USENIX Association

Proceedings of the
14th Systems Administration Conference
(LI1SA 2000)

New Orleans, Louisiana, USA
December 3-8, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Combining Cisco NetFlow Exports with
Relational Database Technology for
Usage Statistics, Intrusion Detection,
and Network Forensics

John-Paul Navarro, Bill Nickless, & Linda Winkler — Argonne National Laboratory

ABSTRACT

Argonne National Laboratory operates a complex internal network with a large number of
external network peerings. A requirement of this network is that it be monitored with minimal
impact on traffic. Cisco NetFlow technology provides the information necessary to monitor such a
network, but the data from NetFlow must be captured and analyzed. We present a system that uses
a high-powered relational database to manage the data. Our primary motivations in building this
system were to learn whether or not database technology was an appropriate tool for this situation
and to understand what types of questions about the network could be answered with such a

system.

This work was supported by the Mathematical, Information, and Computational Sciences
Division subprogram of the Office of Advanced Scientific Computing Research, U.S. Department

of Energy, under Contract W-31-109-Eng-38.

The Problem
High Performance Network with Minimal Firewall

Argonne National Laboratory peers with more
than 50 external Internet Service Providers and Inter-
net2 networks, at rates up to OC-12 (622 million bits
per second). Soon we expect those peerings to
increase in speed to Gigabit Ethernet and higher.
Argonne’s networks are based on Asynchronous
Transfer Mode (ATM) and switched 10/100/1000
Megabit/second Ethernet. Argonne’s network has two
separate border routers that handle these peerings.
While these border routers can take over for each
other in the case of a failure, normally they do not see
each other’s traffic.

This is an interesting situation for a number of
reasons. First, there is no single point in our network
that can be used to monitor all traffic into and out of
the lab. Second, the external network speed is a criti-
cal issue to a number of research groups in the lab —
slowing down the networks by running them through
filtering or monitoring routers can have a huge impact
on many experiments. And finally, the number of
peerings and their exact topology frequently change as
we modify our external networking relationships.

What’s Going On in the Network?
We needed a way to examine network utilization

statistics, perform basic intrusion detection, and look
at traffic patterns. The obvious way to do this would

Sprint ATM Service

Border routers establish
external connectivity

with over 50 other networks ><

Efiergy Scientes
Networl

Ameritech ATM Service

Universitie:

>< & Otker Research Nets

o)

Figure 1: Router map.

2000 LISA XIV — December 3-8, 2000 — New Orleans, LA

285

Combining Cisco NetFlow Exports ...

be to drive all traffic through a router and use the
router to watch every packet, but we are unwilling to
create an artificial bottleneck in our network for net-
work statistics gathering or intrusion detection pur-
poses.

Unfortunately, many available network statistic
gathering and intrusion detection systems, such as
Network Flight Recorder, require that the intrusion
detection system be able to inspect each packet as it
enters and leaves the network. The Argonne network
is not amenable to general packet inspection even at
some small number of points for the reasons outlined
above.

Thus we needed to find some way to keep an eye
on our network traffic without measurably impacting
its performance.

The Scenario

Fortunately, we had other options to explore.

Cisco has a technology known as “Netflow”,
which provides a summary of traffic through a router.
We also have some significant experience with
databases, which led us to believe that a database
would be the optimal way of tracking Netflow data
from multiple routers. Initially, we weren’t sure how
much data would be generated from our network, but,
since we operate a number of supercomputers to sup-
port scientific experiments, we felt that we probably
had the computing resources on hand to at least study
the situation.

The motivating question for us was this: Is
database technology a good way of tracking and ana-
lyzing NetFlow data?

Cisco Netflow Overview

Here is how Cisco describes this technology:
A network flow is defined as a unidirec-
tional sequence of packets between given
source and destination endpoints. Network
flows are highly granular; flow endpoints
are identified both by IP address as well as
by transport layer application port numbers.
NetFlow also utilizes the IP Protocol type,
Type of Service (ToS) and the input inter-
face identifier to uniquely identify flows
[1].

