PRAM Computations
Resilient to Memory Faults*

B.5. Chlebus A. Gambin P. Indyk

Instytut Informatyki, Uniwersytet Warszawski, Banacha 2, 02-097 Warszawa, Poland.
E-mail: chlebus@mimuw .edu.pl, aniag@zaa.mimuw.edu.pl, indyk@mimuw.edu.pl

Abstract: PRAMs with faults in their shared memory are investigated. Ef-
ficient general simulations on such machines of algorithms designed for fully

reliable PRAMSs are developed.
The PRAM we work with is the Concurrent-Read Concurrent-Write (CRCW)

variant. Two possible settings for error occurrence are considered: the errors
may be either static (once a memory cell is checked to be operational it remains
so during the computation) or dynamic (a potentially faulty cell may crash at
any time, the total number of such cells being bounded). A simulation consists
of two phases: memory formatting and the proper part done in a step-by-step
way. For each error setting (static or dynamic), two simulations are presented:
one with a O(1)-time per-step cost, the other with a O(logn)-time per-step
cost. The other parameters of these simulations (number of processors, mem-
ory size, formatting time) are shown in table 1 in section 6. The simulations
are randomized and Monte Carlo: they always operate within the given time
bounds, and are guaranteed to be correct with a large probability.

1 Introduction

Parallel Random Access Machine (PRAM) is a popular model to design parallel algo-
rithms (see [10, 12]). It is a multiprocessor system in which every processor acts like a
RAM, and all of them share the global memory. PRAM abstracts from real multipro-
cessor computers by disregarding the mechanism and cost of communication between
the processors and the external memory. This facilitates the design and analysis of
parallel algorithms.

The standard ideal (CRCW) PRAM has the following properties:

1. The processors are tightly synchronized, with no explicit cost of synchronization;
2. Every processor is always operational;

3. Every memory cell can be accessed by any processor;

4. Every memory cell can be accessed in one step;

5. Every memory cell can be read from or written to with no errors occurring.

* This research was partially supported by EC Cooperative Action 1C-1000 (project ALTEC: Algorithms for
Future Technologies).

Recently there has been a lot of research done concerning PRAM variants obtained
by dropping or relaxing some of these properties. Asynchronous PRAMs were inves-
tigated in [6, 9, 17, 20]. PRAMs with faulty processors were studied by Kanellakis
and Shvartsman [15] and Kedem et al. [16]. PRAMs with a differentiated cost of ac-
cess to memory were considered by Aggarwal et al. [2] and Gibbons [9]. Valiant [24]
considered the XPRAM model, where processors have a direct access only to their
local memory, and access other cells by passing messages to the respective processors.
There is also a closely related model of distributed memory machine, see a survey
paper by Meyer auf der Heide [8].

Issues of distributed computing with faulty shared memory have been investigated
by Afek et al[1] and Jayanti et al [13]. The problem of exploring the use of randomiza-
tion to tolerate memory failures in synchronous models was posed by Afek et al. [1],
and in asynchronous models with large granularity by Aumann et al. [3].

In this paper we consider a faulty-memory PRAM. Except for possible memory
faults, this model has all the remaining properties of the ideal PRAM: it is fully
synchronized, each shared memory cell can be accessed in one step by any processor,
and the processors are always operational. A read instruction places the read value
in a designated register of the processor, and similarly, a write instruction places the
value stored in a register into the accessed memory word, unless it is faulty. There is a
mechanism to react to errors in read and write operations, as follows. If the accessed
memory word is faulty, then some designated register shows a special "faulty” value,
and the respective processor knows that the attempted instruction failed due to a
memory error.

We present simulation algorithms, which emulate the ideal PRAM on the faulty-
memory machine. They are Monte-Carlo algorithms, that is, they are randomized and
correct with a high probability. More precisely, they always operate within the stated
time bounds, but may produce incorrect results with a small probability.

The rest of the paper is organized as follows. In Section 2, we introduce notations
and concepts, and discuss the models of faults occurrence. The operations of broad-
casting and spreading are described in Section 3. Static faults are handled by the
algorithms A and B presented in Section 4, and dynamic faults by the algorithms C
and D of Section 5. Conclusions and further research are discussed in Section 6.

Proofs of the theorems will be described in the final version.

