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1 Introduction

Due to applications in reconstructing the evolutionary history of the genome [22] and to the design
of interconnection networks [14], there has been considerable recent interest in problems of sorting
permutations with reversals. In this paper, we study the problem of sorting permutations and
circular permutations using as few fized-length reversals as possible.

Our problem is implicit in the popular TOP-SPINT™ puzzle, manufactured by the Binary Arts
Corporation and illustrated in Figure 1. TOP-SPINT¥ consists of a permutation of 20 numbered
disks on an oval track, with a turnstile capable of reversing a string of 4 consecutive disks. The
goal is to sort the disks to the identity permutation using reversals. We consider the more general
problem, with permutations of n disks and a turnstile of size k.

Limiting the transformations to reversals of length exactly k can be very restrictive. Indeed, an
easy parity argument shows that any permutation beginning {1,3,2,...} cannot be sorted using
3-reversals, since 1 and 2 are separated by an odd number of items and any 3-reversal changes this
distance by either 0 or 2 items. Thus for a given n-permutation it is not obvious whether it can be
sorted using k-reversals, or if so how many reversals may be required.

In this paper,

o We give a complete characterization, for all n and k, of the number of equivalence classes of
n-permutations under k-reversal, for both permutations and circular permutations.

e We prove upper and lower bounds on the diameter of the circular permutation group induced
by k-reversals. Specifically, we give an algorithm to sort all sortable circular n-permutations
using O(n?/k + kn) k-reversals, while there exist permutations requiring Q(n?/k? + n) k-
reversals to sort. Thus, surprisingly, O(n3/ 2 reversals suffice when k = \/n.

*This work was partially supported by ONR award 400x116yip01.



@/ff$@

€000

@ FLIP @
e ) )

Top-Spin puzzle
/fter Flip \After Shift Left
FLIP

@@@@@@ @@@@@@93
i
0@0@@@ ) o) ) () )

Figure 1: The Top-Spin puzzle

o We show that, when respecting parity constraints, the complexity of sorting with k-reversals
is equivalent to sorting with (n — k)-reversals.

Previous work on sorting with fixed-length reversals has focused on the special case where k = 2.
Thus each reversal simply transposes adjacent elements. Bubble sort [19] sorts any permutation «
using exactly one transposition for each inversion in 7, thus minimizing the number of reversals.
Jerrum [15] presented a polynomial algorithm for the much more difficult problem of sorting circular
permutations using a minimum number of transpositions.

Gates and Papadimitriou [9] (also [10]) studied the problem of sorting permutations using prefix
reversals (better known as the pancake-flipping problem), where reversals may be of arbitrary length
but each must start from the first element of permutation. They showed that 5n/3 4 5/3 prefix-
reversals suffice to sort any permutation, and there are permutations requiring at least 17n/16
reversals. Heydari and Sudborough [13, 14] have tightened these bounds and proved the problem
of computing the exact prefix-reversal distance between two permutations is NP-complete. Related
work includes [1, 6].

Computing the exact reversal distance of a permutation is of considerable importance in recon-
structing the evolutionary history of the genome. Reversal mutations occur often in chromosomes,
where each reverses the order of an interval of genes. A shortest reversal sequence sorting one
genome to another corresponds to the most likely evolutionary path between them. This analy-
sis has been applied, for example, to drosophila [8, 21], plants [4, 18], viruses [12], and mammals
[7, 20]. Kececloglu and Sankoff [16] gave 2-approximation algorithms on reversal distance, which
Bafna and Pevzner [3] improved to a factor of 7/4 approximation. Most recently, Hannenhalli and
Pevzner [11] gave a polynomial-time algorithm for signed reversal distance, although the problem



for unsigned reversals (as we consider in this paper) remains open. Kececloglu and Sankoff [17]
report on the success of heuristics and search in determining reversal distance for chromosomes.
Bafna and Pevzner [5] present approximation algorithms for transposition distance, ie. under block
moves instead of reversals.

All of these problems are special cases of determining the diameter of permutation groups.
Jerrum [15] showed that the problem of computing the shortest sequence of generators for arbitrary
permutation groups is PSPACE-complete, even when there are only two generators. The general
problem has seen considerable attention — see the survey of Babai, et. al. [2].

The outline of this paper is as follows. In Section 2 we present our notation for describing
sequences of reversal operations. In Section 3, we present our notion of equivalent transformations,
which is the primary tool we need to understand sorting with fixed-length reversals. Armed with
these results, we characterize the equivalence classes within the permutation groups in Section 4,
and the diameter of the group in Section 5. We conclude with a list of open problems in Section 6.

2 Notation

Sorting with reversals is properly described by a permutation group with a specific set of generators.
We will be interested in both the symmetric group Sym(n) comprising all permutations of size n, and
the corresponding circular permutation group C PG(n). Each permutation in C PG(n) represents
a set of n permutations on Sym(n) equivalent under the shift operation:

. 1 2 .. 7 . —1 n
Shzft_(z 3 .. i41 .. n 1)

Any permutation of n numbers can be rearranged to exactly n arrangements by shift. There
are n! permutations in Sym(n) and n!/n = (n — 1)! in CPG(n).

The k-reversal operation on a permutation in C PG(n) will generate n different permutations,
parameterized by the starting element of the reversal and denoted Rev(1), Rev(2), Rev(3), ...,
Rev(n) where:

Rev(i)={1,..,i—1L,i+k—1,i+k—2,..,5+ 1,4, + k,...,n}

The diameter of the group G =< Rewv(1), Rev(2),..., Rev(n) > is the least integer d such that
every permutation in the group can be expressed as product of generators with length less than or
equal to d, denoted diam(G). The Cayley graph I'(G) is the graph whose vertices are the elements
of G, with an edge between vertices p and ¢ iff p- ¢g; = ¢, for some generator g;. Throughout this
paper, {a1,as,as,...,a,} represents a permutation, while {c1,c¢s,¢3,...,¢,} represents a circular
permutation. Let I = {1,2,3,...,n} denote the identity permutation or circular permutation.

We use the symbol — to denote the result of applying a generator to the permutation to the
left of the arrow yielding the permutation to the right of the arrow. The generators we will be most
interested in are described below. For clarity of exposition, we have provided a descriptor for each
generator above each — in our derivations:

shift circular shifts the permutation one element to the right:

Shift

{a17a27"'7an—17an} — {an7a17a27"'7an—1}



k-reversal reverses a sequence of k elements. Revi(¢) denotes the k-reversal beginning at the ith
position:

Rewvy (1)

{a17"'7ai—17ai7ai—|—17"'7ai—|—k—1aai—|—ka"'} — {a17"'7ai—17ai—|—k—17"'7ai—|—17aiaai+ka"'}

transposition 7,; moves a sequence of s elements right over the subsequent ¢ elements. 7,.(%)
denotes transposing s and ¢ elements beginning with the ith position.

Ta,(%)
{al---aiaai—l—la"'7ai—|—37ai—|—s—|—17'"7ai—|—s-|—t7"'} B {al---aiaai—l—s—l—la"'7ai—|—s—|—t7ai—|—1a'"7ai—|—37"'}

Most frequently used in this paper are 75 r_1, Ti g, T1,2, T1,1, T2,2, T2,4 and their inverse
permutations 7,12, Tk,1, T2,1, T1,1, 72,2, T4,2. Lransposition 7y ; is the 2-reversal or adjacent
transposition.

3-Cycle rotates the values of three elements. Cyc(%, j, k) denotes transforming the ith a;, jth a;,
kth aj, elements into ith a;, jth ai, kth a; elements:

Cye(i, j, k)
{"'7ai—17ﬁ7"'7@7'—17%7'ﬂaak—la%a"'} - {"'7‘%—17%7"'7@7'—17%7"wak—laﬁa"'}

Transposition 7y 5 is the same as the adjacent 3-Cycle Cyc(%,7+ 1,7+ 2).

