
POLITECNICO DI MILANO
DOTTORATO DI RICERCA IN INGEGNERIA INFORMATICA E AUTOMATICA

Architectures for an
Event Notification Service

Scalable to Wide-area Networks

PhD Thesis of:
Antonio Carzaniga

Advisor:
Prof. Alfonso Fuggetta

Co-Advisors:
Prof. Alexander L. Wolf
Prof. David S. Rosenblum

Supervisor of the Ph.D. Program:
Prof. Carlo Ghezzi

X ciclo

to my wonderful family

Acknowledgments

I would like to thank my advisor Prof. Alfonso Fuggetta for trusting, encouraging,
and supporting me all throughout my PhD studies. With advices and lively
discussions, he has contributed a lot to the development of this work.
I am deeply grateful to Prof. Alexander Wolf for his support, for his guidance and for
the confidence he gave to me during the past two years.
I am also thankful to Prof. David Rosenblum. Prof. Wolf and Prof. Rosenblum
initially formulated the basis for this research and then worked together with me in
pursuing it.
A remarkable influence on my work was brought also by the ideas and the insights of
Gianpaolo Cugola, Elisabetta Di Nitto, Richard Hall, Dennis Heimbigner, and André
van der Hoek.
I also want to thank prof. Carlo Ghezzi for being supportive in many occasions.
I shared my experience as a PhD student between the Software Engineering group of
Politecnico di Milano and the Software Engineering Research Laboratory of the
University of Colorado at Boulder. In both these environments I had the opportunity
to meet great people that in so many ways contributed to this achievement. In
addition to the ones I already mentioned, I would like to express my gratitude to
Luciano Baresi, Gino Biondini, Fabiano Cattaneo, Thorna Humphries, Artur Klauser,
Pier Luca Lanzi, Edoardo Marcora, Mark Maybee, Mattia Monga, Alessandro Orso,
Gian Pietro Picco, Matteo Pradella, Giuseppe Ricci, Massimo Ricotti, Sergio Silva,
Judith Stafford, Laura Vidal, Giovanni Vigna, : : : and many others.
Grazie di cuore a tutti.

Milano, December 1998.

Contents

1 Introduction 1

1.1 Focus and contribution of the thesis 2

1.2 Structure of the thesis . 4

2 Background and New Challenges 5

2.1 Related technology . 7

2.1.1 Centralized event/message based environments 7

2.1.2 Internet technology . 10

2.1.3 Distributed event-based infrastructures 12

2.2 New challenges for Event-based technologies 15

2.2.1 Discussion and principles 15

2.2.2 Goals: scalability and expressiveness 17

2.2.3 Scalability . 17

2.2.4 Expressiveness . 18

2.2.5 Trade-offs . 18

3 The SIENA Event Service 21

3.1 Basic principles . 22

3.1.1 Objects . 22

3.1.2 Event Servers . 22

3.1.3 Network . 23

3.1.4 Events and notifications 23

3.1.5 Identifiers and handlers 25

3.2 Syntax of the SIENA event service 26

3.2.1 Interface functions . 26

3.2.2 Notifications . 27

3.2.3 Filters . 28

3.2.4 Patterns . 28

3.3 Semantics of the SIENA event service 29

3.3.1 �: covering relations . 29

ii

3.3.2 �nf : semantics of attribute filters 29

3.3.3 �NS : semantics of subscriptions 30
3.3.4 �SA: semantics of advertisements 31
3.3.5 Behavior of the service . 32
3.3.6 Subscription-based event service 33
3.3.7 Advertisement-based event service 33
3.3.8 Un-subscriptions and un-advertisements 34
3.3.9 Patterns . 34

3.4 Other semantic aspects of the event service 35
3.4.1 Time and ordering of events 36
3.4.2 Quality of service . 37
3.4.3 Mobility of applications 38

3.5 Comments on the semantics of the event service 40
3.5.1 Rationale: expressiveness vs. scalability 40
3.5.2 Possible counter-intuitive behavior 41
3.5.3 Typed vs. untyped event service 42

4 Servers Topologies and Algorithms 45

4.1 Server Topologies . 46
4.1.1 Hierarchical . 46
4.1.2 Acyclic Peer-to-Peer . 47
4.1.3 Generic Peer-to-Peer . 48
4.1.4 Hybrid topologies . 49

4.2 Dispatching Algorithms . 50
4.2.1 Analogy with multicast routing 50
4.2.2 Routing strategies in SIENA 53
4.2.3 Putting together algorithms and topologies 55

4.3 Pattern observation . 64
4.3.1 Available patterns table 65
4.3.2 Pattern factoring . 65
4.3.3 Pattern delegation . 66

4.4 Other optimization strategies . 68
4.4.1 Batching and merging subscriptions and advertisements 68
4.4.2 Space vs. processing vs. communication: trade-offs . . . 68
4.4.3 Evaluation of the covering relations 69

5 Simulation Framework 71

5.1 Simulator . 72
5.2 Scenario models . 74

5.2.1 Network model . 75
5.2.2 Event service model . 76
5.2.3 Applications model . 78

iii

5.3 Simulation Results . 79
5.3.1 Simulation traces . 79
5.3.2 Metrics and aggregation criteria 80
5.3.3 Simulation process . 80
5.3.4 Synthetic results . 84

6 Conclusions and Future Work 91

iv

List of Figures

3.1 Event service . 21

3.2 Internal architecture of the event service 23

3.3 Example of a notification . 27

3.4 Example of an event filter . 28

3.5 Example of a pattern of events 29

3.6 Race conditions in event notification 36

3.7 Temporal ordering of notifications 37

4.1 Hierarchical server topology . 46

4.2 Acyclic peer-to-peer server topology 47

4.3 Generic peer-to-peer server topology 48

4.4 Hybrid topology: hierarchical/generic 49

4.5 Hybrid topology: generic/acyclic 50

4.6 Multicasting of notifications downstream 53

4.7 Applying filters and patterns upstream 54

4.8 Example of a subscription lattice 58

4.9 Example of subscription forwarding 59

4.10 Subscription table of server 3 of Figure 4.9 60

4.11 Pattern monitoring and delegation 67

5.1 Layered network scenario model 75

5.2 Randomly generated network topology 77

5.3 Simulation process . 81

5.4 Scenario parameters . 82

5.5 Scenario description file . 83

5.6 Total cost: comparison of architectures (ce,hs,as,aa) 84

5.7 Total cost: comparison of architectures (hs,as,aa) with 1 and 10
objects . 85

5.8 Total cost: comparison of architectures (hs,as,aa) with 100 and
1000 objects . 85

5.9 Total cost: acyclic peer-to-peer with advertisement forwarding . 86

vi

5.10 Total cost: centralized and hierarchical topologies 86
5.11 Total cost: acyclic peer-to-peer topology with advertisement for-

warding and subscription forwarding 87
5.12 Variance of per-site cost: hierarchical vs. acyclic peer-to-peer

(1,10 objects) . 87
5.13 Variance of per-site cost: hierarchical vs. acyclic peer-to-peer

(100,1000 objects) . 88
5.14 Average cost per service: scalability of every architecture (ce, hs) 88
5.15 Average cost per service: scalability of every architecture (as, aa) 89
5.16 Total cost: comparison among architectures (1,10 objects) 89
5.17 Total cost: comparison among architectures(100,1000 objects) . . 90

List of Tables

2.1 A first cut in classifying related technologies 7

3.1 Interface functions of SIENA . 26
3.2 Examples of CoversNS . 31
3.3 Examples of CoversSA . 32
3.4 Mobility support functions. 38

4.1 Analogy between event service and multicast routing 51
4.2 Example of a table of available patterns 65
4.3 Example of a factored compound subscription 66

viii

Chapter 1

Introduction

This work is about an infrastructure for supporting event-based applications on
a wide-area network.

A wide range of software systems are designed to operate in a reactive man-
ner. In such systems, the high-level control flow is not explicitly programmed,
instead it is driven by the occurrence of events. These systems realize their func-
tionality by performing some actions in response to events, possibly using the
information associated with the stimulating events. Examples of reactive sys-
tems are integrated development environments [64, 38, 11, 33], work-flow and
process analysis systems [16, 4], graphical user interfaces [59], network man-
agement systems [65], software deployment systems [32] and security moni-
tors [36, 56, 75].

There are two major motivations for designing applications as reactive sys-
tems. First, some applications are reactive by their nature. Typically, the ones
that involve the direct interaction of human agents are characterized by an
asynchronous input of relatively small pieces of data. In these cases, and in the
general case of “on-line” input, the concept of event is a good modeling and
design abstraction. Similarly, the same abstraction is useful for those compo-
nents that, although not necessarily functioning in an asynchronous way, are
integrated by means of some communication mechanisms that introduce asyn-
chronicity in their interactions. The other benefit of adopting an event-based
style is that it requires only a loose coupling for the integration of heteroge-
neous components. Components do not need to export interfaces to be ac-
cessed by other components. Components can request some services without
addressing a specific server component and, to a certain extent, components
can interoperate even if they have been designed and developed separately
without any mutual knowledge.

A common logical component of every event-based application is what we
call an event observation and notification service, or more concisely an event ser-

2 Introduction

vice. The event service observes the occurrence of events or the occurrence of
combinations of events and consequently notifies all the applications or com-
ponents that have declared their interests in reacting to such events. Because
the semantics of event-based applications is substantially independent of the
mechanisms that are used to capture and dispatch events of interest, it is con-
venient to separate the event service from all the applications that make use
of it. In accordance to many standardization efforts that have been proposed
recently (e.g., [58]), and according to strategic plans and research in network
technology [15], we envision a unified event service implemented as a com-
mon “middle-ware” to support the event-based interaction among software
components.

