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tDespite the signi�
ant progress in multiagent teamwork, existing resear
h does not ad-dress the optimality of its pres
riptions nor the 
omplexity of the teamwork problem. With-out a 
hara
terization of the optimality-
omplexity tradeo�s, it is impossible to determinewhether the assumptions and approximations made by a parti
ular theory gain enougheÆ
ien
y to justify the losses in overall performan
e. To provide a tool for use by mul-tiagent resear
hers in evaluating this tradeo�, we present a uni�ed framework, the COM-muni
ative Multiagent Team De
ision Problem (COM-MTDP). The COM-MTDP model
ombines and extends existing multiagent theories, su
h as de
entralized partially observ-able Markov de
ision pro
esses and e
onomi
 team theory. In addition to their generalityof representation, COM-MTDPs also support the analysis of both the optimality of teamperforman
e and the 
omputational 
omplexity of the agents' de
ision problem. In analyz-ing 
omplexity, we present a breakdown of the 
omputational 
omplexity of 
onstru
tingoptimal teams under various 
lasses of problem domains, along the dimensions of observ-ability and 
ommuni
ation 
ost. In analyzing optimality, we exploit the COM-MTDP'sability to en
ode existing teamwork theories and models to en
ode two instantiations ofjoint intentions theory taken from the literature. Furthermore, the COM-MTDP modelprovides a basis for the development of novel team 
oordination algorithms. We derive adomain-independent 
riterion for optimal 
ommuni
ation and provide a 
omparative anal-ysis of the two joint intentions instantiations with respe
t to this optimal poli
y. We haveimplemented a reusable, domain-independent software pa
kage based on COM-MTDPs toanalyze teamwork 
oordination strategies, and we demonstrate its use by en
oding andevaluating the two joint intentions strategies within an example domain.1. Introdu
tionA 
entral 
hallenge in the 
ontrol and 
oordination of distributed agents is enabling themto work together, as a team, toward a 
ommon goal. Su
h teamwork is 
riti
al in a vastrange of domains|for future teams of orbiting spa
e
raft, sensors for tra
king targets, un-manned vehi
les for urban battle�elds, software agents for assisting organizations in rapid
risis response, et
. Resear
h in teamwork theory has built the foundations for su

essfulpra
ti
al agent team implementations in su
h domains. On the forefront are theories basedon belief-desire-intentions (BDI) frameworks, su
h as joint intentions (Cohen & Levesque,1991b, 1991a; Levesque, Cohen, & Nunes, 1990), SharedPlans (Grosz, 1996; Grosz & Kraus,1996; Grosz & Sidner, 1990), and others (Sonenberg, Tidhar, Werner, Kinny, Ljungberg,& Rao, 1994; Dunin-Kepli
z & Verbrugge, 1996), that have provided pres
riptions for 
o-
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Pynadath & Tambeordination in pra
ti
al systems. These theories have inspired the 
onstru
tion of pra
ti-
al, domain-independent teamwork models and ar
hite
tures (Jennings, 1995; Pynadath,Tambe, Chauvat, & Cavedon, 1999; Ri
h & Sidner, 1997; Tambe, 1997; Yen, Yin, Ioerger,Miller, Xu, & Volz, 2001), su

essfully applied in a range of 
omplex domains.Yet, two key short
omings limit the s
alability of these BDI-based theories and imple-mentations. First, there are no te
hniques for the quantitative evaluation of the degree ofoptimality of their 
oordination behavior. While optimal teamwork may be impra
ti
al inreal-world domains, su
h analysis would aid us in 
omparison of di�erent theories/modelsand in identifying feasible improvements. One key reason for the diÆ
ulty in quantitativeevaluation of most existing teamwork theories is that they ignore the various un
ertain-ties and 
osts in real-world environments. For instan
e, joint intentions theory (Cohen &Levesque, 1991b) pres
ribes that team members attain mutual beliefs in key 
ir
umstan
es,but it ignores the 
ost of attaining mutual belief (e.g., via 
ommuni
ation). Implementa-tions that blindly follow su
h pres
riptions 
ould engage in highly suboptimal 
oordination.On the other hand, pra
ti
al systems have addressed 
osts and un
ertainties of real-worldenvironments. For instan
e, STEAM (Tambe, 1997; Tambe & Zhang, 1998) extends jointintentions with de
ision-theoreti
 
ommuni
ation sele
tivity. Unfortunately, the very prag-matism of su
h approa
hes often ne
essarily leads to a la
k of theoreti
al rigor, so it remainsunanswered whether STEAM's sele
tivity is the best an agent 
an do, or whether it is evenne
essary at all. The se
ond key short
oming of existing teamwork resear
h is the la
kof a 
hara
terization of the 
omputational 
omplexity of various aspe
ts of teamwork de
i-sions. Understanding the 
omputational advantages of a pra
ti
al 
oordination pres
ription
ould potentially justify the use of that pres
ription as an approximation to optimality inparti
ular domains.To address these short
omings, we propose a new 
omplementary framework, the COM-muni
ative Multiagent Team De
ision Problem (COM-MTDP), inspired by work in e
o-nomi
 team theory (Mars
hak & Radner, 1971; Yoshikawa, 1978; Ho, 1980). While ourCOM-MTDP model borrows from a theory developed in another �eld, we make several
ontributions in applying and extending the original theory, most notably adding expli
itmodels of 
ommuni
ation and system dynami
s. With these extensions, the COM-MTDPgeneralizes other re
ently developed multiagent de
ision frameworks, su
h as de
entralizedPOMDPs (Bernstein, Zilberstein, & Immerman, 2000).Our de�nition of a team (like that in e
onomi
 team theory) assumes only that teammembers have a 
ommon goal and that they work sel
essly towards that goal (i.e., theyhave no other private goals of their own). In terms of our de
ision-theoreti
 framework, weassume that all of the team members share the same joint utility fun
tion|that is, ea
hteam member's individual preferen
es are exa
tly the preferen
es of the other members and,thus, of the team as a whole. Our de�nition may appear to be a \bare-bones" de�nition ofa team, sin
e it does not in
lude 
ommon 
on
epts and assumptions from the literature onwhat 
onstitutes a team (e.g., the teammates form a joint 
ommitment (Cohen & Levesque,1991b), attain mutual belief upon termination of a joint goal, intend that teammates su
-
eed in their tasks (Grosz & Kraus, 1996), et
.). From our COM-MTDP perspe
tive, weview these 
on
epts as more intermediate 
on
epts, as the means by whi
h agents improvetheir team's overall performan
e, rather than ends in themselves. Our hypothesis in thisinvestigation is that our COM-MTDP-based analysis 
an provide 
on
rete justi�
ations for390
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ative Multiagent Team De
ision Problemthese 
on
epts. For example, while mutual belief has no inherent value, our COM-MTDPmodel 
an quantify the improved performan
e that we would expe
t from a team thatattains mutual belief about important aspe
ts of its exe
ution.More generally, this paper demonstrates three new types of teamwork analyses madepossible by the COM-MTDP model. First, we analyze the 
omputational 
omplexity ofteamwork within sub
lasses of problem domains. For instan
e, some resear
hers have ad-vo
ated teamwork without 
ommuni
ation (Goldberg & Matari
, 1997). We use the COM-MTDP model to show that, in general, the problem of 
onstru
ting optimal teams without
ommuni
ation is NEXP-
omplete, but allowing free 
ommuni
ation redu
es the problemto be PSPACE-
omplete. This paper presents a breakdown of the 
omplexity of optimalteamwork over problem domains 
lassi�ed along the dimensions of observability and 
om-muni
ation 
ost.Se
ond, the COM-MTDP model provides a powerful tool for 
omparing the optimalityof di�erent 
oordination pres
riptions a
ross 
lasses of domains. Indeed, we illustrate thatwe 
an en
ode existing team 
oordination strategies within a COM-MTDP for evaluation.For our analysis, we sele
ted two joint intentions-based approa
hes from the literature: oneusing the approa
h realized within GRATE* and the joint responsibility model (Jennings,1995), and another based on STEAM (Tambe, 1997). Through this en
oding, we derive the
onditions under whi
h these team 
oordination strategies generate optimal team behavior,and the 
omplexity of the de
ision problems addressed by them. Furthermore, we alsoderive a novel team 
oordination algorithm that outperforms these existing strategies inoptimality, though not in eÆ
ien
y. The end result is a well-grounded 
hara
terization ofthe 
omplexity-optimality tradeo� among various means of team 
oordination.Third, we 
an use the COM-MTDP model to empiri
ally analyze a spe
i�
 domain ofinterest. We have implemented reusable, domain-independent algorithms that allow one toevaluate the optimality of the behavior generated by di�erent pres
riptive poli
ies within aproblem domain represented as a COM-MTDP. We apply these algorithms in an exampledomain to empiri
ally evaluate the aforementioned team 
oordination strategies, 
hara
-terizing the optimality of ea
h strategy as a fun
tion of the properties of the underlyingdomain. For instan
e, Jennings reports experimental results (Jennings, 1995) indi
atingthat his joint responsibility teamwork model leads to lower waste of 
ommunity e�ort than
ompeting methods of a

omplishing teamwork. With our COM-MTDP model, we wereable to demonstrate the bene�ts of Jennings' approa
h under many 
on�gurations of our ex-ample domain. However, in pre
isely 
hara
terizing the types of domains that showed su
hbene�ts, we also identi�ed domains where these 
ompeting methods may a
tually performbetter. In addition, we 
an use our COM-MTDP model to re-
reate and explain previouswork that noted an instan
e of suboptimality in a STEAM-based, real-world implementa-tion (Tambe, 1997). While this previous work treated that suboptimality as anomalous, ourCOM-MTDP re-evaluation of the domain demonstrated that the observed suboptimalitywas a symptom of STEAM's general propensity towards extraneous 
ommuni
ation in asigni�
ant range of domain types. Both the algorithms and the example domain model areavailable for publi
 use in an Online Appendix 1.Se
tion 2 presents the COM-MTDP model's representation and pla
es it in the 
ontextof related multiagent models from the literature. Se
tion 3 uses the COM-MTDP model tode�ne and 
hara
terize the 
omplexity of designing optimal agent teams. Se
tion 4 analyzes391