3 Equivalent Transformations

Let P and Q be two sets of permutations (or generators) in a group. We use P = @ to denote
that the permutations of @ can be implemented using multiple applications of P. For example

T1,1 = T1,2,T2,1

since
71,1(%)
{ala"'aai—laﬁa ai+17ai+27ai+37"'7an} — {ala"'aai—laai-l—laﬁa ai+27ai+37"'7an}
7'1,1(2 —|— 1)
{ala"'aai—laai—l—laﬁa ai+27ai+37"'7an} — {ala"'7ai—17ai—|—1aai—|—27ﬁ7 ai—|—37"'7an}

Thus = is by definition a transitive relation. We say two permutations (or generators) P and
Q are equivalent transformations P <— Q iff P — @ and Q@ — P. We introduce the relation
—> to derive useful transformations from k-reversal. If P <= @, then any permutation that can
be sorted by P can be sorted by @ too.

The simplest transformation capable of sorting is the 2-reversal or adjacent transposition. Bub-
ble sort (or insertion sort) [19] demonstrates that each permutation can be sorted in O(n?) steps
of 2-reversals. We also can use it to establish whether a set of generators is sufficient for sorting.



Lemma 1 A set of generators P is sufficient for sorting iff P =— 2—reversal

Proof: 2-reversal is sufficient to sort both permutations and circular permutations. If 2-reversal
can be implemented by composition of P, we can repeat these operations to generate a sequence
of 2-reversals to sort any permutations.

To show that 2-reversal is necessary, observe that any transformation T in a permutation group
must have an inverse transformation 7. Let P; and P, be permutations which differ by a 2-reversal.
If P is sufficient to sort, then there is a sequence of transformations from P; and P, to the identity,
and vice-versa, giving an implementation of 2-reversal. J

3.1 Equivalent transformations for Sym(n)

In this section, we consider transformations equivalent to k-reversal for Sym(n), and hence which
can be used in algorithms to sort either permutations or circular permutations. We will assume
that n > k + 2, to allow sufficient freedom to ignore certain boundary conditions. Equivalent
transformations for C PG(n) will be discussed in Section 3.2.

Theorem 1 The following equivalent transformations exist for permutation groups:
(2 4 4l) — reversal <= 2 — reversal <= Ty

4l — reversal <= 4 — reversal <= 73,721
(3 + 41) — reversal <= 3 — reversal
(54 81) — reversal <= 5 — reversal <= Ty

(94 81) — reversal <= 9 — reversal <= Ty 4,742
The rest of this section gives the proofs of these equivalent transformations.

Lemma 2 Two steps of k-reversal can generate transpositions s j—1 and 7,1 2, te. k—reversal —

T2,k—15Tk—1,2-

Proof: We give the proof for transposition 75 ,_1(1). Other starting positions follow analogously:

Revi(2)

{alaa2aa37"'7ak7ak—|—17ak—|—27"'} — {alaak—l—laaka"'7a37a27ak+27"'}
Rewvi(1)

{alaak—l—laaka"'7a37a27ak—|—27"'} — {a37"'7ak7ak—|—17a17a27ak+27"'}

To implement the inverse transposition 7;_1, 2, simply reverse these two operations. |

Observe that applying transpositions 75 ;1 and 7,_1 2 will maintain the order of all the elements
in a permutation except the two elements moved.



Lemma 3 k steps of 2l-reversal (k = 2I) can generate transpositions 1), and T,1. 8k steps of
2l-reversal can generate adjacent 3-cycle transpositions T 5 and T3, te.:

2l — reversal = Ty 51, To1,1 = T1,2,T2,1

Proof: Lemma 2 provides transpositions 7521 and 79_12 from 2/-reversal. We use them to
construct 7 2.

Ta1-1,2(1)
{a17a2aa37"'7a21—17a2l7a2l—|—17"'} — {a217a2l—|—17a17a27a3a"'7a21—17"'}
Ta1-1,2(1)
{a2l7a2l—|—17a17"'7a2l—37 a2l—27a2l—17"'} — {a21—2aa21—1aa2l7a21—|—17a1a"'7a21—37"'}

Repeat a total of k/2 times

Ta1-1,2(1)
{a47a57"'7a217a2l—|—17a17a27a3a"'} — {a27a37a47a57"'7a2l7a21+17a1a"'}

Reaching the target permutation 71 2 uses k/2 steps of T5_1 2, each T5_1 using 2 steps of
2[-reversal, for a total of k reversals. We emphasize that this transformation holds only for even k.
The inverse permutation, as always, follows by reversing the construction.

Using 7y,9; and 7977 we can generate transposition 7 5, and its inverse 75 1:

71,21(2)

{alaﬂa a37a47"'7a21+27---} B {a17a37a47"'7a21+2727"'}
71,21(2)

{alagaa%"'7a21+27a27---} — {a17a4a"'aa2l+27a27%7"'}
Ta1,1(1)

{a17a47“‘7a21+2727 a37“‘} — {%7 Q14044005 Q214 2, a37“‘}
721,1(2)

{a27a17a47"'7a21+27%7"'} B {a27%aa17a47"'7a21+27"'}

Four steps of 7 9 suffice to reach the target 7 1, costing a total of 4 x 2 = 4k k-reversals.
These transformations only require n > k + 2 or n > 21 + 2.

Special care must be taken when 7 5; or 7311 is restricted by the left or right boundaries of the
permutation. Consider transposing a;, a;+1 and a;15 in a segment of length 27 4 2:

{61, A2y eeey Qj 15079 Aj4 15 Aj4 25 Qi1 35005 A2 41, a2l+2}



If (¢ — 1) is even, we apply T3 2;—1(1) to this segment (¢ — 1)/2 times, moving the three elements
to the left boundary so we can use 757 and 7y 5 to generate 71 5 and 75 ;. Afterwards, we apply
Ta1—1,2(1) (¢ — 1)/2 times to move ay, ..., a;_1 back to their original positions.

If (¢ — 1) is odd, we perform an initial step of 7y 2;(1):

71,21(1)
{a_la a27a37"'7ai7"'7a2l+17a2l+2} — {a27a37"'7ai7"'7a21+17a_17 a2l-|—2}

and proceed with the sequence when (¢ — 1) is even, concluding with an extra 79;1(1) as the last
step. This adds (¢ — 1) steps of 75 9;_1 and 2 steps of 71 9, a total of k X 2+ 2 X k + 4k = 8k
k-reversals. 1

Now we give the first two transformations of Theorem 1:
Lemma 4 The following equivalent transformations exist for permutation groups:
2 — reversal <= (2 + 4l) — reversal
T1,2, To,1 <= 4 — reversal <= 4l — reversal

Proof: We can reverse the first 2] + 4 elements of a permutation using 2l-reversals, and Lemmas
2 and 3 as follows:

Revy(5)

{a1, a2,03,04,05, ..., 2] 3, 2]+ 4, A2] 45, } — {al, A2,03, 04y 02]1 4y A2] 3y -2y A5y A2[ |5, }
T2,21-1(3)

{a1, az,03,04,0a2]4,02]43y---, 06, 5, A2] |5, } — {al, A2, Q214 4y A2[ 43y 209 A6y A3y Qg9 A5y A2 L5y +--
Ta,21-1(1)

{a1, A2, 02]+45 A2]+ 3y -++5 A6y A3, 04, A5, A2] |5, } — {azl+4, Q21439 2306y A1, 02,03, 04,05, A2 5y +--
T2,1(2l —|— 2)

