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The Communiative Multiagent Team Deision Problem:Analyzing Teamwork Theories and ModelsDavid V. Pynadath pynadath�isi.eduMilind Tambe tambe�us.eduInformation Sienes Institute and Computer Siene DepartmentUniversity of Southern California4676 Admiralty Way, Marina del Rey, CA 90292 USAAbstratDespite the signi�ant progress in multiagent teamwork, existing researh does not ad-dress the optimality of its presriptions nor the omplexity of the teamwork problem. With-out a haraterization of the optimality-omplexity tradeo�s, it is impossible to determinewhether the assumptions and approximations made by a partiular theory gain enougheÆieny to justify the losses in overall performane. To provide a tool for use by mul-tiagent researhers in evaluating this tradeo�, we present a uni�ed framework, the COM-muniative Multiagent Team Deision Problem (COM-MTDP). The COM-MTDP modelombines and extends existing multiagent theories, suh as deentralized partially observ-able Markov deision proesses and eonomi team theory. In addition to their generalityof representation, COM-MTDPs also support the analysis of both the optimality of teamperformane and the omputational omplexity of the agents' deision problem. In analyz-ing omplexity, we present a breakdown of the omputational omplexity of onstrutingoptimal teams under various lasses of problem domains, along the dimensions of observ-ability and ommuniation ost. In analyzing optimality, we exploit the COM-MTDP'sability to enode existing teamwork theories and models to enode two instantiations ofjoint intentions theory taken from the literature. Furthermore, the COM-MTDP modelprovides a basis for the development of novel team oordination algorithms. We derive adomain-independent riterion for optimal ommuniation and provide a omparative anal-ysis of the two joint intentions instantiations with respet to this optimal poliy. We haveimplemented a reusable, domain-independent software pakage based on COM-MTDPs toanalyze teamwork oordination strategies, and we demonstrate its use by enoding andevaluating the two joint intentions strategies within an example domain.1. IntrodutionA entral hallenge in the ontrol and oordination of distributed agents is enabling themto work together, as a team, toward a ommon goal. Suh teamwork is ritial in a vastrange of domains|for future teams of orbiting spaeraft, sensors for traking targets, un-manned vehiles for urban battle�elds, software agents for assisting organizations in rapidrisis response, et. Researh in teamwork theory has built the foundations for suessfulpratial agent team implementations in suh domains. On the forefront are theories basedon belief-desire-intentions (BDI) frameworks, suh as joint intentions (Cohen & Levesque,1991b, 1991a; Levesque, Cohen, & Nunes, 1990), SharedPlans (Grosz, 1996; Grosz & Kraus,1996; Grosz & Sidner, 1990), and others (Sonenberg, Tidhar, Werner, Kinny, Ljungberg,& Rao, 1994; Dunin-Kepliz & Verbrugge, 1996), that have provided presriptions for o-2002 AI Aess Foundation and Morgan Kaufmann Publishers. All rights reserved.



Pynadath & Tambeordination in pratial systems. These theories have inspired the onstrution of prati-al, domain-independent teamwork models and arhitetures (Jennings, 1995; Pynadath,Tambe, Chauvat, & Cavedon, 1999; Rih & Sidner, 1997; Tambe, 1997; Yen, Yin, Ioerger,Miller, Xu, & Volz, 2001), suessfully applied in a range of omplex domains.Yet, two key shortomings limit the salability of these BDI-based theories and imple-mentations. First, there are no tehniques for the quantitative evaluation of the degree ofoptimality of their oordination behavior. While optimal teamwork may be impratial inreal-world domains, suh analysis would aid us in omparison of di�erent theories/modelsand in identifying feasible improvements. One key reason for the diÆulty in quantitativeevaluation of most existing teamwork theories is that they ignore the various unertain-ties and osts in real-world environments. For instane, joint intentions theory (Cohen &Levesque, 1991b) presribes that team members attain mutual beliefs in key irumstanes,but it ignores the ost of attaining mutual belief (e.g., via ommuniation). Implementa-tions that blindly follow suh presriptions ould engage in highly suboptimal oordination.On the other hand, pratial systems have addressed osts and unertainties of real-worldenvironments. For instane, STEAM (Tambe, 1997; Tambe & Zhang, 1998) extends jointintentions with deision-theoreti ommuniation seletivity. Unfortunately, the very prag-matism of suh approahes often neessarily leads to a lak of theoretial rigor, so it remainsunanswered whether STEAM's seletivity is the best an agent an do, or whether it is evenneessary at all. The seond key shortoming of existing teamwork researh is the lakof a haraterization of the omputational omplexity of various aspets of teamwork dei-sions. Understanding the omputational advantages of a pratial oordination presriptionould potentially justify the use of that presription as an approximation to optimality inpartiular domains.To address these shortomings, we propose a new omplementary framework, the COM-muniative Multiagent Team Deision Problem (COM-MTDP), inspired by work in eo-nomi team theory (Marshak & Radner, 1971; Yoshikawa, 1978; Ho, 1980). While ourCOM-MTDP model borrows from a theory developed in another �eld, we make severalontributions in applying and extending the original theory, most notably adding expliitmodels of ommuniation and system dynamis. With these extensions, the COM-MTDPgeneralizes other reently developed multiagent deision frameworks, suh as deentralizedPOMDPs (Bernstein, Zilberstein, & Immerman, 2000).Our de�nition of a team (like that in eonomi team theory) assumes only that teammembers have a ommon goal and that they work selessly towards that goal (i.e., theyhave no other private goals of their own). In terms of our deision-theoreti framework, weassume that all of the team members share the same joint utility funtion|that is, eahteam member's individual preferenes are exatly the preferenes of the other members and,thus, of the team as a whole. Our de�nition may appear to be a \bare-bones" de�nition ofa team, sine it does not inlude ommon onepts and assumptions from the literature onwhat onstitutes a team (e.g., the teammates form a joint ommitment (Cohen & Levesque,1991b), attain mutual belief upon termination of a joint goal, intend that teammates su-eed in their tasks (Grosz & Kraus, 1996), et.). From our COM-MTDP perspetive, weview these onepts as more intermediate onepts, as the means by whih agents improvetheir team's overall performane, rather than ends in themselves. Our hypothesis in thisinvestigation is that our COM-MTDP-based analysis an provide onrete justi�ations for390



The Communiative Multiagent Team Deision Problemthese onepts. For example, while mutual belief has no inherent value, our COM-MTDPmodel an quantify the improved performane that we would expet from a team thatattains mutual belief about important aspets of its exeution.More generally, this paper demonstrates three new types of teamwork analyses madepossible by the COM-MTDP model. First, we analyze the omputational omplexity ofteamwork within sublasses of problem domains. For instane, some researhers have ad-voated teamwork without ommuniation (Goldberg & Matari, 1997). We use the COM-MTDP model to show that, in general, the problem of onstruting optimal teams withoutommuniation is NEXP-omplete, but allowing free ommuniation redues the problemto be PSPACE-omplete. This paper presents a breakdown of the omplexity of optimalteamwork over problem domains lassi�ed along the dimensions of observability and om-muniation ost.Seond, the COM-MTDP model provides a powerful tool for omparing the optimalityof di�erent oordination presriptions aross lasses of domains. Indeed, we illustrate thatwe an enode existing team oordination strategies within a COM-MTDP for evaluation.For our analysis, we seleted two joint intentions-based approahes from the literature: oneusing the approah realized within GRATE* and the joint responsibility model (Jennings,1995), and another based on STEAM (Tambe, 1997). Through this enoding, we derive theonditions under whih these team oordination strategies generate optimal team behavior,and the omplexity of the deision problems addressed by them. Furthermore, we alsoderive a novel team oordination algorithm that outperforms these existing strategies inoptimality, though not in eÆieny. The end result is a well-grounded haraterization ofthe omplexity-optimality tradeo� among various means of team oordination.Third, we an use the COM-MTDP model to empirially analyze a spei� domain ofinterest. We have implemented reusable, domain-independent algorithms that allow one toevaluate the optimality of the behavior generated by di�erent presriptive poliies within aproblem domain represented as a COM-MTDP. We apply these algorithms in an exampledomain to empirially evaluate the aforementioned team oordination strategies, hara-terizing the optimality of eah strategy as a funtion of the properties of the underlyingdomain. For instane, Jennings reports experimental results (Jennings, 1995) indiatingthat his joint responsibility teamwork model leads to lower waste of ommunity e�ort thanompeting methods of aomplishing teamwork. With our COM-MTDP model, we wereable to demonstrate the bene�ts of Jennings' approah under many on�gurations of our ex-ample domain. However, in preisely haraterizing the types of domains that showed suhbene�ts, we also identi�ed domains where these ompeting methods may atually performbetter. In addition, we an use our COM-MTDP model to re-reate and explain previouswork that noted an instane of suboptimality in a STEAM-based, real-world implementa-tion (Tambe, 1997). While this previous work treated that suboptimality as anomalous, ourCOM-MTDP re-evaluation of the domain demonstrated that the observed suboptimalitywas a symptom of STEAM's general propensity towards extraneous ommuniation in asigni�ant range of domain types. Both the algorithms and the example domain model areavailable for publi use in an Online Appendix 1.Setion 2 presents the COM-MTDP model's representation and plaes it in the ontextof related multiagent models from the literature. Setion 3 uses the COM-MTDP model tode�ne and haraterize the omplexity of designing optimal agent teams. Setion 4 analyzes391