Pynadath & Tambethe optimality of existing team 
oordination algorithms and derives a novel 
oordinationalgorithm. Se
tion 5 presents empiri
al results from applying our COM-MTDP algorithmsto an example domain. Se
tion 6 summarizes our results, and Se
tion 7 identi�es somepromising future dire
tions.2. The COM-MTDP ModelThis se
tion de�nes and des
ribes the COM-MTDP model itself and its ability to representthe important aspe
ts of multiagent teamwork. We begin in Se
tion 2.1 by de�ning theunderlying multiagent team de
ision problem with no expli
it 
ommuni
ation. Se
tion 2.2de�nes the 
omplete COM-MTDP model with its extension to expli
itly represent 
ommu-ni
ation. Se
tion 2.3 provides an illustration of how the COM-MTDP model represents theexe
ution of a team of agents. Finally, Se
tion 2.4 des
ribes related models of multiagent
oordination and shows how the COM-MTDP model generalizes them.2.1 Multiagent Team De
ision ProblemsGiven a team of sel
ess agents, �, who intend to perform some joint task, we wish to evaluatepossible poli
ies of behavior. We represent a multiagent team de
ision problem (MTDP)model as a tuple, hS;A�; P;
�;O�;B�; Ri. We have taken the underlying 
omponents ofthis model from the initial team de
ision model (Ho, 1980), but we have extended them tohandle dynami
 de
isions over time and to more easily represent multiagent domains (inparti
ular, agent beliefs). We assume that the model is 
ommon knowledge to all of theteam members. In other words, all of the agents believe the same model, and they believethat they all believe the same model, et
.2.1.1 World States: S� S = �1 � � � � � �m: a set of world states, expressed as a fa
tored representation (a
ross produ
t of separate features).The state of the world here is the state of the team's environment (e.g., terrain, lo
ation ofenemy). Thus, ea
h �i represents the domain of an individual feature of that environment,while S represents the domain of all possible 
ombinations of values over the individualfeatures.2.1.2 Domain-Level A
tions: A�fAigi2� is a set of a
tions for ea
h agent to perform to 
hange its environment, impli
itlyde�ning a set of 
ombined a
tions, A� �Qi2�Ai (
orresponding to team theory's de
isionvariables).Extension to Dynami
 Problem: P The original team de
ision problem fo
used ona one-shot, stati
 problem. We extend the original 
on
ept so that ea
h 
omponent is atime series of random variables. The e�e
ts of domain-level a
tions (e.g., a 
ying a
tion
hanges a heli
opter's position) obey a probabilisti
 distribution, given by a fun
tion P :S �A� � S ! [0; 1℄. In other words, for ea
h initial state s at time t, 
ombined a
tion a392



The Communi
ative Multiagent Team De
ision Problemtaken at time t, and �nal state s0 at time t+ 1, Pr(St+1 = s0jSt = s;At� = a) = P (s;a; s0).The given de�nition of P assumes that the world dynami
s obey the Markov assumption.2.1.3 Agent Observations: 
�f
igi2� is a set of observations that ea
h agent, i, 
an experien
e of its world, impli
itlyde�ning a 
ombined observation, 
� � Qi2� 
i. 
i may in
lude elements 
orrespondingto indire
t eviden
e of the state (e.g., sensor readings) and a
tions of other agents (e.g.,movement of other heli
opters). In the original team-theoreti
 framework, the informationstru
ture that represented the observation pro
ess of the agents was a set of deterministi
fun
tions, Oi : S ! 
i.Extension of Allowable Information Stru
tures: O� We extend the informationstru
ture representation to allow for un
ertain observations. We use a general sto
hasti
model, borrowed from the partially observable Markov de
ision pro
ess model (Smallwood &Sondik, 1973), with a joint observation fun
tion: O�(s;a;!) = Pr(
t� = !jSt = s;At�1� =a). This fun
tion models the sensors, representing any errors, noise, et
. In some 
ases, we
an separate this joint distribution into individual observation fun
tions: O� � Qi2�Oi,where Oi(s;a; !) = Pr(
ti = !jSt = s;At�1� = a). Thus, the probability distributionspe
i�ed by O� forms the ri
her information stru
ture used in our model. We 
an makeuseful distin
tions between di�erent 
lasses of information stru
tures:Colle
tive Partial Observability This is the general 
ase, where we make no assump-tions on the observations.Colle
tive Observability There is a unique world state for the 
ombined observations ofthe team: 8! 2 
�, 9s 2 S su
h that 8s0 6= s, Pr(
t� = !jSt = s0) = 0. The setof domains that are 
olle
tively observable is a stri
t subset of the domains that are
olle
tively partially observable.Individual Observability There is a unique world state for ea
h individual agent's ob-servations: 8! 2 
i, 9s 2 S su
h that 8s0 6= s, Pr(
ti = !jSt = s0) = 0. The setof domains that are individually observable is a stri
t subset of the domains that are
olle
tively observable.Non-Observability The agents re
eive no feedba
k from the world: 9! 2 
i, su
h that8s 2 S and 8a 2 A�, Pr(
ti = !jSt = s;At�1� = a) = 1. This assumption holdsin open-loop systems, whi
h 
ome under frequent 
onsideration in 
lassi
al plan-ning (Boutilier, Dean, & Hanks, 1999).2.1.4 Poli
y (Strategy) Spa
e�iA is a domain-level poli
y (or strategy, in the original team theory spe
i�
ation) to mapan agent's belief state to an a
tion. In the original formalism, the agent's beliefs 
orresponddire
tly to its observations (i.e., �iA : 
i ! Ai).Extension to Ri
her Belief State Spa
e: B� We generalize the set of possible strate-gies to 
apture the more 
omplex mental states of the agents. Ea
h agent, i 2 �, forms abelief state, bti 2 Bi, based on its observations seen through time t, where Bi 
ir
ums
ribes393



Pynadath & Tambethe set of possible belief states for the agent. Thus, we de�ne the set of possible domain-level poli
ies as mappings from belief states to a
tions, �iA : Bi ! Ai. We de�ne the setof possible 
ombined belief states over all agents to be B� � Qi2�Bi. The 
orrespondingrandom variable, bt�, represents the agents' 
ombined belief state at time t. We elaborateon di�erent types of belief states and the mapping of observations to belief states (i.e., thestate estimator fun
tion) in Se
tion 2.2.1.2.1.5 Reward Fun
tion: RA 
ommon reward fun
tion is 
entral to the notion of teamwork in a MTDP: R : S�A� !R. This fun
tion represents the team's joint preferen
es over states and the 
ost of domain-level a
tions (e.g., destroying enemy is good, returning to home base with only 10% oforiginal for
e is bad). We assume that, as sel
ess team members, ea
h agent shares thesepreferen
es at the individual level as well. Therefore, ea
h team member wants exa
tlywhat is best for the team as a whole.2.2 Extension for Expli
it Communi
ation: ��We make an expli
it separation between domain-level a
tions (A�) and 
ommuni
ativea
tions. As de�ned in this se
tion, 
ommuni
ative a
tions a�e
t the re
eiving agents' indi-vidual belief states, but, unlike domain-level a
tions, they do not dire
tly 
hange the worldstate. Although this distin
tion is sometimes blurry in real-world domains, we make thisexpli
it separation so as to isolate, as mu
h as possible, the e�e
ts of the two types ofa
tions. The leverage gained from this separation provides the basis for the informative,analyti
al results presented in the rest of this paper. To 
apture this separation, we extendour initial MTDP model to be a 
ommuni
ative multiagent team de
ision problem (COM-MTDP), that we de�ne as a tuple, hS;A�;��; P;
�;O�;B�; Ri, with a new 
omponent,��, and an extended reward fun
tion, R.2.2.1 Communi
ation: ��f�igi2� is a set of possible messages for ea
h agent, impli
itly de�ning a set of 
ombined
ommuni
ations, �� � Qi2� �i. An agent, i, may 
ommuni
ate message x 2 �i to itsteammates, who interpret the 
ommuni
ation by updating their belief states in response. Asa �rst step in this work, we assume that all of the agents re
eive the messages instantaneouslyand 
orre
tly (i.e., there is no lag or noise in the 
ommuni
ation 
hannels). This model is
ommon knowledge among all of the team members, so on
e an agent has sent a message,it knows that its team members have re
eived the message, and its team members knowthat it knows that they have all re
eived the message, and so on.With 
ommuni
ation, we divide ea
h de
ision epo
h into two phases: the pre-
ommuni-
ation and post-
ommuni
ation phases, denoted by the subs
ripts �� and ��, respe
tively.In parti
ular, the agents update their belief states at two distin
t points within ea
h de-
ision epo
h: on
e upon re
eiving observation 
ti (produ
ing the pre-
ommuni
ation be-lief state bti��), and again upon re
eiving the other agents' messages (produ
ing the post-
ommuni
ation belief state bti��). The distin
tion allows us to di�erentiate between the beliefstate used by the agents in sele
ting their 
ommuni
ation a
tions and the more \up-to-date"belief state used in sele
ting their domain-level a
tions. We also distinguish between the394



The Communi
ative Multiagent Team De
ision Problemseparate state-estimator fun
tions used in ea
h update phase:b0i =SE0i () (1)bti�� =SEi��(bt�1i�� ;
ti) (2)bti�� =SEi��(bti��;�t�) (3)where SEi�� : Bi � 
i ! Bi is the pre-
ommuni
ation state estimator for agent i, andSEi�� : Bi ��� ! Bi is the post-
ommuni
ation state estimator for agent i. The initialstate estimator, SE0i : ; ! Bi, spe
i�es the agent's prior beliefs, before any observationsare made. For ea
h of these, we also make the obvious de�nitions for the 
orrespondingestimators for the 
ombined belief states: SE���, SE���, and SE0�.In this paper, as a �rst step, we assume that the agents have perfe
t re
all. In otherwords, the agents re
all all of their observations, as well as all 
ommuni
ation of the otheragents. Thus, their belief states 
an represent their entire histories as sequen
es of obser-vations and re
eived messages: Bi = 
�i � ���, where X� denotes the set of all possiblesequen
es (of any length) of elements of X. The agents realize perfe
t re
all through thefollowing state estimator fun
tions:SE0i () = hi (4)SEi��(


0i ;�0�� ; : : : ; 

t�1i ;�t�1� �� ;
ti)= 


0i ;�0�� ; : : : ; 

t�1i ;�t�1� � ; 

ti; ��� (5)SEi��(


0i ;�0�� ; : : : ; 

t�1i ;�t�1� � ; 

ti; ��� ;�t�)= 


0i ;�0�� ; : : : ; 

