A Remote Code Update Mechanism for Wireless Sensor Networks

Thanos Sta‘chopoulos]L

John Heidemann

Deborah Estrin]L

CENS Technical Report # 30
Center for Embedded Networked Sensing
J[UCLA, Department of Computer Science

T USC, Information Sciences Institute

{thanos@cs.ucla.edu, johnh@isi.edu, destrin@cs.ucla.edu}

Abstract

Wireless sensor networks consist of collections of small,
low-power nodes that interface or interact with the
physical environment. The ability to add new func-
tionality or perform software maintenance without hav-
ing to physically reach each individual node is al-
ready an essential service, even at the limited scale at
which current sensor networks are deployed. TinyOS
supports single-hop over-the-air reprogramming to-
day, but the need to reprogram sensors in a multi-
hop network will become particularly critical as sensor
networks mature and move toward larger deployment
sizes. In this paper we present Multihop Over-the-Air
Programming (MOAP), a code distribution mecha-
nism specifically targeted for Mica-2 Motes. We dis-
cuss and analyze the design goals, constraints, choices
and optimizations focusing in particular on dissemina-
tion strategies and retransmission policies. We have
implemented MOAP on Mica-2 motes and we eval-
uate that implementation using both emulation and
testbed experiments. We show that our dissemination
mechanism obtains a 60-90% performance improve-
ment in terms of required transmissions compared to
flooding. We also show that a very simple windowed
retransmission tracking scheme is nearly as effective
as arbitrary repairs and yet is much better suited to
energy and memory constrained embedded systems.

1 Introduction

Recently, increasing research attention has been di-
rected toward wireless sensor networks. Large num-
bers of small, inexpensive devices that integrate sens-
ing, computation and communication will be moni-
toring environmental changes, water contamination,
seismic activity, structural integrity of buildings etc.

These devices are quite heterogeneous and can have
multiple constraints such as limited CPU power (rang-
ing from micro-controllers to basic microprocessors),
narrow bandwidth (short range, low power wireless
radios) and limited energy budget.

Once deployed, sensor nodes are expected to op-
erate for extended periods of time, and without any
human intervention. In fact, there are several de-
ployment scenarios for which physically reaching all
nodes is either impractical (e.g., nodes on treetops)
or detrimental to the sensing process (e.g., nodes in-
side nests). In spite of these difficulties, there is a real
need to add or upgrade the software running on those
nodes, post-deployment. Sensor network users need
remote programmability in order to add new function-
ality to the nodes—especially when the knowledge of
the environment is not complete and predicting the
complete set of actions a node has to perform before
deployment is impossible. In that sense, remote pro-
grammability extends the usefulness of the network.
It is also helpful in dealing with software maintenance
and in-situ debugging. In addition, by removing the
human from the programming loop, we expect to au-
tomate the process and thus support large network
sizes. With large networks, a multihop dissemination
mechanism is therefore needed.

A multihop code distribution mechanism can be
considered as a special case of reliable data dissemi-
nation. The need to distribute a large volume of data
to all the nodes in the network means that we can-
not apply traditional approaches to the problem, such
as those developed for Reliable Multicast [1]. At the
same time, this application also includes a more strict
notion of reliability than Internet real-time audio and
video streaming [2], in that everything must be re-
ceived. Finally, the specific nature of sensor networks
requires the mechanism to operate using low-power,
unreliable radios and very limited memory and stor-

age. Based on the above, multihop code distribution
adds to the exploration of the sensor network design
space for reliable communications.

The TinyOS [3] developers anticipated the remote
programming requirements and have included support
for single-hop over the air programming since its re-
lease [4]. However, single-hop programmability has
limited usage, especially as network sizes grow beyond
the reach of a single radio. In this paper, we present
Multihop Over-the-Air Programming (MOAP). MOAP
is a code distribution mechanism that is specifically
targeted for the Mica-2 mote platform [5]. We explore
the design goals and questions related to building such
a mechanism. In terms of resources, we focus on en-
ergy consumption, memory usage and latency. We
analyze the design alternatives in areas such as dis-
semination protocols, retransmission policy and stor-
age management.

Using emulation as well as an actual standalone
mote implementation we show that MOAP results in
60-90% reduction in transmissions compared to flood-
ing. This result represents one point in the design
space that balances complexity with efficiency, us-
ing a neighborhood-by-neighborhood transport mech-
anism and a simple sliding window method of track-
ing retransmissions. It is also rather modest in terms
of storage consumption, requiring approximately 700
bytes of RAM and 4.5 Kbytes of program memory.

2 Related Work

We looked in four main areas for related work: Code
Distribution for Sensor Networks, Reliability proto-
cols for Sensor Networks, Multicast Reliability, and
Data Dissemination in Sensor Networks

2.1 Code Distribution in Sensor Net-
works

TinyOS has included In-Network Programming sup-
port for the Mica-2 motes since its 1.0 release [4].
The mechanism is single-hop only: the basestation
(source) transmits code capsules to all nodes within
a broadcast domain. After the entire image has been
transmitted, the basestation polls each node for miss-
ing capsules. Nodes scan the contents of EEPROM
to find gaps and then reply with NACKs if necessary.
The basestation unicasts missing capsules as required.

In order to reduce the energy consumption of code
distribution, the authors of [6] propose a difference-
based mechanism: instead of sending the entire im-
age, only the differences between the new and old code
are sent. By using optimizations like address shifts,
padding and address patching, the mechanism is able

to substantially reduce the size of the updates, espe-
cially when the differences are small. This makes it
an ideal choice for incremental updates, or bug fixes.
Even though the difference creation mechanism is well
developed, at the moment, the distribution part only
uses point-to-point communications.

LOBcast [7] is another code distribution mecha-
nism that targets Mica-2 motes which includes sup-
port for multiple concurrent versions. Nodes keep a
catalog of objects available for download, which is pe-
riodically updated via advertisements. Applications
can request content from the catalog (e.g. updated
versions of code). LOBcast is using methods similar
to RMST, in that a node first requests content (and
repairs) from its immediate neighborhood but moves
toward the source (called sensor access point in LOB-
cast), if local retrieval fails. In addition, it includes
duplicate suppression mechanisms similar to SRM.

A completely different approach to code distribu-
tion is presented in [8]. Mate, and its successor, Bom-
billa, is a stack-based Virtual Machine. It includes
three execution contexts, with two stacks per context.
Bombilla programs consist of capsules, with each cap-
sule having up 24 instructions. The current implemen-
tation allows up to 8 capsules to be present. Bombilla
includes special instructions that can forward capsules
to other nodes. Nodes will install a capsule that has
a newer version number than the one currently used.
By repeatedly using forwarding instructions, a new
capsule can reach the entire network.

2.2 Reliability in Sensor Networks

Reliability is an integral part of MOAP, since code
images must be delivered in their entirety to nodes.
Recently, several sensor network reliability protocols
have been proposed. PSFQ [9](Pump Slowly, Fetch
Quickly) is a hop-by-hop reliable transport protocol.
It is characterized by two phases: a low-rate data dis-
tribution phase (pump) and a high-rate, NACK-based
error recovery phase. The data distribution phase
is based on a controlled flooding algorithm, using a
data cache to suppress duplicates. Like MOAP, gen-
erated NACKs are strictly local (single-hop). PSFQ
uses broadcast repair requests and suppression mech-
anisms similar to SRM to reduce the number of du-
plicates. Even though those mechanisms are effective,
they can induce a substantial overhead in terms of
complexity.