2 Preliminaries

The PRAM model considered in this paper is the Concurrent-Read Concurrent-Write
(CRCW) one. There are two specific variants used. In Collision, if many (more than
one) processors attempt to write to a memory cell then a special collision symbol gets
written. In Collision™, if many processors attempt to write to a memory cell, then
there are two cases: if all the values of the processors are equal then this common value
gets written, otherewise the collision symbol is written to the cell. The algorithms of
section 3 and 4 are designed for Collision, and of section 4 for Collision™. See [5] for
more on the relative power of these variants of the CRCW PRAM.

We use the following notations. The simulated ideal PRAM is denoted by C;, and
the simulating faulty-memory PRAM by Cp. Two main parameters of a simulation
algorithm are the size of memory and the number of processors. The machine C; has

1 Processors: pi, P2, - - - Pn, and n memory cells: sy, ..., s,. The machine Cr has N
processors: Py, Py, ..., Py, and M memory cells: Sy, ..., Syy—1. The number M is
always assumed to be greater than n. A PRAM cell stores O(log n) bits. A processor
of a PRAM has its own local memory, its cells are referred to as registers. The machine
Cy has O(1) registers per processor. All the registers of processors of Cp are assumed
to be always operational and fully reliable. A processor of Cp has also O(1) registers.
Memory words of Cg are sometimes marked. This means setting some bits of them to
specific values, the remaining bits to be used to simulate memory words of Cj.

There are two criteria by which (shared) memory errors are categorized.

Static versus Dynamic: if certain memory cells have become faulty before a com-
putation starts, and no new faulty cells occur during the course of a computation,
then the errors are static, otherwise the faults are called dynamic.

Deterministic versus Probabilistic: In the probabilistic case, each memory cell
can be faulty with some fixed probability ¢, and any two cells are faulty independently
of each other. In the deterministic version, at most ¢- M memory cells of Cp are faulty,
for a constant parameter ¢, where 0 < ¢ < 1.

These two classifications are independent of each other, and this creates four set-
tings for errors: deterministic static, deterministic dynamic, probabilistic static, and
probabilistic dynamic. These combinations require further explanations. Conceptu-
ally, a setting can be imagined to be created in two steps. First, it is decided which
cells are (potentially) faulty: in the deterministic case by selecting a subset of ¢- M
elements from among the memory cells of Cp, and in the probabilistic setting, by
deciding randomly and independently for each cell, whether it can be faulty. In the
static case, all the selected cells become faulty, and in the dynamic case, it is assumed
that there is an adversary who selects the step of simulation at which a given cell
becomes faulty.

All the algorithms developed in this paper use randomization, and they can han-
dle deterministic errors. They are automatically good against probabilistic memory
failures, and hence probabilistic errors are not discussed as a special case. In what
follows, it is always assumed that the faults are deterministic.

Similar models of error occurrence have been considered in the literature in the
case of faulty processors. Probabilistic and dynamic faults of processors were studied
by Kedem et al. [16] and Diks and Pelc [7]. Martel et al. [17] designed randomized
simulations for deterministic processor errors.

For every presented simulation, the simulating machine Cr has to have the size
of its memory within certain bounds for the simulation to run in the specified time
with a large probability. To express this concisely, the notation g(n) = @*(f(n)) is
used. It means that the inequalities ¢; - f(n) < g(n) < cy- f(n) hold, for a sufficiently
large constant ¢; and ¢y > ¢;. The criterion for being ”sufficiently large” depends on
the context. For instance, if Cp is said to have the memory of size M = @*(f(n)),
then ”sufficiently large ¢;” may be a function of both the constant ¢, determining
on the

the number of faulty memory cells of Cp, and the required bound 1 — n™*

probability.

Simulations are divided into two phases: formatting and the simulation proper.
During formatting the memory is explored and organized, typically to construct a
mechanism to access (some of) the operational memory cells. Then follows the proper
part of simulation, performed in a step-by-step fashion. A step of C; consists of three

parts: reading a memory cell, internal computation, writing to the same memory cell,
and this is mimicked by Cg. The time of formatting is denoted by T}, and the time
of a one-step simulation by T, which is also referred to as the step overhead. The
simulation algorithms are Monte Carlo and no synchronization between consecutive
steps of Cy is needed. So algorithms operating in time ¢ on C; can be simulated on
Cp to run in time Ty 4+ T - t, and be correct with a high probability.