ti;�t��� (6)In other words, SE0i initializes agent i's belief state to be an empty history, SEi�� appends anew observation to agent i's belief state, and SEi�� appends new messages to agent i's beliefstate. Under this paper's assumptions of perfe
t re
all, all three state-estimator fun
tionstake only 
onstant time. However, we 
an potentially allow more 
omplex fun
tions (thoughthe 
omplexity results presented hold only if the state-estimator fun
tions take polynomialtime). For instan
e, although we assume perfe
t, syn
hronous, instantaneous 
ommuni
a-tion here, we 
ould potentially use the post-
ommuni
ation state estimator to model anynoise, temporal delays, asyn
hrony, 
ognitive burden, et
. present in the 
ommuni
ation
hannel.We extend our de�nition of a poli
y of behavior to in
lude a 
ommuni
ation poli
y,�i� : Bi ! �i, analogous to Se
tion 2.1.4's domain-level poli
y. We de�ne the joint poli
ies,��� and ��A, as the 
ombined poli
ies a
ross all agents in �.2.2.2 Extended Reward Fun
tion: RWe extend the team's reward fun
tion to also represent the 
ost of 
ommuni
ative a
ts (e.g.,
ommuni
ation 
hannels may have asso
iated 
ost): R : S�A���� ! R. We assume thatthe 
ost of 
ommuni
ation and of domain-level a
tions are independent of ea
h other, so we
an de
ompose the reward fun
tion into two 
omponents: a 
ommuni
ation-level reward,R� : S � �� ! R, and a domain-level reward, RA : S � A� ! R. The total reward isthe sum of the two 
omponent values: R(s;a;�) = RA(s;a) + R�(s;�). We assume that395
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ommuni
ation has no inherent bene�t and may instead have some 
ost, so that for allstates, s 2 S, and messages, � 2 ��, the reward is never positive: R�(s;�) � 0. However,although we assign 
ommuni
ation no expli
it value, it 
an have signi�
ant impli
it valuethrough its e�e
t on the agents' belief states and, subsequently, on their future a
tions.As with the observability fun
tion, we parameterize the 
ommuni
ation 
osts asso
iatedwith message transmissions:General Communi
ation: We make no assumptions about 
ommuni
ation.Free Communi
ation: R�(s;�) = 0 for any � 2 ��, and s 2 S. In other words,
ommuni
ation a
tions have no e�e
t on the agents' reward.No 
ommuni
ation: �� = ;, i.e., no expli
it 
ommuni
ation. Alternatively, 
ommuni
a-tion may be prohibitively expensive, so that 8� 2 ��, and s 2 S, R�(s;�) = �1.The free-
ommuni
ation 
ase appears in the literature, when resear
hers wish to fo
uson issues other than 
ommuni
ation 
ost. Although, real-world domains rarely exhibitsu
h ideal 
onditions, we may be able to model some domains as having approximately free
ommuni
ation to a suÆ
ient degree. In addition, analyzing this extreme 
ase gives us someunderstanding of the bene�t of 
ommuni
ation, even if the results do not apply a
ross alldomains. We also identify the no-
ommuni
ation 
ase be
ause su
h de
ision problems havebeen of interest to resear
hers as well (Goldberg &Matari
, 1997). Of 
ourse, even if�� = ;,it is possible that there are domain-level a
tions in A� that have impli
it 
ommuni
ativevalue by a
ting as signals that 
onvey information to the other agents. However, we stilllabel su
h agent teams as having no 
ommuni
ation for the purposes of the work here, sin
emany of our results exploit an expli
it separation between domain- and 
ommuni
ation-levela
tions.2.3 Model IllustrationWe 
an view the evolving state as a Markov 
hain with separate stages for domain-leveland 
ommuni
ation-level a
tions. In other words, ea
h agent team member, i 2 � beginsin some initial state, S0, with initial belief states, b0i = SE0i (). Ea
h agent re
eives anobservation 
0i drawn a

ording to the probability distribution O�(S0;null;
0�) (there areno a
tions yet). Then, ea
h agent updates its belief state, b0i�� = SEi��(b0i ;
0i ).Next, ea
h agent i 2 � sele
ts a message a

ording to its 
ommuni
ation poli
y, �0i =�i�(b0i��), de�ning a 
ombined 
ommuni
ation, �0�. Ea
h agent interprets the 
ommu-ni
ations of all of the others by updating its belief state, b0i�� = SEi��(b0i��;�0�). Ea
hthen sele
ts an a
tion a

ording to its domain-level poli
y, A0i = �iA(b0i��), de�ning a
ombined a
tion A0�. By our 
entral assumption of teamwork, ea
h agent re
eives thesame joint reward, R0 = R(S0;A0�;�0�). The world then moves into a new state, S1,a

ording to the distribution, P (S0;A0�). Again, ea
h agent i re
eives an observation 
1idrawn from 
i a

ording to the distributionO�(S1;A0�;
1�), and it updates its belief state,b1i�� = SEi��(b0i��;
1i ).The pro
ess 
ontinues, with agents 
hoosing 
ommuni
ation- and domain-level a
tions,observing the e�e
ts, and updating their beliefs. Thus, in addition to the time series of worldstates, S0; S1; : : : ; St, the agents themselves determine a time series of 
ommuni
ation-level396



The Communi
ative Multiagent Team De
ision Problemand domain-level a
tions, �0�;�1�; : : : ;�t� and A1�;A1�; : : : ;At�, respe
tively. We also havea time series of observations for ea
h agent i, 
0i ;
1i ; : : : ;
ti. Likewise, we 
an treat the
ombined observations, 
0�;
1�; : : : ;
t�, as a similar time series of random variables.Finally, the agents re
eive a series of rewards, R0; R1; : : : ; Rt. We 
an de�ne the value,V , of the poli
ies, ��A and ���, as the expe
ted reward re
eived when exe
uting thosepoli
ies. Over a �nite horizon, T , this value is equivalent to the following:V T (��A;���) = E " TXt=0 Rt�������A;���# (7)2.4 Related WorkThe COM-MTDP model subsumes many existing multiagent models, as presented in Ta-ble 1 (i.e., we 
an map any instan
e of these models into a 
orresponding COM-MTDP).This generality enables us to perform novel analyses of real-world teamwork domains, asdemonstrated by Se
tion 4's use of the COM-MTDP model for analyzing the optimality of
ommuni
ation de
isions.2.4.1 De
entralized POMDPsWith its model of observability and world dynami
s, our COM-MTDP model 
losely par-allels the stru
ture of the de
entralized partially observable Markov de
ision pro
ess (DEC-POMDP) (Bernstein et al., 2000). Following our notational 
onventions, a DEC-POMDPis a tuple, hS;A�; P;
�; O�; Ri. There is no set of possible messages, ��, so the DEC-POMDP falls into the 
lass of domains with no 
ommuni
ation. The DEC-POMDP obser-vational model, O, is general enough to 
apture 
olle
tively partially observable domains.2.4.2 Partially Observable Identi
al Payoff Sto
hasti
 GamesSto
hasti
 games provide a ri
h framework for multiagent de
ision making when the agentsmay have their own individual goals and preferen
es. The identi
al payo� sto
hasti
 game(IPSG) restri
ts the agents to share a single payo� fun
tion, appropriate for modelingthe single, global reward fun
tion of the team 
ontext. The partially observable IPSG(POIPSG) (Peshkin, Kim, Meuleau, & Kaelbling, 2000) is a tuple, hS;A�; P;
�;O�; Ri,very similar to the DEC-POMDP model. In other words, the observation fun
tion, O�, isgeneral enough to support 
olle
tively partially observable domains, and there is no 
ommu-ni
ation.2.4.3 Multiagent MDPsAnother relevant model is the multiagent Markov de
ision pro
ess (MMDP) (Boutilier,1996), whi
h is a tuple, hS;A�; P;Ri, in our notation. Like the DEC-POMDP, the MMDPhas no 
ommuni
ation. In addition, the MMDP is a multiagent extension to the 
ompletelyobservable MDP model, so it assumes an environment that is individually observable.
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Pynadath & TambeModel �� O�DEC-POMDP no 
ommuni
ation 
olle
tive partial observabilityPOIPSG no 
ommuni
ation 
olle
tive partial observabilityMMDP no 
ommuni
ation individual observabilityXuan-Lesser general 
ommuni
ation 
olle
tive observabilityTable 1: Existing models as COM-MTDP subsets.2.4.4 Xuan-Lesser FrameworkThe COM-MTDP's separation of 
ommuni
ation from other a
tions is similar to previouswork on multiagent de
ision models (Xuan, Lesser, & Zilberstein, 2001), whi
h supportedgeneral 
ommuni
ation. However, while the Xuan-Lesser model generalizes beyond indi-vidually observable environments, it supports only a subset of 
olle
tively observable envi-ronments. In parti
ular, the Xuan-Lesser framework 
annot represent agents who re
eivelo
al observations of a 
ommon world state, where the observations of di�erent agents 
ouldpotentially be interdependent.3. COM-MTDP Complexity AnalysisWe 
an use the COM-MTDP model to prove some results about the 
omplexity of 
on-stru
ting optimal agent teams (i.e., teams that 
oordinate to produ
e optimal behavior ina problem domain). The problem fa
ing these agents (or the designer of these agents) ishow to 
onstru
t the joint poli
ies, ��� and ��A, so as to maximize their joint reward,as represented by the expe
ted value, V T (��A;���). In all of the results presented, weassume that all of the values in a model instan
e (e.g., transition probabilities, rewards) arerational numbers, so that we 
an express the parti
ular instan
e as a �nite-sized input.Theorem 1 The de
ision problem of whether there exist poli
ies, ��� and ��A, for a givenCOM-MTDP, under general 
ommuni
ation and 
olle
tive partial observability, that yielda total reward at least K over some �nite horizon T is NEXP-
omplete if j�j � 2 (i.e.,more than one agent).Proof: To prove that the COM-MTDP de
ision problem is NEXP-hard, we redu
e a DEC-POMDP (Bernstein et al., 2000) to a COM-MTDP with no 
ommuni
ation by 
opyingall of the other model features from the given DEC-POMDP. In other words, if we aregiven a DEC-POMDP, 
S; fAigmi=1; P; f
igmi=1; O;R�, we 
an 
onstru
t a COM-MTDP,hS0; fA0igmi=1;�0�; P 0; f
0igmi=1;O0�;B0�; R0i, as follows:S0 = SA0i = Ai�0 = ;P 0(s; ha1; : : : ; ami ; s0) = P (s0js; a1; : : : ; am)398
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ative Multiagent Team De
ision Problem
0i = 
iO0�(s; ha1; : : : ; ami ; h!1; : : : ; !mi) = O(!1; : : : ; !mja1; : : : ; am; s)B0i = [Tj=1(
i)j (i.e., observation sequen
es of length no more than the �nite horizon)R0(s; ha1; : : : ; ami ;�) = R(s; a1; : : : ; am)The DEC-POMDP assumes perfe
t re
all, so we use the state estimator fun
tions fromEquations 5 and 6. Sin
e there is no 
ommuni
ation for this COM-MTDP, we have a �xedsilent poli
y, ���. We 
an translate any domain-level poli
y, ��A, into a DEC-POMDPjoint poli
y, Æ, as follows: Æi(oi1; : : : ; oit) � �iA(
oi1; : : : ; oit�) (8)The expe
ted utility of following this joint poli
y, Æ, within the DEC-POMDP is identi
alto that of following ��� and ��A within the 
onstru
ted COM-MTDP. Thus, there existsa poli
y with expe
ted utility greater than K for the COM-MTDP if and only if thereexists one for the DEC-POMDP. The de
ision problem for a DEC-POMDP is known to beNEXP-
omplete, so the COM-MTDP problem must be NEXP-hard.To show that the COM-MTDP is in NEXP, our proof pro
eeds similarly to that ofthe DEC-POMDP. In other words, we guess the joint poli
y, ��, and write it down inexponential time (we assume that T � jSj). We 
an take the COM-MTDP plus the poli
yand generate (in exponential time) a 
orresponding MDP where the state spa
e is the spa
eof all possible 
ombined belief states of the agents. We 
an then use dynami
 programmingto determine (in exponential time) whether �� generates an expe
ted reward of at least K.2 In the remainder of this se
tion, we examine the e�e
t of 
ommuni
ation on the 
om-plexity of 
onstru
ting team poli
ies that generate optimal behavior. We start by examiningthe 
ase under the 
ondition of free 
ommuni
ation, where we would expe
t the bene�t of
ommuni
ation to be the greatest. To begin with, suppose that ea
h agent is 
apable of
ommuni
ating its entire observation (i.e., �i � 
i). Before we analyze the 
omplexity ofthe team de
ision problem, we �rst prove that the agents should exploit this 
apability and
ommuni
ate their true observation, as long as they in
ur no 
ost in doing so:Theorem 2 Under free 
ommuni
ation, 
onsider a team of agents using a 
ommuni
ationpoli
y: �i�(bti��) � 
ti. If the domain-level poli
y ��A maximizes V T (��A;���), then this
ombined poli
y is dominant over any other poli
ies. In other words, for all poli
ies, �0�Aand �0��, V T (��A; ���) � V T (�0�A;�0��).Proof: Suppose we have some other 
ommuni
ation poli
y, �0��, that spe
i�es somethingother than 
omplete 
ommuni
ation (e.g., keeping quiet, lying). Suppose that there is somedomain-level poli
y, �0�A, that allows the team to attain some expe
ted reward, K, whenused in 
ombination with �0��. Then, we 
an 
onstru
t a domain-level poli
y, ��A, su
hthat the team attains the same expe
ted reward, K, when used in 
onjun
tion with the
omplete-
ommuni
ation poli
y, ���, as de�ned in the statement of Theorem 2.The 
ommuni
ation poli
y, �0��, produ
es a di�erent set of belief states (denoted b0ti��and b0ti��) than those for ��� (denoted bti�� and bti��). In parti
ular, we use state estimator399