RMST [10] (Reliable Multi-Segment Transport) is
a transport layer protocol designed to run in conjunc-
tion with Directed Diffusion [11]. Its primary goal
is the reliable delivery of large pieces of data to all
subscribed sinks. RMST is NACK-based; it places re-
sponsibility for loss detection at the receivers (which

can be intermediate nodes as well as the actual sinks).
Missing fragments requests are unicast from the sink
to the source. Caches in intermediate nodes allow
for fast recovery. However in the worst case, the re-
pair request needs to travel all the way to the source.
MOAP is similar to RMST in that it uses unicast re-
pair requests; however MOAP repairs are local, since
the dissemination mechanism guarantees that a source
will be only one hop away.

ESRT [12](Event-to-Sink Reliable Transport) is a
congestion control protocol that tries to meet reliabil-
ity requirements set by the application, while conserv-
ing energy. It is receiver-driven but does not guaran-
tee 100% delivery rate, making it problematic as a
code distribution mechanism. ESRT operates by ad-
justing the reporting frequency of the sending nodes
to achieve its optimal operating point (Low conges-
tion, high reliability). In that aspect, it has no ex-
plicit retransmission scheme. ESRT is an end-to-end
mechanism (where the edges are the sources and the
sink). It is also dependent on control messages; the
rate adjustment information has to be pushed all the
way to the sources.

2.3 Multicast Reliability and Data Dis-
semination in Sensor Networks

The design of MOAP’s repair and suppression mech-
anisms was influenced by architectural choices made
in the Scalable Reliable Multicast protocol, SRM [1].
SRM imposes only the minimal requirements of reli-
able multicast: it guarantees eventual delivery of all
the data to the group members, but not delivery or-
der. SRM places responsibility about loss detection
and recovery on the receiver; it is thus NACK based.
It makes use of damping mechanisms to avoid control
packet or repair request implosion; hosts wait some
time before transmitting a request and do not repeat
requests they overheard from their neighbors. The use
of opportunistic listening, in addition to the control
overhead of SRM, make a direct port to the sensor net
domain problematic.

Several aspects of the dissemination methods of
MOAP were influenced by Directed Diffusion [11]. Dif-
fusion is a well-known data dissemination mechanism
for Sensor Networks, whose main aspects include data-
centric routing, in-network aggregation and attribute-
based data naming. It implements a publish-subscribe
interface, by having sinks send out interest packets.
Sources whose data matches the interest then reply
by sending data packets toward the sink. Interests,
as well as exploratory data—used to reinforce a par-
ticular path—are disseminated using flooding. This
can induce a significant overhead when there are sev-
eral sinks in the network (as in a code distribution

case). Two new variants were therefore proposed [13]:
Push Diffusion, optimized for many receivers and few
senders and One-Phase Pull, designed for the reverse
case. Even though MOAP does not use any diffusion
variant directly, since it is designed to be independent
of the routing protocol, it includes a similar publish-
subscribe interface.

3 Problem Description

In this section, we describe the Code Distribution
problems, in terms of requirements, properties and
resource prioritizations.

3.1 Requirements and Properties of
Code Distribution

A code distribution mechanism should be designed to
fulfill the following:

1. The complete image, starting from specific points
in the network, must reach all the nodes. This
is a requirement. We do not consider the ex-
tended problem of reaching only a subset of the
nodes.

2. If the image cannot fit into a single packet, it
must be placed in stable storage until the trans-
fer is complete, at which point the node can
be safely reprogrammed. This is also a required
property.

3. The lifetime of the network should not be severely
affected by the distribution operation. This is a
desirable property.

4. The memory and storage requirements of the
mechanism should not be very high since that
would limit the available space for the normal
application. This property is also desirable.

Required properties are necessary in order to en-
sure the correctness of the mechanism. Desirable prop-
erties are not required to ensure correctness, but should
not be overlooked in any systems intended for practi-
cal use.

The fact that the complete image must reach all
nodes is what makes code distribution a special case
of multicast reliability. A reliability mechanism is re-
quired to ensure that the entire code is transferred
to all nodes, in the presence of link losses and mul-
tiple hops. The mechanism should also handle dis-
connected nodes (as long as there is no permanent
network partitioning).

3.2 Resource Prioritization

Satisfying the desirable properties is not overly com-
plex if the sensor nodes are relatively powerful, in
terms of computation, power, memory etc (e.g. em-
bedded PCs connected to solar panels). On the other
hand, when the target platform is a severely resource-
constrained device such as a Mica-2 mote, careful plan-
ning is necessary. Since the mote is our target plat-
form, we consider Resource Prioritization to be a fun-
damental design goal for our code distribution mech-
anism.

The most limited (hence important) resource on a
mote is Energy. All operations require it and there is
only a finite amount available—it is not always possi-
ble to equip motes with solar panels or replace their
batteries. The most energy-intensive operation on the
mote is radio usage and in particular, packet transmis-
sion (the CC1000 radio consumes 12 mA on transmit
mode and 4 mA on receive mode). Another significant
energy consumer is stable storage (EEPROM) access.
A Write() operation needs on average approximately
one-eighth the amount of energy required for trans-
mitting the same number of bytes. Reads() are sig-
nificantly cheaper than Write()s (by at least an order
of magnitude) since most FLASH EEPROMs are op-
timized for Read() operations. However, due to the
nature of code distribution, every code segment has
to be stored in EEPROM,; therefore, the number of
Write()s can be a significant factor in the overall en-
ergy consumption.

Immediately following energy in terms of impor-
tance is memory usage. By memory, we primarily re-
fer to the amount of static RAM. The limited amount
of SRAM available on the mote platform, in conjunc-
tion with the ever-increasing complexity of mote ap-
plications has made main memory a highly prized re-
source. In addition, code distribution is not the pri-
mary application of a mote. It can be thought of as
part of the operating system, a ‘utility’ service that
needs to share memory with the ‘real’ application.
Considering the current lack of dynamic memory allo-
cation in motes, the mechanism’s memory usage needs
to be rather modest.

Based on the above, it is evident that the main goal
is to limit energy consumption—in particular packet
transmissions—by as much as possible. However, since
optimizations aren’t free, something should be traded
off for reduced energy usage. For this particular ap-
plication, Latency is a good candidate. Unlike the
many sensor net applications, code distribution does
not need to respond to real-time phenomena. It isn’t
sensing the physical world; instead, it’s doing a large
data transfer. In addition, we assume that code up-
dates don’t (or shouldn’t) occur very frequently. For

those reasons, we assume that latency is the least im-
portant resource and that it can be traded off without
any serious consequences.