The idea of integrating software components by means of a common event
service seems to be very promising ([12, 6]) especially for those distributed
applications that are deployed on a wide-area network such as the Internet.
For one thing, the vast number of available information sources offers a great
deal of opportunities for the development of new applications. New classes
of wide-scale event-driven applications can be devised including stock mar-
ket analysis tools, efficient news and mailing systems, data mining tools, and
indexing tools. Also, many existing applications that are already designed to
exploit event-based infrastructures can be proficiently integrated at a much
higher scale thanks to the “global” connectivity provided by the network. For
example, work-flow systems can be federated for companies that have multi-
ple distributed branches or even across corporate boundaries, or else software
deployment systems can connect software producers and consumers through
the Internet [32]. In general, the asynchronicity, the heterogeneity, and the high
degree of loose coupling that characterize wide-area networks suggest that a
wide-scale event service would be a good integration infrastructure for exist-
ing systems and for new applications.

1.1 Focus and contribution of the thesis

This work presents SIENA1, a project directed towards the design and imple-
mentation of a scalable general-purpose event service.

Numerous technologies that realize an event service have been developed
and effectively used for quite a long time, examples are Field [64], SUN
ToolTalk [38], and Yeast [44]. However, most of them are targeted towards sin-
gle computers or at most local-area networks, and it is very clear that they can
not be simply “adapted” to scale to the Internet. In fact, extending the support
of an event service to a wide-area network creates new challenges and trade-
offs. Not only does the number of objects and events grow tremendously, but

1SIENA is an acronym for Scalable Internet Event Notification Architecture

Focus and contribution of the thesis 3

also many of the assumptions made for local-area networks, such as, low la-
tency, abundant bandwidth, homogeneous platforms, continuous reliable con-
nectivity, and centralized control, are no longer valid.

Some technologies address issues related to wide-area services. Among
them we can find new technologies such as TIB/RendezvousTM [73] that specif-
ically provide an event service, but also more mature technologies such as
the USENET news infrastructure, IP multicasting, the Domain Name Service
(DNS), that, although not explicitly targeted at this problem domain, represent
potential or partial solutions to the problem of scalability. The main shortcom-
ing of all of these technologies is that they are specific to some application do-
main and not flexible enough to be usable as a generic and open infrastructure
for integrating event-based applications (see [66, 12]).

In summary, we see two main challenges in the area of event-based infras-
tructures, that SIENA proposes to address:� scalability: this is the ability to provide an event service across a whole

wide-area network. The large scale of the network implies a large num-
ber of applications scattered over many distant sites exchanging many
events;� expressiveness or flexibility: this quality denotes the ability of the event
service to provide a good level of support to a wide variety of applica-
tions. Expressiveness has to do with the type of information that can be
attached and propagated with notifications as well as the ability of the
event service to aggregate and filter events as precisely as possible on
behalf of applications.

Intuitively, a simplistic service can be implemented in a very scalable way,
whereas an event service with a rich semantics poses serious scalability limita-
tions. Thus, this thesis focuses on the trade-offs that exist between scalability
and expressiveness in a distributed event service.

The contributions of this work are a formal definition of an event service
that combines expressiveness with scalability together with the design and im-
plementation of the architectures and algorithms that realize this event service
as a distributed infrastructure. One obvious issue that we must face in this re-
search is the validation and verification of the solutions that we propose. To
this end, we used a simulation environment by which we performed system-
atic simulations of our architectures and algorithms in several network scenar-
ios. Here we present the framework that we built and the modeling abstraction
that we adopted to perform this analysis. We also discuss some initial results
that clearly differentiate the SIENA event service from traditional ones. Further
simulations will help clarify the trade-offs and differentiators between the al-
ternative solutions that we propose. In addition to the simulation environment,
we implemented a real prototype of SIENA, consisting of a server that realizes

4 Introduction

one of our distributed architectures plus a client-side interface with a mapping
to the JavaTM language. This prototype has been used in distributed settings of
limited scale to support an event-based software deployment system.

1.2 Structure of the thesis

Chapter 2 explores the problem space for an event service. Related technolo-
gies and systems are surveyed and classified. This classification helps us in iso-
lating and defining the main challenges that we intend to face in this research.
Chapter 3 defines the SIENA event service. This definition covers some basic
terminology, the data model adopted to represent event notifications, the in-
terface functions exported by the event service, and the semantics of the event
service. Chapter 4 describes the dispatching algorithms defined for SIENA. The
algorithms are presented and discussed referring to the semantics of the event
service and emphasizing the optimization strategies that can be applied in for-
warding notifications and in matching patterns of notifications. Chapter 5 il-
lustrates the simulation framework. First we describe our network model and
the simulation methodology, then the parameters and the metrics we focused
on, and finally we show the results we obtained with our algorithms in some
network scenarios. Chapter 6 concludes summarizing the results of this re-
search indicating also some directions for future work.

Chapter 2

Background and New
Challenges

The field of event-based systems and infrastructures has been very lively in the
past few years. This research area is not entirely new since the concept of event-
based integration has been studied and adopted in several different branches
of computer science for a long time. However, similarly to many other research
areas that are related to the exploitation of wide-area networks —mobile code,
agents, and hyper-media, just to mention a few— the event-based style and
its related technology has received a new impetus following the explosive de-
velopment of the Internet. Undoubtedly, the global connectivity offered by
the Internet has made a massive amount of information available for applica-
tions and people and it has dramatically increased the potential applications
of event-based technologies. But at the same time, it has unveiled a whole va-
riety of new challenges for the design of such technologies, thus drawing the
attention of both academia and industry.

Indeed, the event-based style holds the promise of introducing revolution-
ary changes in the way distributed software systems are built and integrated.
Under this pressure, the spectrum of technologies related to the concept of
wide-area event service has become vast to a point that it is often difficult to
identify the applicability of every single technology and its value added with
respect to well known “old” technologies.

One problem is the multitude of available and publicized systems. A fair
number of technologies implementing some variances of an event service have
been available for a long time. But also, in addition to these “old” systems,
more recent efforts have been made by industry, academia, and various orga-
nizations, in the direction of supporting an event service over wide-area net-
works.

6 Background and New Challenges

The other main problem with evaluating technologies related to event-
based systems is that this field lacks a widely accepted characterization of the
problem as well as a common vocabulary [80]. As a result, an event service is
often confused with specific applications (e.g., a bulletin board) or application
domains (e.g., human-computer interaction), or design frameworks (e.g., stan-
dard interfaces or naming conventions like JavaBeansTM [72]), or else, because
an event service provides and uses some sort of communication facility, it is
compared to other general purpose —but radically different— communication
mechanisms such as point-to-point messaging systems.

As a first step in this work, we intend to identify the basic principles under-
lying event-based technologies. With these principles, we discuss and assess
existing technologies and we give a precise characterization of the most impor-
tant research issues that remain open.

An initial working definition

For the time being, we will adopt the following informal definitions that intu-
itively describe an event service:� an event is represented by a data structure called event notification, or sim-

ply a notification;� we call interested parties those applications that consume event notifica-
tions;� the event service accepts subscriptions from interested parties. Subscrip-
tions express the class of events or combinations of events an interested
party is interested in;� whenever an event or a combination of events occurs, the job of the event
service is to dispatch a notification to all the interested parties that sub-
scribed for that event or combination of events.

The terms that we used here refer to the conceptual framework posed by
Rosenblum and Wolf in [67]. Note that at this point we ignore most of the is-
sues discussed in that framework, in fact we have not even mentioned what an
event is or what it means to combine events. We will just assume that events
occur somewhere and that the event service is capable of detecting their occur-
rence and extracting some data describing their context. Also, for combinations
of events, we can think of sequences of events, e.g., in a security monitor, three
consecutive login failures for a user are a significant combination of events. In
Chapter 3 we will give a more comprehensive and formal definition of event
service.

Related technology 7

2.1 Related technology

In this section we compile a brief survey of technologies that we believe are
tightly related to the problem of wide-area event notification, either because
they attack the same problem or because they provide important pieces of so-
lutions.

architecture
centralized distributed

se
rv
ic
e n
ot

re
la
te
d Internet

technology

ev
en
t

se
rv
ic
e “old” message-based

environments
“new” distributed

event services

Table 2.1: A first cut in classifying related technologies

As an initial cut, we examine two dimensions (see Table 2.1). One is the
nature of the architecture of the system for which we see two values: central-
ized and distributed. The other one is the kind of service, that we classify as not
related and event service. This simplistic schema allows us to distinguish three
main categories of technologies that we want to examine further: centralized
event-based or message-based environments that use events with a centralized in-
frastructure to integrate components, Internet technologies and protocols that pro-
vide distributed infrastructure not specific to event-based systems, and distri-
buted event-based services that combine the event-based style with a distributed
realization.

2.1.1 Centralized event/message based environments

In this group, we classify graphical user interfaces, message-based software
development environments, and generic event-based infrastructures that have
a centralized architecture. We consider the fact that these systems are imple-
mented with a centralized architecture as their major limitation. Nonetheless,
these systems provide valuable insights as far as the type of service that they
offer.

Message-based integrated environments

The idea of integrating different components by means of messages is first re-
alized by Field [64]. Field, together with other commercial products including

8 Background and New Challenges

HP SoftBench [11], DEC FUSE [33], and Sun ToolTalk [38], implements an en-
vironment in which several software development tools can cooperate by ex-
changing messages. Messages are the means by which one tool can request
services to be carried out by other tools, or they can be sent out by a tool to
announce a change of state —for instance, the termination of an operation—
so that other tools can proceed with their task. This use of messages enables
a fine control of the software development process by coordinating the actions
of different tools. As an example, consider the interaction between a compiler
and an editor. While compiling a source file, the compiler might find parse
errors. Whenever such an error occurs, the compiler posts a message that re-
quests that an editor open the source file positioning the cursor at the specific
line that caused the error. Similarly, the editor might signal the compiler when
the developer has completed its update to a source file.

The heart of these software development environments is a message dis-
patcher or message bus. In some cases tools address their requests to specific
instances of other tools, but other times a tool might simply request a service.
In these latter cases, the message bus gets in charge of dispatching that mes-
sage to a tool that is able to handle the requested service. Hence, the role of
the message bus is to deliver a message to the right application, i.e., one that
registered a corresponding service, possibly invoking the application if none is
already running.