Pynadath & Tambefun
tions, SE0i�� and SE0i�� as de�ned in Equations 5 and 6 to generate b0ti�� and b0ti��.Ea
h belief state is a 
omplete history of observation and 
ommuni
ation pairs for ea
hagent. On the other hand, under the 
omplete 
ommuni
ation of ���, the state estimatorfun
tions of Equations 5 and 6 redu
e to:SEi��(

0�; : : : ;
t�1� � ;
ti) = 

0�; : : : ;
t�1� ;
ti� (9)SEi��(

0�; : : : ;
t�1� ;
ti� ;�t�) = 

0�; : : : ;
t�1� ;�t��= 

0�; : : : ;
t�1� ;
t�� (10)Thus, ��A is de�ned over a di�erent set of belief states than �0�A. In order to determinean equivalent ��A, we must �rst de�ne a re
ursive mapping, m, that translates the beliefstates de�ned by ��� into those de�ned by �0��:mi(bti��) =mi �
bt�1i�� ;
t��� = mi �
bt�1i�� ; 

ti;
t����=Dmi(bt�1i��);D
ti;�0t�EE = *mi(bt�1i��);*
ti;Yj2��0tj++=*mi(bt�1i��);*
ti;Yj2��0j�(SE0j��(mj(bt�1j��);
tj))++ (11)Given this mapping, we then spe
ify: �iA(bti��) = �0iA(mi(bti��)). Exe
uting this domain-level poli
y, in 
onjun
tion with the 
ommuni
ation poli
y, ���, results in the identi
albehavior as exe
ution of the alternate poli
ies, �0�A and �0��. Therefore, the team followingthe poli
ies, ��A and ��� will a
hieve the same expe
ted value of K, as under �0�A and�0��. 2Given this dominan
e of the 
omplete-
ommuni
ation poli
y, we 
an prove that theproblem of 
onstru
ting teams that 
oordinate optimally is simpler when 
ommuni
ation isfree.Theorem 3 The de
ision problem of determining whether there exist poli
ies, ��� and��A, for a given COM-MTDP with free 
ommuni
ation under 
olle
tive partial observabil-ity, that yield a total reward at least K over some �nite horizon T is PSPACE-
omplete.Proof: To prove that the problem is PSPACE-hard, we redu
e the single-agent POMDP toa COM-MTDP. In parti
ular, if we are given a POMDP, hS;A; P;
; O;Ri, we 
an 
onstru
ta COM-MTDP, hS0; A01;�01; P 0;
01; O01; B01; R0i, for a single-agent team (i.e., � = f1g):S0 = SA01 = A�01 = ;P 0(s; ha1i ; s0) = P (s; a1; s0)
01 = 
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The Communi
ative Multiagent Team De
ision ProblemO01(s; ha1i ; h!1i) = O(s; a1; !1)B01 = [Tj=1(
)j (i.e., observation sequen
es of length no more than the �nite horizon)R0A(s; ha1i) = R(s; a1)R0�(s;�) = 0This COM-MTDP satis�es our assumption of free 
ommuni
ation. The POMDP assumesperfe
t re
all, so we use the state estimator fun
tions from Equations 5 and 6. Just as inthe proof of Theorem 1, we 
an show that there exists a poli
y with expe
ted utility greaterthan K for this COM-MTDP if and only if there exists one for the POMDP. The de
isionproblem for the POMDP is known to be PSPACE-hard (Papadimitriou & Tsitsiklis, 1987),so the COM-MTDP problem under free 
ommuni
ation must be PSPACE-hard.To show that the problem is in PSPACE, we take a COM-MTDP under free 
ommuni-
ation and redu
e it to a single-agent POMDP. In parti
ular, if we are given a COM-MTDP,hS;A�;��; P; 
�;O�;B�; Ri, we 
an 
onstru
t a single-agent POMDP, hS0; A0; P 0;
0; O0;R0i, as follows:S0 = SA0 = A�P 0(s;a; s0) = P (s;a; s0)
0 = 
�O0(s;a;!) = O�(s;a;!)R0(s;a) = RA(s;a)From Theorem 2, we need to 
onsider only the 
omplete-
ommuni
ation poli
y for theCOM-MTDP and this poli
y has a zero reward. Therefore, the de
ision problem for theCOM-MTDP is simply to �nd a domain-level poli
y that produ
es an expe
ted rewardex
eeding K. Given full 
ommuni
ation, the state estimator fun
tions for the COM-MTDP(as shown in the proof of Theorem 2) redu
e to Equation 10. A poli
y for our POMDPspe
i�es an a
tion for ea
h and every history of observations: �0 : [Tj=1(
0)j ! A0. Thehistory of observations for the single-agent POMDP 
orresponds to the belief states of ourCOM-MTDP under full 
ommuni
ation. Therefore, we 
an translate a POMDP-poli
y, �0,into an equivalent domain-level poli
y for the COM-MTDP:�A(h!0;!1; : : : ;!ti) � �0(h!0;!1; : : : ;!ti) (12)A team following �A will perform the exa
t same domain-level a
tions as a single agentfollowing �0. Thus, there exists a poli
y with expe
ted utility greater than K for the COM-MTDP if and only if there exists one for the POMDP. The de
ision problem for a POMDPis known to be in PSPACE (Papadimitriou & Tsitsiklis, 1987), so the COM-MTDP problem(under free 
ommuni
ation) must be in PSPACE as well. 2401



Pynadath & TambeTheorem 4 The de
ision problem of determining whether there exist poli
ies, ��� and��A, for a given COM-MTDP with free 
ommuni
ation and 
olle
tive observability, thatyield a total reward at least K over some �nite horizon T is P-
omplete.Proof: The proof follows that of Theorem 3, but with a redu
tion to and from the MDPde
ision problem, rather than the POMDP. The MDP de
ision problem is P-
omplete (Pa-padimitriou & Tsitsiklis, 1987). 2Theorem 5 The de
ision problem of determining whether there exist poli
ies, ��� and��A, for a given COM-MTDP with individual observability, that yield a total reward atleast K over some �nite horizon T (given integers K and T ) is P-
omplete.Proof: The proof follows that of Theorem 4, ex
ept that we 
an redu
e the problem toand from an MDP regardless of what 
ommuni
ation poli
y the team uses. 2Theorem 6 The de
ision problem of determining whether there exist poli
ies, ��� and��A, for a given COM-MTDP with non-observability, that yield a total reward at least Kover some �nite horizon T (given integers K and T ) is NP-
omplete.Proof: The proof follows that of Theorem 4, ex
ept that we 
an redu
e the problem to andfrom an single-agent non-observable MDP (NOMDP) regardless of what 
ommuni
ationpoli
y the team uses. In parti
ular, be
ause the agents are all equally ignorant of the state,
ommuni
ation has no e�e
t. The NOMDP de
ision problem is NP-
omplete (Papadim-itriou & Tsitsiklis, 1987). 2Thus, we have used the COM-MTDP framework to 
hara
terize the diÆ
ulty of problemdomains in agent teamwork along the dimensions of 
ommuni
ation 
ost and observability.Table 2 summarizes our results, whi
h we 
an use in de
iding where to 
on
entrate ourenergies in atta
king teamwork problems. We 
an use these results to draw some 
on
lusionsabout the 
hallenges to designers of multiagent teams:� The greatest 
hallenges lie in those domains with either 
olle
tive observability or
olle
tive partial observability and with nonzero 
ommuni
ation 
ost.� Under 
olle
tive observability and 
olle
tive partial observability, teamwork without
ommuni
ation is highly intra
table, but, with free 
ommuni
ation, the 
omplexitybe
omes on par with that of single-agent planning problems.� Agent team designers have mu
h to gain by in
reasing the observational 
apabilities oftheir team (e.g., by adding new sensor agents) be
ause of the redu
tion in 
omplexitygained by making the domain 
olle
tively observable.� Furthermore, the results from Theorems 3 and 4 hold in any domain where the resultfrom Theorem 2 holds (i.e., when 
omplete 
ommuni
ation is the dominant poli
y).Therefore, while perfe
tly free 
ommuni
ation may be rare, these results show thatinvestment in 
ommuni
ation in teamwork 
an pay o� with a signi�
ant simpli�
ationof optimal teamwork. 402



The Communi
ative Multiagent Team De
ision ProblemIndividually Colle
tively Colle
tively Non-Observable Observable Partially Observable ObservableNo Comm. P-
omplete NEXP-
omplete NEXP-
omplete NP-CompleteGeneral Comm. P-
omplete NEXP-
omplete NEXP-
omplete NP-CompleteFree Comm. P-
omplete P-
omplete PSPACE-
omplete NP-CompleteTable 2: Time 
omplexity of COM-MTDPs.� On the other hand, when the world is individually observable or non-observable, 
om-muni
ation makes no di�eren
e in performan
e.� It should be noted that even under those 
onditions where the problem is P-
omplete,the 
omplexity of optimal teamwork is polynomial in the number of states of theworld, whi
h may still be impra
ti
ally high.� The above 
omplexity results pertain to �nding poli
ies that are optimal subje
t tothe domain properties. We will �nd di�erent expe
ted rewards of the optimal poli
iesunder di�erent observability and 
ommuni
ation properties. For instan
e, 
utting o�all of the agents' sensors makes the domain non-observable and redu
es the 
omplexityof generating an optimal poli
y from NEXP to NP, but we would expe
t an asso
iateddrop in the expe
ted reward a
hieved by the team.4. Evaluating Team CoordinationTable 2 shows that providing optimal domain-level and 
ommuni
ation poli
ies for teams isa diÆ
ult 
hallenge. Many systems alleviate this diÆ
ulty by having domain experts pro-vide the domain-level plans (Tambe, 1997; Tidhar, 1993). Then, the problem for the agentsredu
es to generating the appropriate team 
oordination, ���, to ensure that they prop-erly exe
ute the domain-level plans, ��A. In this se
tion, we demonstrate the COM-MTDPframework's ability to analyze existing teamwork approa
hes in the literature. Our method-ology for su
h analysis begins by en
oding su
h a teamwork method as a 
ommuni
ation-level poli
y. In other words, we translate the method into an algorithm that maps agentbeliefs (e.g., observation sequen
es) into 
ommuni
ation de
isions. To evaluate the per-forman
e of this poli
y, we then instantiate a COM-MTDP that represents the states,transition probabilities, and reward fun
tion of a domain of interest. Our methodologyprovides an evaluation of the poli
y in terms of the expe
ted reward earned by the teamwhen following the poli
y in the spe
i�ed domain.We demonstrate this methodology by using our COM-MTDP framework to analyze jointintentions theory (Cohen & Levesque, 1991b, 1991a; Levesque et al., 1990), whi
h providesa 
ommon basis for many existing approa
hes to team 
oordination. Se
tion 4.1 models twokey instantiations of joint intentions taken from the literature (Jennings, 1995; Tambe, 1997)as COM-MTDP 
ommuni
ation poli
ies. Se
tion 4.2 analyzes the 
onditions under whi
hthese poli
ies generate optimal behavior and provides a third 
andidate poli
y that makes
ommuni
ation de
isions that are lo
ally optimal within the 
ontext of joint intentions. In403