A property @(n) is said to hold with a high probability (abbreviated to whp) if, for
some a > 0, @(n) holds with the probability at least 1 —n~%, for a sufficiently large n.
Throughout the paper, whenever this phrase is used, or the expression 1 —n™ is used
explicitly as a bound on the probability, the value of & can be made arbitrarily large
by manipulating other constants, for instance those involved either in the bounds on
the number of memory cells, or the formatting time, or the step overhead.

3 Broadcasting and Spreading

In this section we consider two tasks that will be often performed during simulations.
Broadcasting propagates a value known by one processor to the other processors.
Spreading distributes logn values, known by logn processors, through the memory
such that every value occupies £2(M/logn) cells.

ALGORITHM BROADCAST-1
Each processor repeats the following two steps ¢; - log n times, for a constant ¢;.

1. If the value v is not known then select randomly a memory cell S and read S. If S
contains v then learn v.

2. If v is known then select randomly a memory cell S and write v to S.

Theorem 1. If N = O(n) and M = O(n) then algorithm BROADCAST-1 operates in
time O(logn) to propagate the value v among all the processors with the probability
1 —n=%, for a > 0. O

The broadcasting algorithm may be also used when M = O(n) does not hold. In this
case each processor performs the body of algorithm BROADCAST-1, that is, its two

steps, O((\/M/N + 1) -log N') times. This algorithm is called BROADCAST-2.

Theorem 2. Algorithm BROADCAST-2 propagates successfully the given value among
all the processors, with the probability 1 — n=?, for a > 0. a

Suppose that processor P; knows value v;, for 1 <1 <logn, where v; # v; for 1 # ;.
Then spreading is accomplished by the following algorithm:

ALGORITHM SPREAD

1. Foreach 1 <1 <logmn, processor P; writes v; into ¢3 log n randomly chosen memory
cells, for a constant c¢,.
2. For each 1 <1 < N, processor P; repeats c3logn times, for a constant cs:

2.1 If no value is known then select randomly a memory cell S and read it; if S
contains v; then learn v;; otherwise

2.2 If some value v; is known then select randomly a memory cell S and write v;

to S.

Theorem3. If N = O(n) and M = O(n) then, after O(logn) steps of algorithm
SPREAD, every v; occurs in {2(n/logn) operational cells with the probability 1 —n=°

Y

for a > 0. a

4 Static Faults

In this section we consider static faults: once a memory cell is checked to be non-faulty,
it is guaranteed to remain such through the whole computation. The first algorithm
is used later as a subroutine. It builds a binary tree over n cells. Once this is done,
the address of the root is made known to every processor, and accessing the ith cell
is performed by traversing the tree to the ith leaf.

ALGORITHM T

1. Each processor P; selects randomly an operational memory cell x;: this is done by
repeatedly reading random memory cells, until such an operational one is found
that is not claimed by other processors. Then P; marks x;.

2. Processor P; broadcasts the address of z; to all the remaining processors.

3. All the processors build a binary tree: First, cell x; is used to store the addresses
of x5 and x3. Then, iteratively, the cell x; is used to store the addresses of x9; and

T2i41-

Lemmad4. ALGORITHM T can be implemented to run successfully in time O(logn)
with the probability 1 — n=%, for a > 0. a

4.1 Algorithm A

Suppose that the simulating machine Cz has N = nlogn processors and M = ©*(n)
memory cells. The presented simulation has O(1)-time step overhead with a high
probability.

Divide the processors of Cg into n groups: Py, Po, ..., P,, each consisting of
log n processors. Group P; is to simulate the ith processor p; of C;. Let U; denote
the memory cell of Cp simulating the [th memory cell s; of C;. To locate U, the
processors in a group compute addresses Dy (1), Ds(l), ..., where the address function
D; is defined as D;(x) = x + d; (mod M), for the numbers d; being random elements
from the interval [0, M — 1]. Only one of these addresses is designated as U, even if
many are of operational memory cells. To visualize the underlying idea, consider the
bipartite graph with edges (z,y), where x is the address of a memory cell in C; and
y is of the form D;(x), and the memory cell with address D;(x) in Cp is operational.
Then a perfect matching in this graph gives a viable addressing scheme on Cg to
simulate C;. For every group P; there is a special memory cell used for inter-processor
communication, denoted by ¢;. There are dlog n address functions, where the number
d is a parameter. The following algorithm initializes the memory such that among the
memory words D;([), for a fixed 1 < j < dlogn, exactly one (operational) is marked

as Uj.