Integrated software development environments embody a primitive event
service since registering tools to handle service requests is equivalent to sub-
scribing for those requests. However, domain of event notifications and sub-
scriptions is usually very limited. Tools can generate a fixed set of messages
and in some cases (e.g., in DEC FUSE), this set of messages is statically mapped
into a set of call-back procedures that are hardwired within the tool.

Event-action systems

Yeast [44] is an event-action system. Yeast allows the definitions of rules (or
specifications) that have the general form (event-pattern do action). Unlike
message-based integrated environments, Yeast is very similar to a general-
purpose event service. For the left part of a specification, Yeast defines a rich
language that allows detailed event patterns including also temporal expres-
sions. The action part of a specification is a shell script.

Yeast provides two classes of mechanisms to detect the occurrence of
events. Events can either be explicitly announced by applications by means of
the announce command (provided by Yeast), or they can be observed directly
by Yeast. The events that Yeast is able to poll are defined with a set of objects
each one having a number of attributes. Yeast matches an event whenever one
of these attributes changes. Classes of pre-defined objects are: file, directory,
host, file system, host, tty, and user. Examples of attributes are modification

Related technology 9

time and permissions for files and directories, load and number of users for
hosts, login time for users, etc.

A different class of systems that are conceptually equivalent to event-action
systems are active databases [13]. In active databases, primitive events are op-
erations on database objects. Event-action rules are also called triggers. Events
can be combined and correlated in the left part of the trigger. A trigger can also
impose additional conditions (or guard) to be evaluated once the requested se-
quence of events has occurred. If this condition is satisfied, the database exe-
cutes the action part of the trigger, which is usually expressed as a query.

The main difference between an event service and an event-action system
like Yeast is that an event service only dispatches event notifications, possi-
bly to multiple recipients, so responses to events are executed by interested
parties within their context. This way, the observation of an event or a pat-
tern of events can be de-coupled from the corresponding response. Instead, an
event-action system has a logically centralized architecture because actions are
executed by the system itself within its environment. In other words, in event-
action system, there is a strict binding between the observation of events and
the reaction to those events.

User interfaces

The X Window System is a client-server windows system. The server manages
the physical display and its input devices —usually a keyboard and a mouse—
while applications connect as clients. Clients react to input events dispatched
by the server and request graphical display operations to the server. The X
Window protocol allows a very fine granularity of control, so usually applica-
tions are built with higher level libraries that implement graphical objects (or
widgets). Widgets are themselves reactive objects: they collect some classes of
events from the server and execute some actions in response to those events.

A core component of user interfaces like the X Windows System is the dis-
patcher of input events that resides both on the server and on the client. Usu-
ally, the client sets some filters on the server so that the server will dispatch only
those events that are of interest for that client. For example, the application
might want to avoid receiving mouse-motion events, but it might be interested
in receiving mouse-click events. A similar dispatcher can be set up on the client
side where different widgets can register their call-back routines in response
to some specific events or sequences of events, for example, a button widget
might register a call-back function to be executed right after a key-pressed event
is followed by a key-released event.

The X Window System is not an event service, however its event notifi-
cations have an articulated data structure and, in general, it is designed to
cover several aspects of human–computer interactions that involve sophisti-
cated event-based components. Hence its relevance to this research.

10 Background and New Challenges

2.1.2 Internet technology

A number of Internet technologies are worth mentioning in this work because
they indeed realize services on a wide-area scale. Thus, even if none of them is
really designed to realize an event notification service, it might be worthwhile
to borrow their ideas vis-a-vis scalability.

Domain Name Service

Domain Name Service (DNS [54, 53]) maps symbolic host or domain names
into IP addresses. The current implementation of DNS has proved to be ex-
tremely scalable especially considering the recent explosion of domains caused
by the commercial exploitation of the Internet. DNS is realized with a distribu-
ted architecture. In particular, DNS servers form a hierarchical structure. The
reason why a hierarchical architecture works so well for DNS is that the struc-
ture of servers can be naturally laid out so to map very well onto the structure
of the data that they manage. In fact, the space of host names and the space of
IP addresses are hierarchical themselves and the mapping between them pre-
serves a lot of the hierarchical properties. In other words, because host names
are partitioned in domains (e.g., edu , it , com, etc.), that in turns are parti-
tioned in sub-domains (e.g., colorado , uci . etc.) and so on, the physical
architecture of DNS can be set up so that requests that pertain one domain are
handed off to a server dedicated to that sub-domain and no other host outside
that domain can affect the mapping realized within the domain.

Although we can adopt techniques that are inspired to DNS, the same hi-
erarchical partition does not appear to be valid for an event service. In fact,
the space of event notifications does not exhibit any hierarchical structure and,
even if we decided to force this type of structure —as we will see, some sys-
tems do this by defining a subject attribute for notifications and by partitioning
its possible values— this would not naturally map onto a hierarchical location
of objects. In other words, we can not assume that events of a particular class
(or subject) occur only within a particular group of sites or are requested only
by a set of interested parties located in a specific sub-net.

Another differentiator of DNS with respect to an event service is the es-
sential read-only nature of the DNS service. In fact, DNS is very efficient in
resolving names also thanks to appropriate caching policies. This is made pos-
sible by the the fact that mappings maintained by DNS are relatively stable,
i.e., they are read much more frequently then they are modified. In general,
this is not true for the information exchanged in event notification services.

USENET News

The USENET News system with its main protocol NNTP [39] is perhaps the
best example of a scalable user-level many-to-many communication facility.

Related technology 11

USENET News messages are modeled after e-mail messages, yet they provide
additional information (headers) that can be used by NNTP commands to di-
rect their distribution. The infrastructure that supports the propagation of ar-
ticles is made of a network of news servers. NNTP servers store news articles,
pass articles to clients, and exchange articles with other servers. NNTP pro-
vides both client-to-server and server-to-server commands. The infrastructure
of servers can be easily configured and extended with an incremental process
that is managed locally by server administrators. New servers can join the
infrastructure by connecting as slave to another (master) server that is already
part of the infrastructure and that is willing to share articles. The structure of
serves thus formed is a tree in which articles are flooded from master servers
to slave servers. Besides receiving the feed of articles from their master server,
slave servers can also send articles that have been posted locally to their master
server.

Articles are posted to news groups, each group roughly representing a dis-
cussion topic. Groups are organized in a hierarchical name/subject space.
NNTP provides some primitive filtering capabilities. Articles can be selected
by means of some simple expressions denoting sets of group names and also
based on the date of postings, so for example, a slave server can request all the
groups in comp.os.* that have been posted after a given date.

The main problem with the USENET news infrastructure and with NNTP,
that limits their applicability as an event service, is that the selection mecha-
nisms are not very sophisticated. Although group names and sub-names re-
flect the general subject and content of messages, the filter that they realize
is too coarse-grained for most users and definitely inadequate for a general-
purpose event service. This is also proved by the fact that most news readers
(the client programs) allow users to perform sophisticated additional filtering
to discard uninteresting messages once the messages have been transferred
from the server. The limited expressiveness of the USENET news system may
results in unnecessary transfers of entire groups of messages. The service is
scalable but still quite heavyweight, in fact the time frame of news propaga-
tion ranges from hours to days.

IP Multicast

IP multicast [22] is a network-level infrastructure that extends the Internet pro-
tocol in order to realize an efficient one-to-many communication service. IP
multicast is an extension to the usual unicast routing mechanism realized over
the Internet. The network that realizes this extension is also referred to as
MBone. In MBone, a multicast address (or host group address) is a virtual
(IP) address that corresponds to a group of hosts possibly residing on different
subnets. IP datagrams that are addressed to a host group are routed to every
host that belongs to the group. Hosts can join or leave a group at any time

12 Background and New Challenges

using a special group membership protocol [27]. IP multicast per se is at the
same level as IP, thus it is a connectionless best-effort (unreliable) service. A
reliable transport layer can be implemented on top of IP multicast[47, 79].

We consider the IP multicast infrastructure and its routing algorithms to
be the most important technology related to the SIENA event service. As a
first observation, note that IP multicast can be used as an underlying transport
mechanism for notifications, but the most important aspect that makes IP mul-
ticast so relevant to this research is that an event service can be thought of as
a multicast communication infrastructure in which addresses are expressions of
interest. With this model the ideas developed for routing multicast datagrams
can be adapted to solve the problem of forwarding notifications in an event
service.

Unfortunately, the IP multicast infrastructure alone does not qualify as an
event service because of limitations in its addressing. The first issue is map-
ping expressions of interest into IP group addresses in a scalable way. The
second issue is the limited expressiveness of IP addresses. In fact, even as-
suming that we can encode subscriptions so to map them into IP multicast
addresses and that a separate service, perhaps similar to DNS, is available for
managing and resolving the mapping, the addressing scheme itself still poses
major limitations when observing combinations of events or when combining
different subscriptions into more generic ones. Because IP multicast never re-
lates two different IP groups, it would not be possible to exploit the similarities
between subscriptions. Different notifications matching more than one sub-
scription or participating in more than one combination of events would map
into several separate multicast addresses, each one being routed in parallel and
autonomously by the IP multicast network, thus defeating the whole purpose
of the event service.

In Chapter 4 we will examine in greater details the similarities between
SIENA and MBone highlighting the ideas that SIENA inherits from the work
and experience done for MBone with special attention to multicast algorithms.

2.1.3 Distributed event-based infrastructures

Some technologies specifically realize an event notification service with a dis-
tributed infrastructure. Among them we find JEDI [18], Elvin [68], TIBCO’s
TIB/RendezvousTM [73], Keryx [81, 40], and iBus [69].

To our knowledge, except perhaps for TIB/Rendezvous, no one of these
systems has been actually deployed and used on a significant number of sites
across the boundaries of a local-area network. Also, while all of these systems
have implementations available, either for free or commercially, we are not
aware of any systematic assessment of their stability or their scalability on a

Related technology 13

wide-area network1. Hence for this class of systems, we focus on the analysis
of the expressiveness of the service that they provide.

To do this, we examine the data model that they adopt for event notifica-
tions, and in particular we distinguish them according to the part of that data
model that is visible to the event service through subscriptions. In other words,
we classify the expressiveness of the event service by the expressiveness of its
subscriptions that in turn depends on the structure of notifications. This crite-
rion follows the classification framework defined in [19].