Pynadath & Tambeaddition to providing the results for the parti
ular team 
oordination strategies investigated,this se
tion also illustrates a general methodology by whi
h one 
an use our COM-MTDPframework to en
ode and evaluate 
oordination strategies proposed by existing multiagentresear
h.4.1 Joint Intentions in a COM-MTDPJoint intention theory provides a pres
riptive framework for multiagent 
oordination in ateam setting. It does not make any 
laims of optimality in its teamwork, but it providestheoreti
al justi�
ations for its pres
riptions, grounded in the attainment of mutual beliefamong the team members. We 
an use the COM-MTDP framework to identify the domainproperties under whi
h attaining mutual belief generates optimal behavior and to quantifypre
isely how suboptimal the performan
e will be otherwise.Joint intentions theory requires that team members jointly 
ommit to a joint persistentgoal, G. It also requires that when any team member privately believes that G is a
hieved(or una
hievable or irrelevant), it must then attain mutual belief throughout the teamabout this a
hievement (or una
hievability or irrelevan
e). To en
ode this pres
ription ofjoint intentions theory within our COM-MTDP model, we �rst spe
ify the joint goal, G, asa subset of states, G � S, where the desired goal is a
hieved (or una
hievable or irrelevant).Presumably, su
h a pres
ription indi
ates that joint intentions are not spe
i�
ally in-tended for individually observable environments. Upon a
hieving the goal in an individuallyobservable environment, ea
h agent would simultaneously observe that St 2 G. Be
auseof our assumption that the COM-MTDP model 
omponents (in
luding O�) are 
ommonknowledge to the team, ea
h agent would also simultaneously 
ome to believe that its team-mates have observed that St 2 G, and that its teammates believe that it believes that allof the team members have observed that St 2 G, and so on. Thus, the team immediatelyattains mutual belief in the a
hievement of the goal under individual observability withoutany additional 
ommuni
ation ne
essary by the team.Instead, the joint intention framework aims at domains with some degree of unobserv-ability. In su
h domains, the agents must signal the other agents, either through 
ommuni-
ation or some informative domain-level a
tion, to attain mutual belief. However, we 
analso assume that joint intention theory does not fo
us on domains with free 
ommuni
ation,where Theorem 2 shows that we 
an simply have the agents 
ommuni
ate everything, allthe time, without the need for more 
omplex pres
riptions.The joint intention framework does not spe
ify a pre
ise 
ommuni
ation poli
y for theattainment of mutual belief. In this paper, we fo
us on 
ommuni
ation only in the 
ase ofgoal a
hievement, but our methodology extends to handle una
hievability and irrelevan
e aswell. One well-known approa
h (Jennings, 1995) applied joint intentions theory by havingthe agents 
ommuni
ate the a
hievement of the joint goal, G, as soon as they believe G to betrue. To instantiate the behavior of Jennings' agents within a COM-MTDP, we 
onstru
t a
ommuni
ation poli
y, �J��, that spe
i�es that an agent sends the spe
ial message, �G, whenit �rst believes that G holds. Following joint intentions' assumption of sin
erity (Smith &Cohen, 1996), we require that the agents never sele
t the spe
ial �G message in a beliefstate unless they believe G to be true with 
ertainty. With this requirement and with ourassumption of the team's 
ommon knowledge of the 
ommuni
ation model, we 
an assume404
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ative Multiagent Team De
ision Problemthat all of the other agents immediately a

ept the spe
ial message, �G, as true, and thatthe agents know that all their team members a

ept the message as true, and so on. Thus,the team attains mutual belief that G is true immediately upon re
eiving the message, �G.We 
an 
onstru
t the 
ommuni
ation poli
y, �J��, in 
onstant time.The STEAM algorithm is another instantiation of joint intentions that has had su

ess inseveral real-world domains (Tambe, 1997; Pynadath et al., 1999; Tambe, Pynadath, Chau-vat, Das, & Kaminka, 2000; Pynadath & Tambe, 2002). Unlike Jennings' instantiation, theSTEAM teamwork model in
ludes de
ision-theoreti
 
ommuni
ation sele
tivity. A domainspe
i�
ation in
ludes two parameters for ea
h joint 
ommitment, G: � , the probability ofmis
oordinated termination of G; and Cmt, the 
ost of mis
oordinated termination of G. Inthis 
ontext, \mis
oordinated termination" means that some agents immediately observethat the team has a
hieved G while the rest do not. STEAM's domain spe
i�
ation alsoin
ludes a third parameter, C
, to represent the 
ost of 
ommuni
ation of a fa
t (e.g., thea
hievement of G). Using these parameters, the STEAM algorithm evaluates whether theexpe
ted 
ost of mis
oordination outweighs the 
ost of 
ommuni
ation. STEAM expressesthis 
riterion as the following inequality: � � Cmt > C
. We 
an de�ne a 
ommuni
ationpoli
y, �S�� based on this 
riterion: if the inequality holds, then an agent that has observedthe a
hievement of G will send the message, �G; otherwise, it will not. We 
an 
onstru
t�S�� in 
onstant time.4.2 Lo
ally Optimal Poli
yAlthough the STEAM poli
y is more sele
tive than Jennings', it remains unansweredwhether it is optimally sele
tive, and resear
hers 
ontinue to struggle with the questionof when agents should 
ommuni
ate (Yen et al., 2001). The few reports of suboptimal(in parti
ular, ex
essive) 
ommuni
ation in STEAM 
hara
terized the phenomenon as anex
eptional 
ir
umstan
e, but it is also possible that STEAM's optimal performan
e is theex
eption. We use the COM-MTDP model to derive an analyti
al 
hara
terization of opti-mal 
ommuni
ation here, while Se
tion 5 provides an empiri
al one by 
reating an algorithmusing that 
hara
terization.Both poli
ies, �J��, and �S�� 
onsider sending �G only when an agent �rst believes thatG has been a
hieved. On
e an agent has the relevant belief, they make di�erent 
hoi
es, andwe 
onsider here what the optimal de
ision is at this point. The domain is not individuallyobservable, so 
ertain agents may be unaware of the a
hievement of G. When not sendingthe �G message, these unaware agents may unne
essarily 
ontinue performing a
tions inthe pursuit of a
hieving G. The performan
e of these extraneous a
tions 
ould potentiallyin
ur 
osts and lead to a lower utility than one would expe
t when sending the �G message.The de
ision to send �G or not matters only if the team a
hieves G and one agent
omes to know this fa
t. We de�ne the random variable, TG, to be the earliest time atwhi
h an agent knows this fa
t. We denote agent KG as the agent who knows of thea
hievement at time TG. If KG = i, for some agent, i, and TG = t0, then agent i has somepre-
ommuni
ation belief state, bt0i�� = �, that indi
ates that G has been a
hieved. To morepre
isely quantify the di�eren
e between agent i sending the �G message at time TG vs.
405



Pynadath & Tambenever sending it, we de�ne the following value:�T (t0; i; �) �E "T�t0Xt=0 Rt0+t������t0i = �G; TG = t0;KG = i; bt0i�� = �#�E "T�t0Xt=0 Rt0+t������t0i = null; TG = t0;KG = i; bt0i�� = �# (13)We assume that, for all times other than TG, the agents follow some 
ommuni
ation poli
y,���, that never spe
i�es �G. Thus, �T measures the di�eren
e in expe
ted reward thathinges on agent i's spe
i�
 de
ision to send or not send �G at time t0. Given this de�nition,it is lo
ally optimal for agent i to send the spe
ial message, �G, at time t0, if and onlyif �T � 0. We de�ne the 
ommuni
ation poli
y, ���+� , as the 
ommuni
ation poli
yfollowing ��� for all agents at all times, ex
ept for agent i under belief state �, whenagent i sends message �. With this de�nition, ���+�G , is the poli
y under whi
h agent i
ommuni
ates the a
hievement of G, and ���+null is the poli
y under whi
h it does not.Therefore, we 
an alternatively des
ribe agent i's de
ision 
riterion as 
hoosing ���+�Gover ���+null if and only if �T � 0.Unfortunately, while Equation 13 identi�es an exa
t 
riterion for lo
ally optimal 
ommu-ni
ation, this 
riterion is not yet operational. In other words, we 
an not dire
tly implementit as a 
ommuni
ation poli
y for the agents. Furthermore, Equation 13 hides the underly-ing 
omplexity of the 
omputation involved, whi
h is one of the key goals of our analysis.Therefore, we use the COM-MTDP model to derive an operational expression of �T � 0.For simpli
ity, we de�ne notational shorthand for various sequen
es and 
ombinations ofvalues. We de�ne a partial sequen
e of random variables, X<t, to be the sequen
e of ran-dom variables for all times before t: X0, X1, : : : , Xt�1. We make similar de�nitions for theother relational operators (i.e., X>t, X�t, et
.). The expression, (S)T , denotes the 
rossprodu
t over states of the world, QTt=0 S, as distinguished from the time-indexed randomvariable, ST , whi
h denotes the value of the state at time T . The notation, s�t0 [t℄, spe
i�esthe element in slot t within the ve
tor s�t0 . We de�ne the fun
tion, �, as shorthand withinour probability expressions. It allows us to 
ompa
tly represent a parti
ular subsequen
eof world and agent belief states o

urring, 
onditioned on the 
urrent situation, as follows:Pr �� �
t; t0� ; s;����� � Pr(S�t;�t0 = s; b����t;�t0 = ��� ��TG = t0;KG = i; bt0i�� = �)(14)Informally, � (ht; t0i ; s;���) represents the event that the world and belief states from timet through t0 
orrespond to the spe
i�ed sequen
es, s and ���, respe
tively, 
onditioned onagent i being the �rst to know of G's a
hievement at time t0 with a belief state, �. We de�nethe fun
tion, ���, to map a pre-
ommuni
ation belief state into the post-
ommuni
ationbelief state that arises from a 
ommuni
ation poli
y:���(���;���) � SE���(���;���(���)) (15)This de�nition of ��� is a well-de�ned fun
tion be
ause of the deterministi
 nature of thepoli
y, ���, and state-estimator fun
tion, SE���.406