Pynadath & Tambethe optimality of existing team oordination algorithms and derives a novel oordinationalgorithm. Setion 5 presents empirial results from applying our COM-MTDP algorithmsto an example domain. Setion 6 summarizes our results, and Setion 7 identi�es somepromising future diretions.2. The COM-MTDP ModelThis setion de�nes and desribes the COM-MTDP model itself and its ability to representthe important aspets of multiagent teamwork. We begin in Setion 2.1 by de�ning theunderlying multiagent team deision problem with no expliit ommuniation. Setion 2.2de�nes the omplete COM-MTDP model with its extension to expliitly represent ommu-niation. Setion 2.3 provides an illustration of how the COM-MTDP model represents theexeution of a team of agents. Finally, Setion 2.4 desribes related models of multiagentoordination and shows how the COM-MTDP model generalizes them.2.1 Multiagent Team Deision ProblemsGiven a team of seless agents, �, who intend to perform some joint task, we wish to evaluatepossible poliies of behavior. We represent a multiagent team deision problem (MTDP)model as a tuple, hS;A�; P;
�;O�;B�; Ri. We have taken the underlying omponents ofthis model from the initial team deision model (Ho, 1980), but we have extended them tohandle dynami deisions over time and to more easily represent multiagent domains (inpartiular, agent beliefs). We assume that the model is ommon knowledge to all of theteam members. In other words, all of the agents believe the same model, and they believethat they all believe the same model, et.2.1.1 World States: S� S = �1 � � � � � �m: a set of world states, expressed as a fatored representation (aross produt of separate features).The state of the world here is the state of the team's environment (e.g., terrain, loation ofenemy). Thus, eah �i represents the domain of an individual feature of that environment,while S represents the domain of all possible ombinations of values over the individualfeatures.2.1.2 Domain-Level Ations: A�fAigi2� is a set of ations for eah agent to perform to hange its environment, impliitlyde�ning a set of ombined ations, A� �Qi2�Ai (orresponding to team theory's deisionvariables).Extension to Dynami Problem: P The original team deision problem foused ona one-shot, stati problem. We extend the original onept so that eah omponent is atime series of random variables. The e�ets of domain-level ations (e.g., a ying ationhanges a heliopter's position) obey a probabilisti distribution, given by a funtion P :S �A� � S ! [0; 1℄. In other words, for eah initial state s at time t, ombined ation a392



The Communiative Multiagent Team Deision Problemtaken at time t, and �nal state s0 at time t+ 1, Pr(St+1 = s0jSt = s;At� = a) = P (s;a; s0).The given de�nition of P assumes that the world dynamis obey the Markov assumption.2.1.3 Agent Observations: 
�f
igi2� is a set of observations that eah agent, i, an experiene of its world, impliitlyde�ning a ombined observation, 
� � Qi2� 
i. 
i may inlude elements orrespondingto indiret evidene of the state (e.g., sensor readings) and ations of other agents (e.g.,movement of other heliopters). In the original team-theoreti framework, the informationstruture that represented the observation proess of the agents was a set of deterministifuntions, Oi : S ! 
i.Extension of Allowable Information Strutures: O� We extend the informationstruture representation to allow for unertain observations. We use a general stohastimodel, borrowed from the partially observable Markov deision proess model (Smallwood &Sondik, 1973), with a joint observation funtion: O�(s;a;!) = Pr(
t� = !jSt = s;At�1� =a). This funtion models the sensors, representing any errors, noise, et. In some ases, wean separate this joint distribution into individual observation funtions: O� � Qi2�Oi,where Oi(s;a; !) = Pr(
ti = !jSt = s;At�1� = a). Thus, the probability distributionspei�ed by O� forms the riher information struture used in our model. We an makeuseful distintions between di�erent lasses of information strutures:Colletive Partial Observability This is the general ase, where we make no assump-tions on the observations.Colletive Observability There is a unique world state for the ombined observations ofthe team: 8! 2 
�, 9s 2 S suh that 8s0 6= s, Pr(
t� = !jSt = s0) = 0. The setof domains that are olletively observable is a strit subset of the domains that areolletively partially observable.Individual Observability There is a unique world state for eah individual agent's ob-servations: 8! 2 
i, 9s 2 S suh that 8s0 6= s, Pr(
ti = !jSt = s0) = 0. The setof domains that are individually observable is a strit subset of the domains that areolletively observable.Non-Observability The agents reeive no feedbak from the world: 9! 2 
i, suh that8s 2 S and 8a 2 A�, Pr(
ti = !jSt = s;At�1� = a) = 1. This assumption holdsin open-loop systems, whih ome under frequent onsideration in lassial plan-ning (Boutilier, Dean, & Hanks, 1999).2.1.4 Poliy (Strategy) Spae�iA is a domain-level poliy (or strategy, in the original team theory spei�ation) to mapan agent's belief state to an ation. In the original formalism, the agent's beliefs orresponddiretly to its observations (i.e., �iA : 
i ! Ai).Extension to Riher Belief State Spae: B� We generalize the set of possible strate-gies to apture the more omplex mental states of the agents. Eah agent, i 2 �, forms abelief state, bti 2 Bi, based on its observations seen through time t, where Bi irumsribes393



Pynadath & Tambethe set of possible belief states for the agent. Thus, we de�ne the set of possible domain-level poliies as mappings from belief states to ations, �iA : Bi ! Ai. We de�ne the setof possible ombined belief states over all agents to be B� � Qi2�Bi. The orrespondingrandom variable, bt�, represents the agents' ombined belief state at time t. We elaborateon di�erent types of belief states and the mapping of observations to belief states (i.e., thestate estimator funtion) in Setion 2.2.1.2.1.5 Reward Funtion: RA ommon reward funtion is entral to the notion of teamwork in a MTDP: R : S�A� !R. This funtion represents the team's joint preferenes over states and the ost of domain-level ations (e.g., destroying enemy is good, returning to home base with only 10% oforiginal fore is bad). We assume that, as seless team members, eah agent shares thesepreferenes at the individual level as well. Therefore, eah team member wants exatlywhat is best for the team as a whole.2.2 Extension for Expliit Communiation: ��We make an expliit separation between domain-level ations (A�) and ommuniativeations. As de�ned in this setion, ommuniative ations a�et the reeiving agents' indi-vidual belief states, but, unlike domain-level ations, they do not diretly hange the worldstate. Although this distintion is sometimes blurry in real-world domains, we make thisexpliit separation so as to isolate, as muh as possible, the e�ets of the two types ofations. The leverage gained from this separation provides the basis for the informative,analytial results presented in the rest of this paper. To apture this separation, we extendour initial MTDP model to be a ommuniative multiagent team deision problem (COM-MTDP), that we de�ne as a tuple, hS;A�;��; P;
�;O�;B�; Ri, with a new omponent,��, and an extended reward funtion, R.2.2.1 Communiation: ��f�igi2� is a set of possible messages for eah agent, impliitly de�ning a set of ombinedommuniations, �� � Qi2� �i. An agent, i, may ommuniate message x 2 �i to itsteammates, who interpret the ommuniation by updating their belief states in response. Asa �rst step in this work, we assume that all of the agents reeive the messages instantaneouslyand orretly (i.e., there is no lag or noise in the ommuniation hannels). This model isommon knowledge among all of the team members, so one an agent has sent a message,it knows that its team members have reeived the message, and its team members knowthat it knows that they have all reeived the message, and so on.With ommuniation, we divide eah deision epoh into two phases: the pre-ommuni-ation and post-ommuniation phases, denoted by the subsripts �� and ��, respetively.In partiular, the agents update their belief states at two distint points within eah de-ision epoh: one upon reeiving observation 
ti (produing the pre-ommuniation be-lief state bti��), and again upon reeiving the other agents' messages (produing the post-ommuniation belief state bti��). The distintion allows us to di�erentiate between the beliefstate used by the agents in seleting their ommuniation ations and the more \up-to-date"belief state used in seleting their domain-level ations. We also distinguish between the394



The Communiative Multiagent Team Deision Problemseparate state-estimator funtions used in eah update phase:b0i =SE0i () (1)bti�� =SEi��(bt�1i�� ;
ti) (2)bti�� =SEi��(bti��;�t�) (3)where SEi�� : Bi � 
i ! Bi is the pre-ommuniation state estimator for agent i, andSEi�� : Bi ��� ! Bi is the post-ommuniation state estimator for agent i. The initialstate estimator, SE0i : ; ! Bi, spei�es the agent's prior beliefs, before any observationsare made. For eah of these, we also make the obvious de�nitions for the orrespondingestimators for the ombined belief states: SE���, SE���, and SE0�.In this paper, as a �rst step, we assume that the agents have perfet reall. In otherwords, the agents reall all of their observations, as well as all ommuniation of the otheragents. Thus, their belief states an represent their entire histories as sequenes of obser-vations and reeived messages: Bi = 
�i � ���, where X� denotes the set of all possiblesequenes (of any length) of elements of X. The agents realize perfet reall through thefollowing state estimator funtions:SE0i () = hi (4)SEi��(


0i ;�0�� ; : : : ; 

t�1i ;�t�1� �� ;
ti)= 


0i ;�0�� ; : : : ; 

t�1i ;�t�1� � ; 

ti; ��� (5)SEi��(


0i ;�0�� ; : : : ; 

t�1i ;�t�1� � ; 

ti; ��� ;�t�)= 


0i ;�0�� ; : : : ; 

ti;�t��� (6)In other words, SE0i initializes agent i's belief state to be an empty history, SEi�� appends anew observation to agent i's belief state, and SEi�� appends new messages to agent i's beliefstate. Under this paper's assumptions of perfet reall, all three state-estimator funtionstake only onstant time. However, we an potentially allow more omplex funtions (thoughthe omplexity results presented hold only if the state-estimator funtions take polynomialtime). For instane, although we assume perfet, synhronous, instantaneous ommunia-tion here, we ould potentially use the post-ommuniation state estimator to model anynoise, temporal delays, asynhrony, ognitive burden, et. present in the ommuniationhannel.We extend our de�nition of a poliy of behavior to inlude a ommuniation poliy,�i� : Bi ! �i, analogous to Setion 2.1.4's domain-level poliy. We de�ne the joint poliies,��� and ��A, as the ombined poliies aross all agents in �.2.2.2 Extended Reward Funtion: RWe extend the team's reward funtion to also represent the ost of ommuniative ats (e.g.,ommuniation hannels may have assoiated ost): R : S�A���� ! R. We assume thatthe ost of ommuniation and of domain-level ations are independent of eah other, so wean deompose the reward funtion into two omponents: a ommuniation-level reward,R� : S � �� ! R, and a domain-level reward, RA : S � A� ! R. The total reward isthe sum of the two omponent values: R(s;a;�) = RA(s;a) + R�(s;�). We assume that395