{a21+4,a21+3a ceey gy A1, 02,03, A4, a5, A2]1 5, } — {a2l+4,a2l+3, ey 06, A15,02, 05,03, 04, A2 5y -+
7'2,1(21)

{a21+4,a21+3a ery 06, 1,02, 05,03, 04, 02] 45, } — {a2l+4,a2l+3, <oy gy A5, A1, 02, A3, A4, A2]15, }
T1,2(2l —|— 1)

{a21+4,a21+3a ery 06, 05,01, 02,03, 04, 02] 45, } B {a2l+4,a2l+3, cery A6y A5y 2,03, 1,04, 2] 45, .-
T2,1(2l + 2)

{a21+4,a21+3a <oy gy A5, A2, A3, A1, A4, A2]15, } - {a2l+4,a2l+3, ey 06, Q55 A2, A4, 03, 01, A2 5y -+




T1,2(2l —|— 1)

{azl+4,a2l+3,---aae, Qas5,02, a4,a3,a1,a2l+5,---} - {a21+47a21—|—3a---aa6a Qa5,04, 03,02, al,azl+5,---}

To show equivalence the other way, we reverse the first 2/ elements of a permutation using
(21 + 4)-reversals, as follows:

Re’l)2l_|_4(1)

{a17 ceey Q21 Q2] 4145 Q2[4 25 A2]4 3, Q2] 4, A2] 45, } — {a2l—|—47a2l—|—37a21—|—27a2l—|—1aa217 ceey A1, A2 1 5, }
72,2143(1)

{2144, 2143, 2142, Q2141, Qaly -oey A1, A2l g 5y oo } — {@2142, Q21415 21y ooy G1, Qi g5, Aol ay Q214 3y - )
72,2143(1)

{@2142, G141, Q215 o ovy 1, Q214 5, Q214 4, Q214 3y - ) — {aat, .., @1, Q214 5, Q211 4, G2143, Q214 2, Q2lq1y - )
T1,2(2l —|— 1)

{@ai, ooy @1, Q21155 G214, G143, Q21425 Q2lq1y - ) — {as1y ..y @1, Q2144 2143, Q214 5, Q214 2, Qolg1y -
T1,2(2l —|— 3)

{@ai, oy @1, Q211 4, Q214 3, Q21455 Q214 2, Q214 1y -- ) — {as1y ..y @1, Q2144 2143, Q214 2, Q21 41, A2l g5y - }
T1,2(2l —|— 1)

{@ai, oey @1, Q211 4, Q214 3, B0 42, Q21415 Q214 5y -- ) — {as1y .y a1, Q2143, Q214 2, Q214 4, Q214 1, Q214 5y - }
T2,1(2l —|— 2)

{aat, .oy @1, Q2113, Q214 2, Q21445 Q21415 Q214 5y -- ) — {as1y .y @1, Q2143, 2141, Q214 2, Q214 4, Q2l45y - }
T1,2(2l —|— 1)

{@at, oy @1, Q2113 Q21 41, B214 2, Q21 44y Q214 5y -- ) — {as1y .oy @1, Q2141, Q214 2, Q214 3, Q214 4, Qoly 5y - }

By cascading these transformations, we can prove the equivalence of 2l-reversals and (2! + 47)-
reversals for all ¢, which implies 2-reversal <= (2 + 4l)-reversal and 4-reversal <= 4l-reversal.

For the second part of the lemma, we note that 7 5,7 1 <= 4-reversal follows from Lemma 3.
To implement the 4-reversal using 7 »:

71,2(1)
{a_17a23a37a47---} — {a27a37a_17a47"'}
72,1(2)
{az,a3,a1,%a---} - {aza%aa&ala---}



71,2(1)
{2&4,@3,@1,---} — {a4,a3a2aa1a---}

With the equivalence of 4-reversals and 4/-reversals, the general result follows. J

This concludes all transformations of even reversals. The remainder of this section deals with
odd reversals.

Lemma 5 The following transformations ezist for Sym(n):
k — reversal => T3 4,742 = Tap 24> T2g,4p

Proof: By Lemma 2, we know 73 ;_1,7%x—1,2 can be derived using k-reversals. We show k-
reversal => Ty 4, T4 2:

TZak_1(3)

{alaa27a37a47a57a67a77"'7ak—|—3a"'} — {61,612,(15,(16,617,...,ak_|_3, a37a47"'}
TZak_]-(]')

{alaa27a57a67a77"'7ak—|—37a3aa4a"'} — {a5,a6,a7,...,ak+3,a1,a2,a3,a4,...}
Te-1,2(3)

{a5aa67a77"'7ak—|—37a17a27a3aa4a"'} — {615,616,(13,(14,617,...,ak_|_3, 61,62,...}
Te-1,2(3)

{a5aa67a37a47a77"'7ak—|—37a1aa2a"'} — {615,616,(11,(12,(13,614,(17,...,ak_|_3,...}

Although we have implemented 74 2(1), the boundary restrictions can be eliminated. When & is
even, it follows from Lemma 3, where 2l-reversal =- 71 3,721, since 7 3 = 745. When k is odd,
we can apply 73 r—1(1) repeatly to move the ith element to the left end, as in the proof of Lemma
4. When there are an odd number of elements to the left, one initial k-reversal Revi(1) leaves an
even number and the previous analysis suffices.

The inverse follows since 75 4(4)=74,2(%)74,2(¢). By repeating 74 3, it is easily shown that 74, » —>
T4p,2, and by repeating 74y 5, it is shown that 74,5 = 745,24 ||

Lemma 6 The following transformations exist for Sym(n):

5 — reversal <= Ty

9 — reversal <= T34,Ta 2

3 — reversal <= 7 — reversal



Proof: To show 5-reversal = T35, we use 734 and 74> as generated in Lemma 5:

{ala Q2,03,04,05, 06,y A7, ...

{ala Q4,05, 06, 07,042,043, ...

{615, QGg,a7,02,01, 04,03, ...

{615, aq,01,04,03,06, a7, ...

To show 739 = 5-reversal:

{ala Q2,03,04,05, 06y ...

{ala Q4,05,02,03, 06y .-

{615, Q2,01,04,03, 06, ...

Lemma 5 demonstrates that 75 4, 745 can be generated by 9-reversal. To show that 754 = 9-

reversal:

{ala Q2,03,04,05,0¢, 07,08, 09y ...

{ala Q4,05, 06, a7, 02,03, a8, 09, ...

{615, Gag,07,0a2,01,04,03, 08, 49, ...

{615, Qg, 07,048, 09, 02,071,044, 03y ...

{615, ag, 09, a2, 41,06, A7, 04,03y ...

}

}

}

}

72,4(2)
B {a17a47a57a67a77a2aa37"'}

72,4(1)
B {a57a67a77a27a17a4aa37"'}

72,4(2)
B {a57a27a17a47a37a6aa77"'}

Revs(1)
B {a37a47a17a27a57a6aa77"'}

72,2(2)
B {alaa4aa5aa27a37a67"'}

72,2(1)
— {a5aa2aa1aa47a37a67"'}

7'2,2(2)

B {a5aa4aa3aa27a17a67"'}

72,4(2)
B {alaa47a5aa6aa77a27a37a87a97"'

72,4(2)
B {a57a67a7aa2aa17a47a37a87a97"'

74,2(4)
B {a57a67a7aa8aa97a27a17a47a37"'

72,4(2)
B {a5,68,69,62,61,66,67,64,63,...