4 Design Choices and Alterna-
tives

The first requirement in section 3.1 states that data
should reach all the nodes. Intuitively, this suggests
using the inherent broadcast capability of the wireless
medium, in order to reach a large subset of nodes
with one transmission. Broadcasts don’t solve the
multi-hop issue however; an appropriate dissemina-
tion protocol is needed. Requiring all data to be
present on each node means that a reliability mecha-
nism is needed in order to ensure packet delivery in the
presence of lossy links. The second requirement im-
plies that there should be some form of code segment
management on the receiver. Therefore, one needs to
consider the following design questions:

e Dissemination protocol: How is data propagated?

e Reliability mechanism: Who is responsible for
initiating repairs? What is their scope? Is the
scheme ACK or NACK based?

e Segment management: How are segments stored,
retrieved and indexed? How can we detect a
missing segment?

4.1 Dissemination Protocol

A common approach to disseminate data is to deliver
data to all the nodes at the same time. Traditional IP
multicast protocols do so by constructing trees, either
rooted at the source or in a rendezvous point [14].
However, all nodes need to be reached in our case, so
the tree needs to span the entire network, not just a
subset. In addition, the protocol should be tolerant
to route and link failures which happen often in the
wireless domain.

The state requirements of multicast protocols make
a direct porting to the sensor network world imprac-
tical. Routing protocols like Directed Diffusion [11]
(and its mote-only implementation, Tiny Diffusion)
reduce the memory requirements by taking advan-
tage of soft state. Although the abstractions for dif-
fusion support many-to-many communication, Tiny
Diffusion is not optimized for disseminating data from
many nodes to all nodes.

The last of the concurrent delivery mechanisms is
flooding. Using flooding, one can expect that all nodes
will be reached and its state requirements are mini-
mal. Of course, the penalty is energy consumption

since a considerable amount of transmissions are in
fact duplicates.

Another approach to the dissemination problem is
to transfer the data in a neighborhood-by-neighborhood
basis. In essence this implies a single-hop mecha-
nism that can be recursively extended to multi-hop.
At each neighborhood, only a small subset (prefer-
ably, only one) of the nodes is the ‘source’ while the
rest are the receivers. When the receivers have the
entire image they can become sources for their own
neighborhoods (that were out of range of the original
source). A mechanism is required to prevent nodes
from becoming sources if another source is present
in their neighborhood. This can be done by using
a publish-subscribe interface. Sources publish their
newer version of the code image and all interested
nodes subscribe. If a source has no subscribers it will
be silent. Therefore, one hopes to take full advantage
of the nature of the broadcast medium, where only
one transmission can reach all nodes within range in
the absence of losses. As long as there is no network
partition, all the nodes will eventually receive the full
image.

This mechanism, which we call Ripple (from its
ripple-like propagation property) has another advan-
tage: it guarantees that, if a data transmission is in
progress, the source is only one hop away. Since only
nodes that have the full image can be sources, all
repairs are local. However, the potential traffic re-
duction comes at a price, namely, increased latency.
Since data is not delivered to all nodes at the same
time anymore—they require the full image to become
sources—the operation is definitely slower than a con-
current delivery approach.

The requirement that a node needs the entire im-
age to become a source is not strict. It is possible
to have nodes become sources only when a percent-
age of the image is present. However, this adds ad-
ditional complexity to the system and might be im-
practical for a device such as a mote. By decoupling
the senders from the receivers and thus forcing a node
to be in either state but not in both, we are trading
complexity (memory) for latency. Ripple is also con-
sistent with the resource prioritization presented in
section 3.2 since it mainly trades off latency for en-

ergy.

4.2 Reliability Mechanism

Unlike several sensor network applications in which
some packet loss can be tolerated, in code distribu-
tion we cannot afford to lose any data—the complete
image is required. One approach to reliability is to
use forward error-correction: send N + K packets. As
long as any N packets are received, the full image can

be reconstructed. The other, more traditional choice,
is to use a retransmission mechanism. For the pur-
pose of our code distribution scheme, we will focus on
the retransmission approach.

The first question that needs to be answered is:
who is responsible for detecting a loss? If the sender is
responsible for all its receivers, then the sender needs
to keep state for all of them. On the other hand,
a receiver needs to keep state of only one node—the
sender. To minimize required sender state, nearly all
IP multicast mechanisms make receivers responsible
for detecting losses (and initiating repairs). Conse-
quently, the repair mechanism is NACK-based since
positive acknowledgment schemes imply that loss de-
tection and repairs are done in the sender. The extra
benefit of a NACK-based approach is the significant
reduction in control traffic—requiring an ACK per
packet sent can have a potentially very high energy
overhead.

The next question concerns the scope of repairs.
How far along the path to the source do we need to
inquire when something is missing? If the missing
segment is several hops away, the number of trans-
missions required for a repair can be considerable.
SRM [1] suggests that repairs should be local as much
as possible. However, since we require all the nodes
to eventually have the entire (same) image, we can
safely assume that given enough time, the missing
packet will be only one hop away. We can there-
fore impose the restriction that all repairs be local.
Intuitively, this will provide a considerable reduction
in energy consumption and complexity (since repair
requests and replies don’t need to be routed over a
potentially long multihop path). The cost, again, is
latency.

Finally, we need to choose a retransmission policy.
In particular, we need to answer the question: should
repair requests be broadcast or unicast? Broadcasting
requests gives a higher probability that the requester
will receive a reply, since potentially all nodes in the
neighborhood will honor the request. But this can
cause an excessive number of duplicates and is also
subject to ‘implosion’ effects, so a suitable suppression
mechanism is required. This is a non-issue when using
a unicast, which can be considered an extreme dupli-
cate suppression mechanism. On the other hand, the
probability of receiving a reply is reduced since only
one node is honoring the request. In addition, if that
node fails or becomes disconnected, the requester will
have no way of recovering the remaining segments,
unless a ‘source discovery’ mechanism is applied.

4.3 Segment Management

According to the second requirement in section 3.1,
we should place segments of the image in stable stor-
age in order to reconstruct it when the transfer is com-
plete. It is important to know whether a segment is
present or not in order to ask for retransmissions or
honor repair requests. A simple method is to just
read the corresponding EEPROM address and check
whether the segment is present or not. However, this
involves an I/O operation—a Read()—and thus con-
sumes energy. Moreover, if we want to find all the
missing segments we need to potentially do Read()s
that span the entire segment address range.

We can avoid all those expensive operations by
keeping a record (a bitmap) of successfully received
segments. However, code images are large so stor-
ing the bitmap in RAM can consume a considerable
amount of memory. This problem is augmented by
the lack of dynamic memory allocation on motes—we
need to keep a bitmap that can store up to the max-
imum size of a code image, even if the actual image
is much smaller than the maximum. Therefore, we
are not only reserving a large amount of memory but
are potentially underutilizing it. These observations
lead us to consider treating RAM and EEPROM as
a memory hierarchy and explore the properties of a
hierarchical data structure. Parts of the bitmap can
reside in RAM and others can be placed in stable stor-
age, with swapping being done as required. Clearly,
this approach saves RAM usage but consumes more
energy since EEPROM access is now involved.