The Communi
ative Multiagent Team De
ision ProblemTheorem 7 If we assume that, upon a
hievement of G, no 
ommuni
ation other than �Gis possible, then the 
ondition �T (t0,i,�) � 0 holds if and only if:Xs�t02(S)t0 X��t0�� 2Bt0�Pr(�(h0; t0i ; s�t0 ;��t0�� ))�0B�Xs�t02(S)T�t0+1 X��t0�� 2BT�t0+1� Pr��(ht0; T i ; s�t0 ;��t0�� ) ����t0i = �G;�(h0; t0i ; s�t0 ;��t0�� )�� TXt=t0 RA �s�t0 [t℄;��A ���� �����t0 [t℄;���+�G���� Xs�t02(S)T�t0+1 X��t0�� 2BT�t0+1� Pr��(ht0; T i ; s�t0 ;��t0�� ) ����t0i = null;�(h0; t0i ; s�t0 ;��t0�� )�� TXt=t0 RA �s�t0 [t℄;��A ���� �����t0 [t℄;���+null���!��Xs2G X�2B� Pr (�(ht0; t0i ; s;�))R�(s; �G) (16)Proof: The 
omplete proof of the following theorem appears in Online Appendix 1.The de�nition of �T in Equation 13 is the di�eren
e between two expe
tations, where ea
hexpe
tation is a sum over the possible traje
tories of the agent team. Ea
h traje
tory mustin
ludes a sequen
e of possible world states, sin
e the agents' reward at ea
h point in timedepends on the parti
ular state of the world at that time. The agents' reward also dependson their a
tions (both domain- and 
ommuni
ation-level). These a
tions are deterministi
,given the agents' poli
ies, ��A and ��, and their belief states. Thus, in addition to summingover the possible states of the world, we must also sum over the possible states of the agents'
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Pynadath & Tambebeliefs (both pre- and post-
ommuni
ation):�T (t0; i; �)= Xs�T2(S)T X����T2(B)T X����T2(B)T Pr �S�T = s�T ;b���T = ����T ;b���T = ����Tj�t0i = �G; TG = t0;KG = i; bt0i�� = ��� TXt=0 R(s�T [t℄;�A(����T [t℄);��(����T [t℄))� Xs�T2(S)T X����T2(B)T X����T2(B)T Pr �S�T = s�T ;b���T = ����T ;b���T = ����Tj�t0i = null; TG = t0;KG = i; bt0i�� = ��� TXt=0 R(s�T [t℄;�A(����T [t℄);��(����T [t℄)) (17)We 
an rewrite these summations more simply using our various shorthand notations:= Xs�T2(S)T X����T2(B)T Pr(�(h0; T i ; s;����T )j�t0i = �G)� TXt=0 R(s�T [t℄;�A(���(����T [t℄;���G));���G(����T [t℄))� Xs�T2(S)T X����T2(B)T Pr(�(h0; T i ; s;����T )j�t0i = null)� TXt=0 R(s�T [t℄;�A(���(����T [t℄;��null));��null(����T [t℄)) (18)The remaining derivation exploits our Markovian assumptions to rearrange the summationsand 
an
el like terms to produ
e the theorem's result. 2Theorem 7 states, informally, that we prefer sending �G whenever the the 
ost of exe-
ution after a
hieving G outweighs the 
ost of 
ommuni
ation of the fa
t that G has beena
hieved. More pre
isely, the outer summations on the left-hand side of the inequalityiterate over all possible past histories of world and belief states, produ
ing a probabilitydistribution over the possible states the team 
an be in at time t0. For ea
h su
h state, theexpression inside the parentheses 
omputes the di�eren
e in domain-level reward, over allpossible future sequen
es of world and belief states, between sending and not sending �G.By our theorem's assumption that no 
ommuni
ation other than �G is possible after G hasbeen a
hieved, we 
an ignore any 
ommuni
ation 
osts in the future. However, if we relaxthis assumption, we 
an extend the left-hand side in a straightforward manner into a longer408



The Communi
ative Multiagent Team De
ision ProblemIndividually Colle
tively Colle
tively Non-Observable Observable Partially Observable ObservableNo Comm. 
(1) 
(1) 
(1) 
(1)General Comm. 
(1) O((jSj � j
�j)T ) O((jSj � j
�j)T ) 
(1)Free Comm. 
(1) 
(1) 
(1) 
(1)Table 3: Time 
omplexity of lo
ally optimal de
ision.expression that a

ounts for the di�eren
e in future 
ommuni
ation 
osts as well. Thus, theleft-hand side 
aptures our intuition that, when not 
ommuni
ating, the team will in
ur a
ost if the agents other than i are unaware of G's a
hievement. The right-hand side of theinequality is a summation of the 
ost of sending the �G message over possible 
urrent statesand belief states.We 
an use Theorem 7 to derive the lo
ally optimal 
ommuni
ation de
ision a
rossvarious 
lasses of problem domains. Under no 
ommuni
ation, we 
annot send �G. Underfree 
ommuni
ation, the right-hand side is 0, so the inequality is always true, and we knowto prefer sending �G. Under no assumptions about 
ommuni
ation, the determination ismore 
ompli
ated. When the domain is individually observable, the left-hand side be
omes0, be
ause all of the agents know that G has been a
hieved (and thus there is no di�eren
ein exe
ution when sending �G). Therefore, the inequality is always false (unless under free
ommuni
ation), and we prefer not sending �G. When the environment is not individuallyobservable and 
ommuni
ation is available but not free, then, to be lo
ally optimal at timet0, agent i must evaluate Inequality 16 in its full 
omplexity. Sin
e the inequality sumsrewards over all possible sequen
es of states and observations, the time 
omplexity of the
orresponding algorithm is O((jSj � j
�j)T ). While this 
omplexity is una

eptable for mostreal-world problems, it still provides an exponential savings over sear
hing the entire poli
yspa
e for the globally optimal poli
y, where any agent 
ould potentially send �G at timesother than TG. Table 3 provides a table of the 
omplexity required to determine the lo
allyoptimal poli
y under the various domain properties.We 
an now show that although Theorem 7's algorithm for lo
ally optimal 
ommuni
a-tion provides a signi�
ant 
omputational savings over �nding the global optimum, it stilloutperforms existing teamwork models, as exempli�ed by our �J�� and �S�� poli
ies. First,we 
an use the 
riterion of Theorem 7 to evaluate the optimality of the poli
y, �J��. If�T (t0; i; �) � 0 for all possible times t0, agents i, and belief states � that are 
onsistentwith the a
hievement of the goal G, then the lo
ally optimal poli
y will always spe
ifysending �G. In other words, �J�� will be identi
al to the lo
ally optimal poli
y. However,if the inequality of Theorem 7 is ever false, then �J�� is not even lo
ally, let alone globally,optimal.Se
ond, we 
an also use Theorem 7 to evaluate STEAM by viewing STEAM's inequality,� � Cmt > C
, as a 
rude approximation of Inequality 16. In fa
t, there is a 
lear 
orre-sponden
e between the terms in the two inequalities. The left-hand side of Inequality 16
omputes an exa
t expe
ted 
ost of mis
oordination. However, unlike STEAM's monolithi
� parameter, the optimal 
riterion evaluates a 
omplete probability distribution over allpossible states of mis
oordination by 
onsidering all possible past sequen
es 
onsistent with409



Pynadath & Tambethe agent's 
urrent beliefs. Likewise, unlike STEAM's monolithi
 Cmt parameter, the opti-mal 
riterion looks ahead over all possible future sequen
es of states to determine the trueexpe
ted 
ost of mis
oordination. Furthermore, we 
an view STEAM's parameter, C
, as anapproximation of the 
ommuni
ation 
ost 
omputed by the right-hand side of Inequality 16.Again, STEAM uses a single parameter, while the optimal 
riterion 
omputes an expe
ted
ost over all possible states of the world.STEAM does have some 
exibility in its representation, be
ause Cmt, � , and C
 arenot ne
essarily �xed a
ross the entire domain. For instan
e, Cmt may vary based on thespe
i�
 joint plan that the agents may have jointly 
ommitted to (i.e., there may be adi�erent Cmt for ea
h goal G). Thus, while Theorem 7 suggests signi�
ant additional 
exi-bility in 
omputing Cmt through expli
it lookahead, the optimal 
riterion derived with theCOM-MTDP model also provides a justi�
ation for the overall stru
ture behind STEAM'sapproximate 
riterion. Furthermore, STEAM's emphasis on on-line 
omputation makes the
omputational 
omplexity of Inequality 16 (as presented in Table 3) una

eptable, so theapproximation error may be a

eptable given the gains in eÆ
ien
y. For a spe
i�
 domain,we 
an use empiri
al evaluation (as demonstrated in the next se
tion) to quantify the errorand eÆ
ien
y to pre
isely judge this tradeo�.5. Empiri
al Poli
y EvaluationIn addition to providing these analyti
al results over general 
lasses of problem domains, theCOM-MTDP framework also supports the analysis of spe
i�
 domains. Given a parti
ularproblem domain, we 
an 
onstru
t an optimal 
ommuni
ation poli
y or, if the 
omplexity of
omputing an optimal poli
y is prohibitive, we 
an instead evaluate and 
ompare 
andidateapproximate poli
ies. To provide a reusable tool for su
h evaluations, we have implementedthe COM-MTDP model as a Python 
lass with domain-independent methods for the eval-uation of arbitrary poli
ies and for the generation of both lo
ally optimal poli
ies usingTheorem 7 and globally optimal poli
ies through brute-for
e sear
h of the poli
y spa
e.This software is available in Online Appendix 1.This se
tion presents results of a COM-MTDP analysis of an example domain involvingagent-piloted heli
opters, where we fo
us on the key 
ommuni
ation de
ision fa
ed by manymultiagent frameworks (as des
ribed in Se
tion 4), but vary the 
ost of 
ommuni
ation anddegree of observability to generate a spa
e of distin
t domains with di�erent impli
ationsfor the agents' performan
e. By evaluating 
ommuni
ation poli
ies over various 
on�gura-tions of this parti
ular testbed domain, we demonstrate a methodology by whi
h one 
anuse the COM-MTDP framework to model any problem domain and to evaluate 
andidate
ommuni
ation poli
ies for it.5.1 Experimental SetupConsider two heli
opters that must 
y a
ross enemy territory to their destination, as il-lustrated in Figure 1. The �rst, piloted by agent Transport, is a transport vehi
le withlimited �repower. The se
ond, piloted by agent Es
ort, is an es
ort vehi
le with signi�
ant�repower. Somewhere along their path is an enemy radar unit, but its lo
ation is unknown(a priori) to the agents. Es
ort is 
apable of destroying the radar unit upon en
ounteringit. However, Transport is not, but it 
an es
ape dete
tion by the radar unit by traveling410
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ision Problem