72,4(1)
B {a97a27a1aa6aa57a87a77a47a37"'

10



7'4,2(2)

{ag,612,611,(16,(15,618,617,(14,(13,...} — {ag,68,617,612,(11,(16,615,(14,(13,...}
72,4(4)
{ag,68,617,612,(11,(16,615,(14,(13,...} — {ag,68,617,612,(11,(16,615,(14,(13,...}

Note that Lemma 2 implies 3 — reversal = 73 5. Since 5-reversal <= 732, we can derive
3-reversal =— 5-reversal. To show that 3-reversal =— T-reversal :

Revs(1)

{a17a27a37a47a57a6aa7a"'} — {a57a47a37a27a17a6aa7a"'}
74,2(2)

{a57a47a37a27a17a6aa7a"'} — {a57a67a77a47a37a2aa1a"'}
Rews(1)

{a57a67a77a47a37a2aa1a"'} — {a77a67a57a47a37a2aa1a"'}

By Lemma 5, and Lemma 6, 7-reversal = 9-reversal. By Lemma 2, 7-reversal = 7¢ . To
complete the argument that 7-reversal — 3-reversal,

Rewg(1)

{alaa27a37a47a57a67a7aa8aa97"'} — {ag,68,617,(16,(15,614,(13,0,2,611,...}
Rev(1)

{a9aa87a77a67a57a47a3aa2aa17"'} — {a37a47a57a67a77a8aa9aa27a17"'}
76,2(2)

{a3,a4,a5,ae,a7,a8,a9,a2,a1,...} — {a3,a2,a1,a4,a5,a6,a7,a8,a9,...}

Lemma 7 In Sym(n), (21 + 1)-reversal and (21 4+ 9)-reversal have the following equivalent trans-
formations, for alll > 0:

3 — reversal <= 7 — reversal <= (3 + 4l) — reversal

Ty, <= b — reversal <= (5 + 81) — reversal

To,4, Ta,2 <= 9 — reversal <= (9 + 81) — reversal

11



Proof: First, we show that (2] + 1)-reversal <= (2l 4 9)-reversal. By Lemma 6, 754,742 are
equivalent to 9-reversal, and by Lemma 5, 75 4, 74,2 can be derived from all reversals. Thus 9-reversal
can be generated by all odd length reversals. To show that (214 1)-reversal = (21 + 9)-reversal:

Re’l)2l_|_1(9)
{a1, as, ..., ag, ag, @10, ..., A2148, Q2149 - } - {a1,as, ..., as, 2119, 2148, -+, G10, Agy - }
7s,21(9)
{a17a27"'7a87 A2]+4+9, A2]+8y «--9 Q10 a9a"'} — {a2l—|—9aa21—|—8a"'7a10a a,az,...,ds, a9a"'}

Revg(2] + 1)

{a2l+9,a2l+8,---,a10, a1,02y...,0a8, a9,---} — {a21+9aa21+8a---aa10a a97a87"'7a27a17---}

To show (2I + 9)-reversal <= (21 + 1)-reversal:

Re’l)2l_|_9(1)

{61,62, ceey 2Ly Q21419 Q2429 o009y B2+ 8y A2[ 49, } — {a2l—|—9aa21—|—8a ceey 242, A2[ 415 A2]y oeey B2, A7, }
Rewg(1)

{02149, Q21485 wovs Q2112 Q2415 A2ly eey A2y Q1y e} —  {Q2141, Q2142y oy Q2148 B21405 B2Ly ooy B2, 1y oun }
7s,21(2)

{@2141, Q21425 vy 2148y A21405 ALy eey A2y A1y e} ——  {@20415 G20y o0y B2y G5 A4 2, ovey Q211 8y B2 95 o0 }

This transformation gives:

3 — reversal <= (3 + 81) — reversal

)
5 — reversal <= (5 + 81) — reversal
)

7 — reversal <= (7 + 81) — reversal

(
(
(
9 — reversal <= (9 + 8l) — reversal

Combining these equivalent transformations with Lemma 6, 3-reversal <= T7-reversal, 5-
reversal <= Ty 3, and 9-reversal <= Ty 4, completes the proof. J

This concludes all transformations of odd reversals and the proof of Theorem 1.

3.2 Equivalent transformations for C' PG(n)

All the relations in Section 3.1 hold for both permutations and circular permutations. In this
section, we develop additional transformations which hold for CPG(k,n). These transformations
are a function of n as well as the reversal-length k.

Lemma 8 If § <= T in PG(k,n) then S <= T in CPG(k,n) when n >k + 2.
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Proof: Clearly any permutation sortable under S or T in PG(k, n) remains sortable in C PG(k, n).
Any transformation of T in C PG(k, n) is equivalent to an initial set of circular shifts (so the altered
region of T' does not wrap around the ends of the permutation) followed by the implementation
of T using S in PG(k,n). This is true since circular permutations are unchanged under circular
shifts. B

Lemma 9 For CPG(k,n), o4 and 745 can be generated by 8 steps of k-reversal.

Proof: By Lemma 5, k-reversal = 734,742 in Sym(n). If n > k + 2, there are no boundary
constraints for C PG(k,n). Thus 4 steps of 75 ;_1, or 8 steps of k-reversal are sufficient to derive

Ta,2 OT Ty 2. I

Lemma 10 For C PG(k,2m), the following equivalence transformation exists:
4l — reversal = 11

Proof: From Theorem 1, we know 4l-reversal <= 112, 7T21. We may repeatedly apply transpo-
sition 71 2 to ¢;41, skipping over two elements at time until it arrives in the proper position, since

n = 2m:
7'1,2(2 —|— 1)
{C1y s Ciy Cit1yCit2yCit3yeees Com} — {C1yeees Ciy €125 Cit3y Cit1yeey Cam}
Repeat 7 5((¢ + 1+ 2j) mod 2m) for 1 < j < m
7'1,2(2 — 2)
{cla"'aci—37 ci—l—laci—Zaci—laciaci—I—Za"'aCZm} — {cla"'aci—37 ci—27ci—1aci—l—1aciaci+27"'aCZm}
[ |

We note that for n = 2m + 1, the transposition 7 ; cannot be generated for all k.
Lemma 11 The following transformation exists for CPG(2] + 1,2m + 1):
(21 + 1) — reversal = 113,721
Proof: We have proven in Lemma 5 that
(21 + 1) — reversal = Taq 4p, Tap,2q

We show that we can transpose a; with ay, as. If m is odd, we can do 75 3,2 since 2m—2 = 0 mod 4,
giving:

T2,2m—2(2)
{a17a27a37a47"'7a2m—1aa2m7a2m—|—1} — {a17a47"'7a2m—17a2m7a2m+17a27a3}

13



Shift

{a17a47"'7a2m—17a2m7a2m—|—17a27a3} — {a2,a3,a1,a4,...,a2m_1,a2m,a2m+1}

If m is even, we can do T9,,_4.9, since 2m — 4 = 0 mod 4, so:
’ m—4,29 )

Shift
{a17a27a3aa4aa5aa67a77"'7a2m7a2m—|—1} B {a4aa5aa67a77"'aa2m7 a2m+1aa17a27a3}
Tom—4,2(4)
{a4aa5aa67a77"'7a2m7 a2m—|—1aa17a27a3} — {a4,a5,a6,a2,a3,a7,...,a2m,a2m+1,a1}
Shift
{a47a57a6aa2aa3aa77"'7a2m7a2m—|—17a1} — {61,614,615,(16,(12,613,(17,...,a2m, a2m—|—1}
74,2(1)
{a17a47a57a67a27a3aa77"'7a2ma a2m—|—1} — {612,613,611,(14,(15,616,(17,...,a2m, a2m—|—1}

Thus 71,5 can be generated in Ggpg(2! + 1,2m + 1) and by reversing the derivations, so can
T2,1. I

Lemma 12 The following transformation exists for CPG(4l + 1,2m + 1):
(41 + 1) — reversal <= 113,721

Proof: In Lemma 11, we have proved that (4] 4 1)-reversal = 713,721 in CPG(4l+1,2m +1).
By Theorem 1,

(81+9) — reversal <= Ty 4,742
(814 5) — reversal <= 755
Combining these two transformations, we get
(41 + 1) — reversal <= 135

To complete the argument, we show 7 5 = 7 2:

71,2(2)
{611,2,@3,@4,@5,---} — {al,a3,a4a2aa5a---}
71,2(1)
{a_17a37a47a2aa57---} — {a37a47a_17a27a57"'}

We conclude with two transformations which are independent of k-reversals, but which will
prove useful in establishing bounds for circular permutations.