ALGORITHM A (FORMATTING)

1. Processor Py generates dlogn random numbers dy,ds, ..., dqiog» and places them
in the shared memory organized as a list. This is performed by picking memory
cells at random to place consecutive elements of the list.

2. The address of the header of the list is broadcast to all the processors by the
algorithm BROADCAST-1.

3. The processors scan the list, and each processor, which is kth in his group, remem-

bers the kth block of d values in the list.

4. A binary tree with n leaves is built by executing algorithm T. The ¢th leaf is the
communication cell ¢; for group P;.

5. For each 0 < k < m, the kth cell Uy is selected from among the addresses D (k),
Dy(k), ..., Dilogn(k), and marked as such. This is done as follows. First the ad-
dresses D1(1), D1(2), ..., Di(n) are examined, then Dy(1), Dy(2), ..., D2(n), and
so on. For each [, the first D;(l), which is operational and not reserved already
gets marked as U; and then written to ¢; to notify the remaining processors in P;.

In the step simulation, the task is to have the processors in some group P; access a
memory cell Uj.

ALGORITHM A (STEP SIMULATION)

1. Each processor in a group attempts to read the cell with address D;({), for each j
that it learned in Step 3 of formatting.

2. The processor that accessed the cell designated as U; writes its address to ¢;.
3. The remaining processors in P; read ¢; and then access U;.

Theorem 5. Algorithm A can be implemented in such a way that the time of for-
matting is Ty = O(logn) with the probability 1 — n=, and, once the formatting is
successful, the step overhead is Ty = O(1). O

4.2 Algorithm B

Let the simulating PRAM Cp have N = n/logn processors and M = ©@*(n) shared-
memory cells. The algorithm B has O(log n)-time step overhead, which is optimal for
the available number of processors.

Suppose that M = ¢ps - n, for a constant ¢y > 0. Divide ¢jr - n memory cells into
contiguous blocks of 3 - k cells, where & = logn + /logn + 1 and 3 > 1. A block
containing at least k operational cells is said to be good. The following inequality
estimates the number [of such blocks:

5y prBl-g-D1 o Bl-g -]
- Bk(k(B-1)+1) ~ BlR(B—=1)+1)

Choose ¢y and [in such a way that the inequality [> n/logn holds. The first
n/logn good blocks By, B, ..., are used to simulate the memory of C;. A block

B; consists of the root r(1), v/logn auxiliary cells, and logn normal cells. Auxiliary
cells are interspersed among normal cells and partition them into groups of y/logn
elements. The jth normal cell of B; simulates the cell -logn + 5 of C;. The bits of the
root of a block are divided into \/Togn fields Fy, I, ..., a field F; stores the offset of
the jth auxiliary cell in the block. Similarly, an auxiliary cell has its bits divided into
V1og n fields to store offsets of the next y/log n normal cells. The offset of an auxiliary
cell = is the number of cells between the beginning of the block and z; and for a normal
cell y, the offset of y is the number of cells between y and the auxiliary memory cell
closest to the left. Notice that an offset is a number of size O(log n), hence it requires
loglog n 4+ O(1) bits to be stored. Since a memory word is assumed to be able to store
O(log n) bits, all the offsets fit into the roots and auxiliary cells. Given the address of
a root r(7), the jth normal cell in B; can be accessed in time O(1) by first locating
the respective auxiliary cell, and then the normal cell. To this end, the fields of root
and the respective auxiliary cell are extracted by applying standard arithmetic and
boolean bit operations. We show next how to make the roots accessible in time O(1)
with a high probability. The address functions Dy, Dy, ... are defined similarly as in
algorithm A, the number d is a parameter.

ALGORITHM B (FORMATTING)

1. The blocks are divided into N = n/logn groups. Processor P; counts the number
of good blocks in the i¢th group.

2. A binary tree of M/3logn leaves is built by executing algorithm 7. The tree is
used next to assign consecutive numbers to good blocks as in the parallel prefix
algorithm.

3. Processor P; sets the root and the auxiliary cells in block B; to their proper values.

4. Processor Py generates a list of dlog n random numbers dy, . .., dj10g» and organizes
them as a list, similarly as in algorithm A.