Frameworks for distributed event-based interaction

There is a class of infrastructures that we discuss here that do not realize an
event service, although they are publicized as such. These infrastructures are
frameworks, typically frameworks of virtual classes (or interfaces) in an object
oriented language, that support an event-based interaction among software
components.

The most significant example is the JavaTM Distributed Event Specifica-
tion [71]. This framework defines the Java interfaces of roles such as event
generators, event listener, and event notifications. Typically, an event generator ex-
ports a registermethod that allows event listeners to declare their interest in the
events emitted by the event generator. The listener interface defines a method
called notify that will be called by the event generator whenever an event oc-
curs. This framework of classes allows a distributed interaction because both
event generators and event listeners are remote objects and their interaction is
handled by means of RMI calls [70, 26].

The notification model adopted by the Java Distributed Event Specification
is very versatile. In fact notifications are Java objects implementing the Remo-
teEvent. The filtering capability is instead rather limited. Event notifications
have an event id of type long. The registration of a listener can select events
based only on their id.

It should be clear that, regardless of the expressive power of notifications
and subscriptions, this framework does not specify an event service since event
listeners directly contact event generators and, the other way, event generators
directly notify event listeners. This introduces a strong dependency between
producers and consumers of event, thereby defeating the purpose and the ben-
efits of having an event service.

1TIB/Rendezvous is a commercial product. Thus its evaluation is somewhat difficult. The
information we gathered on TIB/Rendezvous are derived mainly from its user manual. We were
not able to get specific technical data neither about its architecture nor about its usage and its
scalability.

14 Background and New Challenges

Channel-based subscriptions

The simplest subscription mechanism is what is commonly referred to as chan-
nel. Interested parties can subscribe or listen to a channel. Applications ex-
plicitly notify the occurrence of events by posting notifications to one or more
channels. The part of an event that is visible to the event service is the identifier
of the channel to which the event has been sent. Every notification posted to
a channel is delivered by the event service to all the interested parties that are
listening to that channel.

The abstraction of the channel is equivalent to the one given by a mailing
list or an IP multicast group address. Channel-based event services are func-
tionally identical to a reliable multicast with a one-to-one mapping between
channels and multicast addresses, in fact iBus, a channel-based event service,
uses a transport mechanism based on IP multicast [48] (in which the mapping
is the identity function). There is no interplay between two different channels
and in most of the system, it is not clear how channels can be publicized. In
addition to iBus, the CORBA Event Service [58] adopts a channel based archi-
tecture.

Subject-based subscription

Some systems extend the concept of channel with a more flexible addressing
mechanism that is often referred to as subject-based addressing. In this case,
event notifications contain a well-known attribute —the subject— that deter-
mines their address. The remaining information contained in the notifica-
tion, although structured with an expressive type system, remains opaque for
the event service. The main difference with respect to channels is that here
subscriptions can express interest in many (potentially infinitely many) sub-
jects/channels by specifying some form of expressions to be evaluated against
the subject of a notification. This implies that a subscription might define a set
of event notifications, and two subscriptions might specify two overlapping
sets of notifications. This in turn means that one event may match any number
of subscriptions.

JEDI [18] and TIB/Rendezvous [74], as well as the USENET News system,
adopt a subject-based subscription mechanism. In both TIB/Rendezvous and
JEDI, the subject is a list of strings2 over which it is possible to specify filters
based on a limited form of regular expressions. For example, the filter econ-
omy.exchange.*.MSFT* will select all the notifications whose subject con-
tains economy in first position followed by exchange in second position, any
string in third position, and a fourth string that starts with MSFT. Note that
both, JEDI and TIB/Rendezvous allow to attach structured and typed infor-

2In JEDI, events are given in the form of a function call where the first string is the func-
tion/event name and the following ones are the parameters.

New challenges for Event-based technologies 15

mation to event notifications, JEDI with an object-oriented model implemented
in Java, TIB/Rendezvous with a record structure with mappings on different
programming languages. However, this information is not accessible from sub-
scriptions.

Content-based subscription

By extending the domain of filters to the whole content of notifications we
obtain another class of subscriptions called content-based. Content-based sub-
scriptions are conceptually very similar to subject-based ones. However, since
they can access the whole structured content of notifications visible, they give
more freedom in encoding the data upon which filters can be applied and that
the event service can use for setting up routing information. Moreover, if the
notification model adopts a type system, exposing the structure of notifications
makes their type system visible too, thus, allowing more expressive and read-
able filters as well as enabling some consistency checking. Examples of systems
that provide this kind of subscription language are, Yeast [44], GEM [49] (these
two are not distributed though), Elvin [68], Keryx [41] and SIENA itself.

2.2 New challenges for Event-based technologies

2.2.1 Discussion and principles

From the survey of systems that we have gone through, we can distill a set
of fundamental principles and a set of features that we believe are essential in
understanding problems and solutions in the context of event-based systems.

Conceptual framework

The first step in analyzing event services is to identify and model the entities
that partake in the event-based interaction. A conceptual framework defines
terms and roles for these entities. The models proposed in [67] offer the guide-
lines for this task. We will adopt some of these models and terms and we will
develop a conceptual framework for SIENA in Section 3.1.

Architecture of the event service

The architecture of the event service describes the software components that re-
alize the event service together with their connections. The description should
emphasize the location of components, the topology of their connections, and
how connections are controlled.

Clearly, the architecture has a significant impact on functionality and scala-
bility of a system. For example, with a centralized event service, it is relatively

16 Background and New Challenges

easy to implement complex filtering of notifications, but it is evidently diffi-
cult to obtain a scalable service. On the other hand, a distributed event service
seems to guarantee more scalability, but at the same time, it introduces serious
difficulties in realizing complex filters and in guaranteeing time ordering of
events.

Event notification space

The data associated with an event is captured and transmitted by means of
event notifications. Thus, the data model chosen for event notifications defines
what can be communicated with events or at least it dictates the way informa-
tion have to be encoded. Just to give some examples, an event notification can
be a single number, a string, a sequence of strings, a list of named attributes,
a typed (flat) structure, a composite structure, an object in an object-oriented
language, etc.

Given a certain structure for notifications, an event service might also in-
troduce some data with pre-defined semantics, for example, assuming event
notifications in the form of lists of named attributes, an event service might
automatically add some attributes to every notification to pass additional “sys-
tem” information such as a time-stamp or authentication credentials.

Subscription language

Subscriptions express the interests of applications. With a subscription, an ap-
plication can instruct the event service to monitor a certain event or combi-
nation of events. We distinguish simple and compound subscriptions. We call
simple those subscriptions that select one event notification at a time while we
call compound the ones that can select a combination more than one notifica-
tions. For Example, a simple subscription could request all the “alarm” events,
while a compound subscription could request all the sequences of three or
more “alarm” events.

It is useful to distinguish two concepts within the analysis of the subscrip-
tion language: the filtering function that selects single events based on their
contents, and the pattern monitoring function that recognizes combinations of
events.

Setting a filterwith a subscription means defining a predicate that the event
service evaluates against every notification. It is of fundamental importance to
define the domain of these predicates. In other words, it is crucial to determine
(1) which parts of a notification are visible to the event service for the evalua-
tion of subscriptions and (2) what kind of primitive predicates and connectors
are available.

A pattern monitor is a mechanism that groups events. Every single event in
a pattern might be selected through a filter, while the “proper” pattern moni-

New challenges for Event-based technologies 17

tor defines the relations (e.g., temporal relations) among events that form the
group. Typically, events are initially ordered in a temporal sequence, then the
monitor defines some sort of expression in which every single term can be
matched by an event in the sequence. Recalling the above example, a pattern
that monitors three “alarm” events can be expressed by a catenation of three
filters, each one selecting “alarm” events. In designing or assessing the moni-
toring capabilities of an event service, we should consider the relations that can
be defined among events to order them into a stream as well as the language
that defines the observable sequences of events.

2.2.2 Goals: scalability and expressiveness

We believe the new challenges for wide-area event services can be synthesized
into two conflicting aspects: scalability and expressiveness. It is the tension be-
tween scalability and expressiveness that introduces the major difficulties in
designing a wide-area event service.

2.2.3 Scalability

We say a system is scalable when it is able to grow gracefully. In particular,
we refer to all the implications of moving an event service from a local-area
network to a wide-area network. These are the most significant requirements
subsumed by scalability:� vast numbers: scaling up an event service involves serving more and more

applications and components from many sites, dispatching a vast num-
ber of events;� distance and network robustness: on a wide-area network, distance becomes
a very relevant factor. The most immediate effect on the event service
is that bandwidth becomes scarce, latency becomes noticeable, and the
reliability of the network decreases. In general, we ought to think of the
network as a precious resource;� heterogeneity: when scaling up outside the boundaries of a group or an or-
ganization, it is no longer legitimate to assume a common platform. This
requires the event service to make minimal assumptions on the capabil-
ity of each site or on its conformance to one particular data representation
standard or one particular communication protocol. In general, it is good
to design an event service that is independent of any particular protocol
and thus can “speak” many different ones;� openness: wide area networks change continuously in an unpredictable
way (see [61]), thus, the event service should be able to accommodate
extensions and somehow evolve together with the network;

18 Background and New Challenges� de-centralized architecture and control: the Internet is characterized by many
separate domains managed by different authorities. In this scenario it
is not realistic to design a service that requires centralized coordination.
The event service should be designed to allow autonomous control and
de-centralized operations.

2.2.4 Expressiveness

Expressiveness refers to the main functional properties of the event service as-
sessed from the viewpoint of applications. An event service is expressive and
flexible when it has a rich notification model and when it has the ability to
observe notifications with a high degree of accuracy. A flexible event service
gives the application programmer a versatile schema for modeling data as well
as fine selectivity in accessing data of interest.