The IP routers in our network do NetFlow
switching already, as it is a very efficient way of
enforcing Access Control Lists (ACLs). The first
packet of a flow will be inspected to see if it should be
permitted or denied. Once that determination is made,
a flow record is placed in the router forwarding cache.
Following packets are matched against the flow record
and are forwarded appropriately. Once the flow record
cache line times out, a UDP/IP packet is generated and
forwarded out of the router to a collection station.

The resulting NetFlow records provide a sum-
mary of just about anything a network statistics

286

Navarro, Nickless, & Winkler

collector or intrusion detection system may want to
know about the traffic, with the exception of the actual
packet contents themselves.

Database Technology

We run a number of Oracle and MySQL database
servers to support our researchers. One of the authors
(Navarro) was a professional Database Administrator
(DBA) for a large Oracle installation at a previous
employer.

Over the past several years, we have moved
many of our critical infrastructure applications such as
our list of hosts, lists of users, and so on, from flat
files or simple lists into relational databases. Thus,
many of our staff are becoming experienced with
using databases for systems and network administra-
tion.

Thus we were fairly confident that a database
would be the right solution for storing NetFlow data
and that we would have the ability to manipulate it as
we wished. The remaining question was — what should
we use for a database server?

High Powered Database Server

We support a collection of workstations, clusters,
and supercomputers as well as our networks. Our
existing database servers run primarily on small Linux
boxes or Solaris machines, and we knew that none of
them would be up to the task of keeping up with the
NetFlow data. The only spare computers we had were
obviously underpowered.

One of the supercomputers that we support is a
96-processor SGI Origin 2000 [2] with approximately
2 terabytes of Fibre Channel disk. This machine is
primarily used to support computer science and com-
putational science. So, we decided to run this project
as an experiment and, therefore, to justifiably use the
Origin 2000 to run the database. We were fairly confi-
dent that it would have sufficient computing power to
keep up with the NetFlow data during our initial tests,
after which we could more accurately predict what
kind of system would be necessary for production.

The Creation

Here, we describe the system that we built to
capture and analyze the router NetFlow data.

Netflow to Database on Origin 2000

There are three basic parts to our configuration:
the actual routers generating NetFlow data, a Perl [3]
script to catch the NetFlow data from the network, and
the back-end SQL database running on the Origin
2000. We experimented with Oracle 8i [4] and
MySQL [5] back-end SQL software. We used on-line
data capture where incoming NetFlow data went into
the database directly. Our Perl script that caught the
NetFlow data from the network would simply make
DBI [6] calls to insert the data into the back-end SQL
database. The primary advantage of this method is that
the database is updated in real time, but has the

2000 LISA XIV — December 3-8, 2000 — New Orleans, LA

Navarro, Nickless, & Winkler

disadvantage that data can be lost if the back-end SQL
database is unavailable for any reason.

We also used off-line data capture where the
incoming NetFlow data was written to a temporary
disk text file and then periodically loaded in bulk to
the back-end SQL database. This allowed us to con-
tinue capturing data while the back-end SQL database
was unavailable. It also allowed us to insert the data
into multiple back-end SQL database engines when
we wanted to compare their performance.

Database Schema Design

We chose a very simple database schema, drawn
directly from the NetFlow specification itself. Our
database consists primarily of a single table. Each
row in the table is a single NetFlow record. Each col-
umn in the table has a one-to-one correspondence with
NetFlow fields. We added only one extra column in
the table to identify which border router generated the
flow record.

create table netflows (

Combining Cisco NetFlow Exports ...

This schema is so simple because we did not want to
hinder our ability to make queries across the data later.
We were interested to see how far modern SQL
database engines could take us without optimizing the
tables for particular types of queries.

Using The System

The system as described above is actually the
complete system that we are using at present. We cre-
ated the infrastructure to get the data from the routers
into the database and then left it at that. Future steps
(as discussed below) might be to provide nice inter-
faces to the data in the database, but this wasn’t our
initial goal. Rather, we wanted to see what kinds of
questions could be answered with the data. From this
point on, we’ve experimented with the system by
forming basic SQL queries and examining the results.
Our simple database scheme was designed with
exactly this usage in mind.