Figure 1: Illustration of heli
opter team s
enario.at a very low altitude (nap-of-the-earth 
ight), though at a lower speed than at its typi
al,higher altitude. In this s
enario, Es
ort will not worry about dete
tion, given its superior�repower; therefore, it will 
y at a fast speed at its typi
al altitude.The two agents form a top-level joint 
ommitment, GD, to rea
h their destination.There is no in
entive for the agents to 
ommuni
ate the a
hievement of this goal, sin
e theywill both eventually rea
h their destination with 
ertainty. However, in the servi
e of theirtop-level goal, GD, the two agents also adopt a joint 
ommitment, GR, of destroying theradar unit. We 
onsider here the problem fa
ing Es
ort with respe
t to 
ommuni
ating thea
hievement of goal, GR. If Es
ort 
ommuni
ates the a
hievement of GR, then Transportknows that it is safe to 
y at its normal altitude (thus rea
hing the destination sooner).If Es
ort does not 
ommuni
ate the a
hievement of GR, there is still some 
han
e thatTransport will observe the event anyway. If Transport does not observe the a
hievementof GR, then it must 
y nap-of-the-earth the whole distan
e, and the team re
eives a lowerreward be
ause of the later arrival. Therefore, Es
ort must weigh the in
rease in expe
tedreward against the 
ost of 
ommuni
ation.In the COM-MTDP model of this s
enario (presented in Figures 2, 3 and 4), the worldstate is the position (along a straight line between origin and destination) of Transport,Es
ort, and the enemy radar. The enemy is at a randomly sele
ted position somewherein between the agents' initial position and their destination. Transport has no possible
ommuni
ation a
tions, but it 
an 
hoose between two domain-level a
tions: 
ying nap-of-the-earth and 
ying at its normal speed and altitude. Es
ort has two domain-level a
tions:
ying at its normal speed and destroying the radar. Es
ort also has the option of 
ommuni-
ating the spe
ial message, �GR , indi
ating that the radar has been destroyed. In the tablesof Figures 2, 3 and 4, the \�" symbol represents a wild-
ard (or \don't 
are") entry.If Es
ort arrives at the radar, then it observes its presen
e with 
ertainty and 
andestroy it to a
hieve GR. The likelihood of Transport's observing the radar's destru
tion isa fun
tion of its distan
e from the radar. We 
an vary this fun
tion's observability parameter411



Pynadath & Tambe� = fEs
ort (E);Transport (T )gS = �E � �T � �RPosition of Es
ort: �E = f0; 1; : : : ; 8; 9;DestinationgPosition of Transport: �T = f0; 0:5; : : : ; 9; 9:5;Destination;DestroyedgPosition of Radar: �R = f1; 2; : : : ; 8;DestroyedgA� = AE �AT = f
y;destroy;waitg � f
y-NOE;
y-normal;waitg�� = �E � �T = f
lear (�GR);nullg � fnullgRA(h�E; �T ; �Ri ;a) = �E �T a RA0; : : : ; 9 0; : : : ; 9:5;Destroyed � 00; : : : ; 9 Destination � rTDestination 0; : : : ; 9:5;Destroyed � rEDestination Destination � rE + rTR�(s; hnull;nulli) = 0R�(s; h�GR ;nulli) = �r� 2 [0; 1℄Figure 2: COM-MTDP model of states, a
tions, and rewards for heli
opter s
enario.(� in Figure 4) within the range [0; 1℄ to generate distin
t domain 
on�gurations (0 meansthat Transport will never observe the radar's destru
tion; 1 means Transport will alwaysobserve it). If the observability is 1, then they a
hieve mutual belief of the a
hievement ofGR as soon as it o

urs (following the argument presented in Se
tion 4.1). However, for anyobservability less than 1, there is a 
han
e that the agents will not a
hieve mutual beliefsimply by 
ommon observation. The heli
opters re
eive a �xed reward for ea
h time stepspent at their destination. Thus, for a �xed time horizon, the earlier the heli
opters rea
hthere, the greater the team's reward. Sin
e 
ying nap-of-the-earth is slower than normalspeed, Transport will swit
h to its normal 
ying as soon as it either observes that GR hasbeen a
hieved or Es
ort sends the message, �GR . Sending the message is not free, so weimpose a variable 
ommuni
ation 
ost (r� in Figure 2), also within the range [0; 1℄.We 
onstru
ted COM-MTDP models of this s
enario for ea
h 
ombination of observabil-ity and 
ommuni
ation 
ost within the range [0; 1℄ at 0.1 in
rements. For ea
h 
ombination,we applied the Jennings and STEAM poli
ies, as well as a 
ompletely silent poli
y. For thisdomain, the poli
y, �J��, di
tates that Es
ort always 
ommuni
ate �GR upon destroyingthe radar. For STEAM, we vary the � and C
 parameters with the observability and 
om-muni
ation 
ost parameters, respe
tively. We used two di�erent settings (low and medium)for the 
ost of mis
oordination, Cmt. Following the published STEAM algorithm (Tambe,1997), Es
ort sends message �GR if and only if STEAM's inequality � � Cmt > C
, holds.Thus, the two di�erent settings, low and medium, for Cmt generate two distin
t 
ommuni
a-tion poli
ies; the high setting is stri
tly dominated by the other two settings in this domain.We also 
onstru
ted and evaluated lo
ally and globally optimal poli
ies. In applying ea
hof these poli
ies, we used our COM-MTDP model to 
ompute the expe
ted reward re
eivedby the team when following the sele
ted poli
y. We 
an uniquely determine this expe
tedreward given the 
andidate 
ommuni
ation poli
y and the parti
ular observability and 
om-muni
ation 
ost parameters, as well as the COM-MTDP model spe
i�ed in Figures 2, 3,and 4. 412
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ision Problem
� P (h�E0; �T0; �R0i ; haE; aT i ; h�E1; �T1; �R1i) =PE(�E0; aE ; �E1) � PT (h�T0; �R0i ; aT ; �T1) � PR(h�E0; �R0i ; aE ; �R1)Es
ort: Initial distribution, Pr(�0E = 0) = 1�E0 aE �E1 PEDestination � Destination 10; : : : ; 8 
y �E0 + 1 10; : : : ; 8 destroy �E0 + 1 19 
y Destination 19 destroy Destination 1� wait �E0 1Transport: Initial distribution, Pr(�0T = 0) = 1�T0 �R0 aT �T1 PTDestination � � Destination 1Destroyed � � Destroyed 10; : : : ; 9 � 
y-NOE �T0 + 0:5 19:5 � 
y-NOE Destination 10; : : : ; 8:5 Destroyed 
y-normal �T0 + 1 19; 9:5 Destroyed 
y-normal Destination 1� 6= Destroyed 
y-normal Destroyed 1� � wait �T0 1Radar: Initial distribution, 8� 2 f1; 2; : : : ; 8g, Pr(�0R = �) = 0:125�E0 �R0 aE �R1 PR� �E0 destroy Destroyed 1� � 6= destroy �R0 1� 6= �E0 � �R0 1Figure 3: COM-MTDP model of transition probabilities for heli
opter s
enario (ex
ludeszero probability rows).
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Pynadath & Tambe
� 
� = 
E � 
T{ 
E = �E � �T � 
RE , where agent Es
ort's possible observations of the radar
onsist of 
RE = fpresent;destroyed;nullg{ 
T = �E��T �
RT , where agent Transport's possible observations of the radar
onsist of 
RT = fdestroyed;nullg� O�(s; haE ; aT i ; h!E; !T i) = OE(s; haE; aT i ; !E) � OT (s; haE ; aT i ; !T ){ OE(h�E; �T ; �Ri ; haE; aT i ; h�E; �T ; !REi) =�E �R aE !RE OE� destroyed destroy destroyed 1� destroyed 6= destroy null 1�R 1; : : : ; 9 � present 16= �R 1; : : : ; 9 � null 1{ OT (h�E ; �T ; �Ri ; haE ; aT i ; h�E ; �T ; !RT i) =�T �R aE !RT OT0; : : : ; 9:5 � destroy destroyed �e�(�R��T )(1��)0; : : : ; 9:5 � destroy null 1� �e�(�R��T )(1��)0; : : : ; 9:5 � 6= destroy null 1destroyed � � null 1� 2 [0; 1℄Figure 4: COM-MTDP model of observability for heli
opter s
enario. These tables ex
ludeboth zero probability rows and input feature 
olumns from whi
h O is indepen-dent. For example, both agents' observation fun
tions are independent of thetransport's sele
ted a
tion, so neither table in
ludes a aT 
olumn.
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Figure 5: Suboptimality of silent and Jennings poli
ies.

Figure 6: Suboptimality of STEAM poli
y under both low and medium 
osts of mis
oordi-nation.5.2 Experimental ResultsFigures 5 and 6 plot how mu
h utility the team 
an expe
t to lose by following the Jennings,silent, and the two STEAM poli
ies instead of the lo
ally optimal 
ommuni
ation poli
y(thus, higher values mean worse performan
e). We 
an immediately see that the Jenningsand silent poli
ies are signi�
antly suboptimal for many possible domain 
on�gurations. Forexample, not surprisingly, the surfa
e for the poli
y, �J��, peaks (i.e., it does most poorly)when the 
ommuni
ation 
ost is high and when the observability is high, while the silentpoli
y does poorly under exa
tly the opposite 
onditions.Previously published results (Jennings, 1995) demonstrated that the Jennings poli
yled to better team performan
e by redu
ing waste of e�ort produ
ed by alternate poli
ieslike our silent one. These earlier results fo
used on a single domain, and Figure 5 partially
on�rms their 
on
lusion and shows that the superiority of the Jennings poli
y over thesilent poli
y extends over a broad range of possible domain 
on�gurations. On the otherhand, our COM-MTDP results also show that there is a signi�
ant sub
lass of domains (e.g.,when 
ommuni
ation 
ost and observability are high) where the Jennings poli
y is a
tuallyinferior to the silent poli
y. Thus, with our COM-MTDP model, we 
an 
hara
terize thetypes of domains where the Jennings poli
y outperforms the silent poli
y and vi
e versa.415



