet size (outer code), and then encoding each symbol usinganother code (inner code). Notice that if a code Cn has the minimum distance dnthen it can correct n� erasures (eliminations of symbols) and ne errors (changes ofsymbols) provided that 2ne + n� < dn. Suppose that processor P needs to simulatethe instruction of writing some value w of log n bits into sl. The following is a highlevel description of the algorithm. Coding and decoding need to be performed as bitoperations on words. The details will be given in the �nal version.algorithm d (step simulation, write)1. Divide the word w into blocks w1, w2, : : : of log u consecutive bits and encode itas v1,v2,: : : by the RS code over GF (u) with a relative minimum distance �, for asuitable �.2. Encode each vi by a suitable asymptotically good code C.3. Let k = bl= log nc. Attempt to store the consecutive symbols of the word C(v1); C(v2) : : :in D1(k), D2(k), : : :, on the position l mod log n. In every trial select r = O(1)



algorithm errors #processors memory size formatting time step overheadA static n log n ��(n) O(log n) O(1)B static n= log n ��(n) O(log3=2 n) O(log n)C dynamic n log2 n ��(n log n) O(log n) O(1)D dynamic n ��(n) O(log n) O(log n)Table 1. A comparison of the four simulations developed, in terms of their resourcesavailable and time performance. For the de�nition and explanation of notation �� seesection 2.random cells. If a value aj was found, try to read di from a cell number (aj + i)mod M .algorithm d (step simulation, read)1. As in Step 3 of the write part, read the cells D1(k);D2(k) : : : and form a sequenceof codewords z1; z2 : : : (possibly with errors and erasures).2. Decode every zi.3. Apply the RS decoding algorithm to the sequence obtained in Step 2.The performance of algorithm D is estimated by the following theorem:Theorem10. Algorithm D can be implemented in such a way that the formattingtime Tf and the step overhead Ts are both O(log n), with the probability 1 � n��, for� > 0. 26 RemarksFour simulations of an ideal fully-reliable PRAM on a faulty-memory PRAM havebeen developed. Two settings of error occurrence are considered: static and dynamic.Given the kind of errors, there are two parameters of simulations: the number ofprocessors, and the size of memory of the simulating PRAM. The performance ofa simulation is measured by the formatting time and the step overhead. All thisinformation is collected in Table 1. The simulation B is close to optimal, in the sensethat the work done after formatting is O(n � t), where t is the time of the simulatedalgorithm on CI . In general, the optimality of the presented algorithms, for the givenresources, is an open problem. One could set some of the performance measures astargets, and try to minimize the other ones. Our choice was to design O(1)-time andO(log n)-time step-overhead simulations while minimizing the formatting time, thenumber of processors and the size of the shared memory. It seems that the time costof any simulation must be at least logarithmic, and proving such a lower bound wouldbe interesting. The data compiled in Table 1 are consistent with this hypothesis, sincethe two rightmost columns contain at least one logarithm in every row.There is an alternative method to algorithm D in which the information dispersalof Rabin [21] is used instead of the RS codes and asymptotically good codes. It requireslog n registers per processor to have a time performance comparable to algorithm D.