Once you have the NetFlow records stored in the
relational database, you can run many different types

router_id char (1) not null, of queries against them. Here, we present some of the
src_ipn bigint unsigned not null, ad-hoc queries that we’ve found that we frequently
dst_dipn bigint unsigned not null, use.
nxt_ipn bigint unsigned not null, .o
ifin smallint unsigned not null, Usage Statistics
ifout smallint unsigned not null, This is an example SQL query for someone inter-
packets integer unsigned not null, ted i ¢ K statisti h kine th ti
botots integer unsigned not null, f:‘se in network statistics, perhaps asking the question
starttime timestamp not null, what Autonomous Systems (ASes) have we
endtime timestamp not null, exchanged the most amount of traffic with recently?”
srcport smallint wunsigned not null,
dstport smallint unsigned not null, i Give a %1St of 1r.1terest1ng
J ASes (high traffic flow)
tep tinyint unsigned not null, select srcas,dstas,sum(octets) as bytes
prot tinyint unsigned not null, from netflows
tos tinyint unsigned not null, group by srcas,dstas
srcas smallint unsigned not null, having bytes > 10000000
dstas SITlal]..ll’lt uns:._gned not null, order by bytes
srcmask tinyint unsigned not null, ' .
dstmask tinyint unsigned not null The resultant table lists each pair of Source AS and
) Destination AS that we have exchanged traffic with,
Router saL
Generating Perl Code to Catch Cisco
Database
NetFlow NetFlow Packets And
——>» | Back-End
Packets Store Them Into SQL
Database Back-End e.g. Oracle,
MySQL
Router
Generating
NetFlow
Packets

-
S g
[oR
(0]
op

[0}
=]
©
—
o
=

n

©
(2]
I
o
8
©
(@]

Figure 2: Database layout.

2000 LISA XIV — December 3-8, 2000 — New Orleans, LA

287

Combining Cisco NetFlow Exports...

including our own, with more than 10 million bytes
throughout the data stored in the NetFlows table, with
the Source AS/Destination AS pairs that exchange the
most data at the top.

Intrusion Detection

A network security officer might be interested in
what outside IP addresses are trying to perform scans.
Here is a query that illuminates the answer to that
question:

select src_ipn,count(distinct dst_ipn)
as num_anl_addrs
from netflows

where srcas>0 and starttime >

date_sub (now() ,interval 3 day)
group by src_dipn

having num_anl_addrs > 64

order by num_anl_addrs

This query gives the network security officer a list of
IP addresses from external ASes that have contacted a
large number of internal IP addresses. Given an IP
address high on this list, the security officer might
want to see what that [P address has been doing:
select src_ipn,min(starttime) as first,
max (endtime) as last,
count (distinct dst_ipn) as
addrs,prot,dstport
from netflows
where src_ipn=140221009006
group by prot,dstport
order by addrs

ICMP Echo Reply (ping) scans, port scans, and even
NMAP stealth scans show up very obviously in this
and the preceding report.

Network Forensics

Let’s say that the network security officer sus-
pects that a machine on her network has been compro-
mised. The officer would like to go back in time to see
where any network connections came from, what kind
of network protocols were used to compromise the
host, and see where any outgoing connections may
have gone. The officer may even wish to look at other

Navarro, Nickless, & Winkler

machines on the same subnet. Here is one query that
might be used to do this; see Listing 1. The officer
then gets a list of all the traffic entering or leaving a
network between two given points in time. Such a
report can be used to narrow down the type of attack
that might have been used, and whether the compro-
mised machine(s) on that network were used to attack
hosts elsewhere.

Results and Practical Applications

Sizing It: Performance and Resource Impact

Not everyone has a spare 96-processor Origin
2000 sitting around to host a NetFlow database. (Not
even us, really.) Thus, one has to ask questions about
the investment necessary in time, computer hardware,
and software to appropriately host a NetFlow
database.

The first variable to consider is the rate of Net-
Flow records generated by your routers. This rate will
vary widely depending on your usage, whether your
network is being actively scanned, and the time of day.
The best way to get a handle on this question is to
simply go ahead and install the Perl code that catches
NetFlow packets and saves them as flat files. Run this
for a few days, preferably during the workweek as
well as over a weekend. You can then run simple line
counting utilities over these flat files.

Our routers generated about 14 million flow
records on Monday, July 24 2000. Our Perl script
stores the flow records in 5-minute batches. These
batches ranged from 26,564 to 80,634 records per
batch.