5. Processor P; evaluates the address functions D;(¢),..., Djiogn(2). For every [, if
the cell D;(7) is operational and unmarked, then P; marks it and sets to store a
pointer to the root r(i).

6. Each processor P; creates a list of logn memory cells to store the contents of
registers of the processors that it is to simulate.

ALGORITHM B (STEP SIMULATION)

Each processor P; simulates log n processors of C;. The contents of registers are
stored in the list that P; built in the last step of formatting. P; scans the list
and retrieves the addresses a1, x4, ... of memory cells that need to be accessed.
To locate w1, processor P; tries addresses D1 (i1), Ds(i1), ..., D¢, (i1), where ¢y is
the number of block containing x;. The search terminates when a memory cell
with a pointer to the root is found. Then P, is able to access x1 in time O(1).
Processor P; continues with Dy, +1(i2), Dy, 42(12), - . ., Dy, (i2), terminating when
a pointer to the second root is found. The remaining addresses are processed
similarly, each time starting with the first unused yet address function.

Theorem 6. Algorithm B can be implemented in such a way that the time of format-
ting is equal to Ty = O(log?’/2 n) with the probability 1 — n=", and the step overhead
is Ts = O(logn), with the probability 1 — n= for each step, for a > 0. O

5 Dynamic Faults

Dynamic faults are more challenging. In such a setting some form of duplication or
dispersal of information stored in the memory of Cg is inevitable, since a memory
cell storing useful information may turn out to be faulty at any time. To simplify
the presentation and analysis, we assume that a memory word of Cyr may store the
contents of several words of Cj.

5.1 Algorithm C

Let the simulating PRAM have N = nlog’n processors and M = ©*(nlogn)
memory cells. We present a simulation that has a O(1)-time step overhead.

The number d is a parameter. To simplify the notation, assume rather that there
are exactly N = d?-n-log? n processors of Cp. Divide these processors into n groups Py,

.., P, of d*-log? n processors. Divide each group P; into subgroups P;; of d - logn

elements. The task of P; is to simulate the processor p; of C;. It is assumed that,
when the simulation starts, all the processors from group P; know the initial state of
processor p;. In the course of the simulation, typically only a fraction of processors
in every group P; know the current state of p;, these processors are called informed.
Each informed processor knows that it is informed, otherwise it is aware that it is
not. After the computation of C; terminates, it may still take some time for all the
processors of Cp to get informed. This time period is called the termination delay.

ALGORITHM C (FORMATTING)

1. The processors generate d - log n random numbers d; in [0, M — 1].

2. The numbers d; are distributed through the shared memory by executing the
algorithm SPREAD on O(nlogn) processors.

3. Each processor Py makes O(logn) attempts to learn some of the numbers d; by
reading memory cells selected at random. It stores the first r = O(1) of them,
denote the respective address functions by D¥, ..., D*. The number r is called a
fan, and is a parameter of the algorithm. If the processor is in P; ; and it happens
to get to know d;, then it stores d;.

4. Steps 1 through 3 are repeated, for a new set of d - logn numbers denoted g;.

Processor Py, learns the functions Gf, ..., G*.

In Step 2, notice that whp there are only O(1) pairs ¢ # j such that d; = d;,
so Theorem 3 still holds. The generated random numbers define address functions
D;(z) = x + d; (mod M), and G;(x) = x + ¢g; (mod M). A memory cell D;(x) (G;(x),
resp.) which is operational and such that its number is the value of only one of the
functions D or G for exactly one argument is said to be D-useful (G-useful, resp.).
D-useful cells simulate cells of C; , G-useful cells are used by groups of processors for

communication. We can mark each written value with the number of the simulated

cell, in the case of D-usefulness, or of the processor group, in the case of G-usefulness.

Then a cell can be verified as not being D-useful or G-useful if it is either not opera-

tional or contains the collision symbol or does not contain the correct number.
Suppose that p; needs to access s; in the current step.

ALGORITHM C (STEP SIMULATION)

1. (Read) If a processor Py in P; is informed, that is, Py knows [, then it attempts
to read the memory cells D¥(1), ..., D¥(1).

2. If a processor Py in P, ; succeeded in Step 1 (that is, read at least one D-useful
cell), and Py knows g;, then Pj writes the contents of its registers to G (7).