All the algorithms described in this paper can be adapted to a situation when thesimulated PRAM has m > n memory cells, where n is the number of processors.Then the time of a simulation of one step remains the same, and the formatting timeis multiplied by at most O(m=n). By checking the correctness of computations aftereach simulated step, the presented algorithms may be converted to be Las Vegas.Such checking may be performed by counting all the processors that performed thesimulation correctly. Details will be presented in the full version of this paper.This research is in the line of studying the PRAM model with weaker propertiesthan the classical ideal version, for instance by allowing faults in hardware. We con-centrated on the CRCW PRAM. It would be interesting to study weaker models, likeCREW or EREW, and also the case when both the processors and memory cells maybe faulty.References1. Y. Afek, D.S. Greenberg, M. Merrit, and G.Taubenfeld, Computing with Faulty Shared Memory,Proc. 11th Ann. Symposium on Principles of Distributed Computing (1992), 47-58.2. A. Aggarwal, A.K. Chandra, and M. Snir, On Communication Latency in PRAM Computations,Proc. 1st Ann. ACM Symposium on Parallel Algorithms and Architectures (1989), 11-21.3. Y. Aumann, Z.M. Kedem, K.V. Palem, and M.O. Rabin, Highly E�cient Asynchronous Ex-ecution of Large-Grained Parallel Programs, Proc. 34th Ann. Symposium on Foundations ofComputer Science (1993), 271-280.4. N. Alon, J. Bruck, J. Naor, M. Naor, and R.M. Roth, Construction of Asymptotically GoodLow-Rate Error-Correcting Codes through Pseudo-Random Graphs, IEEE Trans. Inf. Theory,38 (1992), 509-516.5. B.S. Chlebus, K. Diks, T. Hagerup, and T. Radzik, New Simulations between CRCW PRAMs,Proc. 7th International Conference on Fundamentals of Computation Theory (1989), 95-104,Springer LNCS 380.6. R. Cole, and O. Zajicek, The APRAM: Incorporating Asynchrony into the PRAM Model, Proc.2nd Ann. ACM Symposium on Parallel Algorithms and Architectures (1990), 158-168.7. K. Diks, and A. Pelc, Reliable Computations on Faulty EREW PRAM, manuscript, 1993.8. F. Meyer auf der Heide, Hashing Strategies for Simulating Shared Memory on Distributed Mem-ory Machines, Proc. of the 1st Heinz Nixdorf Symposium "Parallel Architectures and their E�-cient Use,"(1992), 20-29, Springer LNCS 678.9. P.B. Gibbons, A More Practical PRAM Model, Proc. 2nd Ann. ACM Symposium on ParallelAlgorithms and Architectures (1990), 169-178.10. A.M. Gibbons andW. Rytter, "E�cient Parallel Algorithms,"Cambridge University Press, 1988.11. T. Hagerup and Ch. R�ub, A Guided Tour of Cherno� Bounds, Inf. Proc. Letters 33 (1989/90),305-308.12. J�aJ�a, "An Introduction to Parallel Algorithms," Addison-Wesley, 1992.13. P. Jayanti, T.D. Chandra, and S. Toueg, Fault-tolerant Wait-free Shared Objects, Proc. 33rdAnn. Symposium on Foundations of Computer Science (1992), 157-166.14. J. Justesen, On the Complexity of Decoding Reed-Solomon Codes, IEEE Trans. Inf. Theory, 22(1976), 237-238.15. P.C. Kanellakis and A.A. Shvartsman, E�cient Parallel Algorithms Can Be Made Robust, Dis-tributed Computing, 5 (1992), 201-217.



16. Z.M. Kedem, K.V. Palem, and P.G. Spirakis, E�cient Robust Parallel Computations, Proc. 22ndACM Symp. on Theory of Computing (1990), 138-148.17. Ch. Martel, R. Subramonian, and A. Park, Asynchronous PRAMs Are (Almost) as Good asSynchronous PRAMs, Proc. 31st Ann. Symposium on Foundations of Computer Science (1990),590-599.18. Mc Diarmid, On the Method of Bounded Di�erences, in J. Siemon, ed., "Surveys in Combina-torics,", 148 - 188, Cambridge University Press, 1989, London Math. Soc. Lecture Note Series141.19. F.J. MacWilliams, and N.J.A Sloane, "The Theory of Error-Correcting Codes," North-Holland,1977.20. N. Nishimura, Asynchronous Shared Memory Parallel Computation, Proc. 1st Ann. ACM Sym-posium on Parallel Algorithms and Architectures (1989), 76-84.21. M.O. Rabin, E�cient Dispersal of Information for Security, Load Balancing, and Fault Tolerance,Journal of ACM, 36 (1989), 335-348.22. D.V. Sarwate, On the Complexity of Decoding Goppa Codes, IEEE Trans. Inf. Theory, 23 (1976),515-516.23. Y. Sugiyama, M. Kosahara, S. Hirasawa, and T. Namekawa, An Erasures and Error DecodingAlgorithm for Goppa Codes, IEEE Trans. Inf. Theory, 22 (1976), 238-241.24. L.G. Valiant, General Purpose Parallel Architectures, in J. van Leeuwen, ed., "Handbook ofTheoretical Computer Science," vol. A, 943-971, Elsevier, 1990.

This article was processed using the LATEX macro package with LLNCS style