It is important that your database engine can
accept table inserts much faster than your routers can
generate NetFlow records. You need some perfor-
mance overhead to handle queries, outages, and time-
outs. We recommend trying to choose a SQL back-end
system that can handle at least triple your real-time
NetFlow record generation.

Using our example from July 24, we would need
a SQL back-end database that can handle about 1500

Something very weird happening at a particular time on a particular net.
select min(starttime) as startt, max(endtime) as endt,

src_ipn, dst_dipn, prot, srcport,
sum(packets) as pkts
from netflows
where ((starttime > 20000105003200

and starttime < 20000105003600)

or (endtime > 20000105003200
and endtime
group by src_ipn,dst_dipn,prot,dstport

having (src_ipn >= 146137000000

and src_ipn <= 146137255255) or

(dst_ipn >= 146137000000 and
dst_ipn <= 146137255255)

dstport,

< 20000105003600))

order by pkts,src_ipn,dst_ipn,prot,srcport,dstport

Listing 1: Examining other machines on the same subnet.

288

2000 LISA XIV — December 3-8, 2000 — New Orleans, LA

Navarro, Nickless, & Winkler

insertions per second at a bare minimum. Preferably
we would want a database that could handle triple that
rate, or just under 5000 insertions per second.

The next variable to consider is how long you
want to keep NetFlow records around. This dictates
your overall storage requirements. Be aware that the
size of your NetFlow table may impact the speed of
table inserts, which feeds back to into the performance
requirement discussed above.

We chose to keep about two weeks’ worth of
data on line. This time frame is a compromise between
our desire to protect the privacy of our network users
and having the data around to look into unusual
events. To protect the long-term privacy of our net-
work users we specifically chose not to back up the
database itself.

Turnaround Time vs. Insertion Performance

You will also choose which table columns to
index, if any. This is a tradeoff between insert perfor-
mance and query performance. If you intend to simply
capture data and look at it when something bad hap-
pens, you may not wish to spend the cycles indexing
data that will be thrown away. The downside is that
every query will require a full scan through the data
before it can return results.

Some queries just about require a full table scan,
such as the Intrusion Detection example query we pro-
vide above. If you anticipate doing those types of
queries on a regular basis, you might choose to buy
the fastest disk system you can find and not bother
doing any indexing at all.

Database Technology Choice Makes a Big Differ-
ence

As mentioned above, we tried MySQL and Ora-
cle on the SQL database back-end host. As part of
their license agreement, Oracle doesn’t let you publish
specific performance numbers. But we can make some
general comparisons between the two systems.

Combining Cisco NetFlow Exports ...

Oracle costs money. MySQL is (pretty much)
free.

Oracle supports transactions, which slows it
down but protects the database against corruption if
the underlying host crashes for some reason. If the
host system crashes under MySQL, you often have to
re-index the table completely, which can take a very
long time.

The MySQL query optimizer is sometimes less
sophisticated than we might wish. Consider the query
in Listing 2, assuming that the src_ipn and dst ipn
columns are indexed. This query took about 8 min-
utes to run, returning 576 records. The MySQL engine
did a full 175,460,008-record table scan looking for
matching rows.

However, the slightly simpler query in Listing 3
took 0.04 seconds to return 16 records. This time the
MySQL engine used the src ipn index to find the
matching records much more efficiently than doing a
full table scan. (The other obvious query using the
dst_ipn index took about five seconds and returned the
other 560 rows.) A more sophisticated query optimizer
than MySQL provides would have split the original
query into the two much simpler-and faster-queries
and then combined the results.

If you’ve already decided to use MySQL, obvi-
ously you will want to run the two fast queries instead
of the one slow query. But if you haven’t yet decided
on a SQL database back-end system, you may wish to
run some sample queries and see how the optimizer
treats each of them. The query optimizer is also criti-
cal to achieving good performance in a SQL database
that supports parallel queries.