A completely different approach is to not do any
complex segment management but instead use a slid-
ing window. At any point, the receiver knows it has
successfully received packets up to the beginning of
the window(base). It can then receive and successfully
store and retrieve up to the size of the window(offset).
This is similar to a small map size in the hierarchical
case, with one important difference: the receiver can-
not receive a random segment and store it anymore.
The segment must fall inside the window, otherwise
it will be discarded. For segments smaller than base
this is not a problem since they are duplicates, but
segments larger than offset aren’t. The advantage of
this approach is that it does not involve any extra
EEPROM I/O. The disadvantage is that its out-of-
order tolerance is much less than the previous mech-
anisms. We explore the differences and costs of all
those approaches in the next section.

5 Analysis and Comparison

The enumeration of choices in the previous section
is by no means exhaustive. However, we believe that
they represent a considerable part of the design space.
We now proceed to analyze and compare a subset of
those choices, using our resource prioritization goals—
energy, memory (representing complexity) and laten-
cy—as a baseline. As with Section 4 we compare
neighborhood-by-neighborhood dissemination (Ripple)
to concurrent delivery (Flooding) using a simplified
model.

5.1 Ripple vs Flooding

The basic assumptions that we make for this analysis
are:

e There is only one ‘original’ source.

e Each packet reception has a fixed probability of
failure p, based on the link quality. This prob-
ability is the same for all nodes and all trans-
missions. This assumption is not realistic but it
simplifies the analysis considerably.

e The transmission rate is constant.

e A neighborhood is a set of nodes that are in the
same broadcast domain with each other. Neigh-
borhoods can overlap.

e All repairs are assumed to be local.

In addition, we will make use of the following def-

initions:

e Number of total segments to be transmitted: S

Data rate: D

Number of nodes in each neighborhood: o; > 2
Number of sources at each neighborhood: k; > 1
Hop dist. of node ¢ from original source: h; > 1
Total number of nodes: N

Total number of neighborhoods: Oyt

Expected number of transmissions needed for all
nodes to receive the code image: E[Tz]

e Expected amount of time needed for all nodes

to receive the code image: E[Time]

When using flooding, the probability of a node be-
longing to neighborhood ¢ not receiving a packet is on
average P = p®i, since every node in the neighborhood
will forward the packet. So one packet will be trans-
mitted o; + p® times in a neighborhood. The sum
of nodes of all neighborhoods is N, so the expected
number of transmissions for the entire network is:

Otot
E[Txflooding] =N- S(l + Z p01)

i=1

1)

Where the second term is the total number of re-
transmissions required throughout the network. The

average time it takes for node ¢ at distance h; from
the source to receive the entire image is:

E[Timeflooding} = DSE[Retl‘l] (2)

Where E[Retx;] is the expected number of retrans-
missions required for this particular node. Note that
the expected time is independent of the distance to
the original source—assuming zero forwarding delay.
This behavior is expected, given the concurrent na-
ture of flooding.

In the case of ripple, one packet gets transmitted
k; 4+ p*i times in a neighborhood, so the total number
of transmissions is:

Otot
E[Trippie] = S Z(/ﬂ +pM) (3)
i=1

The value of k; depends on the amount of over-
lap between neighborhoods. Ripple, however, has the
property that a potential source will be silent if it has
no subscribers. Since there are o; nodes total in a
neighborhood, in the worst case k; can be no more
than (0;/2) + 1. In the absence of losses, this obser-
vation means that ripple has at least % fewer
transmissions than flooding. We also note that as
network density increases the reduction in traffic be-
comes more pronounced, as k; is in fact reduced. In
the limit, i.e. a fully connected network with diameter
1 (which is of course a trivial case), ripple requires S
transmissions while flooding requires N-S.

In the presence of losses however, things are less
favorable for ripple. Since k; < (0;/2) + 1, the loss
probability is higher than flooding. We therefore ex-
pect that ripple will require more retransmissions. If
the link loss rate is sufficiently high, it will end up
sending as many packets as normal flooding.

Our loss model does not take collisions into ac-
count, but in a real channel they can lead to a sub-
stantial number of losses. We expect the average num-
ber of collisions, when using Ripple to be much less
than Flooding, since there is less contention for the
channel.

The average time it takes for node ¢ at distance
h; from the source to receive the entire image, when
using ripple is:

E[Timeyippie] = D-S-E[Retx;|h; (4)

Note that the ripple delay is directly proportional
to the distance of node i from the original source,
while the equivalent flooding delay is independent of
distance.

From the equations above, it is apparent that rip-
ple is mot suitable for sparse networks with a large
diameter: the number of transmissions will be ap-
proximately equal to flooding, while the delay will be
max{h;} times more.

5.2 Retransmission Policy: Broadcast
vs Unicast

In 4.2 we characterized our reliability mechanism as
being local-scoped and NACK-based. We now explore
the implications of choosing a retransmission policy,
specifically whether to unicast or broadcast requests
when asking for a retransmission. Since a broadcast
request can lead to an excessive amount of replies, a
suppression mechanism is required. We consider three
different suppression mechanisms for broadcasts, in
addition to the unsuppressed case. Therefore, the dif-
ferent design options that we investigate are:

1. Broadcast RREQ (Repair Request), no suppres-
sion (all nodes reply).

2. Broadcast RREQ, nodes choose a randomized
interval, snoop on the channel for transmissions
and reply if the interval expires and no one else
has replied. This suppression mechanism was
introduced in [1].

3. Broadcast RREQ, all nodes reply with a fixed
(static) probability.

4. Broadcast RREQ), all nodes reply with an adap-
tive probability, based on some metric like the

neighborhood size, or, in the case of ripple, whether

the node is a source with subscribers or not.

5. Unicast RREQ, only the source replies. Situa-
tions where the original source fails are handled
by the requester doing some sort of source dis-
covery.

The randomized interval algorithm is theoretically
the most efficient of the suppression mechanisms when
the randomization interval is large. The other two
trade off optimality for a reduction in complexity.
They are more appropriate for ripple, where there is a
clear distinction between nodes that are active sources
and nodes that aren’t. Option 3 is static in that the
probability of generating a reply is not dependent on
network dynamics. This can lead to an expen-
sive retransmission policy. Option 4 tries to do better
by using an estimation function like, for example, the
neighborhood size.

Assuming again that all links have the same, un-
correlated loss probability p, if the requesting node
sends an RREQ and that triggers one reply, the prob-
ability of getting the missing packet is: P = (1 —p)2.
This simplifying assumption ignores collisions when
multiple nodes reply at the same time, so it is biased
favorably toward broadcasting schemes.

When using Ripple, the set of nodes that can honor
a repair request can be split into two parts: k is the

suppression

Policy Expected number Latency Complexity
of replies
Broadcast request, (1 —p)*(k +m) 0 O(1)
all nodes reply
Broadcast request, O(neighborhood size) for
random interval (1-p)?*1+ (k+m—1)/C] Up to C a good estimation of C.