14



Lemma 13 The following equivalent transformation exists: T3 =— Cyc(i,i+ 2,7+ 4).

Proof: To show 155 = Cyc(%,7+ 2,7+ 4):

7'2,2(2 — 2)

{"'7ci—37 ci—27ci—laciaci—l—laci+27ci—|—37"'} — {---aci—37 ciaci—l—laci—Zaci—laci+27ci+37"'}
7'2,2(2 — 1)

{"'7ci—37 ciaci—l—laci—Zaci—laci+27ci—|—37"'} — {---aci—37 ciaci—laci—l—Zaci+1aci—27ci+37"'}

Lemma 14 The following equivalent transformation exists: Ty 4, Ta2 <= Cyc(i,i+ 2,7+ 4).

Proof: To show Cyc(%,i+4 2,7+ 4) = 74

Cyc(1,3,5)
{a_la Qa2,0a3,04,05, a67a77"'} B {%7 Q2,045,04, 47, a67a77"'}
Cyc(2,4,6)
{a3727a57%7a17%7a77---} — {a37%7a57%7a1727a77"'}
To show 154 = Cyc(i,i+ 2,7+ 4):
72,4(2)
{a17a27a37a47a57a6aa7a"'} — {a17a47a57a67a77a2aa3a"'}
72,4(1)
{a17a47a57a67a77a2aa3a"'} — {a57a67a77a27a17a4aa3a"'}
72,4(2)
{a57a67a77a27a17a4aa3a"'} — {a57a27a17a47a37a6aa7a"'}
72,4(1)
{a57a27a17a47a37a6aa7a"'} — {a17a47a37a67a57a2aa7a"'}

15



4 Connected Components under Fixed-Length Reversals

In this section, we consider the number of connected components on the Cayley graphs of fixed-
length reversals of permutations and circular permutations. We note that each of these connected
components represents a subgroup of Sym(n) or C PG(n, k), and by symmetry each of these sub-
groups are isomorphic. Let Sub(G) be the number of connected subgroups of the group generated
by G. Thus the size of each subgroup can be computed from Sub(G), and visa-versa.

A set of generators T can be derived from S when each member in 7' can be generated using
a subset of generators from S. The number of connected subgroups of T', Sub(T) = m - Sub(S5),
where m is an integer. If S and T have equivalent transformations, m = 1.

Before considering the general case, we resolve the structure of the Cayley graphs for special
cases of k and n. We assume that £ > 1, or no elements can be moved in any reversal. We
also assume that n > k, although larger reversals can be interpreted as n-reversals that simply
reverse the entire permutation. The trivial cases are those of (n — 1)—, and n-reversals. For
k = n, any permutation can be transformed only to its reverse permutation. Thus there are n!/2
connected components for Sym(n), k = n > 2, and (n—1)!/2 connected components for C PG(k, n),
k = n > 3. For smaller values of k = n, these graphs are connected. For circular permutations,
(n — 1)-reversals are functionally equivalent to n-reversals, so the discussion above applies. For
permutations, (n — 1)-reversals generates components of either n or 2n permutations depending
upon parity.

In Section 4.1 we identify the connected components of Sym(n). In Section 4.2 we identify the
connected components of CPG(k,n).

4.1 Connected Components in Sym(n)

In this section, we consider the connected components of the Cayley graph of the symmetric group
under k-reversals. All the equivalence transformationsin Theorem 1 can be used, since none depend
upon circular permutations. For permutations (as opposed to circular permutations), there is no
difference between even and odd n.
By Lemma 4, 2-reversal <= (4l+2)-reversal, so the Cayley graph Sym(4l{+2,n)is connected.
To show that this is the only connected case, we use the permutation sign function. In group
theory, the sign F(7) of permutation = = {a1, s, ..., a,} is defined by the polynomial

i<j

Any adjacent transposition 71 1(¢) = (@;a;41) changes (a;41 — a;) into its negative (a; —a;41) and so
changes F' to — F. By restricting permutations so a; = 1, we still define F for circular permutations
such that the sign does not change for C'yc(¢,7+ 1,7 + 2):

Lemma 15 The adjacent 3-Cycle transposition T51(¢) does not change the sign of F for permuta-
tions and (2m + 1)-length circular permutation, ™ = (¢1,C2, ...y Cam41) Where ¢1 = 1.

Proof: The permutation 75 1(¢) = 71 2(¢) 71,2(¢), so we only need to show 7 5 does not change the
sign of F(x).

We distinguish two cases of 7 5(z). For 1 < 7 < 2m, the position of ¢; does not change. For
i € {2m,2m + 1,1} ¢ is involved. Assume v = 77y 2(%).
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In the first case, function F(v) only changes three terms of F(7). The sign does not change,
because

(cit1 — ¢i)(eira — ¢i)(Civa — €iv1) = (Civ2 — cip1)(ei — cip1)(ei — Ciya)
In the second case, ¢; is among any of the ¢;, ¢;1+1, and ¢;49, For ¢ = 1,
T = (cla €2,C3,C4,yC5y .0y ch-I—l)

v = (cla €C44C5y 000y Com15C2y 63)

The difference between F(7) and F(v) is the product of these terms which changed signs:

(64 — 62)(65 — C2)...(C2m+1 — 62)(64 — 63)(65 — C3)...(C2m_|_1 — 63) = (_1)4m—4 =1

so F(w) = F(v). If ¢; = cam, Cit1 = C2m+1, and ¢;42 = ¢1, this is just the reverse permutation from
v to 7, so we still have F(7) = F(v).
The final case is ¢; = comy1, Ci41 = €1, and ¢;42 = c2,
v = (cla €C25,Co2m+415C35 -0y ch)
where F(v) changes the signs of following 2m — 2 terms,

(Cn — C3)(C2m_|_1 — C4)...(C2m_|_1 — C2m) = (_1)2m—2 =1

so F(m) = F(v). |

Corollary 2 Adjacent 3-cycle transposition cannot sort permutation T = (@1, ...y Qi1 Qit1y Giy it 2y oeey Q)
and circular permutation v = (€1, ..y Ci—1y Cit1y Ciy Cit 2y veey Camt1)

By Corollary 2, 727 cannot change the sign of an (odd length circular) permutation. The
identity (circular) permutation has positive sign, so (circular) permutations with negative signs
cannot be sorted.

Lemma 16 757 can sort exactly half of Sym(n).