Pynadath & Tambeommuniation has no inherent bene�t and may instead have some ost, so that for allstates, s 2 S, and messages, � 2 ��, the reward is never positive: R�(s;�) � 0. However,although we assign ommuniation no expliit value, it an have signi�ant impliit valuethrough its e�et on the agents' belief states and, subsequently, on their future ations.As with the observability funtion, we parameterize the ommuniation osts assoiatedwith message transmissions:General Communiation: We make no assumptions about ommuniation.Free Communiation: R�(s;�) = 0 for any � 2 ��, and s 2 S. In other words,ommuniation ations have no e�et on the agents' reward.No ommuniation: �� = ;, i.e., no expliit ommuniation. Alternatively, ommunia-tion may be prohibitively expensive, so that 8� 2 ��, and s 2 S, R�(s;�) = �1.The free-ommuniation ase appears in the literature, when researhers wish to fouson issues other than ommuniation ost. Although, real-world domains rarely exhibitsuh ideal onditions, we may be able to model some domains as having approximately freeommuniation to a suÆient degree. In addition, analyzing this extreme ase gives us someunderstanding of the bene�t of ommuniation, even if the results do not apply aross alldomains. We also identify the no-ommuniation ase beause suh deision problems havebeen of interest to researhers as well (Goldberg &Matari, 1997). Of ourse, even if�� = ;,it is possible that there are domain-level ations in A� that have impliit ommuniativevalue by ating as signals that onvey information to the other agents. However, we stilllabel suh agent teams as having no ommuniation for the purposes of the work here, sinemany of our results exploit an expliit separation between domain- and ommuniation-levelations.2.3 Model IllustrationWe an view the evolving state as a Markov hain with separate stages for domain-leveland ommuniation-level ations. In other words, eah agent team member, i 2 � beginsin some initial state, S0, with initial belief states, b0i = SE0i (). Eah agent reeives anobservation 
0i drawn aording to the probability distribution O�(S0;null;
0�) (there areno ations yet). Then, eah agent updates its belief state, b0i�� = SEi��(b0i ;
0i ).Next, eah agent i 2 � selets a message aording to its ommuniation poliy, �0i =�i�(b0i��), de�ning a ombined ommuniation, �0�. Eah agent interprets the ommu-niations of all of the others by updating its belief state, b0i�� = SEi��(b0i��;�0�). Eahthen selets an ation aording to its domain-level poliy, A0i = �iA(b0i��), de�ning aombined ation A0�. By our entral assumption of teamwork, eah agent reeives thesame joint reward, R0 = R(S0;A0�;�0�). The world then moves into a new state, S1,aording to the distribution, P (S0;A0�). Again, eah agent i reeives an observation 
1idrawn from 
i aording to the distributionO�(S1;A0�;
1�), and it updates its belief state,b1i�� = SEi��(b0i��;
1i ).The proess ontinues, with agents hoosing ommuniation- and domain-level ations,observing the e�ets, and updating their beliefs. Thus, in addition to the time series of worldstates, S0; S1; : : : ; St, the agents themselves determine a time series of ommuniation-level396



The Communiative Multiagent Team Deision Problemand domain-level ations, �0�;�1�; : : : ;�t� and A1�;A1�; : : : ;At�, respetively. We also havea time series of observations for eah agent i, 
0i ;
1i ; : : : ;
ti. Likewise, we an treat theombined observations, 
0�;
1�; : : : ;
t�, as a similar time series of random variables.Finally, the agents reeive a series of rewards, R0; R1; : : : ; Rt. We an de�ne the value,V , of the poliies, ��A and ���, as the expeted reward reeived when exeuting thosepoliies. Over a �nite horizon, T , this value is equivalent to the following:V T (��A;���) = E " TXt=0 Rt�������A;���# (7)2.4 Related WorkThe COM-MTDP model subsumes many existing multiagent models, as presented in Ta-ble 1 (i.e., we an map any instane of these models into a orresponding COM-MTDP).This generality enables us to perform novel analyses of real-world teamwork domains, asdemonstrated by Setion 4's use of the COM-MTDP model for analyzing the optimality ofommuniation deisions.2.4.1 Deentralized POMDPsWith its model of observability and world dynamis, our COM-MTDP model losely par-allels the struture of the deentralized partially observable Markov deision proess (DEC-POMDP) (Bernstein et al., 2000). Following our notational onventions, a DEC-POMDPis a tuple, hS;A�; P;
�; O�; Ri. There is no set of possible messages, ��, so the DEC-POMDP falls into the lass of domains with no ommuniation. The DEC-POMDP obser-vational model, O, is general enough to apture olletively partially observable domains.2.4.2 Partially Observable Idential Payoff Stohasti GamesStohasti games provide a rih framework for multiagent deision making when the agentsmay have their own individual goals and preferenes. The idential payo� stohasti game(IPSG) restrits the agents to share a single payo� funtion, appropriate for modelingthe single, global reward funtion of the team ontext. The partially observable IPSG(POIPSG) (Peshkin, Kim, Meuleau, & Kaelbling, 2000) is a tuple, hS;A�; P;
�;O�; Ri,very similar to the DEC-POMDP model. In other words, the observation funtion, O�, isgeneral enough to support olletively partially observable domains, and there is no ommu-niation.2.4.3 Multiagent MDPsAnother relevant model is the multiagent Markov deision proess (MMDP) (Boutilier,1996), whih is a tuple, hS;A�; P;Ri, in our notation. Like the DEC-POMDP, the MMDPhas no ommuniation. In addition, the MMDP is a multiagent extension to the ompletelyobservable MDP model, so it assumes an environment that is individually observable.
397



Pynadath & TambeModel �� O�DEC-POMDP no ommuniation olletive partial observabilityPOIPSG no ommuniation olletive partial observabilityMMDP no ommuniation individual observabilityXuan-Lesser general ommuniation olletive observabilityTable 1: Existing models as COM-MTDP subsets.2.4.4 Xuan-Lesser FrameworkThe COM-MTDP's separation of ommuniation from other ations is similar to previouswork on multiagent deision models (Xuan, Lesser, & Zilberstein, 2001), whih supportedgeneral ommuniation. However, while the Xuan-Lesser model generalizes beyond indi-vidually observable environments, it supports only a subset of olletively observable envi-ronments. In partiular, the Xuan-Lesser framework annot represent agents who reeiveloal observations of a ommon world state, where the observations of di�erent agents ouldpotentially be interdependent.3. COM-MTDP Complexity AnalysisWe an use the COM-MTDP model to prove some results about the omplexity of on-struting optimal agent teams (i.e., teams that oordinate to produe optimal behavior ina problem domain). The problem faing these agents (or the designer of these agents) ishow to onstrut the joint poliies, ��� and ��A, so as to maximize their joint reward,as represented by the expeted value, V T (��A;���). In all of the results presented, weassume that all of the values in a model instane (e.g., transition probabilities, rewards) arerational numbers, so that we an express the partiular instane as a �nite-sized input.Theorem 1 The deision problem of whether there exist poliies, ��� and ��A, for a givenCOM-MTDP, under general ommuniation and olletive partial observability, that yielda total reward at least K over some �nite horizon T is NEXP-omplete if j�j � 2 (i.e.,more than one agent).Proof: To prove that the COM-MTDP deision problem is NEXP-hard, we redue a DEC-POMDP (Bernstein et al., 2000) to a COM-MTDP with no ommuniation by opyingall of the other model features from the given DEC-POMDP. In other words, if we aregiven a DEC-POMDP, 
S; fAigmi=1; P; f
igmi=1; O;R�, we an onstrut a COM-MTDP,hS0; fA0igmi=1;�0�; P 0; f
0igmi=1;O0�;B0�; R0i, as follows:S0 = SA0i = Ai�0 = ;P 0(s; ha1; : : : ; ami ; s0) = P (s0js; a1; : : : ; am)398



The Communiative Multiagent Team Deision Problem
0i = 
iO0�(s; ha1; : : : ; ami ; h!1; : : : ; !mi) = O(!1; : : : ; !mja1; : : : ; am; s)B0i = [Tj=1(
i)j (i.e., observation sequenes of length no more than the �nite horizon)R0(s; ha1; : : : ; ami ;�) = R(s; a1; : : : ; am)The DEC-POMDP assumes perfet reall, so we use the state estimator funtions fromEquations 5 and 6. Sine there is no ommuniation for this COM-MTDP, we have a �xedsilent poliy, ���. We an translate any domain-level poliy, ��A, into a DEC-POMDPjoint poliy, Æ, as follows: Æi(oi1; : : : ; oit) � �iA(
oi1; : : : ; oit�) (8)The expeted utility of following this joint poliy, Æ, within the DEC-POMDP is identialto that of following ��� and ��A within the onstruted COM-MTDP. Thus, there existsa poliy with expeted utility greater than K for the COM-MTDP if and only if thereexists one for the DEC-POMDP. The deision problem for a DEC-POMDP is known to beNEXP-omplete, so the COM-MTDP problem must be NEXP-hard.To show that the COM-MTDP is in NEXP, our proof proeeds similarly to that ofthe DEC-POMDP. In other words, we guess the joint poliy, ��, and write it down inexponential time (we assume that T � jSj). We an take the COM-MTDP plus the poliyand generate (in exponential time) a orresponding MDP where the state spae is the spaeof all possible ombined belief states of the agents. We an then use dynami programmingto determine (in exponential time) whether �� generates an expeted reward of at least K.2 In the remainder of this setion, we examine the e�et of ommuniation on the om-plexity of onstruting team poliies that generate optimal behavior. We start by examiningthe ase under the ondition of free ommuniation, where we would expet the bene�t ofommuniation to be the greatest. To begin with, suppose that eah agent is apable ofommuniating its entire observation (i.e., �i � 
i). Before we analyze the omplexity ofthe team deision problem, we �rst prove that the agents should exploit this apability andommuniate their true observation, as long as they inur no ost in doing so:Theorem 2 Under free ommuniation, onsider a team of agents using a ommuniationpoliy: �i�(bti��) � 
ti. If the domain-level poliy ��A maximizes V T (��A;���), then thisombined poliy is dominant over any other poliies. In other words, for all poliies, �0�Aand �0��, V T (��A; ���) � V T (�0�A;�0��).Proof: Suppose we have some other ommuniation poliy, �0��, that spei�es somethingother than omplete ommuniation (e.g., keeping quiet, lying). Suppose that there is somedomain-level poliy, �0�A, that allows the team to attain some expeted reward, K, whenused in ombination with �0��. Then, we an onstrut a domain-level poliy, ��A, suhthat the team attains the same expeted reward, K, when used in onjuntion with theomplete-ommuniation poliy, ���, as de�ned in the statement of Theorem 2.The ommuniation poliy, �0��, produes a di�erent set of belief states (denoted b0ti��and b0ti��) than those for ��� (denoted bti�� and bti��). In partiular, we use state estimator399