Other database products may provide features
that could be used to speed up certain queries. Con-
sider the Usage Statistics example query. If one were
to drop the time constraint, it might be a perfect fit for
an IBM DB2 [7] Summary Table. That is, the statistics
would be generated “on the fly” during the NetFlow
record insert process.

select src_ipn,dst_ipn,prot,srcport,dstport,

sum(octets) as bytes, min(starttime) as first,

max (endtime) as last
from netflows

where src_ipn=146139112126 or dst_ipn=146139112126
group by src_ipn,dst_ipn,prot,srcport,dstport

order by bytes

Listing 2: One form of query.

select src_ipn,dst_ipn,prot,srcport,dstport,

sum(octets) as bytes, min(starttime) as first,

max (endtime) as last
from netflows
where src_ipn=146139112126

group by src_ipn,dst_ipn,prot,srcport,dstport

order by bytes

Listing 3: Quicker query.

2000 LISA XIV — December 3-8, 2000 — New Orleans, LA

289

Combining Cisco NetFlow Exports ...

Futures and Conclusions

Non-Supercomputer Database Hosts

We cannot dedicate our 96-processor Origin
2000 to this application. So we must choose the most
efficient combination of disk drive(s), CPU, memory,
and database software to meet our NetFlow record
generation rate and query types.

We may even choose to run several different
SQL database back end servers, each optimized for a
particular type of query.

We are still in the process of deciding exactly
what system to use for this. As usual, it comes down
to more of a question of budget than necessary tech-
nology.

Higher Level Tools Necessary For Non-DBAs

We are fortunate to be a cross-disciplinary team
of network professionals, system administrators, and
database administrators. Each of us is comfortable
with writing simple ad-hoc SQL queries to look at the
NetFlow data. Over time we hope to build higher-level
tools that could be accessible to a wider audience.
Examples might include a web interface that network
security officers could use to view the activities of a
given host, email alerts based on intrusion detection
queries, or even graphics of network utilization over
time.

Database Technology Is a Good Solution

The good news is that the higher-level tools can
be built using the wealth of tools available for SQL
databases. There is any number of commercial and/or
open-source systems available to make web pages that
use SQL database back ends. Just about any report-
writing program can take data from a SQL query.

Database technology provides a good abstraction
for this problem. It separates the nitty-gritty details of
data storage from the actual problem we are interested
in solving. As database software technology improves
we get the benefits of those improvements right away.
We are not stuck with a particular architecture tuning
that limits us from following the Moore’s Law
increases in processor and disk storage performance.
As our needs increase, we can swap out an under-per-
forming SQL back end system entirely, as needs and
budgets permit. Finally, we can take advantage of all
the data protection and administrative expertise of an
existing SQL infrastructure.

Availability

All of the code we used in this work is written as
Perl and Bourne Shell scripts. There are probably no
more than about 200 lines of actual source code. Look
for a pointer to the NetFlow Database Perl Code on
the http://www.mcs.anl.gov/systems/software/ web
page by the time this paper is presented at LISA.

Author Information

John-Paul Navarro <navarro@mcs.anl.gov> has
been working at Argonne National Laboratory for 3

290

Navarro, Nickless, & Winkler

years. His professional interests include Linux clus-
ters, scalable cluster management, and relational
databases.

Bill Nickless <nickless@mcs.anl.gov> is a
9-year veteran of Argonne National Laboratory. His
professional interests include high performance net-
working and data storage. He is never more happy
than when fine tuning BGP policies while putting bar
code labels on magnetic tape cartridges.

Linda Winkler <winkler@mcs.anl.gov> is Senior
Network Engineer at Argonne National Laboratory’s
Mathematics and Computer Science Division. She
also serves as MREN Technical Director and is a
member of the STARTAP engineering team. Her focus
since 1995 has been in the area of interconnectivity
and interoperability of wide-area research networks in
support of advanced scientific and engineering appli-
cations.

References

[1] http://www.cisco.com/warp/public/cc/cisco/mkt/
ios/netflow/tech/napps_wp.htm .

[2] http://www.sgi.com/origin/ .

[3] http://www.perl.org .

[4] http://www.oracle.com/database/oracle8i/ .

[5] http://web.mysql.com/ .

[6] http://search.cpan.org/doc/TIMB/DBI-1.13/
DBLpm.

[7] http://www.ibm.com/db2 .

2000 LISA XIV — December 3-8, 2000 — New Orleans, LA