Expressiveness translates into the following requirements:� structured notifications we believe that notifications must exhibit some
form of structure. With this structure, it should be possible to associate
heterogeneous information to an event. Notifications may transport ad-
ditional “black-box” information. Each piece of information should be
accessible separately. It is not strictly necessary to adopt a type system
for notifications, however it must be possible to encode the most com-
mon types such as numbers, strings, and dates. If a type system is not
explicitly imposed, a reference encoding schema for the most common
types must be defined as part of the event service;� expressiveness of filters the scope of subscription filters should cover the
whole structured part of a notification. Primitive predicates must include
at least the most common equality and order relations for all the common
types (or encodings) as well as some form of wild-card matching function
for strings. The usual boolean operators should be provided.� patternswe believe that an event service should provide some sort of pat-
tern monitoring facility. An example of simple classes of patterns is the
temporal sequence.

2.2.5 Trade-offs

From what we listed above, it is quite clear that neither expressiveness nor
scalability pose significant difficulties if requested singly. Satisfactory results
of programming languages and database research solve the problems related to
the modeling, encoding, filtering, and monitoring of data elements. Similarly,
as far as scalability is concerned, several techniques have been developed by
the network community to cope with scalable multi-cast communications.

New challenges for Event-based technologies 19

It should be also clear that expressiveness and scalability are conflicting
features. In fact, techniques that optimize the dispatching of notifications to
multiple recipients adopt very simple addressing schemas that are not suitable
for expressing sophisticated filters. On the other hand, highly expressive data
models with rich subscription languages are better realized with centralized
engines that do not scale well. We believe the real challenge for the design of
an event service is to offer an expressive interface while assuring good scala-
bility to wide-area networks. We found that none of the system that we have
examined satisfies these two requirements together.

20 Background and New Challenges

Chapter 3

The SIENA Event Service

SIENA is a dispatcher of event notifications. Applications that use SIENA can be
interested parties, i.e., event consumers, or objects of interest, i.e., event genera-
tors, or both. In SIENA, the dispatching is regulated by advertisements, subscrip-
tions, and publications.

interested partyobject of interest

publish(3)

advertise(1) subscribe (2)

notify (4)

event service

Figure 3.1: Event service

Figure 3.1 shows the high-level architecture of an event service. Informally,
objects of interest specify the events they intend to publish by means of adver-
tisements (1), while interested parties specify the events they are interested in by
means of subscriptions (2). Objects of interest can then publish notifications (3),
and consequently the event service will take care of delivering the notifications
to the interested parties that subscribed for them (4).

This chapter gives a formal definition of the interface and the semantics of
the event service realized by SIENA. We will initially define some basic con-

22 The SIENA Event Service

cepts and terms that we will use for our models, then we will define the notifi-
cation model adopted in SIENA, the interface functions exported by SIENA, and
the semantics of SIENA, i.e., its behavior in response to various combination of
calls to the interface functions.

3.1 Basic principles

The terms used in this thesis, in particular the terms notification, object of inter-
est, and interested party, follow the framework proposed in [67]. Since we are
modeling software systems that are distributed over a computer network, we
need some abstractions for software components, network nodes, communi-
cation, and in general we have to model the interaction between components.
Here we define the elements of our model.

3.1.1 Objects

With the generic term object, we denote applications, components, and every
active or passive entity inside or outside the event service. Examples of ob-
jects are processes, threads, files, servers, web pages, organizations, etc. Ob-
jects have an identity and a location on the net. Without loss of generality, we
will always model active objects, i.e., objects that communicate autonomously.
Passive objects, such as files, can participate in an event-based interaction by
means of other active objects that act as proxies (or probes). A proxy continu-
ously monitors the state of one or more passive objects and notifies events on
their behalf. For passive objects that are “wrapped” by a proxy, we will con-
sider the proxy to be the object we model and we will ignore the real passive
object.

We call interested parties and objects of interest those objects that produce and
consume events respectively. One application can react to events and notify
events, thus playing both roles at the same time, however for simplicity, we
will always model interested parties and objects of interest as separate objects.
Interested parties and objects of interest are clients of the event service there-
fore they are external to the event service.

3.1.2 Event Servers

The objects that compose the event service are referred to as events servers.
An implementation of SIENA is realized by one or more interconnected event
servers. An application, either an interested party or an object of interest, con-
tacts the event service via one event server. This event server is said to be the
application’s access point.

Figure 3.2 shows an implementation of SIENA and some applications.

Basic principles 23

event service

servers

clients

access points

Figure 3.2: Internal architecture of the event service

3.1.3 Network

We assume that objects are connected by means of some communication facil-
ity that we refer to as communication network or simply network. The primitive
unit of data that can be exchanged through the network is called amessage. The
primitive communication mechanisms are send, that takes a message as a pa-
rameter, and receive that returns a message. Sending a message to an object is
also equivalent to invoking an asynchronous method called process-message on
that object with a message as a parameter.

Clearly, this network model is very simplistic because here it serves only
modeling purposes. This model subsumes a real communication infrastruc-
ture, possibly built over a datagram network (e.g., IP) with a high level reliable
connection-oriented transport protocol (e.g., TCP), and with higher level pro-
tocols that realize the method invocation facility among objects with the proper
encoding of parameters (e.g., HTTP, RPC, RMI).

3.1.4 Events and notifications

The concept of event seems to be quite straightforward, however rather differ-
ent definitions have been proposed in literature. For example, in GEM [49]
“An event is a happening of interest, which occurs instantaneously at a specific
time”. Another definition given by [67] characterizes an event as “the instan-
taneous effect of the (normal or abnormal) termination of an invocation of an
operation on an object”. Both definitions agree on giving no duration to events,
but while according to the first one, events exist because some entity is inter-

24 The SIENA Event Service

ested in them, the second one defines events independently of any interested
party. The second definition also subsumes an object model while the second
one is neutral with respect to the model adopted for entities. Other systems
less explicitly adopt other different definitions.

Being a modeling abstraction, an event might be given several different
forms and semantics. Some of the critical aspects regarding the event model
include:� duration: it is not clear whether events have a duration or they are in-

stantaneous happenings. We believe the two models are fundamentally
different, but equally expressive. Events with duration can simply rep-
resent instantaneous events with a null duration, while events with du-
ration can be modeled with two instantaneous events representing the
beginning and the end respectively;� binding with object of interest: as we have seen, events can be modeled
in terms of the object of interest to which they relate or else they can be
modeled irrespectively of their origin. There are events that are strongly
related to an object of interest, for example, an event can be generated
when a printer is out of paper. This event is clearly meaningful only if
modeled together with the printer. On the other hand, there are events
that can be reasonably modeled without a reference object, for example
a clock tick event might be generated independently of any particular
clock object;� event occurrence and observation: some systems model the occurrence of
events whereas other systems model the observation of events. In the first
case, events exist and are modeled regardless of the existence of any ob-
ject that detects their occurrence. In the second case, those events that are
not observed simply do not exist. We believe that the first approach is
logically more complete, however the difference is more profound from
a philosophical viewpoint and in practice the two approaches are sub-
stantially equivalent.� information: this determines how much contents can be associated with an
event. Note that from some definitions, including the ones that we cited
above, it is not clear whether or not events contain any information at all.
A minimal piece of information is always embedded in the event notifi-
cation, it is the name or type of the event itself, i.e., some sort of identifier
by which applications can distinguish “stock exchange variation” events
from “failed login” events from “printer out of paper” events and so on.
In practice, events can be used to integrate software components only
if they can encapsulate some information, thus many systems allow ob-
jects of interests (or their proxies) to add extra information concerning
the event.

Basic principles 25

Ultimately, a precise characterization of an event involves philosophical is-
sues and it is still subject of debate. In this work, we simply avoid discussing
the event model, so we never model events themselves, but instead we refer to
notifications that are their “physical” representation. In SIENA, notifications are
the primitive elements. Notifications have a precisely defined structure and
they are explicitly published by objects through the SIENA interface. In other
words, an event is whatever an object publishes and the event model is what
can be represented by a notification.

3.1.5 Identifiers and handlers

In order for interested parties, objects of interest, and other objects to com-
municate, a naming scheme must be adopted whereby objects can be uniquely
identified, and a handling scheme must be adopted so that objects can be con-
tacted using appropriate communication protocols. For every object,� an object identifierX determines its identity; and� a handler Xh represents the address used by other objects when sending

messages to X .

In general, an object has exactly one identifier and one or more handlers. Also,
while the identifier remains bound to an object, handlers may change during
the existence of the object.

SIENA adopts the generic URI [5] form for both its naming and handling
scheme. Also in SIENA, every object has exactly one URI that serves the
functions of identifier and handler (X � Xh). Note that handlers in the
form of URIs determine a sort of “extended” address that includes the lo-
cation of the object and the protocol used to communicate with it. For
example, if the URI mailto:carzanig@cs.colorado.edu identifies an object, then
mailto:carzanig@cs.colorado.edu is both the unique name of that object and the
method that the event service uses to communicate with that object. In this
case, in order to send a notification to that object, the event service will send an
e-mail message to carzanig@cs.colorado.edu.

SIENA recognizes the most common URI schemas, includingmailto and http,
and thus implements the communication protocols implied by each schema.
In any case, the handler schema is open to accommodate new communica-
tion protocols. SIENA defines and maintains the URIs corresponding to event
servers, i.e., its internal components, but it does not directly assign or main-
tain URIs for interested parties or objects of interest. Such URIs are operated
by clients themselves. This means that if an interested party identifies itself as
mailto:carzanig@cs.colorado.edu, then the event service will simply assume that
the mailbox carzanig@cs.colorado.edu exists and is directly accessible.

26 The SIENA Event Service

3.2 Syntax of the SIENA event service

3.2.1 Interface functions

The SIENA event service exports the functions listed in Table 3.1.

publish(notification n)
subscribe(URI subscriber, pattern p)

unsubscribe(URI subscriber, pattern p)
advertise(URI publisher, filter f)

unadvertise(URI publisher, filter f)

Table 3.1: Interface functions of SIENA

Intuitively, publish(n) allows an object of interest to generate an event no-
tification n and to make it visible to other applications, subscribe(X; p) states
that object X is interested in being notified of events matching pattern p, and
unsubscribe(X; p) declares that X is not (any more) interested in receiving
notifications of pattern p. This far the interface of SIENA is pretty much equiva-
lent to that of most event-based infrastructures. In addition to these functions,
SIENA exports two more functions that are the dual counterpart of subscribe
and unsubscribe. They are advertise and unadvertise respectively. With adver-
tise(Y; q), an object of interest Y declares its intentions to generate notifications
matching filter q, and with unadvertise(Y; q), the effect of advertise(Y; q) is
negated.