Pynadath & Tambefuntions, SE0i�� and SE0i�� as de�ned in Equations 5 and 6 to generate b0ti�� and b0ti��.Eah belief state is a omplete history of observation and ommuniation pairs for eahagent. On the other hand, under the omplete ommuniation of ���, the state estimatorfuntions of Equations 5 and 6 redue to:SEi��(

0�; : : : ;
t�1� � ;
ti) = 

0�; : : : ;
t�1� ;
ti� (9)SEi��(

0�; : : : ;
t�1� ;
ti� ;�t�) = 

0�; : : : ;
t�1� ;�t��= 

0�; : : : ;
t�1� ;
t�� (10)Thus, ��A is de�ned over a di�erent set of belief states than �0�A. In order to determinean equivalent ��A, we must �rst de�ne a reursive mapping, m, that translates the beliefstates de�ned by ��� into those de�ned by �0��:mi(bti��) =mi �
bt�1i�� ;
t��� = mi �
bt�1i�� ; 

ti;
t����=Dmi(bt�1i��);D
ti;�0t�EE = *mi(bt�1i��);*
ti;Yj2��0tj++=*mi(bt�1i��);*
ti;Yj2��0j�(SE0j��(mj(bt�1j��);
tj))++ (11)Given this mapping, we then speify: �iA(bti��) = �0iA(mi(bti��)). Exeuting this domain-level poliy, in onjuntion with the ommuniation poliy, ���, results in the identialbehavior as exeution of the alternate poliies, �0�A and �0��. Therefore, the team followingthe poliies, ��A and ��� will ahieve the same expeted value of K, as under �0�A and�0��. 2Given this dominane of the omplete-ommuniation poliy, we an prove that theproblem of onstruting teams that oordinate optimally is simpler when ommuniation isfree.Theorem 3 The deision problem of determining whether there exist poliies, ��� and��A, for a given COM-MTDP with free ommuniation under olletive partial observabil-ity, that yield a total reward at least K over some �nite horizon T is PSPACE-omplete.Proof: To prove that the problem is PSPACE-hard, we redue the single-agent POMDP toa COM-MTDP. In partiular, if we are given a POMDP, hS;A; P;
; O;Ri, we an onstruta COM-MTDP, hS0; A01;�01; P 0;
01; O01; B01; R0i, for a single-agent team (i.e., � = f1g):S0 = SA01 = A�01 = ;P 0(s; ha1i ; s0) = P (s; a1; s0)
01 = 
 400



The Communiative Multiagent Team Deision ProblemO01(s; ha1i ; h!1i) = O(s; a1; !1)B01 = [Tj=1(
)j (i.e., observation sequenes of length no more than the �nite horizon)R0A(s; ha1i) = R(s; a1)R0�(s;�) = 0This COM-MTDP satis�es our assumption of free ommuniation. The POMDP assumesperfet reall, so we use the state estimator funtions from Equations 5 and 6. Just as inthe proof of Theorem 1, we an show that there exists a poliy with expeted utility greaterthan K for this COM-MTDP if and only if there exists one for the POMDP. The deisionproblem for the POMDP is known to be PSPACE-hard (Papadimitriou & Tsitsiklis, 1987),so the COM-MTDP problem under free ommuniation must be PSPACE-hard.To show that the problem is in PSPACE, we take a COM-MTDP under free ommuni-ation and redue it to a single-agent POMDP. In partiular, if we are given a COM-MTDP,hS;A�;��; P; 
�;O�;B�; Ri, we an onstrut a single-agent POMDP, hS0; A0; P 0;
0; O0;R0i, as follows:S0 = SA0 = A�P 0(s;a; s0) = P (s;a; s0)
0 = 
�O0(s;a;!) = O�(s;a;!)R0(s;a) = RA(s;a)From Theorem 2, we need to onsider only the omplete-ommuniation poliy for theCOM-MTDP and this poliy has a zero reward. Therefore, the deision problem for theCOM-MTDP is simply to �nd a domain-level poliy that produes an expeted rewardexeeding K. Given full ommuniation, the state estimator funtions for the COM-MTDP(as shown in the proof of Theorem 2) redue to Equation 10. A poliy for our POMDPspei�es an ation for eah and every history of observations: �0 : [Tj=1(
0)j ! A0. Thehistory of observations for the single-agent POMDP orresponds to the belief states of ourCOM-MTDP under full ommuniation. Therefore, we an translate a POMDP-poliy, �0,into an equivalent domain-level poliy for the COM-MTDP:�A(h!0;!1; : : : ;!ti) � �0(h!0;!1; : : : ;!ti) (12)A team following �A will perform the exat same domain-level ations as a single agentfollowing �0. Thus, there exists a poliy with expeted utility greater than K for the COM-MTDP if and only if there exists one for the POMDP. The deision problem for a POMDPis known to be in PSPACE (Papadimitriou & Tsitsiklis, 1987), so the COM-MTDP problem(under free ommuniation) must be in PSPACE as well. 2401



Pynadath & TambeTheorem 4 The deision problem of determining whether there exist poliies, ��� and��A, for a given COM-MTDP with free ommuniation and olletive observability, thatyield a total reward at least K over some �nite horizon T is P-omplete.Proof: The proof follows that of Theorem 3, but with a redution to and from the MDPdeision problem, rather than the POMDP. The MDP deision problem is P-omplete (Pa-padimitriou & Tsitsiklis, 1987). 2Theorem 5 The deision problem of determining whether there exist poliies, ��� and��A, for a given COM-MTDP with individual observability, that yield a total reward atleast K over some �nite horizon T (given integers K and T ) is P-omplete.Proof: The proof follows that of Theorem 4, exept that we an redue the problem toand from an MDP regardless of what ommuniation poliy the team uses. 2Theorem 6 The deision problem of determining whether there exist poliies, ��� and��A, for a given COM-MTDP with non-observability, that yield a total reward at least Kover some �nite horizon T (given integers K and T ) is NP-omplete.Proof: The proof follows that of Theorem 4, exept that we an redue the problem to andfrom an single-agent non-observable MDP (NOMDP) regardless of what ommuniationpoliy the team uses. In partiular, beause the agents are all equally ignorant of the state,ommuniation has no e�et. The NOMDP deision problem is NP-omplete (Papadim-itriou & Tsitsiklis, 1987). 2Thus, we have used the COM-MTDP framework to haraterize the diÆulty of problemdomains in agent teamwork along the dimensions of ommuniation ost and observability.Table 2 summarizes our results, whih we an use in deiding where to onentrate ourenergies in attaking teamwork problems. We an use these results to draw some onlusionsabout the hallenges to designers of multiagent teams:� The greatest hallenges lie in those domains with either olletive observability orolletive partial observability and with nonzero ommuniation ost.� Under olletive observability and olletive partial observability, teamwork withoutommuniation is highly intratable, but, with free ommuniation, the omplexitybeomes on par with that of single-agent planning problems.� Agent team designers have muh to gain by inreasing the observational apabilities oftheir team (e.g., by adding new sensor agents) beause of the redution in omplexitygained by making the domain olletively observable.� Furthermore, the results from Theorems 3 and 4 hold in any domain where the resultfrom Theorem 2 holds (i.e., when omplete ommuniation is the dominant poliy).Therefore, while perfetly free ommuniation may be rare, these results show thatinvestment in ommuniation in teamwork an pay o� with a signi�ant simpli�ationof optimal teamwork. 402



The Communiative Multiagent Team Deision ProblemIndividually Colletively Colletively Non-Observable Observable Partially Observable ObservableNo Comm. P-omplete NEXP-omplete NEXP-omplete NP-CompleteGeneral Comm. P-omplete NEXP-omplete NEXP-omplete NP-CompleteFree Comm. P-omplete P-omplete PSPACE-omplete NP-CompleteTable 2: Time omplexity of COM-MTDPs.� On the other hand, when the world is individually observable or non-observable, om-muniation makes no di�erene in performane.� It should be noted that even under those onditions where the problem is P-omplete,the omplexity of optimal teamwork is polynomial in the number of states of theworld, whih may still be impratially high.� The above omplexity results pertain to �nding poliies that are optimal subjet tothe domain properties. We will �nd di�erent expeted rewards of the optimal poliiesunder di�erent observability and ommuniation properties. For instane, utting o�all of the agents' sensors makes the domain non-observable and redues the omplexityof generating an optimal poliy from NEXP to NP, but we would expet an assoiateddrop in the expeted reward ahieved by the team.4. Evaluating Team CoordinationTable 2 shows that providing optimal domain-level and ommuniation poliies for teams isa diÆult hallenge. Many systems alleviate this diÆulty by having domain experts pro-vide the domain-level plans (Tambe, 1997; Tidhar, 1993). Then, the problem for the agentsredues to generating the appropriate team oordination, ���, to ensure that they prop-erly exeute the domain-level plans, ��A. In this setion, we demonstrate the COM-MTDPframework's ability to analyze existing teamwork approahes in the literature. Our method-ology for suh analysis begins by enoding suh a teamwork method as a ommuniation-level poliy. In other words, we translate the method into an algorithm that maps agentbeliefs (e.g., observation sequenes) into ommuniation deisions. To evaluate the per-formane of this poliy, we then instantiate a COM-MTDP that represents the states,transition probabilities, and reward funtion of a domain of interest. Our methodologyprovides an evaluation of the poliy in terms of the expeted reward earned by the teamwhen following the poliy in the spei�ed domain.We demonstrate this methodology by using our COM-MTDP framework to analyze jointintentions theory (Cohen & Levesque, 1991b, 1991a; Levesque et al., 1990), whih providesa ommon basis for many existing approahes to team oordination. Setion 4.1 models twokey instantiations of joint intentions taken from the literature (Jennings, 1995; Tambe, 1997)as COM-MTDP ommuniation poliies. Setion 4.2 analyzes the onditions under whihthese poliies generate optimal behavior and provides a third andidate poliy that makesommuniation deisions that are loally optimal within the ontext of joint intentions. In403