Several timers

Broadcast request,
nodes reply with a
static probability

(1= p)*(ak +bm)

Depends on

selection of a, b o(1)

Broadcast request,
nodes reply using
adaptive probability

(1—p)*(ak +bm)

O(neighborhood size) for
a good estimation of a, b

Depends on
selection of a, b

Unicast request, (1—p)?

only publisher replies

Considerable if link to
publisher fails, else 0

o)

Table 1: Comparison of different retransmission policies, in terms of packets generated, latency and complexity.

subset of nodes that has subscribers (the same defi-
nition as k; in 5.1), while m is the subset of nodes
that have the whole image but no subscribers. In the
case of flooding, this distinction doesn’t exist. The
expected number of packets, E[A], that get sent to
the requesting node, for each option is:

1. E[A] = (k+m)(1 - p)?

2. E[A]l =1+ W}(l — p)?, where C is the
randomization interval.l

3. E[A] = (a'k + bm)(1 — p)?, a,b are statically
assigned probabilities. For flooding, a = b

4. E[A] = (a-k +b-m)(1 —p)?, a,b are dynamically
assigned probabilities. For flooding, a = b

5. E[A] = (1 - p)?

If E[A] < 1, another RREQ might be required.
E[A] > 1 indicates that there are potential duplicates
generated.

Based on the above, option 5 is the best in terms
of reducing duplicates, and 1 is the worst. Option
3, with its statically assigned probabilities is not as
flexible as 2 and 4, so for large values of a and k it can
degenerate to option 1.

The success of the suppression mechanisms de-
pends largely on a correct estimation of the values of
k and m, especially when Ripple is used. The proba-
bilistic techniques are affected more directly than op-
tion 2, but, since C' depends on the number of nodes
capable of replying, it is also not immune.

Options 1, 3 and 5 don’t involve any estimation
algorithm so their space complexity is O(1). For 2

Lf we have K nodes each picking a reply interval uniformly
from the range [1..C] (with discrete slots), then, each slot has
been picked, on average, by K/C nodes. So we have 1 reply
and (K — 1)/C duplicates.

and 4 complexity is O(neighborhood size), for a good
estimation of their subsequent parameters. Option 2
also requires several software timers.

In terms of latency, option 1 is the fastest since
replies are generated immediately. Option 5 also has
zero latency assuming that the source doesn’t fail. If
the source fails, a source discovery mechanism needs
to be triggered. That can incur a considerable delay.
The latency of option 2 depends on the randomization
interval, C' (it is in fact at most C'). Options 3 and 4
have a latency of zero with probability maz{a, b}, one
with probability maz{a(l —a),b(1 —b)}, etc. In real-
ity, however, methods that create an abundance of du-
plicates can end up having considerable latency, due
to the increased probability of collisions. In essence,
the channel is operating above capacity and a large
number of transmissions fail. This increases the prob-
ability of no replies making it back to the requester,
which in turn sends another repair request-therefore
adding to latency [13]. In that sense, duplicate sup-
pression is another congestion control [12] method.

The comparative results of all five options are shown
in table 1.

5.3 Segment Management: Hierarchi-
cal Data Structures vs Sliding Win-
dow

We have identified five segment management alterna-
tives, which are categorized based on the technique
used to determine the presence or absence of a seg-
ment.

1. No indexing: No data structure is used to indi-
cate the presence of segments in EEPROM. To
find if segment ¢ is missing, we need to read the
corresponding entry from EEPROM.

Segment RAM TX Cost RX Cost Gap detection Out-of-order
management (bytes) Cost tolerance
No indexing 0 R R+ W always Up to C/S Complete
Full indexing C/(89) R W when segment 0 Complete

Typical 1024 missing, else 0
Up to kR if entry empty
Partial indexing C/(8kS) R Up to kR+ W Up to kR Complete
Typical 256 if segment missing Minimum R
0 if bitmap entry full
Hierarchical C/(64FE) R if entry empty
full indexing Typical 8 R R 4 2W if segment missing R Complete
Else 0
Sliding window M/8 R W always 0 Up to bitmap size
Typical 4-8

Table 2: Comparison of different segment management techniques in terms of RAM usage, transmission, reception

and gap detection I/O cost and out-of-order tolerance. R

2. Full indexing: The entire segment bitmap is kept
in RAM. It has one entry per segment (one-to-
one, or full, mapping). To find if segment 7 is
missing, we need to just look at entry i.

Partial indexing: Fach entry in the bitmap rep-
resents a set of k consecutive segments. An en-
try is full if all its corresponding segments are
present, otherwise it’s empty. To find if segment
1 is missing, we need to look at entry i div k. If
the entry is full the segment is there, otherwise
we need to do up to k sequential Read()s to de-
termine the status of <.

Hierarchical full indexing: Similar to full index-
ing, but the bitmap is stored in two levels, using
both RAM and EEPROM. The bottom level,
which is kept in EEPROM is using full indexing
for a subset of the code image, which we call a
page. The page size can be arbitrary, but, for
ease of analysis, we consider it to be equivalent
to the size of a physical EEPROM page. A com-
plete record of all pages is kept in RAM—the
top level. Since pages are relatively large, the
RAM usage of this method is minimal. To find
if segment ¢ is missing, we need to first associate
it with a page entry (i div m, where m is the
number of bits in a page) and then look in this
particular page for entry ¢ mod m.

Sliding window: A bitmap of up to w segments
is kept in RAM, starting at the last segment suc-
cessfully received in order. To find if segment ¢
is missing, we check if ¢ < last; if so, the seg-
ment is present. If last < i < last+w, we check
the bitmap to see whether the segment has been
received. If i > last + w, the segment is consid-
ered to be missing, so the out-of-order tolerance
of this approach is limited.

denotes a Read() and W represents a Write().

We are interested in analyzing the above approaches
in terms of EEPROM access which directly translates
to energy usage, but also in terms of RAM cost. We
define TX Cost to be the cost, in terms of EEPROM
I/0, of transmitting a segment. When receiving a
segment, we need to determine if it is a duplicate, in
which case we discard it, or not, in which case we store
it. This is the RX Cost. We also define the cost of
finding out the first missing segment—so as to ask
for a retransmission—as the Gap Detection Cost.

The first method doesn’t require any memory, so
its RAM cost is zero. Full indexing needs an entry
for each segment. If the total image size is C' bytes
and each segment contains S bytes, then the RAM
required is %. The maximum value of C' on the mote
is 128KB and with S = 16 bytes, a typical value when
the packet size is kept small, the RAM cost of full
indexing is 1K; a quarter of the total RAM available
on the current generation of motes. Partial indexing
keeps k segments per bitmap entry, so its cost is %.
With k£ = 4, this becomes 256 bytes. Hierarchical full
indexing requires % bytes in RAM, where E is the
page size in bytes. If the page size is equivalent to the
physical page size its value is 256, so by using bitmaps
for both levels, the RAM cost is 8 bytes. The sliding
window method’s RAM requirements are % where
M is the window size. Typical values are 4-8 bytes,
corresponding to window sizes of 32 up to 128.

The transmission cost for all methods is one Read()
since to transmit segment ¢ we always need to read the
corresponding EEPROM entry—assuming of course
that we have segment i. In terms of RX Cost, the
first method requires a Read() before a Write(), since
it has no other way of knowing if the segment is a du-
plicate. Full indexing and the sliding window method
do a Write() only when the segment is missing and
that has zero cost in terms of EEPROM I/O. Partial

indexing needs to do up to k Read()s when the corre-
sponding entry is empty, in order to determine which
segment is missing. We need to pay that cost when at
least one of the k segments is missing, even when the
received segment is actually a duplicate. If the seg-
ment is not present we of course have to do a Write()
as well. If the bitmap entry is full, the cost is zero.
Hierarchical full indexing requires a Read() to deter-
mine if the segment is a duplicate, assuming that the
top-level record indicates an incomplete page. If the
segment is indeed missing, we need two Write()s—
one to update the bottom-level bitmap in EEPROM
and one to actually write the segment. Again, if the
top-level record indicates the page is full, the cost is
zZero.