3. If a processor Py in P, ; failed to read from an operational memory cell in Step 1
(during this iteration, or in one of the previous iterations and has not succeeded
in Step 3 since then) then it attempts to read (at least one of) G5(i), ..., G*(2).

4. If a processor Py in P; failed in Steps 1 and 3, then it selects a memory cell €' at
random and attempts to read it. If (' stores a number g,, then P attempts to
read G,(i). If the state of computation stored there means termination, then Py
stops.

5. (Write) If a processor Py in P;; succeeded in either Step 1 or Step 3, then it first
performs the internal computation of C;, and next writes to D;({).

Denote D(x) ={D;(x): 1 <i < dlogn}, for 0 <a <n—1,and define G(x) similarly.

Lemma7. There are at least ﬁ%l ~dlogn + 1 cells in D(x) that are D-useful, with
the probability 1 —n=%, for o > 0, for a sufficiently large M = ©*(nlogn). The same
fact holds for G(x). O

Let G = (A, B,FE) be a bipartite graph, where F is the set of edges connecting
elements of A and B. Graph (is said to have the (v, 3) weak-expansion property, for
0 <~v,08 < 1,if, for every set X C A such that |X| > v|A|, the set I'(X) = {y €
B : (x,y) € E} satisfies |I'(X)| > 5|B|. We will consider specific bipartite graphs
defined as follows: A =P; ;, B = D(x), there is an edge connecting a processor P in A
with D (2) iff D, is among the address functions known by P after formatting. This
graph is denoted D, ;. A similar graph G, ; is defined as follows: A =P; ;, B = G/(1),
there is an edge connecting a processor P in A with G,(7) iff G, is among the address
functions known by P after formatting.

Lemmag&. Graphs D,;; and G;; have the (v,3) weak-expansion property, for any
0 <~v,8 <1, with the probability at least 1 — n™, for o > 0 and a sufficiently large
fan r. O

The performance of algorithm C is estimated in the following theorem:

Theorem 9. Algorithm C has the formatting time Ty = O(logn), the step overhead
Ts = O(1), and the termination delay O(logn), all with the probability at least 1 —n=,
for a > 0. a

5.2 Algorithm D

Suppose that Cp has N = n processors and M = ©*(n) memory cells. To be specific,
M = ¢pr - n. It is assumed that all the processors of Cp know a primitive element of
GF(u), where u > logn/loglogn is a power of 2. During a simulation, the contents
of a memory cell of C; are encoded, divided into pieces, and then distributed among
dlog n memory cells of Cp, for a constant parameter d. The numbers a and ¢ are also
parameters.

ALGORITHM D (FORMATTING)

1. Processors P; generate dlog n random numbers d; in [0, M — 1], and a log n random
numbers a; in [0, M — 1].

2. The numbers a; are distributed in the memory by executing SPREAD.

3. Each processor P;, for 1 <1 < dlogn, repeats clogn times of the following two
steps: select randomly memory cell and read it; if a; was read then write d; to the

cell number (a; +¢) mod M.

We recall some facts from the theory of error correcting codes, consult [4, 19] for more
information. Let (' be sequence of codes C' = Cy...C,, ..., where C,, C X", for some
alphabet X of size s. Let C,(j) denote the jth codeword of code C,. C is called
asymptotically good if the lengths n, sizes M, = |C,|, dimensions m, = |log, M, |
and minimum Hamming distances d,, of codewords from (), satisfy the following:
the rate of the sequence R = liminf, ., “=, and the relative minimum distance
60 = liminf, . %" are both strictly greater then zero. By the Gilbert-Varshamov
bound (see [4, 19]), for any & € [0,1 — 1), there exists an asymptotically good code
such that R > 0, that is, R > 1— H,(d), where Hy(z) = —alog, x—(1—z)log, (1 — 2)+
zlog (s — 1). It is also known, see [19], that for n = s — 1 there exist codes, called
Reed-Solomon (or simply RS) codes, with § > 1 — R. These codes can be quickly
encoded and decoded, and are used in our algorithm. We apply a technique called
”concatenation” of codes, in which the final code is obtained by first encoding by a
code with a large alphabet size (outer code), and then encoding each symbol using
another code (inner code). Notice that if a code), has the minimum distance d,
then it can correct n. erasures (eliminations of symbols) and n. errors (changes of
symbols) provided that 2n. + n. < d,. Suppose that processor P needs to simulate
the instruction of writing some value w of logn bits into s;. The following is a high
level description of the algorithm. Coding and decoding need to be performed as bit
operations on words. The details will be given in the final version.