Pynadath & Tambeaddition to providing the results for the partiular team oordination strategies investigated,this setion also illustrates a general methodology by whih one an use our COM-MTDPframework to enode and evaluate oordination strategies proposed by existing multiagentresearh.4.1 Joint Intentions in a COM-MTDPJoint intention theory provides a presriptive framework for multiagent oordination in ateam setting. It does not make any laims of optimality in its teamwork, but it providestheoretial justi�ations for its presriptions, grounded in the attainment of mutual beliefamong the team members. We an use the COM-MTDP framework to identify the domainproperties under whih attaining mutual belief generates optimal behavior and to quantifypreisely how suboptimal the performane will be otherwise.Joint intentions theory requires that team members jointly ommit to a joint persistentgoal, G. It also requires that when any team member privately believes that G is ahieved(or unahievable or irrelevant), it must then attain mutual belief throughout the teamabout this ahievement (or unahievability or irrelevane). To enode this presription ofjoint intentions theory within our COM-MTDP model, we �rst speify the joint goal, G, asa subset of states, G � S, where the desired goal is ahieved (or unahievable or irrelevant).Presumably, suh a presription indiates that joint intentions are not spei�ally in-tended for individually observable environments. Upon ahieving the goal in an individuallyobservable environment, eah agent would simultaneously observe that St 2 G. Beauseof our assumption that the COM-MTDP model omponents (inluding O�) are ommonknowledge to the team, eah agent would also simultaneously ome to believe that its team-mates have observed that St 2 G, and that its teammates believe that it believes that allof the team members have observed that St 2 G, and so on. Thus, the team immediatelyattains mutual belief in the ahievement of the goal under individual observability withoutany additional ommuniation neessary by the team.Instead, the joint intention framework aims at domains with some degree of unobserv-ability. In suh domains, the agents must signal the other agents, either through ommuni-ation or some informative domain-level ation, to attain mutual belief. However, we analso assume that joint intention theory does not fous on domains with free ommuniation,where Theorem 2 shows that we an simply have the agents ommuniate everything, allthe time, without the need for more omplex presriptions.The joint intention framework does not speify a preise ommuniation poliy for theattainment of mutual belief. In this paper, we fous on ommuniation only in the ase ofgoal ahievement, but our methodology extends to handle unahievability and irrelevane aswell. One well-known approah (Jennings, 1995) applied joint intentions theory by havingthe agents ommuniate the ahievement of the joint goal, G, as soon as they believe G to betrue. To instantiate the behavior of Jennings' agents within a COM-MTDP, we onstrut aommuniation poliy, �J��, that spei�es that an agent sends the speial message, �G, whenit �rst believes that G holds. Following joint intentions' assumption of sinerity (Smith &Cohen, 1996), we require that the agents never selet the speial �G message in a beliefstate unless they believe G to be true with ertainty. With this requirement and with ourassumption of the team's ommon knowledge of the ommuniation model, we an assume404



The Communiative Multiagent Team Deision Problemthat all of the other agents immediately aept the speial message, �G, as true, and thatthe agents know that all their team members aept the message as true, and so on. Thus,the team attains mutual belief that G is true immediately upon reeiving the message, �G.We an onstrut the ommuniation poliy, �J��, in onstant time.The STEAM algorithm is another instantiation of joint intentions that has had suess inseveral real-world domains (Tambe, 1997; Pynadath et al., 1999; Tambe, Pynadath, Chau-vat, Das, & Kaminka, 2000; Pynadath & Tambe, 2002). Unlike Jennings' instantiation, theSTEAM teamwork model inludes deision-theoreti ommuniation seletivity. A domainspei�ation inludes two parameters for eah joint ommitment, G: � , the probability ofmisoordinated termination of G; and Cmt, the ost of misoordinated termination of G. Inthis ontext, \misoordinated termination" means that some agents immediately observethat the team has ahieved G while the rest do not. STEAM's domain spei�ation alsoinludes a third parameter, C, to represent the ost of ommuniation of a fat (e.g., theahievement of G). Using these parameters, the STEAM algorithm evaluates whether theexpeted ost of misoordination outweighs the ost of ommuniation. STEAM expressesthis riterion as the following inequality: � � Cmt > C. We an de�ne a ommuniationpoliy, �S�� based on this riterion: if the inequality holds, then an agent that has observedthe ahievement of G will send the message, �G; otherwise, it will not. We an onstrut�S�� in onstant time.4.2 Loally Optimal PoliyAlthough the STEAM poliy is more seletive than Jennings', it remains unansweredwhether it is optimally seletive, and researhers ontinue to struggle with the questionof when agents should ommuniate (Yen et al., 2001). The few reports of suboptimal(in partiular, exessive) ommuniation in STEAM haraterized the phenomenon as anexeptional irumstane, but it is also possible that STEAM's optimal performane is theexeption. We use the COM-MTDP model to derive an analytial haraterization of opti-mal ommuniation here, while Setion 5 provides an empirial one by reating an algorithmusing that haraterization.Both poliies, �J��, and �S�� onsider sending �G only when an agent �rst believes thatG has been ahieved. One an agent has the relevant belief, they make di�erent hoies, andwe onsider here what the optimal deision is at this point. The domain is not individuallyobservable, so ertain agents may be unaware of the ahievement of G. When not sendingthe �G message, these unaware agents may unneessarily ontinue performing ations inthe pursuit of ahieving G. The performane of these extraneous ations ould potentiallyinur osts and lead to a lower utility than one would expet when sending the �G message.The deision to send �G or not matters only if the team ahieves G and one agentomes to know this fat. We de�ne the random variable, TG, to be the earliest time atwhih an agent knows this fat. We denote agent KG as the agent who knows of theahievement at time TG. If KG = i, for some agent, i, and TG = t0, then agent i has somepre-ommuniation belief state, bt0i�� = �, that indiates that G has been ahieved. To morepreisely quantify the di�erene between agent i sending the �G message at time TG vs.
405



Pynadath & Tambenever sending it, we de�ne the following value:�T (t0; i; �) �E "T�t0Xt=0 Rt0+t������t0i = �G; TG = t0;KG = i; bt0i�� = �#�E "T�t0Xt=0 Rt0+t������t0i = null; TG = t0;KG = i; bt0i�� = �# (13)We assume that, for all times other than TG, the agents follow some ommuniation poliy,���, that never spei�es �G. Thus, �T measures the di�erene in expeted reward thathinges on agent i's spei� deision to send or not send �G at time t0. Given this de�nition,it is loally optimal for agent i to send the speial message, �G, at time t0, if and onlyif �T � 0. We de�ne the ommuniation poliy, ���+� , as the ommuniation poliyfollowing ��� for all agents at all times, exept for agent i under belief state �, whenagent i sends message �. With this de�nition, ���+�G , is the poliy under whih agent iommuniates the ahievement of G, and ���+null is the poliy under whih it does not.Therefore, we an alternatively desribe agent i's deision riterion as hoosing ���+�Gover ���+null if and only if �T � 0.Unfortunately, while Equation 13 identi�es an exat riterion for loally optimal ommu-niation, this riterion is not yet operational. In other words, we an not diretly implementit as a ommuniation poliy for the agents. Furthermore, Equation 13 hides the underly-ing omplexity of the omputation involved, whih is one of the key goals of our analysis.Therefore, we use the COM-MTDP model to derive an operational expression of �T � 0.For simpliity, we de�ne notational shorthand for various sequenes and ombinations ofvalues. We de�ne a partial sequene of random variables, X<t, to be the sequene of ran-dom variables for all times before t: X0, X1, : : : , Xt�1. We make similar de�nitions for theother relational operators (i.e., X>t, X�t, et.). The expression, (S)T , denotes the rossprodut over states of the world, QTt=0 S, as distinguished from the time-indexed randomvariable, ST , whih denotes the value of the state at time T . The notation, s�t0 [t℄, spei�esthe element in slot t within the vetor s�t0 . We de�ne the funtion, �, as shorthand withinour probability expressions. It allows us to ompatly represent a partiular subsequeneof world and agent belief states ourring, onditioned on the urrent situation, as follows:Pr �� �
t; t0� ; s;����� � Pr(S�t;�t0 = s; b����t;�t0 = ��� ��TG = t0;KG = i; bt0i�� = �)(14)Informally, � (ht; t0i ; s;���) represents the event that the world and belief states from timet through t0 orrespond to the spei�ed sequenes, s and ���, respetively, onditioned onagent i being the �rst to know of G's ahievement at time t0 with a belief state, �. We de�nethe funtion, ���, to map a pre-ommuniation belief state into the post-ommuniationbelief state that arises from a ommuniation poliy:���(���;���) � SE���(���;���(���)) (15)This de�nition of ��� is a well-de�ned funtion beause of the deterministi nature of thepoliy, ���, and state-estimator funtion, SE���.406