In terms of Gap Detection Cost, the first method
needs to read all EEPROM entries sequentially to
find the first missing segment, since it doesn’t use a
bitmap. This means that it might have to do up to
% Read()s every time a segment is missing. Full in-
dexing and Sliding Window have a gap detection cost
of zero. Partial indexing needs to do up to k Read()s
to find the missing segment, with a minimum of one
Read(). Hierarchical full indexing only needs to do
one Read() and then locate the missing segment from
the bitmap fetched from EEPROM.

Table 2 shows the results of the analysis. We can
easily discern that having no record at all is quite ex-
pensive in terms of energy, even though its memory
usage is zero. The three different indexing schemes
all trade memory usage for I/O. Hierarchical full in-
dexing has the lowest memory usage but it requires
two Write()s per new segment received. This can be
quite expensive, considering that the cost of a Write()
is about an order of magnitude higher than the cost
of a Read(). Partial indexing consumes less energy
than hierarchical full indexing, for small k& (around 8
or less), at the cost of using more memory. Finally,
the sliding window method has the best combination
of energy and memory cost, but trades off out-of-order
tolerance. If link losses are high, this can lead to an
increase in energy consumption due to unnecessary
retransmissions. Nevertheless, if the link losses are
such that the probability of a receiver losing synchro-
nization with the sender (and thus receiving packets
outside the window) is small enough, the sliding win-
dow method seems like the most appropriate choice.

6 Implementation

Based on the design goals and priorities described in
the previous sections, we made the following imple-
mentation choices for MOAP: Ripple dissemination
protocol, Unicast retransmission policy and Sliding

Window for segment management. Energy consump-
tion remains our primary constraint, while RAM and
program memory usage are also important.

The process for programming a mote over the air
is as follows. First, the programmer builds the new
code, using the standard TinyOS tools. The binary
image is then passed to a packetizer that divides the
Motorola SREC-format binary into actual segments.
A segment has a 2-byte address field indicating its
address in program memory and a 16-byte data field.
In the current version of MOAP, each packet contains
one segment.

One mote attached to the PC becomes the original
source (a basestation). It sends PUBLISH messages,
advertising the new version of the code. Nodes check
their version number and send SUBSCRIBE messages
if it is smaller than the advertised versions. Nodes also
use a link statistics mechanism so as to not subscribe
to sources that have very lossy, intermittent, or other-
wise unreliable links. Once the original source receives
a subscribe message, it waits for a small amount of
time to allow other nodes to send in their subscrip-
tions as well and then starts the data transfer.

As Ripple suggests, once a mote has the complete
image stored in EEPROM, it will send PUBLISH mes-
sages itself, becoming a secondary source. If it doesn’t
receive any subscribe messages in a specific amount of
time it Commits and invokes the bootloader to trans-
fer the code from EEPROM to program memory and
then restart the mote with the new code.

Active sources don’t stay active forever, otherwise
they would never commit. Instead, after transmitting
the entire code image and waiting a predetermined
amount of time in order to handle potential retrans-
missions of the last segments they also commit. Even-
tually, assuming the network does not partition, all
nodes (besides the basestation) will commit the new
code.

When a node detects a lost segment (using the
sliding window method), it will ask the source for a
retransmission, using a unicast packet. Retransmis-
sion requests have higher priority than regular pack-
ets; thus, a source will first honor all its retransmis-
sion requests and then resume the regular data trans-
fer. Sources suppress duplicate requests, i.e. if IV
nodes request segment k£ within a given time period,
the source will only transmit k£ once. Nodes keep track
of their sources’ activity using a keepalive timer.

The keepalive timer has a dual purpose: it solves
the ‘last packet’ problem inherent in NACK-based
schemes and is also used as a contingency mechanism
in the case the source dies or the receiver loses its con-
nection. If after a certain amount of time the receiver
hasn’t heard from its source, it will transmit a broad-
cast repair request. All sources within range will reply

and then the node will select a new source, based on
configurable properties, like link statistics—the same
technique used to subscribe to the previous source.

If there are no sources within range, the mote con-
tinues to send broadcast repair requests. After a max-
imum number has been reached, the node will perform
an Abort—it will reset all MOAP-relevant state, but
will not erase segments from EEPROM. It then will
wait for a new neighbor to become a source, in which
case it will subscribe and continue, or it will invoke
the Late Joiner mechanism.

The purpose of the Late Joiner mechanism is to al-
low nodes that are disconnected, have just recovered
from failure or have been in any way detached from
the code transfer operation to also receive the new im-
age. It requires all nodes to periodically send publish
messages, advertising their version. If a node detects
a version mismatch and its version number is smaller,
it will send a publish message. Instead of using a new
packet to only send a 2-byte version number, we could
piggyback it on existing periodic messages—such as
neighbor beacons, in a neighbor discovery protocol,
or interests, in Tiny Diffusion. The current version of
MOAP does not use piggybacking.

The RAM footprint of MOAP is currently approx-
imately 700 bytes, while the ROM (program mem-
ory) footprint is approximately 4.5 Kbytes. Careful
optimization should reduce the RAM usage even fur-
ther. However, a potential caveat lies into the fact
that memory optimizations—for example multiplex-
ing a single timer instead of using several—can in-
crease the ROM footprint, since additional control in-
structions are required. Increasing the ROM footprint
leads to increased energy consumption. The entire
MOAP code needs to be transferred, since, to retain
the ability to reprogram, every new code image must
include MOAP. This problem can be solved to an ex-
tent by using difference-based techniques [6].

The current version of MOAP has been success-
fully used to repeatedly reprogram motes up to four
hops away from the basestation, using code images of
various sizes, ranging from 600 up to 30K bytes.

7 Evaluation

Our analysis of MOAP (Section 5) provides only steady-
state performance estimations given several assump-
tions. To evaluate real-world performance of the vari-
ous design choices, we implemented MOAP in the Em-
Star [15] emulation environment. We then focused on
validating a subset of those choices using the native
mote implementation.

30

25t 1

Number of nodes in a neighborhood

1 2 3 4 5 6 7
Power setting

Figure 1: Mean neighborhood size for different power set-

tings. Increasing the power results in an almost linear

increase in the neighborhood size. In the highest power
setting, approximately 80% of the network is connected.

7.1 Emulation

EmStar is running on a 32-bit platform with dynamic
memory support, so methods like Full indexing are not
as expensive as in the mote case. However, the real
radio channel allows us to evaluate different dissem-
ination methods, as well as retransmission policies.
Mote-dependent details such as EEPROM manage-
ment and writing into program memory via a boot-
loader are abstracted away but other than that, the
functionality that the EmStar implementation pro-
vides is identical to that of code running on real motes.