In SIENA, subscribers and advertisers are explicitly reported as parameters
in the interface functions. It is important to do so because we might want to
allow objects to send subscriptions to the event service on the behalf of other
objects. The publish function does not require an explicit publisher because the
event service would not use that information anyway.

The rationale for introducing the advertise function is to give more infor-
mation to the event service so that it can efficiently route subscriptions. In
fact, since subscriptions define the potential targets of notifications, they can
be used by the event service to direct the routing of notifications. For example,
we could instruct the event service to route notifications only towards those
objects that submitted matching subscriptions. This policy forwards a notifi-
cation only if there is an interested party that requested it, thus reducing the
traffic and the cost generated by notifications. However, such a policy requires
every subscription to be propagated to every event server. Instead, by having
objects of interest advertise their intentions, we let SIENA know about the po-
tential sources of events, this way allowing it to prune the propagation tree of
subscriptions only to those subnets that contain object of interest that generate

Syntax of the SIENA event service 27

relevant events. A complete discussion on the notification algorithms will be
developed in Chapter 4.

In the following sections we present the syntax and the semantics of the in-
terface functions of SIENA by formally defining notifications, filter s, and patterns
and their role in every interface function.

3.2.2 Notifications

An event notification is a set of attributes in which each attribute is a triple:

attribute = (name; type; value)
For example, the notification displayed in Figure 3.3 represents a stock price

variation event.

string event =finance/exchanges/stock
time date =Mar 4 11:43:37 MST 1998
string exchange =NYSE
string name =Walt Disney Co.
string symbol =DIS
float prior= 105.25
float change = -4
integer volume = 2260600
float earn = 2.04

Figure 3.3: Example of a notification

In SIENA, attributes are uniquely identified by their name. Attribute types
belong to a limited set of types. For these types, a fixed set of operators is also
defined. Types and operators are an integral part of the definition of the SIENA

event service. The types defined by SIENA are: char, integer, boolean, float, string,
byte-array, and date1. The operators are the (any) operator that matches any
value, the equality (=) and order relation (>), that have their usual intuitive
semantics2, plus the string prefix operator (> �) and string postfix operator
(� <). The prefix and postfix operators for strings have the meaning of “be-
gins with” and “ends with” respectively, so for example “www.elet.polimi.it”>�“www” and “www.cs.colorado.edu” �<“edu”.

We use a simple “dot” notation to refer to name, type, and value of an
attribute. So, if � is an attribute of a notification, �:name, �:type, and �:value
denotes its name, type, and value respectively. For simplicity and when there
is no ambiguity, �:value can also be abbreviated with �.

1We will not go into details with a formal definition of these types. We can assume the standards
defined for SQL

2The ordering relation with strings implements the lexicographical ordering.

28 The SIENA Event Service

3.2.3 Filters

An event filter, or simply a filter, defines a class of event notifications by speci-
fying a set of attribute names and types and some constraints on their values.�� ��string event >�finance/exchanges/

string exchange = NYSE
string symbol = DIS
float change < 0

Figure 3.4: Example of an event filter

Figure 3.4 shows a filter that selects negative stock price variations for a
specific stock on a specific exchange. More formally, a filter is a set of attribute
filters. Each attribute filter specifies a name, a type, a boolean binary operator,
and a value for an attribute:

attr filter = (name; type; operator; value)
In an event filter, there can be two or more attribute filters with the same name.
For an attribute filter �, �:match op(Op1; Op2) denotes the application of the
operator defined by � to operands Op1 and Op2.

Intuitively, a filter can be seen as a query-by-example mask to select noti-
fications based on their contents, however it should be clear that the previous
definitions are just syntactic data schemas that will be given a precise semantics
depending on the interface function in which they are applied.

3.2.4 Patterns

A pattern of events is defined by combining a set of event filters using filter
combinators.

An example of a pattern that combines two filters into a sequence is shown
in Figure 3.5. Intuitively, while a filter selects one event notification at a time,
a pattern can select several notifications that together match an algebraic com-
bination of filters. Syntactically, a pattern is equivalent to an expression in any
Algol-like programming language. The elementary terms of a pattern are fil-
ters, so a single filter is itself a pattern and any one, two, or more patterns can
be combined with unary, binary, n-ary operators to form another pattern.

We say that a pattern is simple when it contains only one event filter and
no operators. Patterns that are not simple are also called compound. Also, since
subscriptions submit patterns to the event service, we extend the same termi-
nology to subscriptions, thus we say that a subscription is simple or compound
when it requests a simple pattern or a compound pattern respectively.

Semantics of the SIENA event service 29�� ��string event >�finance/exchanges/
string symbol = MSFT
float change < 0

and then�� ��string event >�finance/exchanges/
string symbol = NSCP
float change > 0

Figure 3.5: Example of a pattern of events

Again, note that these are syntactic definitions. Later we will present some
operators and we will discuss the semantics of the patterns that they generate.

3.3 Semantics of the SIENA event service

3.3.1 �: covering relations
In order to give the precise semantics of the event service, we must introduce
and define the concept of covering (or compatibility) relation between notifica-
tions and subscriptions, and between subscriptions and advertisements. The
compatibility between notifications and subscriptions defines the semantics of
subscriptions. Since the main job of the event service is to decide whether or
not notifications match subscriptions, this compatibility plays a fundamental
role. The compatibility between subscriptions and advertisements is also im-
portant because, in setting up the routing information, the event service takes
advertisements into account to see if they are relevant to any subscription. The
compatibility between subscriptions and advertisements subsumes a relation
between notifications and advertisements that defines the semantics of adver-
tisements.

The following sections define what it means for a notification to be compat-
ible with a subscription and for a subscription to be compatible with an adver-
tisement. Initially we consider only simple subscriptions (i.e., event filters) and
then we extend the compatibility relations to compound subscriptions.

3.3.2 �nf : semantics of attribute filters
Firstly, let us define the semantics of an attribute filter. We indicate that an
attribute � matches an attribute filter � with the relation:� �nf �

30 The SIENA Event Service

defined as follows:�:name = �:name ^ �:type = �:type ^ �:match op(�:value; �:value)
This expression says that an attribute filter covers an attribute when both

have the same name and the same type, and when the value of the attribute
matches the value of the filter according to the operator defined by the filter.

Note that here and in the following sections, we will use different expres-
sions to denote some type of covering relations. For any two entities x and y,
these expressions and symbols are interchangeable:� x � y� x covers y� y matches x� y is compatible with x
3.3.3 �NS : semantics of subscriptions
Let N be the domain of notifications and let S0 be the set of all the simple
subscriptions. We define the following binary relation:

CoversNS � S0 �N
For brevity, we represent the relation CoversNS with the symbol ‘�NS ’. Con-

sistently we say that whenever s �NS n, the notification n is compatible with or
matches the subscription s. We denote with NS(s) � N the set of notificationsn covered by s.

We define the semantics of �NS by defining NS(s) as follows:NS(s) = fn 2 N : 8� 2 s : 9� 2 n : � �nf �g
This formula mandates that every attribute in the subscription matches the

corresponding attribute in the notification. The correspondence is based on at-
tribute names. If the subscription contains more than one attribute with the
same name, the matching rule applies to all of them. The notification may
also contain other attributes that have not correspondents in the subscription.
Table 3.2 contains some examples of pairs of notifications and simple subscrip-
tions that show the meaning of CoversNS .

Semantics of the SIENA event service 31

subscription notification�� ��string event = alarm �NS string event = alarm
time date = 02:40:03�
 �	string event = alarm

integer level > 3
6�NS string event = alarm

time date = 02:40:03�� ��string event = alarm
integer level > 3
integer level < 7

6�NS string event = alarm
integer level = 10�� ��string event = alarm

integer level > 3
integer level < 7

�NS string event = alarm
integer level = 5

Table 3.2: Examples of CoversNS
3.3.4 �SA: semantics of advertisements
We define the semantics of advertisements similarly to what we have done in
the previous section for subscriptions. Let A be the domain of advertisements
and let a 2 A be an advertisement. We define the set of notifications NA(a)
covered by a:NA(a) = fn 2 N : (8� 2 n : 9� 2 a : �:name = �:name)^ (8� 2 n : 8� 2 a : �:name = �:name) � �nf �)g (3.1)

This says that an advertisement a covers all the notifications n that have a
set of attributes that is included in the set of attributes of the advertisement. Also
attributes in n and a that have the same name must also have matching values.
A notification that has an attribute that is not present in the advertisement is
not covered by that advertisement.

Given the definition of NA(a) we can easily define CoversSA (�SA for short),
the covering relation between advertisements and subscriptions:�SA� A� S0
Intuitively, the compatibility between a subscription s and an advertisement a
corresponds to the relation between the two sets of notifications defined by s

32 The SIENA Event Service

and a respectively, thus: s �SA a, NA(a) \NS(s) 6= ; (3.2)

This says that an advertisement a covers a subscription s if the set of notifica-
tions defined by a, NA(a), includes at least one notification that is also covered
by s. Consistently we say that s is compatible with a, that in this case can be
interpreted also as “a is relevant for s”, or else “a advertises something that
might be of interest for s”. See Table 3.3 for some examples.

advertisement subscription�� ��string event = alarm
time date any
integer level > 0

�SA �
 �	string event = alarm
integer level > 3�� ��string event = alarm

time date any
integer level > 0

6�SA �� ��string event = alarm
integer level > 3
string user any�� ��string event = alarm

time date any
integer level > 0

�SA �� ��integer level > 5�� ��string event = alarm
time date any
integer level > 0

6�SA �� ��integer level any
Table 3.3: Examples of CoversSA

3.3.5 Behavior of the service

We discuss the semantics of SIENA by defining the expected behavior of SIENA

in response to advertisements, subscriptions, and notifications. We have stud-
ied and implemented two alternative semantics:� subscription-based, and� advertisement-based.
These two behaviors define two different event services. The reason to present
both and not to make a definite choice here is that these two semantics impose

Semantics of the SIENA event service 33

different requirements upon the implementation of the event service, resulting
in different architectures with different degrees of scalability. At this point, we
do not have enough experience in using the event service to know which one
is more suitable, flexible, and scalable. It might also make sense to provide
both of them and let the user choose which one works best for each particular
situation.