ALGORITHM D (STEP SIMULATION, WRITE)

1. Divide the word w into blocks w;q, ws, ... of logu consecutive bits and encode it
as v1,Vg,. .. by the RS code over G F(u) with a relative minimum distance 3, for a
suitable 3.

2. Encode each v; by a suitable asymptotically good code C'.

3. Let k = [l/log n]. Attempt to store the consecutive symbols of the word C'(vy), C(vz). ..
in Dyi(k), Da(k), ..., on the position [mod logn. In every trial select » = O(1)

algorithmlerrors |#processorsimemory sizelformatting time(step overhead
A static |nlogn O*(n) O(logn) O(1)

B static |n/logn O*(n) O(log™? n) O(logn)

C dynamic|n log” n O*(nlogn) |O(logn) O(1)

D dynamic|n O*(n) O(logn) O(logn)

Table 1. A comparison of the four simulations developed, in terms of their resources
available and time performance. For the definition and explanation of notation @* see
section 2.

random cells. If a value a; was found, try to read d; from a cell number (a; + 7)

mod M.

ALGORITHM D (STEP SIMULATION, READ)

1. As in Step 3 of the write part, read the cells Dy(k), Dy(k) ... and form a sequence
of codewords zy, z3 ... (possibly with errors and erasures).

2. Decode every z;.
3. Apply the RS decoding algorithm to the sequence obtained in Step 2.

The performance of algorithm D is estimated by the following theorem:

Theorem 10. Algorithm D can be implemented in such a way that the formatting
time Ty and the step overhead Ty are both O(logn), with the probability 1 — n=%, for
a > 0. O

6 Remarks

Four simulations of an ideal fully-reliable PRAM on a faulty-memory PRAM have
been developed. Two settings of error occurrence are considered: static and dynamic.
Given the kind of errors, there are two parameters of simulations: the number of
processors, and the size of memory of the simulating PRAM. The performance of
a simulation is measured by the formatting time and the step overhead. All this
information is collected in Table 1. The simulation B is close to optimal, in the sense
that the work done after formatting is O(n - t), where ¢ is the time of the simulated
algorithm on Cj. In general, the optimality of the presented algorithms, for the given
resources, is an open problem. One could set some of the performance measures as
targets, and try to minimize the other ones. Our choice was to design O(1)-time and
O(log n)-time step-overhead simulations while minimizing the formatting time, the
number of processors and the size of the shared memory. It seems that the time cost
of any simulation must be at least logarithmic, and proving such a lower bound would
be interesting. The data compiled in Table 1 are consistent with this hypothesis, since
the two rightmost columns contain at least one logarithm in every row.

There is an alternative method to algorithm D in which the information dispersal
of Rabin [21] is used instead of the RS codes and asymptotically good codes. It requires
log n registers per processor to have a time performance comparable to algorithm D.

All the algorithms described in this paper can be adapted to a situation when the
simulated PRAM has m > n memory cells, where n is the number of processors.
Then the time of a simulation of one step remains the same, and the formatting time
is multiplied by at most O(m/n). By checking the correctness of computations after
each simulated step, the presented algorithms may be converted to be Las Vegas.
Such checking may be performed by counting all the processors that performed the
simulation correctly. Details will be presented in the full version of this paper.

This research is in the line of studying the PRAM model with weaker properties
than the classical ideal version, for instance by allowing faults in hardware. We con-
centrated on the CRCW PRAM. It would be interesting to study weaker models, like
CREW or EREW, and also the case when both the processors and memory cells may
be faulty.

References

1. Y. Afek, D.S. Greenberg, M. Merrit, and G.Taubenfeld, Computing with Faulty Shared Memory,
Proc. 11th Ann. Symposium on Principles of Distributed Computing (1992), 47-58.

2. A. Aggarwal, A K. Chandra, and M. Snir, On Communication Latency in PRAM Computations,
Proc. 1st Ann. ACM Symposium on Parallel Algorithms and Architectures (1989), 11-21.