The EmStar experimental setup consisted of 30
Mica-1 motes placed at the ceiling of our laboratory.
Since the placement of the nodes is fixed (they are
attached, via serial cables, to an EmStar node), we
changed their radio power in order to capture effects
of variable density.

The average neighborhood size (an indication of
network density) for the seven different power levels
used throughout our experiments is shown in Figure 1.
In our setup, two nodes are considered neighbors when
the bidirectional loss rate, provided by the link statis-
tics mechanism, is no more than 15%. The neighbor-
hood size increases almost linearly as power settings
increase. We use this result in future figures, by just
reporting power settings. In addition, in this and all
subsequent figures, data points are taken by averag-
ing over 12 experimental runs, for each power setting;
error bars represent 95% confidence intervals.

The transmitted code image consisted of 100 seg-
ments, with one segment per packet. For methods
using sliding window, the window size was 16 bits.
The experiments ran until each node had received the
image in its entirety.

[
I
o

Floodinb —
Ripple-Full Indexing --o--
Ripple-Sliding Window - 4

=
N
o

=
o
o

©
o
T
L

o
o
L

IS
o
*

.

Mean transmissions per node (packets)

20 I : 1
0 ‘
1 2 3 4 5 6 7

Power setting

Figure 2: Mean packets transmitted per node versus ra-
dio power (different network density), for Flooding using
Sliding Window, Ripple using Full Indexing and Ripple
using Sliding Window. As network density increases, the
energy savings obtained when using Ripple become more
profound. File size is 100 segments with one segment per
packet. The window size is 16 bits.

7.1.1 Energy consumption

In order to determine the energy consumption of dif-
ferent dissemination strategies we compared Ripple
with Sliding window against Flooding with Sliding
window and Ripple with Sliding window against Rip-
ple with Full indexing. Since Full indexing is identi-
cal to the other indexing methods portrayed in sec-
tion 4.3 in terms of out-of-order tolerance, we expect
those methods to exhibit the same behavior in terms
of packets transmitted. The average number of pack-
ets transmitted per node, including retransmissions,
for different power settings, are shown in Figure 2.

Flooding transmissions are always very close to
100—each of the thirty nodes ends forwarding the
entire file. Changes for different power settings are
very small. In contrast, the Ripple variants are quite
sensitive to changes in network density. When net-
work connectivity is sparse, they incur an average of
50% reduction in traffic as opposed to flooding. The
difference becomes more pronounced as the neighbor-
hood size increases. In relatively dense networks, Rip-
ple can result in an order of magnitude reduction in
traffic, leading to substantial energy savings. The re-
sults match the simple models presented in section 5.1.
Flooding results show very little fluctuation since the
number of retransmissions for flooding is minimal;
there is so much redundancy that repairs are rarely
needed.

Ripple using Full Indexing performs, on average,
5-15% Dbetter that its Sliding Window counterpart.
The difference is primarily due to the limited out-
of-order tolerance of the Sliding Window mechanism,
which results in more retransmissions. However, in

=
o

Floodin‘g —
Ripple-Full Indexing --o--
_ Ripple-Sliding Window =

o)
L

Mean time required for dissemination (mins)

1 2 3 4 5 6 7
Power setting

Figure 3: Mean time required for the entire file to reach
all the nodes versus radio power, for Flooding using Slid-
ing Window, Ripple using Full Indexing and Ripple using
Sliding Window. The two Ripple variants are approxi-
mately five times slower than Flooding.

high density networks, the differences are not large
enough to warrant incurring the cost of an Indexing
method—the Sliding window is a better alternative.

7.1.2 Latency

The energy savings of Ripple are not free, however.
Figure 3 shows the average time required for the code
image to reach all the nodes, for a transmission rate of
2 packets per second. The transmission rate is quite
modest; an implementation could increase it up to five
times or more and still expect not to over-utilize the
channel, when using Ripple. Using flooding is differ-
ent since the excessive number of transmissions can
saturate the channel quickly. This can substantially
increase the number of retransmissions needed, as the
collision probability is large [16]. For the rate used in
the experiments, the Ripple variants are significantly
slower than Flooding. The results are consistent with
the analysis presented in section 5.1. Ripple’s la-
tency is reduced at higher densities, while flooding is
not extensively affected by it. Full indexing performs
better than Sliding window, requiring on average 20—
30% less time. Again, the reason is the increased num-
ber of retransmissions.

7.1.3 Retransmission policies

Using the Ripple-Sliding Window variant, we com-
pared the unicast retransmission mechanism (the one
used in the mote implementation) with an unsup-
pressed broadcast scheme. The results, in terms of
total number of retransmissions performed in the net-
work, for different power settings, are shown in Figure
4. Using unicast instead of broadcast leads to a very

14000

Unicast repéir requeslé ek
Broadcast repair requests —+—
12000 9

10000 - 1
8000 - q

6000 -

4000 -

2000

Total number of packets retransmitted

Power setting

Figure 4: Total number of packets transmitted versus
radio power, for two retransmission policies: Broadcast
with no suppression and Unicast. Using unicast results
in massive gains in terms of duplicate suppression, hence
energy savings.

significant reduction of packets retransmitted, espe-
cially in higher power settings which correspond to
larger densities and better links.

The advantage of using unicast requests over broad-
cast becomes more pronounced when using a MAC
that provides link-level retransmissions, such as S-
MAC [17], since the unicast reliability is then sub-
stantially higher. Even though neither of our imple-
mentations currently use S-MAC, we are planning on
using it in future releases of MOAP.

7.2 Mote Implementation

We also conducted experiments using the actual (mote-
only) implementation of MOAP in order to evaluate
it in its target platform. The setup consisted of 15
Mica 2 motes. Again, a file size of 100 segments was
used, with 1 segment per packet and a 16-bit window.
Figure 5 shows the average number of transmissions
per node for Ripple with sliding window—as described
in section 6. Since we don’t currently have a TinyOS
implementation of Flooding or Ripple with Full index-
ing, there are no comparative results for those meth-
ods in the mote-only version. In addition, there are
fewer power settings in the mote experiments since
after level 4 all nodes were in the same broadcast do-
main. The more powerful and reliable CC1000 radio
present on the Mica-2 motes—as opposed to the RFM
radio on the Mica-1s—results in better link qualities,
fewer retransmissions and a more rapid change in the
neighborhood size. The number of transmissions per
node is therefore significantly fewer than the corre-
sponding emulation graph. Still, the trend of Ripple
is preserved: higher network density leads to a reduc-
tion in transmissions.

100

Ripple-SIiaing Window —+—

@ @
o o
T T
L L

N
o
L

Mean transmissions per node (packets)

|

Power setting

Figure 5: Mean packets transmitted per node versus ra-
dio power, for Ripple with Sliding Window on standalone
motes. The more powerful and reliable CC1000 radio on
the Mica-2 motes is the main reason for the reduction in
transmissions, compared to Figure 2.

We do not present experimental results for flood-
ing on standalone motes because we can safely as-
sume that they would again be close to 100, as in the
emulation case—with a very small number of retrans-
missions. The reason is again the nature of flooding—
every node in the network will forward all the packets.