The Communiative Multiagent Team Deision ProblemTheorem 7 If we assume that, upon ahievement of G, no ommuniation other than �Gis possible, then the ondition �T (t0,i,�) � 0 holds if and only if:Xs�t02(S)t0 X��t0�� 2Bt0�Pr(�(h0; t0i ; s�t0 ;��t0�� ))�0B�Xs�t02(S)T�t0+1 X��t0�� 2BT�t0+1� Pr��(ht0; T i ; s�t0 ;��t0�� ) ����t0i = �G;�(h0; t0i ; s�t0 ;��t0�� )�� TXt=t0 RA �s�t0 [t℄;��A ���� �����t0 [t℄;���+�G���� Xs�t02(S)T�t0+1 X��t0�� 2BT�t0+1� Pr��(ht0; T i ; s�t0 ;��t0�� ) ����t0i = null;�(h0; t0i ; s�t0 ;��t0�� )�� TXt=t0 RA �s�t0 [t℄;��A ���� �����t0 [t℄;���+null���!��Xs2G X�2B� Pr (�(ht0; t0i ; s;�))R�(s; �G) (16)Proof: The omplete proof of the following theorem appears in Online Appendix 1.The de�nition of �T in Equation 13 is the di�erene between two expetations, where eahexpetation is a sum over the possible trajetories of the agent team. Eah trajetory mustinludes a sequene of possible world states, sine the agents' reward at eah point in timedepends on the partiular state of the world at that time. The agents' reward also dependson their ations (both domain- and ommuniation-level). These ations are deterministi,given the agents' poliies, ��A and ��, and their belief states. Thus, in addition to summingover the possible states of the world, we must also sum over the possible states of the agents'
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Pynadath & Tambebeliefs (both pre- and post-ommuniation):�T (t0; i; �)= Xs�T2(S)T X����T2(B)T X����T2(B)T Pr �S�T = s�T ;b���T = ����T ;b���T = ����Tj�t0i = �G; TG = t0;KG = i; bt0i�� = ��� TXt=0 R(s�T [t℄;�A(����T [t℄);��(����T [t℄))� Xs�T2(S)T X����T2(B)T X����T2(B)T Pr �S�T = s�T ;b���T = ����T ;b���T = ����Tj�t0i = null; TG = t0;KG = i; bt0i�� = ��� TXt=0 R(s�T [t℄;�A(����T [t℄);��(����T [t℄)) (17)We an rewrite these summations more simply using our various shorthand notations:= Xs�T2(S)T X����T2(B)T Pr(�(h0; T i ; s;����T )j�t0i = �G)� TXt=0 R(s�T [t℄;�A(���(����T [t℄;���G));���G(����T [t℄))� Xs�T2(S)T X����T2(B)T Pr(�(h0; T i ; s;����T )j�t0i = null)� TXt=0 R(s�T [t℄;�A(���(����T [t℄;��null));��null(����T [t℄)) (18)The remaining derivation exploits our Markovian assumptions to rearrange the summationsand anel like terms to produe the theorem's result. 2Theorem 7 states, informally, that we prefer sending �G whenever the the ost of exe-ution after ahieving G outweighs the ost of ommuniation of the fat that G has beenahieved. More preisely, the outer summations on the left-hand side of the inequalityiterate over all possible past histories of world and belief states, produing a probabilitydistribution over the possible states the team an be in at time t0. For eah suh state, theexpression inside the parentheses omputes the di�erene in domain-level reward, over allpossible future sequenes of world and belief states, between sending and not sending �G.By our theorem's assumption that no ommuniation other than �G is possible after G hasbeen ahieved, we an ignore any ommuniation osts in the future. However, if we relaxthis assumption, we an extend the left-hand side in a straightforward manner into a longer408



The Communiative Multiagent Team Deision ProblemIndividually Colletively Colletively Non-Observable Observable Partially Observable ObservableNo Comm. 
(1) 
(1) 
(1) 
(1)General Comm. 
(1) O((jSj � j
�j)T ) O((jSj � j
�j)T ) 
(1)Free Comm. 
(1) 
(1) 
(1) 
(1)Table 3: Time omplexity of loally optimal deision.expression that aounts for the di�erene in future ommuniation osts as well. Thus, theleft-hand side aptures our intuition that, when not ommuniating, the team will inur aost if the agents other than i are unaware of G's ahievement. The right-hand side of theinequality is a summation of the ost of sending the �G message over possible urrent statesand belief states.We an use Theorem 7 to derive the loally optimal ommuniation deision arossvarious lasses of problem domains. Under no ommuniation, we annot send �G. Underfree ommuniation, the right-hand side is 0, so the inequality is always true, and we knowto prefer sending �G. Under no assumptions about ommuniation, the determination ismore ompliated. When the domain is individually observable, the left-hand side beomes0, beause all of the agents know that G has been ahieved (and thus there is no di�erenein exeution when sending �G). Therefore, the inequality is always false (unless under freeommuniation), and we prefer not sending �G. When the environment is not individuallyobservable and ommuniation is available but not free, then, to be loally optimal at timet0, agent i must evaluate Inequality 16 in its full omplexity. Sine the inequality sumsrewards over all possible sequenes of states and observations, the time omplexity of theorresponding algorithm is O((jSj � j
�j)T ). While this omplexity is unaeptable for mostreal-world problems, it still provides an exponential savings over searhing the entire poliyspae for the globally optimal poliy, where any agent ould potentially send �G at timesother than TG. Table 3 provides a table of the omplexity required to determine the loallyoptimal poliy under the various domain properties.We an now show that although Theorem 7's algorithm for loally optimal ommunia-tion provides a signi�ant omputational savings over �nding the global optimum, it stilloutperforms existing teamwork models, as exempli�ed by our �J�� and �S�� poliies. First,we an use the riterion of Theorem 7 to evaluate the optimality of the poliy, �J��. If�T (t0; i; �) � 0 for all possible times t0, agents i, and belief states � that are onsistentwith the ahievement of the goal G, then the loally optimal poliy will always speifysending �G. In other words, �J�� will be idential to the loally optimal poliy. However,if the inequality of Theorem 7 is ever false, then �J�� is not even loally, let alone globally,optimal.Seond, we an also use Theorem 7 to evaluate STEAM by viewing STEAM's inequality,� � Cmt > C, as a rude approximation of Inequality 16. In fat, there is a lear orre-spondene between the terms in the two inequalities. The left-hand side of Inequality 16omputes an exat expeted ost of misoordination. However, unlike STEAM's monolithi� parameter, the optimal riterion evaluates a omplete probability distribution over allpossible states of misoordination by onsidering all possible past sequenes onsistent with409



Pynadath & Tambethe agent's urrent beliefs. Likewise, unlike STEAM's monolithi Cmt parameter, the opti-mal riterion looks ahead over all possible future sequenes of states to determine the trueexpeted ost of misoordination. Furthermore, we an view STEAM's parameter, C, as anapproximation of the ommuniation ost omputed by the right-hand side of Inequality 16.Again, STEAM uses a single parameter, while the optimal riterion omputes an expetedost over all possible states of the world.STEAM does have some exibility in its representation, beause Cmt, � , and C arenot neessarily �xed aross the entire domain. For instane, Cmt may vary based on thespei� joint plan that the agents may have jointly ommitted to (i.e., there may be adi�erent Cmt for eah goal G). Thus, while Theorem 7 suggests signi�ant additional exi-bility in omputing Cmt through expliit lookahead, the optimal riterion derived with theCOM-MTDP model also provides a justi�ation for the overall struture behind STEAM'sapproximate riterion. Furthermore, STEAM's emphasis on on-line omputation makes theomputational omplexity of Inequality 16 (as presented in Table 3) unaeptable, so theapproximation error may be aeptable given the gains in eÆieny. For a spei� domain,we an use empirial evaluation (as demonstrated in the next setion) to quantify the errorand eÆieny to preisely judge this tradeo�.5. Empirial Poliy EvaluationIn addition to providing these analytial results over general lasses of problem domains, theCOM-MTDP framework also supports the analysis of spei� domains. Given a partiularproblem domain, we an onstrut an optimal ommuniation poliy or, if the omplexity ofomputing an optimal poliy is prohibitive, we an instead evaluate and ompare andidateapproximate poliies. To provide a reusable tool for suh evaluations, we have implementedthe COM-MTDP model as a Python lass with domain-independent methods for the eval-uation of arbitrary poliies and for the generation of both loally optimal poliies usingTheorem 7 and globally optimal poliies through brute-fore searh of the poliy spae.This software is available in Online Appendix 1.This setion presents results of a COM-MTDP analysis of an example domain involvingagent-piloted heliopters, where we fous on the key ommuniation deision faed by manymultiagent frameworks (as desribed in Setion 4), but vary the ost of ommuniation anddegree of observability to generate a spae of distint domains with di�erent impliationsfor the agents' performane. By evaluating ommuniation poliies over various on�gura-tions of this partiular testbed domain, we demonstrate a methodology by whih one anuse the COM-MTDP framework to model any problem domain and to evaluate andidateommuniation poliies for it.5.1 Experimental SetupConsider two heliopters that must y aross enemy territory to their destination, as il-lustrated in Figure 1. The �rst, piloted by agent Transport, is a transport vehile withlimited �repower. The seond, piloted by agent Esort, is an esort vehile with signi�ant�repower. Somewhere along their path is an enemy radar unit, but its loation is unknown(a priori) to the agents. Esort is apable of destroying the radar unit upon enounteringit. However, Transport is not, but it an esape detetion by the radar unit by traveling410