3.3.6 Subscription-based event service

In the subscription-based event service, only subscriptions determine the seman-
tics of the service. Advertisementsmay be used by the event service (e.g., to op-
timize the routing of subscriptions), but they are not required. The event service
will guarantee the delivery of a notification to all interested parties that have
subscribed for it. Referring to the compatibility relation between notifications
and subscriptions, this means that the event service will send a notification n
to an object X if and only if X has sent at least one subscription s that covers n
and that has not been canceled by a subsequent unsubscription.

Summing up, the event service will deliver a notification n to an interested
party X if and only if :

1. X subscribes for s; and

2. s �NS n.

Note that if these conditions are not satisfied at the time the notification n is
published, the event service will not complete the delivery. In particular, if X
issues the subscription s after n has been published, then X will not be notified
on the occurrence of n.

3.3.7 Advertisement-based event service

In the advertisement-based event service, both advertisements and subscriptions
are used. In particular, advertisements are used to make notifications visible
to all the participants of the event service. More specifically, the event service
will guarantee the delivery of a notification n posted by object Y to interested
party X if and only if

1. Y advertises a;

2. X subscribes for s;

3. a �SA s; and

4. s �NS n.

34 The SIENA Event Service

Note that if an interested party X sends a subscription s0 that covers n, butY has never posted any advertisement a that covers s0, then the event service
will not guarantee the delivery of n to X . Again, here the conditions must
be matched at the time Y publishes n. However we do not set any temporal
precedence between subscriptions (X subscribes for s) and advertisements (Y
advertises a). This implies that the conditions that determine the delivery of a
message can be met either way.

3.3.8 Un-subscriptions and un-advertisements

The above definitions would not be complete without a more formal specifi-
cation of the effects of unsubscriptions and unadvertisements. As we said, an
unsubscription (unadvertisement) cancels one or more corresponding subscrip-
tions (advertisements).

Given a simple unsubscription unsubscribe(X; fus) where X is the iden-
tifier of an interested party and fus is an event filter, the event service cancels
all the simple subscriptions subscribe(X; fs) submitted for the same interested
party X with a subscription filter fs covered by fus. An unsubscription covers
a subscription when the set of notifications covered by its filter fus, interpreted
as a subscription, includes the set of notifications covered by the subscription
filter fs, i.e., when NS(fus) � NS(fs).

A similar rule applies to advertisements and unadvertisements, so the sim-
ple unadvertisement unadvertise(X; fua) cancels all the advertisements adver-
tise(X; fa) issued for the same object of interest X with a filter fa that defines
a set of notifications included in the set of notifications defined by fua inter-
preted as an advertisements, i.e., when NA(fua) � NA(fa).
3.3.9 Patterns

So far we have discussed the semantics of the event service for simple sub-
scriptions, i.e., for subscriptions that are composed of one event filter. How-
ever, both the subscription-based and the advertisement-based semantics can
be easily extended to incorporate patterns.

As described above, patterns are defined by pattern filters, which are expres-
sions whose elementary terms are simple filters. The composition of notifica-
tions to form patterns is defined upon the temporal sequence of notifications.
Each notification is implicitly time-stamped at the time it is published, so a pat-
tern is a string of notifications with increasing time stamps from left to right.
When two or more notifications are combined in a pattern or when two or
more patterns are combined into a bigger pattern, the new pattern inherits the
time stamp of the rightmost notification. In any case, the combination of two
patterns must produce a time-ordered string of notifications.

Other semantic aspects of the event service 35

More formally, given the subscription subscribe(X;P), with pattern filterP = f1 � f2 � � � fk, being “�” the sequence or concatenation operator, SIENA tries to
assemble a sequence of notifications n1; n2; : : : nk, published at time t1; t2; : : : tk
with t1 � t2 � : : : � tk, each one matching the corresponding filter in P , thus:k̂i=1 fi �NS ni

A pattern filter P determines the alphabet �(P) against which the string of
notifications is matched. �(P) = k[i=1NS(fi)
All the notifications in �(P) are evaluated in assembling a pattern that matches
a pattern filter P . No other notifications are taken into account. More formally,
a sequence n1; n2; : : : nk, published at time t1; t2; : : : tk matches a pattern filterP = f1 � f2 � � � fk only if for every pair of notifications ni, ni+1 matching fi
and fi+1 respectively, there is no notification n0i 2 �(P) published within the
interval (ti,ti+1).

The syntax of patterns filters in SIENA allows any kind of operators for com-
bining sub-patterns, however, at this point, SIENA supports only the sequence
operator (�). The implementation of other operators including the or (j) and the
Kleene’s closure (*) might be added in the future.

As far as the semantics of compound subscriptions and advertisements, a
pattern filter can be logically viewed as a set of separate subscriptions to all the
elementary components of that pattern filter, plus a monitor (or parser) that
assembles sequences of notifications, each one matching one of the elementary
components according to the semantics of the combinators3. Thus, the event
service will guarantee the delivery of a pattern of notifications matching an
event filter only if it can guarantee the delivery of all the elementary compo-
nents of the filter. Similarly, compound unsubscriptions and unadvertisements
will cancel those compound subscriptions and advertisements for which the
internal simple filters would be canceled, one by one, by the corresponding
filters.

3.4 Other semantic aspects of the event service

There are some factors that influence the behavior of the event service apart
from the semantics defined by the covering relations. The main aspects are

3Note that it is always possible to implement patterns outside the event service by breaking them
into a sequence of simple subscriptions and by setting up a single monitor on the access point of
the subscriber

36 The SIENA Event Service

related to time and quality of service. Another very important issue that we will
comment on in this section is the mobility of objects.

3.4.1 Time and ordering of events

Timing issues might arise when considering unsubscriptions and unadvertise-
ments. For example, an interested party may send an unsubscription when

time

interested party

event service

object of interest

notif
unsub

notif

sub

Figure 3.6: Race conditions in event notification

some notifications have already been sent to it (see Figure 3.6). In this case,
the interested party will receive undesired notifications. This sort of race con-
ditions is pretty much inevitable in our network model due to the finite trans-
mission speed of communication links.

Other more critical timing issues regarding the ordering of notifications can
arise depending on the topology of the network. Typically we might have the
scenario depicted in Figure 3.7. Here two notifications notif1 and notif2 pub-
lished by objects O1 and O2 respectively at time t1 and t2 with t1 < t2, might be
delivered to the same destination P through two different routing paths with
different latencies. In some cases, the event service would deliver notif1 and
notif2 at time t1 and t2 with t1 > t2, thus creating potential problems for those
applications that rely on the temporal ordering of events. Note that this consti-
tutes a major problem also for the event service itself because the semantics of
patterns is sensitive to the temporal ordering of notifications.

In SIENA we assume that the event service is able to examine events in
the right time order. Ordering events with respect to time is a classical prob-
lem in distributed systems [45] for which there exist well known algorithms
(see [28, 63]). In practice, this assumption requires that the event service buffer
notifications and shuffle them in the correct temporal sequence within a finite
time. Thus, the underlying assumptions are:

Other semantic aspects of the event service 37

time

interested party

event service

object of interest

notif1
notif1notif2

notif2sub

Figure 3.7: Temporal ordering of notifications

1. the existence of a global clock used to time-stamp notifications,

2. an upper bound for the network latency and the network diameter, and

3. sufficiently big communication buffers

The availability of high-resolution GPS services and extremely accurate
synchronization protocols [46] together with the Internet Network Time Pro-
tocol [51, 50] make the first assumption very reasonable for most practical ap-
plications. Instead, the latter requirements can pose serious engineering trade-
offs. Clearly these trade-offs might be different for different realizations of
SIENA, typically a centralized service would be less sensitive to network la-
tency than a distributed service where events are routed through long chains
of servers and where the problems of out-of-order notifications and latency in-
creases at every hop. Note once again that the existence of these trade-offs is
inherent in the communication mechanisms underlying the event service. In
other words, the event service can not do better than the communication mech-
anisms that it uses.

3.4.2 Quality of service

By quality of service (QOS) we refer to a number of non-functional proper-
ties that do not directly affect the semantics of the event service, but that are
nonetheless of fundamental importance for its practical realization and usage.
The interface of SIENA that we presented so far is just the core set of function-
alities. A real implementation must deal with QOS settings such as authentica-
tion and security, and transactional communications. Much of the discussion
pertaining quality of service is out of the scope of this thesis, so we will only
comment on some possible extensions to the existing model by showing the

38 The SIENA Event Service

features that can be used as placeholders for QOS parameters. In any case, we
will not examine solutions that require structural changes to the architecture of
SIENA.

3.4.3 Mobility of applications

Wide-area networks are not just communication facilities. Recently, research
in code mobility has produced a number of languages and systems that make
the network a complete computation infrastructure in which components can
move from one site to the other even during their execution [30]. It is desirable
that an event service support the integration of such mobile objects as well as
the conventional “steady” objects.

The fact that an object can move affects the event service because that object
might change its location while maintaining its identity. Also, when moving
to its new execution site, the object might want to connect to a different access
point, possibly local that new site. Supporting mobility means allowing this
sort of operations without imposing extra requirements on objects. There are
at least three different approaches to support mobility:

transparent this is the case of objects addressed by URIs that hide their lo-
cation and their mobility. Such URIs use network-level mechanisms
to transparently manage mobility or intermittent connectivity of objects
(see [62, 37]). In this case, the objects is treated exactly like every other
“steady” object.

native here the event service uses only “steady” URIs that also contain in-
formation about their location (examples are the mailto and http sche-
mas), but it implements internal mobility mechanisms possibly exported
through new interface functions. This approach has been adopted by
JEDI [19] that exports the functions shown in Table 3.44:

move out(URI orig)
move in(URI orig, URI final)

Table 3.4: Mobility support functions.