8 Future Work

In the future, there are several important features
that can improve the performance and functionality
of MOAP:

Sending differences between versions. Recent re-
sults [6] have shown that sending differences between
versions instead of an entire new version can result in
an order of magnitude decrease in the size that is to
be transferred. Although we cannot perform the im-
age reconstruction directly into the mote’s program
memory without the help of the bootloader, we can
transfer the code image in EEPROM and construct
the new image there. This approach is complemen-
tary to the MOAP mechanism; together they can lead
to even greater reduction in energy usage.

Support for selective node updates. Currently, MOAP
tries to update every node to the same version of the
code. However this isn’t always desirable. Selective
updating is possible if we don’t require each node
to commit the new code after receiving it. There-
fore, intermediate nodes that are not interested in the
new version can still act as Ripple sources. If the
nodes that need the update are dense enough, there
is no significant energy penalty. But for small sets of
nodes that are topologically distant, other dissemina-
tion techniques might be required.

9 Conclusions

As sensor networks mature and grow larger in size,
remote programmability will become a critical sys-
tem service. In this paper we presented MOAP, a
Multihop Over-the-Air Programming mechanism that
is specifically targeted at large networks of Mica-2
motes. MOAP is designed to be energy and mem-
ory efficient, at the expense of increased latency. Our
design choices are focused on three areas: dissemina-
tion protocol, retransmission mechanism and storage
management of code segments. We analyzed an ar-
ray of different options using some simple models and
then evaluated our implementation using results from
emulation as well as a mote-only testbed. The re-
liability mechanisms of MOAP also help explore the
design space for reliable communications.

By using the Ripple dissemination protocol, MOAP
achieves a significant reduction in transmitted traffic
as opposed to flooding, ranging from 60-90%. It ac-
complishes this by selecting only a small subset of
nodes within a broadcast domain to act as sources for
the code image, via a publish-subscribe interface. A
simple sliding window scheme is used as a repair mech-
anism. Even though it has limited out-of-order tol-
erance, we showed that it performs adequately, com-
pared to substantially more complex schemes. We also
showed that a unicast retransmission policy was very
effective in suppressing duplicates.

Using our mote implementation, we were success-
ful in reprogramming motes several hops away from
the basestation. In the next few months we expect to
deploy an improved version of MOAP in the field.

Acknowledgments

MOAP was made possible with support from DARPA
grant #442511-ED-25621 and the National Science
Foundation Cooperative Agreement #CCR-0120778,
supporting the Center for Embedded Networked Sens-
ing. For this work, John Heidemann is partially sup-
ported by the National Science Foundation (NSF) un-
der grant number ANI-0220026, “MAC Protocols Spe-
cific for Sensor Networks”.

We would like to thank Crossbow Inc. for pro-
viding the source code for their bootloader, as well
as David Culler and Jason Hill for making valuable

comments that helped improve the functionality of
MOAP.

References

[1] Sally Floyd, Van Jackobson, Ching-Gung Liu, and
Lixia Zhang. A Reliable Multicast Framework for

[4]

8]

[10]

[12]

Light-weight Sessions and Application Level Framing.
In Proceedings of the ACM SIGCOMM Conference,
pages 342-356, Cambridge, MA, USA, August 1995.
ACM.

Schulzrinne, Casner, Frederick, and Jacobson.
RTP: A transport protocol for real-time applica-
tions. Internet-Draft ietf-avt-rtp-new-01.tat (work in-
progress), 1998.

Jason Hill, Robert Szewczyk, Alec Woo, Seth Hol-
lar, David Culler, and Kristofer Pister. System archi-
tecture directions for networked sensors. In Proceed-
ings of the Ninth International Conference on Arhi-
tectural Support for Programming Languages and Op-
erating Systems (ASPLOS-IX), pages 93-104, Cam-
bridge, MA, USA, November 2000. ACM.

Mote
reference,

Crossbow Technology Inc. in-
network programming user
http://webs.cs.berkeley.edu/tos/tinyos-
1.x/doc/xnp.pdf.

Crossbow Technology Inc. Mica2 wireless measure-
ment system datasheet,
http://www.xbow.com/products/product_pdf_files

/datasheets /wireless/6020-0042-03_a_mica2.pdf.

Niels Reijers and Koen Langendoen. Efficient Code
Distribution in Wireless Sensor Networks. In Pro-
ceedings of the 2nd ACM international conference on
Wireless sensor networks and applications, pages 60—
67. ACM Press, 2003.

Vladimir Bychkovsky, Bret Hull, Kyle Jamieson,
Stanislav Rost, and Hari Balakrishnan. Reliable Data
Dissemination in Wireless Sensor Networks. Poster in
SOSP 03, October 2003.

Philip Levis and David Culler. Mate: a Tiny Vir-
tual Machine for Sensor Networks. In Proceedings
of the 10th international conference on architectural
support for programming languages and operating sys-
tems (ASPLOS-X), pages 85-95. ACM Press, 2002.

C.Y. Wan and A.T. Campbell. PSFQ: A Reliable
Transport Protocol For Wireless Sensor Networks.
In Proceeedings of First ACM International Work-
shop on Wireless Sensor Networks and Applications
(WSNA), Atlanta, Georgia, USA, September 2002.
ACM.

Fred Stann and John Heidemann. RMST: Reliable
Data Transport in Sensor Networks. In Proceedings of
the First International Workshop on Sensor Net Pro-
tocols and Applications, page to appear, Anchorage,
Alaska, USA, April 2003. USC/Information Sciences
Institute, IEEE.

J. Heidemann, F. Silva, C. Intanagonwiwat,
R. Govindan, D. Estrin, and D. Ganesan. Building
Efficient Wireless Sensor Networks with Low-Level
Naming. In SOSP 2001, Lake Louise, Banff, Canada,
October 2001.

Yogesh Sankarasubramaniam, Ozgiir B. Akan, and
Tan F. Akyildiz. ESRT: Event-to-Sink Reliable Trans-
port in Wireless Sensor Networks. In Proceedings of

[13]

[14]

[15]

[16]

[17]

MobiHoc 03, Annapolis, Maryland, USA, June 2003.
ACM.

John Heidemann, Fabio Silva, and Deborah Estrin.
Matching Data Dissemination Algorithms to Appli-
cation Requirements. Technical Report ISI-TR-571,
USC/Information Sciences Institute, April 2003.

James F. Kurose and Keith W. Ross. Computer Net-
working. Addison-Wesley, 2000.

J. Elson, S. Bien, N. Busek, V. Bychkovskiy,
A. Cerpa, D. Ganesan, L. Girod, B. Greenstein,
T. Schoellhammer, T. Stathopoulos, and D. Es-
trin. EmStar: An Environment for Developing Wire-
less Embedded Systems Software. Technical report,
CENS-TR-9, March 2003.

Deepak Ganesan, Bhaskar Krishnamachari, Alec
Woo, David Culler, Deborah Estrin, and Stephen
Wicker. Complex Behavior at Scale: An Experimen-
tal Study of Low-Power Wireless Sensor Networks.
Technical report, UCLA/CSD-TR, 02-0013, 2001.

W. Ye, J. Heidemann, and D. Estrin. An energy-
efficient MAC protocol for wireless sensor networks.
In Proceedings of IEEE INFOCOM, 2002.