Proof: It is easily shown that 7,7 == T,,,1. The following algorithm sorts 7 = {a1, as, ..., a,},
using Topm,1:

1. fori=1ton—2

2. find j such that a; = ¢ (j = 771(2))
3. if (j — ¢) is even, apply 7;_;1(¢)

4. else apply 7;_;_1,1(¢ + 1) then 7 (%)

5. end for
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The ith iteration places a; into ith position, where a; = 7. At termination, either 7 =
{1,2,...n—2,n—1,n}or 7 = {1,2,...,n—2,n,n—1}. Because they have different sign, Lemma 15
shows that {1,2,...,n—2,n,n — 1} cannot be transformed into {1,2,...,n — 2,n — 1,n} using 7 »,
thus 7 5 divides the permutation group into two equal-sized subgroups, and 7 » sorts just half of
Sym(n). §

By item 2 in Theorem 1, 4l-reversal <= 712,721 and Lemma 15, sorting (2m + 1) circular
permutation is the same as sorting a permutation by 7 » and

Corollary 3 The Cayley graphs PG(4l,n) and C PG(4l,2m + 1) both consist of two disjoint sub-
graphs.

Lemma 17 The Cayley Graph PG(4l+ 3,n) has (Ln72 J) connected components.

Proof: By Theorem 1, (4] + 3)-reversal <= 3-reversal. Applying a 3-reversal Revs(i) to a
permutation 7 simply exchanges a; with a;; 5. Thus for all ¢ = 25, Revs(¢) exchanges adjacent even
positions, while for all ¢ = 2j + 1, Revs(%) exchanges adjacent odd positions. There is no way to
move elements from even to odd position.

Therefore all elements of 7 can be partitioned into sets of [n/2] odd and [n/2] even elements.
Any permutation on each partition can be generated using 3-reversals as transpositions, so each
connected component contains V' = [n/2] X |n/2] vertices, and hence N!/V = (Ln72j> connected
components. |

Lemma 18 The Cayley Graph PG(8! + 5,n) has 2 (Ln72 J) connected components. The Cayley
graph C PG(8l+ 5,2m) has 2 <2mm_ 1) connected components.

Proof: By Theorem 1, 75 » has equivalent transformation with (8! +5)-reversal, and by Lemma 13,
Ty,2 = Cyc(%,4+2,i+4), the interval 3-cycle. We use the following algorithm to sort permutations,
and thus circular permutations:

1. Sort {c1,¢3,...,C2m—1} into {1,3,5,...,2m — 1} using 75 5.
2. Sort {c2, ¢4y ..., C2rm} into {2,4,6,...,2m} using Cyc(s,i+ 2,7+ 4).

The odd elements can be sorted in the first step, because 7, 5 transposes ca;_1, ¢2; with ca;41,
C2i+9, realizing adjacent transposition of neighboring odd elements without changing the order
of any other odd numbers. There are (m — 1)! arrangements of 3, 5, ..., 2m — 1 (in a circular
permutation, we fix the position of 1), which can thus be sorted with 75 5.

However, only m!/2 arrangements of the even elements can be sorted using interval 3-cycle.
Consider the permutation = = {1,4,3,2,5,6,....,2m,2m + 1}. It is easily verified that 75 (or
the weaker C'yc(Z,% + 2,7 + 4)) will not change the sign of polynomial sign function F. However,
F(x) is equal to —F(I), where I is identity permutation. So while 7 can be sorted with one 3-
reversal, it cannot be sorted by 73 5. Thus, C'yc(%,%+ 2,7+ 4) can only sort half of permutations in
{627 Chyeeey ch}‘

The number of vertices in each component is V = (m — 1)!- m!/2., so the total number of

2m — 1

connected components is (2m — 1)!/V = 2( o

). The equivalence for circular permutations
follows from Lemma 8. I
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Lemma 19 CPG(81+9,4m) has 2 (4";7; 1) connected components, while C PG(81+9,4m+ 2) has

4 (4";:; 1) connected components. For permutations, the Cayley Graph PG(8!+ 9,n) has 4 (Ln72 J)

Proof: By Lemma 5 (8 + 9)-reversal = 72q,4p). To generate 7,3 in Gopg (8l +9,4m):

T,4m—4(2)
{617627637647657"'7c4m—1ac4m} — {61,62,65,...,C4m_1,64m,63,64}
Shift
{61,62,65,...,C4m_1,64m,63,64} — {637647617627657"'ac4m—1ac4m}

Thus the number of connected components is 2 (47;7; 1) by the same argument as Lemma 18.

By Lemma 14, 754, 74,2 <= Cyc(%,% + 2,7 + 4) for circular permutations of n = 4m 4 2. We
may sort with the following algorithm:

1. Sort {ci1,c3,...,Cam—1} into {1,3,5,...,2m — 1} using Cyc(,i+ 2,7+ 4).
2. Sort {c2, ¢4y ..., C2rm} into {2,4,6,...,2m} using Cyc(s,i+ 2,7+ 4).

As shown above, we fix the position of 1, so (2m)!/2 permutations of 3, 5, ..., 4m + 1 may be

sorted. The second step can sort (2m + 1)!/2 permutations of 2, 4, ..., 4m + 2, leading to a total
of (4m+ 1)!/((2m 4+ 1)}(2m)!/4) =4 (47;:; 1) connected components in Ggpa(8! + 9,4m + 2). For
permutations, the Cayley Graph PG(8! 4+ 9,n) has 4 (Ln72j> |

In summary:

Theorem 4 The number of connected components in the Cayley graph of Sym(n) under k-reversals
1s:

k=0mod4 | 2
k=5mod8 | 2(,7,)
k=1mod8 | 4(,7,)
k=2mod4 | 1

k =3 mod 4 (Ln72J>

4.2 The Connected Components of CPG(k,n)

Several equivalence transformations for circular permutations have been introduced in Section 3.2.
These demonstrate that the connectivity of C PG(k,n) depends upon both n and k. In Section
4.2.1, we establish the relationship between k-reversals and (n — k)-reversals. In Section 4.2.2, we
consider the case where k is even, and in Section 4.2.3 the more complicated case when k is odd.
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4.2.1 Similarity of CPG(k,n) and CPG(n — k,n)

For circular n-permutations, k-reversals are similar to (n — k)-reversals, which can be exploited to
bound the diameter and count the components of related instances.

Lemma 20 In CPG(k,n), if © can be sorted in 2p k-reversals, then it can be sorted with 2p (n—k)-
reversals. If w can be sorted in 2p+1 k-reversals, it can be transformed into I™! = {n,n—1,...,2,1}
using 2p+ 1 (n — k)-reversals.

Proof: In the sequence of reversals which sorts m, replace each k-reversal Revi(¢) with the (n — k)-
reversal Rev, (i + k). The result of each substitution is an order-reversal of the desired permuta-
tion:

Rewvi(1)

{61,62,...,Ck,Ck_|_1,.-.,Cn_1,Cn} B {Ck,...,62,61,Ck+1,...,Cn_l,cn}

Rev,,_r(k+ 1)

{617627"'7ckack—|—17"'7cn—1acn} B {617627"'7ckacnacn—17"'7ck—|—1}

Thus after an even number of substitute (n — k)-reversals, we obtain the same result as with
the original k-reversals. With an odd number of substitute reversals, the final result is reversed, so
the sorting sequence returns 1.

Theorem 5 Let Vj, be the number of vertices in one component of C PG(k,n) and V,,_;, be that of
CPG(n —k,n). If Vi, > V,_g, then either Vi, = Vio_p or Vi, = 2V, 4.

Proof: Let Cj and C,,_j denote the components of C PG(k,n) and C PG(n — k,n) containing the
identity permutation. Performing a breadth-first search from I in C PG(k,n) partitions C} into
sets S, and S,, denoting the vertices on even and odd levels.

By Lemma 20, S, C C,_g. In S,, any circular permutation = can be transformed into any
other circular permutation v using an even number of reversals: # — I — v. Thus either every
circular permutation in S, belongs to C,_j or none belongs to C,,_.