3. Y. Aumann, Z.M. Kedem, K.V. Palem, and M.O. Rabin, Highly Efficient Asynchronous Ex-
ecution of Large-Grained Parallel Programs, Proc. 34th Ann. Symposium on Foundations of

Computer Science (1993), 271-280.

4. N. Alon, J. Bruck, J. Naor, M. Naor, and R.M. Roth, Construction of Asymptotically Good
Low-Rate Error-Correcting Codes through Pseudo-Random Graphs, IEEE Trans. Inf. Theory,
38 (1992), 509-516.

5. B.S. Chlebus, K. Diks, T. Hagerup, and T. Radzik, New Simulations between CRCW PRAMs,
Proc. 7th International Conference on Fundamentals of Computation Theory (1989), 95-104,
Springer LNCS 380.

6. R. Cole, and O. Zajicek, The APRAM: Incorporating Asynchrony into the PRAM Model, Proc.
2nd Ann. ACM Symposium on Parallel Algorithms and Architectures (1990), 158-168.

7. K. Diks, and A. Pelc, Reliable Computations on Faulty EREW PRAM, manuscript, 1993.

8. F. Meyer auf der Heide, Hashing Strategies for Simulating Shared Memory on Distributed Mem-
ory Machines, Proc. of the 1st Heinz Nixdorf Symposium ”Parallel Architectures and their Effi-
cient Use,” (1992), 20-29, Springer LNCS 678.

9. P.B. Gibbons, A More Practical PRAM Model, Proc. 2nd Ann. ACM Symposium on Parallel
Algorithms and Architectures (1990), 169-178.

10. A.M. Gibbons and W. Rytter, ” Efficient Parallel Algorithms,” Cambridge University Press, 1988.

11. T. Hagerup and Ch. Rib, A Guided Tour of Chernoff Bounds, Inf. Proc. Letters 33 (1989/90),
305-308.

12. J&J4, ” An Introduction to Parallel Algorithms,” Addison-Wesley, 1992.

13. P. Jayanti, T.D. Chandra, and S. Toueg, Fault-tolerant Wait-free Shared Objects, Proc. 33rd
Ann. Symposium on Foundations of Computer Science (1992), 157-166.

14. J. Justesen, On the Complexity of Decoding Reed-Solomon Codes, IEEE Trans. Inf. Theory, 22
(1976), 237-238.

15. P.C. Kanellakis and A.A. Shvartsman, Efficient Parallel Algorithms Can Be Made Robust, Dis-
tributed Computing, 5 (1992), 201-217.

16.

17.

18.

19.

20.

21.

22.

23.

24.

7Z.M. Kedem, K.V. Palem, and P.G. Spirakis, Efficient Robust Parallel Computations, Proc. 22nd
ACM Symp. on Theory of Computing (1990), 138-148.

Ch. Martel, R. Subramonian, and A. Park, Asynchronous PRAMs Are (Almost) as Good as
Synchronous PRAMs, Proc. 31st Ann. Symposium on Foundations of Computer Science (1990),
590-599.

Mc Diarmid, On the Method of Bounded Differences, in J. Siemon, ed., ”Surveys in Combina-
torics,”, 148 - 188, Cambridge University Press, 1989, London Math. Soc. Lecture Note Series
141.

F.J. MacWilliams, and N.J.A Sloane, ” The Theory of Error-Correcting Codes,” North-Holland,
1977.

N. Nishimura, Asynchronous Shared Memory Parallel Computation, Proc. 1st Ann. ACM Sym-
posium on Parallel Algorithms and Architectures (1989), 76-84.

M.O. Rabin, Efficient Dispersal of Information for Security, Load Balancing, and Fault Tolerance,
Journal of ACM, 36 (1989), 335-348.

D.V. Sarwate, On the Complexity of Decoding Goppa Codes, IEEE Trans. Inf. Theory, 23 (1976),
515-516.

Y. Sugiyama, M. Kosahara, S. Hirasawa, and T. Namekawa, An Erasures and Error Decoding

Algorithm for Goppa Codes, IEEE Trans. Inf. Theory, 22 (1976), 238-241.

L.G. Valiant, General Purpose Parallel Architectures, in J. van Leeuwen, ed., ”Handbook of
Theoretical Computer Science,” vol. A, 943-971, Elsevier, 1990.

This article was processed using the ITEX macro package with LLNCS style