The Communiative Multiagent Team Deision Problem

Figure 1: Illustration of heliopter team senario.at a very low altitude (nap-of-the-earth ight), though at a lower speed than at its typial,higher altitude. In this senario, Esort will not worry about detetion, given its superior�repower; therefore, it will y at a fast speed at its typial altitude.The two agents form a top-level joint ommitment, GD, to reah their destination.There is no inentive for the agents to ommuniate the ahievement of this goal, sine theywill both eventually reah their destination with ertainty. However, in the servie of theirtop-level goal, GD, the two agents also adopt a joint ommitment, GR, of destroying theradar unit. We onsider here the problem faing Esort with respet to ommuniating theahievement of goal, GR. If Esort ommuniates the ahievement of GR, then Transportknows that it is safe to y at its normal altitude (thus reahing the destination sooner).If Esort does not ommuniate the ahievement of GR, there is still some hane thatTransport will observe the event anyway. If Transport does not observe the ahievementof GR, then it must y nap-of-the-earth the whole distane, and the team reeives a lowerreward beause of the later arrival. Therefore, Esort must weigh the inrease in expetedreward against the ost of ommuniation.In the COM-MTDP model of this senario (presented in Figures 2, 3 and 4), the worldstate is the position (along a straight line between origin and destination) of Transport,Esort, and the enemy radar. The enemy is at a randomly seleted position somewherein between the agents' initial position and their destination. Transport has no possibleommuniation ations, but it an hoose between two domain-level ations: ying nap-of-the-earth and ying at its normal speed and altitude. Esort has two domain-level ations:ying at its normal speed and destroying the radar. Esort also has the option of ommuni-ating the speial message, �GR , indiating that the radar has been destroyed. In the tablesof Figures 2, 3 and 4, the \�" symbol represents a wild-ard (or \don't are") entry.If Esort arrives at the radar, then it observes its presene with ertainty and andestroy it to ahieve GR. The likelihood of Transport's observing the radar's destrution isa funtion of its distane from the radar. We an vary this funtion's observability parameter411



Pynadath & Tambe� = fEsort (E);Transport (T )gS = �E � �T � �RPosition of Esort: �E = f0; 1; : : : ; 8; 9;DestinationgPosition of Transport: �T = f0; 0:5; : : : ; 9; 9:5;Destination;DestroyedgPosition of Radar: �R = f1; 2; : : : ; 8;DestroyedgA� = AE �AT = fy;destroy;waitg � fy-NOE;y-normal;waitg�� = �E � �T = flear (�GR);nullg � fnullgRA(h�E; �T ; �Ri ;a) = �E �T a RA0; : : : ; 9 0; : : : ; 9:5;Destroyed � 00; : : : ; 9 Destination � rTDestination 0; : : : ; 9:5;Destroyed � rEDestination Destination � rE + rTR�(s; hnull;nulli) = 0R�(s; h�GR ;nulli) = �r� 2 [0; 1℄Figure 2: COM-MTDP model of states, ations, and rewards for heliopter senario.(� in Figure 4) within the range [0; 1℄ to generate distint domain on�gurations (0 meansthat Transport will never observe the radar's destrution; 1 means Transport will alwaysobserve it). If the observability is 1, then they ahieve mutual belief of the ahievement ofGR as soon as it ours (following the argument presented in Setion 4.1). However, for anyobservability less than 1, there is a hane that the agents will not ahieve mutual beliefsimply by ommon observation. The heliopters reeive a �xed reward for eah time stepspent at their destination. Thus, for a �xed time horizon, the earlier the heliopters reahthere, the greater the team's reward. Sine ying nap-of-the-earth is slower than normalspeed, Transport will swith to its normal ying as soon as it either observes that GR hasbeen ahieved or Esort sends the message, �GR . Sending the message is not free, so weimpose a variable ommuniation ost (r� in Figure 2), also within the range [0; 1℄.We onstruted COM-MTDP models of this senario for eah ombination of observabil-ity and ommuniation ost within the range [0; 1℄ at 0.1 inrements. For eah ombination,we applied the Jennings and STEAM poliies, as well as a ompletely silent poliy. For thisdomain, the poliy, �J��, ditates that Esort always ommuniate �GR upon destroyingthe radar. For STEAM, we vary the � and C parameters with the observability and om-muniation ost parameters, respetively. We used two di�erent settings (low and medium)for the ost of misoordination, Cmt. Following the published STEAM algorithm (Tambe,1997), Esort sends message �GR if and only if STEAM's inequality � � Cmt > C, holds.Thus, the two di�erent settings, low and medium, for Cmt generate two distint ommunia-tion poliies; the high setting is stritly dominated by the other two settings in this domain.We also onstruted and evaluated loally and globally optimal poliies. In applying eahof these poliies, we used our COM-MTDP model to ompute the expeted reward reeivedby the team when following the seleted poliy. We an uniquely determine this expetedreward given the andidate ommuniation poliy and the partiular observability and om-muniation ost parameters, as well as the COM-MTDP model spei�ed in Figures 2, 3,and 4. 412



The Communiative Multiagent Team Deision Problem
� P (h�E0; �T0; �R0i ; haE; aT i ; h�E1; �T1; �R1i) =PE(�E0; aE ; �E1) � PT (h�T0; �R0i ; aT ; �T1) � PR(h�E0; �R0i ; aE ; �R1)Esort: Initial distribution, Pr(�0E = 0) = 1�E0 aE �E1 PEDestination � Destination 10; : : : ; 8 y �E0 + 1 10; : : : ; 8 destroy �E0 + 1 19 y Destination 19 destroy Destination 1� wait �E0 1Transport: Initial distribution, Pr(�0T = 0) = 1�T0 �R0 aT �T1 PTDestination � � Destination 1Destroyed � � Destroyed 10; : : : ; 9 � y-NOE �T0 + 0:5 19:5 � y-NOE Destination 10; : : : ; 8:5 Destroyed y-normal �T0 + 1 19; 9:5 Destroyed y-normal Destination 1� 6= Destroyed y-normal Destroyed 1� � wait �T0 1Radar: Initial distribution, 8� 2 f1; 2; : : : ; 8g, Pr(�0R = �) = 0:125�E0 �R0 aE �R1 PR� �E0 destroy Destroyed 1� � 6= destroy �R0 1� 6= �E0 � �R0 1Figure 3: COM-MTDP model of transition probabilities for heliopter senario (exludeszero probability rows).
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Pynadath & Tambe
� 
� = 
E � 
T{ 
E = �E � �T � 
RE , where agent Esort's possible observations of the radaronsist of 
RE = fpresent;destroyed;nullg{ 
T = �E��T �
RT , where agent Transport's possible observations of the radaronsist of 
RT = fdestroyed;nullg� O�(s; haE ; aT i ; h!E; !T i) = OE(s; haE; aT i ; !E) � OT (s; haE ; aT i ; !T ){ OE(h�E; �T ; �Ri ; haE; aT i ; h�E; �T ; !REi) =�E �R aE !RE OE� destroyed destroy destroyed 1� destroyed 6= destroy null 1�R 1; : : : ; 9 � present 16= �R 1; : : : ; 9 � null 1{ OT (h�E ; �T ; �Ri ; haE ; aT i ; h�E ; �T ; !RT i) =�T �R aE !RT OT0; : : : ; 9:5 � destroy destroyed �e�(�R��T )(1��)0; : : : ; 9:5 � destroy null 1� �e�(�R��T )(1��)0; : : : ; 9:5 � 6= destroy null 1destroyed � � null 1� 2 [0; 1℄Figure 4: COM-MTDP model of observability for heliopter senario. These tables exludeboth zero probability rows and input feature olumns from whih O is indepen-dent. For example, both agents' observation funtions are independent of thetransport's seleted ation, so neither table inludes a aT olumn.
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Figure 5: Suboptimality of silent and Jennings poliies.

Figure 6: Suboptimality of STEAM poliy under both low and medium osts of misoordi-nation.5.2 Experimental ResultsFigures 5 and 6 plot how muh utility the team an expet to lose by following the Jennings,silent, and the two STEAM poliies instead of the loally optimal ommuniation poliy(thus, higher values mean worse performane). We an immediately see that the Jenningsand silent poliies are signi�antly suboptimal for many possible domain on�gurations. Forexample, not surprisingly, the surfae for the poliy, �J��, peaks (i.e., it does most poorly)when the ommuniation ost is high and when the observability is high, while the silentpoliy does poorly under exatly the opposite onditions.Previously published results (Jennings, 1995) demonstrated that the Jennings poliyled to better team performane by reduing waste of e�ort produed by alternate poliieslike our silent one. These earlier results foused on a single domain, and Figure 5 partiallyon�rms their onlusion and shows that the superiority of the Jennings poliy over thesilent poliy extends over a broad range of possible domain on�gurations. On the otherhand, our COM-MTDP results also show that there is a signi�ant sublass of domains (e.g.,when ommuniation ost and observability are high) where the Jennings poliy is atuallyinferior to the silent poliy. Thus, with our COM-MTDP model, we an haraterize thetypes of domains where the Jennings poliy outperforms the silent poliy and vie versa.415