If S, belongs to C,,_g, under the assumption V3, > V,,_g, then V}, = V,,_j. Otherwise, S, does
not belong to C,,_%, and we have following features of S, and S.:

1. All the circular permutations in S. can only be sorted in even steps of k-reversals. If there
exists an odd steps sorting, it will reach all the circular permutations in S, by even steps,
which will lead to S, belonging to C,,_g.

2. All the circular permutation in .S, can only be sorted in odd steps of k-reversals.
3. The size of S, equals to the size of S.. This can be proven by the symmetric feature of Cy.

Now repeat the analysis on C,,_, partitioning C,,_j into T, and T,,. If T, belongs to C}, we have
Crp-k = Se, or Vi, = 2V,,_, by the third item above. Otherwise, we have T, = S, and Vi, = V. I

The number of connected components is (n—1)! over the number of vertices in each components,
$0

Corollary 6 Let N be the number of connected components of C PG(k,n) and N,_j, be that of
CPG(n —k,n). If N, > N, _p, either Np, = Np_g, or N = 2Np,_.
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4.2.2 Connected Components of CPG(k,n) for even k

By Lemma 4, 2-reversal <= (4l + 2)-reversal for Sym(n), so by Lemma 1 the Cayley graph
CPG(4l + 2,n) must be connected. By Lemma 10, 4l-reversal = 2-reversal for n = 2m, so
CPG(4l,2m) must also be connected. This completes the argument that we can sort for all even
k and even n.

What remains is the case for ¥ = 0 mod 4 and odd n. By Theorem 1 item 2, we know that:

T1,2, To,1 <= 4l — reversal

where 7y 5, 791 divides Sym(n) into two subgroup. By Lemma 15, 7y » and 75 ; cannot change the
sign of F' for (2m+ 1)-length circular permutation, thus the Cayley graph C PG(4l,2m +1) consists
of two disjoint connected subgraphs. In summary:

Theorem 7 The number of disjoint connected components in Circular Permutation Group with
even length reversals (n > k + 2) are:

E\n n=2m | n=2m+1
k=0mod4 | 1 2
k=2mod4 | 1 1

4.2.3 Connected components of Gepg(k,n) for odd k

In this section, we complete the analysis of connected components of circular permutations under
odd-length reversals. Several subcases have been covered in previous sections.

Lemma 21 The Cayley Graph CPG(4l+ 3,2m + 1) is connected.

Proof: By Theorem 1, 3-reversal <= (4l + 3)-reversal. We claim that 71 ; can be generated by
3-reversal for odd circular permutations, since 7y 2, 721 can be generated by Lemma 11:

Revs(i — 1)

{cla"'7ci—27ci—1aciaci—|—1aci—|—27"'} — {cla"'7ci—27ci—|—1aciaci—1aci+27"'}
7'2,1(2 — 1)

{cla"'7ci—27ci—|—1aciaci—1aci—|—27"'} — {cla"'7ci—27ci—1aci—|—1aciaci+27"'}

By Lemma 1, 717 is equivalent to sorting. |

By Lemma 16, 7 » partitions odd-length circular-permutations into 2 connected components,
depending upon the sign function. Thus the Cayley Graph C PG(4l+1,2m + 1) has two connected
subgraphs.

Lemma 22 The Cayley Graph Geopa(4l+ 3,2m) has <2mm_ 1) connected components.

Proof: By Theorem 1, all (4] + 3)-reversals have equivalent transformations with 3-reversal. Thus
every reversal leaves the partition between even and odd-numbered elements unchanged, and the
number of components follows from the proof of Lemma 17. J

The cases for (k = 5 mod 8) and (k = 1 mod 8) follow from Section 4.1. In summary:

21



Theorem 8 The number of disjoint connected components in CPG(k,n) (forn > k+ 2) are:

E\n n=2m+1 | n=0mod4 | n = 2mod 4
k=0mod4 | 2 1 1
k=5mod8 | 2 2 (")) 2 ("))
k=1mod8 | 2 2(" 7)) 4("7))
k=2mod4 | ! 1 1
k=3mod4 | 1 (") (%)

The result holds for n = k + 2, since 7,_1,2 = 71,2 in CPG(k, k + 2), which suffices by Lemma

5 Diameter of CPG(k,n)

In this section, we consider the diameter of the Cayley graphs of circular permutations under fixed-
length reversals. For the special case k = 2, bubble sort removes exactly one inversion per reversal,
giving an ®(n?) diameter. As we shall see, we can do substantially better for larger reversals.

5.1 An Upper Bound on Diameter

Our upper bound rely on a particularly efficient equivalence relation:

Lemma 23 The 3-cycle Cyc(i,i + 1,7) can be implemented in 9%k + 2n/k + 2 k-reversals for
CPG(k = 2l,n), where k 4+ 2 < n.

Cye(i,i+1,5)

{ala---aai—laaiaai+laai+2a"'aaj—laajaaj-l-la"-aan} ¥ {ala---aai—laaj,aiaai+2a"'aaj—laai-l-laaj-l—la"'aan}

Proof: Without loss of generality, we show Cyc(1,2, 7). There are two cases, depending upon the
position of j.

First, consider 3 < j < k+2. If (j — 3) is even, there are an even number of elements between 2
and j. By Lemma 9, k-reversal = 75 4, T4 > using 8 reversals. Thus 75, 4 and 742, can be derived
by p steps of 75 4, or 8p steps of k-reversals. We let p = (j — 3)/2 < k/2:

T2p,4(3)

{alaa2a‘137-"aaj—laajaaj+laaj+2aaj+3aaj+4a"'} - {alaa2aajaa’j+laaj+2aaj+370'3a"'aaj—laaj+4a"'}

Then we apply 75,1(1) derived from Lemma 3 using k steps of (k = 2I)-reversals.

T211(1)

{alaa2aﬁaaj+1aa’j+2aaj+3a0'3aa4a"'aaj—laaj-l-‘ia"'} — {ﬁaalaaﬂaaj-l-laa’j+2aaj+3a0'370'47"'aaj—laaj-l-‘ia"'}

Finally, we apply 74 2y, moving as, a;41, @42, and a;j;3 back to jth position.

Ta,2p(3)

{ajaalaa2aaj+1aa’j+2aaj+3a0'3aa4a"'aaj—laaj-l-‘ia"'} — {ajaala‘137‘147"'aaj—laa2aaj+laaj+2aaj+370'j+4a"'}
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We have realized Cyc(1,2,7) using at most 4k + k + 4k = 9k steps of k-reversals. If (7 — 3) is
odd, we apply one extra Revi(3) in the beginning, such that the 2th and jth position are an even
distance apart and use the same method as above, performing one final Revi(3) on the last step.
If a; is one of aj;1, ajy2, or aji3, we can realize C'yc(1,2,7) in 9k reversals by a similar method.
Thus the total cost is at most 9k 4+ 2 reversals.

The second case is j > k+2. We apply Rev(j —(k—1)), Reve(j —2(k—1)), Revg(j —3(k—1)),
..., until a; is moved to the position between 3 and k 4 2. Then we proceed as above and apply
k-reversals in reverse sequence. This costs 2n/k extra reversals, for a total of 9k + 6 + 2n/k. |

Theorem 9 The diameter of C PG(k,n) is O(n?/k + nk), if k = 21, n = 2m, and k + 2 < n.