Pynadath & TambeFigure 6 shows the expe
ted value lost by following the two STEAM poli
ies. We 
anview STEAM as trying to intelligently interpolate between the Jennings and silent poli
iesbased on the parti
ular domain properties. In fa
t, under a low setting for Cmt, we seetwo thresholds, one along ea
h dimension, at whi
h STEAM swit
hes between following theJennings and silent poli
ies, and its suboptimality is highest at these thresholds. Undera medium setting for Cmt, STEAM does not exhibit a threshold along the dimension of
ommuni
ation 
ost, due to the in
reased 
ost of mis
oordination. Under both settings,STEAM's performan
e generally follows the better of those two �xed poli
ies, so its maxi-mum suboptimality (0.587 under both settings) is signi�
antly lower than that of the silent(0.700) and Jennings' (1.000) poli
ies. Furthermore, STEAM outperforms the two poli
ieson average, a
ross the spa
e of domain 
on�gurations, as eviden
ed by its mean subopti-mality of 0.063 under low Cmt and 0.083 under medium Cmt. Both values are signi�
antlylower than the silent poli
y's mean of 0.160 and the Jennings' poli
y's mean of 0.161. Thus,we have been able to quantify the savings provided by STEAM over less sele
tive poli
ieswithin this example domain.However, within a given domain 
on�guration, STEAM must either always or never
ommuni
ate, and this in
exibility leads to signi�
ant suboptimality a
ross a wide rangeof domain 
on�gurations. On the other hand, Figure 6 also shows that there are domain
on�gurations where STEAM is lo
ally optimal. In this relatively small-s
ale experimentaltestbed, there is no need to in
ur STEAM's suboptimality, be
ause the agents 
an 
omputethe superior lo
ally optimal poli
y in under 5 se
onds. In larger-s
ale domains, on the otherhand, the in
reased 
omplexity of the lo
ally optimal poli
ies may render its exe
utioninfeasible. In su
h domains, STEAM's 
onstant-time exe
ution would potentially make it apreferable alternative. This analysis suggests a possible spe
trum of algorithms that makedi�erent optimality-eÆ
ien
y tradeo�s.To understand the 
ause of STEAM's suboptimality, we 
an examine its performan
emore deeply in Figures 7 and 8, whi
h plot the expe
ted number of messages sent usingSTEAM (with both low and medium Cmt) vs. the lo
ally optimal poli
y, at observabilityvalues of 0.3 and 0.7. STEAM's expe
ted number of messages is either 0 or 1, so STEAM
an make at most two (instantaneous) transitions between them: one threshold value ea
halong the observability and 
ommuni
ation 
ost dimensions.From Figures 7 and 8, we see that the optimal poli
y 
an be more 
exible than STEAMby spe
ifying 
ommuni
ation 
ontingent on Es
ort's beliefs beyond simply the a
hievementof GR. For example, 
onsider the messages sent under low Cmt in Figure 7, where STEAMmat
hes the lo
ally optimal poli
y at the extremes of the 
ommuni
ation 
ost dimension.Even if the 
ommuni
ation 
ost is high, it is still worth sending message �GR in states whereTransport is still very far from the destination. Thus, the surfa
e for the optimal poli
y,makes a more gradual transition from always 
ommuni
ating to never 
ommuni
ating. We
an thus view STEAM's surfa
e as a 
rude approximation to the optimal surfa
e, subje
tto STEAM's fewer degrees of freedom.We 
an also use Figures 7 and 8 to identify the domain 
onditions under whi
h jointintentions theory's pres
ription of attaining mutual belief is or is not optimal. In parti
ular,for any domain where the observability is less than 1, the agents will not attain mutual beliefwithout 
ommuni
ation. In both Figures 7 and 8, there are many domain 
on�gurationswhere the lo
ally optimal poli
y is expe
ted to send fewer than 1 �GR message. Ea
h of416
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Figure 7: Expe
ted number of messages sent by STEAM and lo
ally optimal poli
ies whenthe observability is 0.3.

Figure 8: Expe
ted number of messages sent by STEAM and lo
ally optimal poli
ies whenthe observability is 0.7. Under both settings, STEAM sends 0 messages.
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Figure 9: Suboptimality of lo
ally optimal poli
y.these 
on�gurations represents a domain where the lo
ally optimal poli
y will not attainmutual belief in at least one 
ase. Therefore, attaining mutual belief is suboptimal in those
on�gurations!These experiments illustrate that STEAM, despite its de
ision-theoreti
 
ommuni
ationsele
tivity, may 
ommuni
ate suboptimally under a signi�
ant 
lass of domain 
on�gura-tions. Previous work on STEAM-based, real-world, agent-team implementations informallynoted suboptimality in an isolated 
on�guration within a more realisti
 heli
opter trans-port domain (Tambe, 1997). Unfortunately, this previous work treated that suboptimality(where the agents 
ommuni
ated more than ne
essary) as an isolated aberration, so therewas no investigation of the degree of su
h suboptimality, nor of the 
onditions under whi
hsu
h suboptimality may o

ur in pra
ti
e. We re-
reated these 
onditions within the experi-mental testbed of this se
tion by using a medium Cmt. The resulting experiments (as shownin Figure 7) illustrated that the observed suboptimality was not an isolated phenomenon,but, in fa
t, that STEAM has a general propensity towards extraneous 
ommuni
ation insituations involving low observability (i.e., low likelihood of mutual belief) and high 
om-muni
ation 
osts. This result mat
hes the situation where the \aberration" o

urred in themore realisti
 domain.The lo
ally optimal poli
y is itself suboptimal with respe
t to the globally optimalpoli
y, as we 
an see from Figure 9. Under domain 
on�gurations with high observability,the globally optimal poli
y has the es
ort wait an additional time step after destroyingthe radar and then 
ommuni
ate only if the transport 
ontinues 
ying nap-of-the-earth.The es
ort 
annot dire
tly observe whi
h method of 
ight the transport has 
hosen, butit 
an measure the 
hange in the transport's position (sin
e it maintains a history of itspast observations) and thus infer the method of 
ight with 
omplete a

ura
y. In a sense,the es
ort following the globally optimal poli
y is performing plan re
ognition to analyzethe transport's possible beliefs. It is parti
ularly noteworthy that our domain spe
i�
ationdoes not expli
itly en
ode this re
ognition 
apability. In fa
t, our algorithm for �nding theglobally optimal poli
y does not even make any of the assumptions made by our lo
allyobservable poli
y (i.e., single agent is de
iding whether to 
ommuni
ate or not, regardinga single message, at a single point in time); rather, our general-purpose sear
h algorithmtraverses the poli
y spa
e and \dis
overs" this possible means of inferen
e on its own. We418



The Communi
ative Multiagent Team De
ision Problemexpe
t that su
h COM-MTDP analysis 
an provide an automati
 method for dis
overingnovel 
ommuni
ation poli
ies of this type in other domains, even those modeling real-worldproblems.Indeed, by exploiting this dis
overy 
apability within our example domain, the globallyoptimal poli
y gains a slight advantage in expe
ted utility over the lo
ally optimal poli
y,with a mean di�eren
e of 0.011, standard deviation of 0.027, and maximum of 0.120. On theother hand, our domain-independent 
ode never requires more than 5 se
onds to 
omputethe lo
ally optimal poli
y in this testbed, while our domain-independent sear
h algorithmalways required more than 150 minutes to �nd the globally optimal poli
y. Thus, throughTheorem 7, we have used the COM-MTDP model to 
onstru
t a 
ommuni
ation poli
ythat, for this testbed domain, performs almost optimally and outperforms existing team-work theories, with a substantial 
omputational savings over �nding the globally optimalpoli
y. Although these results hold for an isolated 
ommuni
ation de
ision, we expe
t therelative performan
e of the poli
ies to stay the same even with multiple de
isions, where thein
exibility of the suboptimal poli
ies will only exa
erbate their losses (i.e., the shapes ofthe graphs would stay roughly the same, but the suboptimality magnitudes would in
rease).6. SummaryThe COM-MTDP model is a novel framework that 
omplements existing teamwork resear
hby providing the previously la
king 
apability to analyze the optimality and 
omplexity ofteam de
isions. While grounded within e
onomi
 team theory, the COM-MTDP's exten-sions to in
lude 
ommuni
ation and dynamism allow it to subsume many existing multiagentmodels. We were able to exploit the COM-MTDP's ability to represent broad 
lasses ofmultiagent team domains to derive 
omplexity results for optimal agent teamwork underarbitrary problem domains. We also used the model to identify domain properties that 
ansimplify that 
omplexity.The COM-MTDP framework provides a general methodology for analysis a
ross bothgeneral domain sub
lasses and spe
i�
 domain instantiations. As demonstrated in Se
tion 4,we 
an express important existing teamwork theories within a COM-MTDP framework andderive broadly appli
able theoreti
al results about their optimality. Se
tion 5 demonstratesour methodology for the analysis of a spe
i�
 domain. By en
oding a teamwork problem asa COM-MTDP, we 
an use the leverage of our general-purpose software tools (available inOnline Appendix 1) to evaluate the optimality of teamwork based on potentially any otherexisting theory, as demonstrated in this paper using two leading instantiations of jointintentions theory. In 
ombining both theory and pra
ti
e, we 
an use the theoreti
al resultsderived using the COM-MTDP framework as the basis for new algorithms to extend oursoftware tools, just as we did in translating Theorem 7 from Se
tion 4 into an implementedalgorithm for lo
ally optimal 
ommuni
ation in Se
tion 5. We expe
t that the COM-MTDPframework, the theorems and 
omplexity results, and the reusable software will form a basisfor further analysis of teamwork, both by ourselves and others in the �eld.
419



Pynadath & Tambe7. Future Work for COM-MTDP Team AnalysisWhile our initial COM-MTDP results are promising, there remain at least three key areaswhere future progress in COM-MTDPs is 
riti
al. First, analysis using COM-MTDPs (su
has the one presented in Se
tion 5) requires knowledge of the rewards, transition probabil-ities, and observation probabilities, as well as of the 
ompeting poli
ies governing agentbehavior. It may not always be possible to have su
h a model of the domain and agents'poli
ies readily available. Indeed, other proposed team-analysis te
hniques (Nair, Tambe,Marsella, & Raines, 2002b; Raines, Tambe, & Marsella, 2000), do not require a priori hand-
oding of su
h models, but rather a
quire them automati
ally through ma
hine learningover large numbers of runs. Also, in the interests of 
ombating 
omputational 
omplexityand improved understandability, some resear
hers emphasize the need for multiple modelsat multiple levels of abstra
tion, rather than fo
using on a single model (Nair et al., 2002b).For instan
e, one level of the model may fo
us on the analysis of the individual agents' a
-tions in support of a team, while another level may fo
us on intera
tions among subteamsof a team. We 
an potentially extend the COM-MTDP model in both of these dire
tions(i.e., ma
hine learning of model parameters, and hierar
hi
al representations of the team toprovide multiple levels of abstra
tion).Se
ond, it is important to extend COM-MTDP analysis to other aspe
ts of teamworkbeyond 
ommuni
ation. For instan
e, team formation (where agents may be assigned spe-
i�
 roles within the team) and reformation (where failure of individual agents leads to rolereassignment within in the team) are key problems in teamwork that appear suitable forCOM-MTDP analysis. Su
h analysis may require extensions to the COM-MTDP frame-work (e.g., expli
it modeling of roles). Ongoing resear
h (Nair, Tambe, & Marsella, 2002a)has begun investigating the impa
t of su
h extensions and their appli
ations in domainssu
h as RoboCup Res
ue (Kitano, Tadokoro, Noda, Matsubara, Takahashi, Shinjoh, & Shi-mada, 1999). Analysis of more 
omplex team behaviors may require further extensionsto the COM-MTDP model to expli
itly a

ount for additional aspe
ts of teamwork (e.g.,notions of authority stru
ture within teams).Third, extending COM-MTDP analysis beyond teamwork to model other types of 
o-ordination may require relaxation of COM-MTDP's assumption of sel
ess agents re
eivingthe same joint reward. More 
omplex organizations may require modeling other non-jointrewards. Indeed, enri
hing the COM-MTDP model in this manner may enable analy-sis of some of the seminal work in multiagent 
oordination in the tradition of PGP andGPGP (De
ker & Lesser, 1995; Durfee & Lesser, 1991). Su
h enri
hed models may �rstrequire new advan
es in the mathemati
al foundations of our COM-MTDP framework, andultimately 
ontribute towards the emerging s
ien
es of agents and multiagent systems.A
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