Pynadath & TambeFigure 6 shows the expeted value lost by following the two STEAM poliies. We anview STEAM as trying to intelligently interpolate between the Jennings and silent poliiesbased on the partiular domain properties. In fat, under a low setting for Cmt, we seetwo thresholds, one along eah dimension, at whih STEAM swithes between following theJennings and silent poliies, and its suboptimality is highest at these thresholds. Undera medium setting for Cmt, STEAM does not exhibit a threshold along the dimension ofommuniation ost, due to the inreased ost of misoordination. Under both settings,STEAM's performane generally follows the better of those two �xed poliies, so its maxi-mum suboptimality (0.587 under both settings) is signi�antly lower than that of the silent(0.700) and Jennings' (1.000) poliies. Furthermore, STEAM outperforms the two poliieson average, aross the spae of domain on�gurations, as evidened by its mean subopti-mality of 0.063 under low Cmt and 0.083 under medium Cmt. Both values are signi�antlylower than the silent poliy's mean of 0.160 and the Jennings' poliy's mean of 0.161. Thus,we have been able to quantify the savings provided by STEAM over less seletive poliieswithin this example domain.However, within a given domain on�guration, STEAM must either always or neverommuniate, and this inexibility leads to signi�ant suboptimality aross a wide rangeof domain on�gurations. On the other hand, Figure 6 also shows that there are domainon�gurations where STEAM is loally optimal. In this relatively small-sale experimentaltestbed, there is no need to inur STEAM's suboptimality, beause the agents an omputethe superior loally optimal poliy in under 5 seonds. In larger-sale domains, on the otherhand, the inreased omplexity of the loally optimal poliies may render its exeutioninfeasible. In suh domains, STEAM's onstant-time exeution would potentially make it apreferable alternative. This analysis suggests a possible spetrum of algorithms that makedi�erent optimality-eÆieny tradeo�s.To understand the ause of STEAM's suboptimality, we an examine its performanemore deeply in Figures 7 and 8, whih plot the expeted number of messages sent usingSTEAM (with both low and medium Cmt) vs. the loally optimal poliy, at observabilityvalues of 0.3 and 0.7. STEAM's expeted number of messages is either 0 or 1, so STEAMan make at most two (instantaneous) transitions between them: one threshold value eahalong the observability and ommuniation ost dimensions.From Figures 7 and 8, we see that the optimal poliy an be more exible than STEAMby speifying ommuniation ontingent on Esort's beliefs beyond simply the ahievementof GR. For example, onsider the messages sent under low Cmt in Figure 7, where STEAMmathes the loally optimal poliy at the extremes of the ommuniation ost dimension.Even if the ommuniation ost is high, it is still worth sending message �GR in states whereTransport is still very far from the destination. Thus, the surfae for the optimal poliy,makes a more gradual transition from always ommuniating to never ommuniating. Wean thus view STEAM's surfae as a rude approximation to the optimal surfae, subjetto STEAM's fewer degrees of freedom.We an also use Figures 7 and 8 to identify the domain onditions under whih jointintentions theory's presription of attaining mutual belief is or is not optimal. In partiular,for any domain where the observability is less than 1, the agents will not attain mutual beliefwithout ommuniation. In both Figures 7 and 8, there are many domain on�gurationswhere the loally optimal poliy is expeted to send fewer than 1 �GR message. Eah of416
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Figure 7: Expeted number of messages sent by STEAM and loally optimal poliies whenthe observability is 0.3.

Figure 8: Expeted number of messages sent by STEAM and loally optimal poliies whenthe observability is 0.7. Under both settings, STEAM sends 0 messages.
417



Pynadath & Tambe

Figure 9: Suboptimality of loally optimal poliy.these on�gurations represents a domain where the loally optimal poliy will not attainmutual belief in at least one ase. Therefore, attaining mutual belief is suboptimal in thoseon�gurations!These experiments illustrate that STEAM, despite its deision-theoreti ommuniationseletivity, may ommuniate suboptimally under a signi�ant lass of domain on�gura-tions. Previous work on STEAM-based, real-world, agent-team implementations informallynoted suboptimality in an isolated on�guration within a more realisti heliopter trans-port domain (Tambe, 1997). Unfortunately, this previous work treated that suboptimality(where the agents ommuniated more than neessary) as an isolated aberration, so therewas no investigation of the degree of suh suboptimality, nor of the onditions under whihsuh suboptimality may our in pratie. We re-reated these onditions within the experi-mental testbed of this setion by using a medium Cmt. The resulting experiments (as shownin Figure 7) illustrated that the observed suboptimality was not an isolated phenomenon,but, in fat, that STEAM has a general propensity towards extraneous ommuniation insituations involving low observability (i.e., low likelihood of mutual belief) and high om-muniation osts. This result mathes the situation where the \aberration" ourred in themore realisti domain.The loally optimal poliy is itself suboptimal with respet to the globally optimalpoliy, as we an see from Figure 9. Under domain on�gurations with high observability,the globally optimal poliy has the esort wait an additional time step after destroyingthe radar and then ommuniate only if the transport ontinues ying nap-of-the-earth.The esort annot diretly observe whih method of ight the transport has hosen, butit an measure the hange in the transport's position (sine it maintains a history of itspast observations) and thus infer the method of ight with omplete auray. In a sense,the esort following the globally optimal poliy is performing plan reognition to analyzethe transport's possible beliefs. It is partiularly noteworthy that our domain spei�ationdoes not expliitly enode this reognition apability. In fat, our algorithm for �nding theglobally optimal poliy does not even make any of the assumptions made by our loallyobservable poliy (i.e., single agent is deiding whether to ommuniate or not, regardinga single message, at a single point in time); rather, our general-purpose searh algorithmtraverses the poliy spae and \disovers" this possible means of inferene on its own. We418



The Communiative Multiagent Team Deision Problemexpet that suh COM-MTDP analysis an provide an automati method for disoveringnovel ommuniation poliies of this type in other domains, even those modeling real-worldproblems.Indeed, by exploiting this disovery apability within our example domain, the globallyoptimal poliy gains a slight advantage in expeted utility over the loally optimal poliy,with a mean di�erene of 0.011, standard deviation of 0.027, and maximum of 0.120. On theother hand, our domain-independent ode never requires more than 5 seonds to omputethe loally optimal poliy in this testbed, while our domain-independent searh algorithmalways required more than 150 minutes to �nd the globally optimal poliy. Thus, throughTheorem 7, we have used the COM-MTDP model to onstrut a ommuniation poliythat, for this testbed domain, performs almost optimally and outperforms existing team-work theories, with a substantial omputational savings over �nding the globally optimalpoliy. Although these results hold for an isolated ommuniation deision, we expet therelative performane of the poliies to stay the same even with multiple deisions, where theinexibility of the suboptimal poliies will only exaerbate their losses (i.e., the shapes ofthe graphs would stay roughly the same, but the suboptimality magnitudes would inrease).6. SummaryThe COM-MTDP model is a novel framework that omplements existing teamwork researhby providing the previously laking apability to analyze the optimality and omplexity ofteam deisions. While grounded within eonomi team theory, the COM-MTDP's exten-sions to inlude ommuniation and dynamism allow it to subsume many existing multiagentmodels. We were able to exploit the COM-MTDP's ability to represent broad lasses ofmultiagent team domains to derive omplexity results for optimal agent teamwork underarbitrary problem domains. We also used the model to identify domain properties that ansimplify that omplexity.The COM-MTDP framework provides a general methodology for analysis aross bothgeneral domain sublasses and spei� domain instantiations. As demonstrated in Setion 4,we an express important existing teamwork theories within a COM-MTDP framework andderive broadly appliable theoretial results about their optimality. Setion 5 demonstratesour methodology for the analysis of a spei� domain. By enoding a teamwork problem asa COM-MTDP, we an use the leverage of our general-purpose software tools (available inOnline Appendix 1) to evaluate the optimality of teamwork based on potentially any otherexisting theory, as demonstrated in this paper using two leading instantiations of jointintentions theory. In ombining both theory and pratie, we an use the theoretial resultsderived using the COM-MTDP framework as the basis for new algorithms to extend oursoftware tools, just as we did in translating Theorem 7 from Setion 4 into an implementedalgorithm for loally optimal ommuniation in Setion 5. We expet that the COM-MTDPframework, the theorems and omplexity results, and the reusable software will form a basisfor further analysis of teamwork, both by ourselves and others in the �eld.
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Pynadath & Tambe7. Future Work for COM-MTDP Team AnalysisWhile our initial COM-MTDP results are promising, there remain at least three key areaswhere future progress in COM-MTDPs is ritial. First, analysis using COM-MTDPs (suhas the one presented in Setion 5) requires knowledge of the rewards, transition probabil-ities, and observation probabilities, as well as of the ompeting poliies governing agentbehavior. It may not always be possible to have suh a model of the domain and agents'poliies readily available. Indeed, other proposed team-analysis tehniques (Nair, Tambe,Marsella, & Raines, 2002b; Raines, Tambe, & Marsella, 2000), do not require a priori hand-oding of suh models, but rather aquire them automatially through mahine learningover large numbers of runs. Also, in the interests of ombating omputational omplexityand improved understandability, some researhers emphasize the need for multiple modelsat multiple levels of abstration, rather than fousing on a single model (Nair et al., 2002b).For instane, one level of the model may fous on the analysis of the individual agents' a-tions in support of a team, while another level may fous on interations among subteamsof a team. We an potentially extend the COM-MTDP model in both of these diretions(i.e., mahine learning of model parameters, and hierarhial representations of the team toprovide multiple levels of abstration).Seond, it is important to extend COM-MTDP analysis to other aspets of teamworkbeyond ommuniation. For instane, team formation (where agents may be assigned spe-i� roles within the team) and reformation (where failure of individual agents leads to rolereassignment within in the team) are key problems in teamwork that appear suitable forCOM-MTDP analysis. Suh analysis may require extensions to the COM-MTDP frame-work (e.g., expliit modeling of roles). Ongoing researh (Nair, Tambe, & Marsella, 2002a)has begun investigating the impat of suh extensions and their appliations in domainssuh as RoboCup Resue (Kitano, Tadokoro, Noda, Matsubara, Takahashi, Shinjoh, & Shi-mada, 1999). Analysis of more omplex team behaviors may require further extensionsto the COM-MTDP model to expliitly aount for additional aspets of teamwork (e.g.,notions of authority struture within teams).Third, extending COM-MTDP analysis beyond teamwork to model other types of o-ordination may require relaxation of COM-MTDP's assumption of seless agents reeivingthe same joint reward. More omplex organizations may require modeling other non-jointrewards. Indeed, enrihing the COM-MTDP model in this manner may enable analy-sis of some of the seminal work in multiagent oordination in the tradition of PGP andGPGP (Deker & Lesser, 1995; Durfee & Lesser, 1991). Suh enrihed models may �rstrequire new advanes in the mathematial foundations of our COM-MTDP framework, andultimately ontribute towards the emerging sienes of agents and multiagent systems.AknowledgmentsThis artile is a signi�antly extended version of a paper, \Multiagent Teamwork: Analyzingthe Optimality and Complexity of Key Theories and Models", by the same authors, in theProeedings of the International Joint Conferene on Autonomous Agents and Multi-AgentSystems, 2002. This artile extends the initial ontent by providing proofs missing in theoriginal paper, as well as new theoretial results, a detailed desription of our experimental420
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