Proof: To sort a circular permutation # = {c1, ¢2, ..., ¢} using Cyc(s,i+1, j), consider the following
variation of selection sort:

1. Set ¢ =1

2. For:=2ton—2

3. Find j such that ¢; = ¢

4. If j > i+ 1 then do 3-cycle Cyc(i,i+ 1, j) to transform ¢;, ¢;41, ¢; into ¢j, ¢;, ¢i41
5. If j =i+ 1 then do 7 »(7)

6. End For

It is apparent that the first n — 2 elements are sorted using this algorithm. At the start of Step
5, there remain two possibilities:

{1,2,....n—2,n—1,n},{1,2,....,.n—2,n,n— 1}

Reaching this point used (n — 2) - (9% + 2 + 2n/k) reversals. From {1,2,...,n—2,n,n — 1} we
may use n/2 721 to move n to reach {n,1,2,...,n — 2,n — 1}, which can be shifted into identity
permutation. This takes an additional (n/2)-4k = 2nk steps, for a total of O(n?/k + nk) reversals.
|

Theorem 10 The diameter of each connected component of C PG(k,n) is O(n?/k +nk), if k = 21
andn >k + 2.

Proof: We use the same algorithm as above, sorting permutations into
{1,2,....n—2,n—1,n},{1,2,....,.n—2,n,n— 1}

Now consider all (n —1)! permutations in C PG(k,n). Those which can be sorted into {1,2,...,n—
2,n—1,n} by above algorithm form a set $7, while the others form set S;. Any pair of permutations
from the same set can be transformed to each other within (n — 2) Cyc(¢,¢ + 1, ) operations, or
O(n?/k + nk) k-reversals, since all operations are symmetric.

23



Even length path
" mapped from CPG(k, n)

Shortest path SP(1,Q)

R (antipodal vertex)

Constructing an even length path
either ISRQ or ITRQ

A cyclein CPG(n-k, n)

Figure 2: Constructing a short even-length path.

If CPG(k,n) is not connected, we have two connected components in CPG(k,n), each with
diameter bounded by O(n?/k + nk). Otherwise C PG(k,n) is connected by Theorem 8, so there
must exist a single k-reversal taking m,1 to 7,9, where m,1 € 51 and 7,5 € Ss.

Thus we can take any permutation from S, and transform it to an element of $; in (n — 2)
Cyc(3,i+1, j) operations plus one k-reversal, which can be sorted in an additional (n—2) Cye(Z, i+
1,j) operations. The total number of reversals is at most 2(2n%/k +9nk + 2n)) + 1, so the diameter
of Gepg(k,n)is O(n?/k + nk). |

Thus, surprisingly, O(n3/ 2 reversals suffice when k = /7.
To establish bounds for C PG(4l+3,2m+ 1), we show that the diameter of CPG(41+3,2m+1)
is within a factor of two of the diameter of C PG(2p,2m + 1), where 2p = 2m — 4l — 2:

Lemma 24 Suppose a graph G contains an odd-length cycle c. Then G has an odd-length cycle of
length < 2d + 1, where d is the diameter of G.

Proof: Let z and y be two antipodal (maximally separated) vertices of ¢. Thus there are even-
and odd-length paths P. and P, from z to y of length |¢/2] and [¢/2]|. Now consider the shortest
path P(z,y). This path forms a shorter length odd cycle with either P. or P, unless it is either P.
or P,. Thus we can shrink ¢ to length at most 2|P(z,y)| + 1, where d > |P(z,y)|. |

Lemma 25 diam(CPG(n—k,n)) < 2diam(CPG(k,n))+ 2, where diam(G) denotes the diameter
the connected components of graph G.

Proof: Let SP(I,Q) denote the length of the shortest path from I to @ in CPG(n — k,n),
and let diam.(G) denote the length of the longest even-length shortest path in G. Note that
diam(G) < diam.(G) 4 1, since the diameter may be even or odd.

Consider the pair of vertices I, Q defining the even diameter of CPG(n — k,n). By Lemma
20, there is an equal length path in C PG(k,n). Now consider the shortest path P from I to Q in
CPG(k,n). If P is of even length, then |P| = diam.(C PG(n — k,n)) and diam(CPG(n — k,n)) <
diam(CPG(k,n)) + 1.

If P is of odd-length, we show that there is a short odd-length cycle which, appended to P,
gives a short even-length path from I to @ in CPG(k,n). The union of P and the even-length
path from I to @ gives an odd length cycle ¢, which by Lemma 24 can be shrunk to length
< 2diam(C PG(k,n))+ 1. Now consider R, an antipodal vertex from I on ¢ (see Figure 2). Since
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SP(R,Q) < diam(CPG(k,n)) and there are both even and odd length paths from I to R of length
at most diam(C PG(k,n))+ 1, there must be an even-length path from I to Q in CPG(n — k,n)
of length < 2diam(C PG(k,n))+ 1, and so diam(C PG(n — k,n)) < 2diam(CPG(k,n))+ 2

Moreover, diam(C PG(n — 2,n)) < 2diam(C PG(2,n)) + 2, so

Theorem 11 The diameter of all connected C PG(k,n) is bounded by O(n?/k+nk), for n > k+2.

5.2 A Lower Bound on Diameter

Our lower bound is based on counting the equivalent of inversions in circular permutations, which
is more complicated than for linear permutations since there are two distinct distances separating
each pair of elements.

Theorem 12 The diameter of C PG(k,n) is Q(n?/k? + n).

Proof: First, we prove that n/2 is a lower bound on the diameter for any size reversal. In a sorted
permutation, each element 7 is flanked by the elements ¢ — 1 and 7 + 1. Any single reversal creates
at most two such adjacencies in the permutation, because adjacencies can only be created at the
endpoints of the reversal. Any permutation with no adjacencies, such as {1,3,...,n,2,4,...,n—1}
requires at least n/2 reversals to create the necessary adjacencies.

Now consider a circular permutation 7 = {c1, ca, ..., ¢}, where ¢; = 1 and 7 1(3) = s iff ¢, = 1.
Let d,(i,j) denote the distance between 771(z) and 7~ 1(j). If #~1(3) < #~1(4),

dr(i,§) = min(x ™ (j) = 77} (i), 7 () + n = 77(7))
Let D(7) denote the total distance of a permutation =, ie.

n—1

D = (de(3,i+ 1)) = dn(1,2) + dr(2,3) + ... + dn(n — 1,n)

=1

For the identity permutation I = {1,2,...,n}, d7(¢,7+ 1) = 1, so D(I) = n — 1. Sorting =
reduces D to n — 1.
We claim any k-reversal can reduce D by at most

Lk/2]
AD =2 2(2i— 1)<k

=1

since each element we move might reduce the distance with both of its neighbors.
Since D({1,3,5,...,n—1,2,4,...,n}) = n(n — 1)/2, reducing it down to n — 1 requires at least
(n — 1)(n — 2)/2k? k-reversals, so the diameter of Gopg(k,n) is Q(n2/k% + n). |

An inherent weakness of this lower bound technique is that for & > 2, the number of inversions
in a permutation will not decrease monotonically during sorting, as certain elements get moved in
the wrong direction to accommodate other elements. For this reason, we believe the lower bound
is not tight.
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6 Conclusions and Open Problems

We have completely resolved the question of the connectedness of the Cayley graphs of permutations
and circular permutations under fixed-length reversals, and given upper and lower bounds on the
diameter of the Cayley graphs of circular permutations. Several open problems remain:

e Tighten our bounds on the diameter of these graphs. We believe our upper bound is better
than our lower bound.

e What is the complexity of determining the exact k-reversal distance for sorting a permutation
7' Although approximation algorithms are known for arbitrary-length reversal distance, we
anticipate that the problem is much more difficult for fixed-length reversals.

e What is the diameter and connectedness under fixed-length signed reversals, where each
element of the permutation has two possible orientations, reversed or unreversed. Signed
reversals are important in reconstructing the history of evolution of the genome, because the
orientation of each gene can be determined from its sequence.

o It is conjectured that every connected Cayley graph is Hamiltonian. Is there a way to sequence
(circular) permutations so that each differs from its predecessor by exactly one k-reversall’
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