With move out, an object declares that it intends to move from its origi-
nal identity/location orig. Withmove in, an object declares its new iden-
tity/location. Note that it is likely that a call to move out and its corre-
sponding move in are issued to two different access points. In practice,
move out requests that the event service suspends all the notifications to

4These interface functions have been slightly changed from their original definition in JEDI

Other semantic aspects of the event service 39

an object while move in requests that these notification be resumed pos-
sibly somewhere else on the net.

What makes this approach difficult to implement are the timing issues
discussed in Section 3.4.1. In fact, not only the event service must make
sure that object “profiles” (their subscriptions and advertisements) are
moved to the new access point, but it also has to deliver all the notifica-
tions in the right order to the object through its new access point. These
are:� notifications that have been published before the object moves, but

that have not yet been received by the object at the time it leaves its
original access point because of network latency;� notifications that are published after the object leaves its original
access point and before it connects to the new access point. In JEDI,
a component can request that these notifications be stored by the
event service during the time the object is “traveling”;� notifications that are published after the object connects to the new
access point.

external in this case, mobility is dealt with outside the event service by adding
an extension layer between the event service and mobile objects. This
layer records all the subscriptions and advertisements and implements
the move out function by buffering all the notifications, and the move in
function by unsubscribing the old URI and re-subscribing the new URI.
This layer also sets up a forward mechanisms that re-sends all notifica-
tions to the new URI. The forwarding mechanisms must also include a
filter that drops possible duplicates. Duplicate notifications can be re-
ceived because, in order not to loose any event, the re-subscription from
the new URI must be issued before the unsubscription from the origi-
nal URI. This interval and the natural latency of the network may cause
some notifications to be routed towards both destinations. The forward
can be eventually dismissed after an amount of time that depends on the
diameter of the network.

This approach is quite simple, but clearly it does not preserve tempo-
ral order of notifications, also it duplicates information that are already
available to the event service.

We believe that, in the framework of SIENA, mobility poses a whole set
of issues that remain open. Especially considering its impact on scalability.
With its interface, SIENA is obviously open to use transparent mobility and it
also permits the implementation of external mobility, however SIENA does not
provide native support for mobile objects.

40 The SIENA Event Service

3.5 Comments on the semantics of the event service

The rationale behind the two semantics and their extensions to patterns is to
define an event notification service that (1) behaves in an intuitive and use-
ful way, and (2) allows for an efficient and scalable realization. In this the-
sis, we do not explore the domain of applications that would make use of an
event service, so we rely on our previous research and experience and qual-
itative conjectures to justify the fact that the semantics of SIENA satisfies the
first requirement. In the following sections we will comment on these aspects.
Instead, we will elaborate more on the second requirement by showing how
the information provided by advertisements and subscriptions with the given
semantics can be effectively used to direct the communication between event
servers in an efficient way, also showing why other semantics, albeit slightly
different, would not allow such exploitation.

3.5.1 Rationale: expressiveness vs. scalability

The rationale for our formal definition of notifications, filters, patterns, and
compatibility relations goes beyond a clear specification of the semantics of
the event service. The realization of the event service by means of distributed
event servers, requires to disseminate some information concerning subscrip-
tions and advertisements among event servers in order to control the flow of
notifications towards interested parties. We will see in Chapter 4 that event
service attempts to minimize the usage of communication and computation re-
sources by deploying filters and patterns monitors in strategic places on the
network of event servers. In this optimization process, the compatibility re-
lations play a fundamental role. Hence it is essential that these relations be
efficiently implemented.

The elementary relation between an attribute filter and an attribute is a
straightforward verification of one of the predefined predicates (match op) that
we assume has constant complexity:� �nf � = (�:name = �:name ^ �:type = �:type ^ �:match op(�:value; �:value))
Relations that involve a filter and a notification are also easy to implement
because they are the conjunction of attribute filters relations:s �NS n = �̂2s 9� 2 n : � �nf �
Being s and n finite sets of cardinality jsj and jnj, the complexity of evaluating
this expression is O(jsj log jnj).

The relations that pose significant problems are clearly the ones that involve
two filters (e.g., �SA); in fact, given the semantics defined in Section 3.3, com-

Comments on the semantics of the event service 41

paring two filters is equivalent to computing the intersection of two possibly
infinite sets.

Even in our particular case in which filter expressions are conjunctions of
simple predicates, this problem can be very hard to solve depending on the na-
ture of types and operators that form the simple predicates. It is easy to reduce
the problem of evaluating a covering relations between two filters f1 and f2 to
the evaluation of the implication between their corresponding attribute filters.
Given an attribute filter �1 = (N;T;Op; V) of name N , type T , operator Op
and value V , and another attribute filter �2 = (N;T;Op0; V 0) having the same
name and type plus operator Op0 and value V 0, we want to be able to decide
whether or not the first filter implies the second:(�1) �2), 8x 2 T : Op(x; V)) Op0(x; V 0)
To allow an efficient evaluation of this formula, we must have “well behaved”
operators and types.

The types and operators that we chose for SIENA are quite predictable and
their semantics makes it easy to verify implications between filters. In fact,
being ‘.’ any one of the ordering relations we defined (�,�, >�, or �<) we can
reduce every relation between two attribute filters to the following cases:� 8x : x = V) x = V 0 iff V = V 0� 8x : x . V) x . V 0 iff V . V 0� 8x : x = V) x . V 0 iff V . V 0
3.5.2 Possible counter-intuitive behavior

In both advertisement-based and subscription-based semantics, objects can
publish all sorts of notifications regardless of what they advertise and, simi-
larly, there are no constraints on the subscriptions that an interested party can
post to the event service. This means that those operations will always succeed
even though they will never result in any notification because of incompatibil-
ities.

In several discussions with our colleagues, this has been regarded as a
counter intuitive, if not incorrect behavior. For example, it has been argued
that it does not make sense to subscribe for something that has not been adver-
tised. Or else, that a forgiving event service that does not block the publication
of notification that have not been advertised would be misleading for appli-
cation designers. The approach we have taken in SIENA is to constraint the
behavior of clients only if this is strictly necessary for the task of the event ser-
vice, especially keeping in mind that our design priorities are scalability and
expressiveness. In other words, those consistency checks that can be confined
to a single client or to a single access point, and that do not add information

42 The SIENA Event Service

useful for the routing algorithms, should be performed outside the event ser-
vice.

With respect to the specific case mentioned above, note that it is always pos-
sible to restrict the advertisement-based semantics by imposing a publication
guard that blocks notifications that have not been properly advertised. Such a
modification impacts only data structures and algorithms at the event service
access point, thus not constituting a fundamental factor of scalability. These
modifications could be just as well provided as an external layer.

3.5.3 Typed vs. untyped event service

The type system used for the event model, and consequently for filters, is subject
of debate too. There are two conflicting aspects that influence the decision
about the type system to use. They are once again a variation of the scalability-
functionality trade-off. Let us consider these three options:� no types: in this case, every piece of information has the same generic

structure. For example, everything could be represented as a string (ex-
amples are scripting languages like Tcl and other command interpreters).
In order to realize some filtering with the semantic that we defined, the
event service would have to define some operators that match two strings
interpreting them as integers, strings, dates, etc. So, a filter might look
like this: birthday >date “Dec 16”;� simple predefined types: this is the case that we described in SIENA. The
event service understands some types and therefore it is able to overload
comparison operators;� abstract user-defined types: in this case, the event service would pro-
vide the features of a typed programming language that allows the
definition of abstract data types (e.g., an object-oriented language).
Extending filters to user-defined types can be done with easy exten-
sions to the filtering language similarly to query languages for object-
oriented databases like O2SQL or OQL. A filter might look like this:
person.birthday.greaterThan(Date(“Dec 16”));

From the viewpoint of the application programmer, the latter solution
would be best for its enhanced modeling features. However, because filters
could contain an arbitrary user-defined code, it would be very difficult to per-
form optimizations based on the static analysis of filters. This would severely
impact on scalability. Also, on a large scale, it might not be legitimate to assume
that every component of the system is able to understand an object oriented
language.

From the viewpoint of the designer of the event service, the first solution
is definitely the easiest one to implement. It poses less problems of encoding

Comments on the semantics of the event service 43

data and it is also the most open one because it requires a simpler common rep-
resentation (e.g., the standard for Internet electronic mail messages [17] could
be used), that is therefore more portable on heterogeneous platforms. Opti-
mizations would well be possible given the semantics of the operators that the
event service defines.

We decided to adopt the solution that is in the middle because it preserves
the predictability of operators and thus the possibility to optimize the dispatch-
ing based on relations between filters, together with the benefits of having
more readable filters and some type checking.

44 The SIENA Event Service

Chapter 4

Servers Topologies and
Algorithms

As we have suggested in the previous chapters, SIENA is architected as a dis-
tributed system in which the distributed components, the event servers, coop-
erate to realize a unified network-wide event service. This chapter covers the
architecture of SIENA. In particular, we will describe:

server topologies the kind of interconnections existing among event servers
and the pattern they form. The kind of connection between two servers
determines the interaction protocol and thus the type of information that
can flow in each direction;

event dispatching algorithms these implement the routing of notifications.
Since the routing of notifications is controlled by subscriptions, unsub-
scriptions, advertisements, and unadvertisements, the dispatching algo-
rithms must take care of disseminating these messages too. Different al-
gorithms adopt different strategies and require more or less complex data
structures and computations on every event server. The dispatching al-
gorithms also implement the monitoring of event patterns.

We will see that different servers topologies pose different constraints on
the dispatching algorithms and vice versa. Also, we will show how a distribu-
ted realization of SIENA is similar to an infrastructure for multicast routing on
a datagram internetwork such as Internet. This analogy, and in particular the
study of the IP multicast structure and algorithms, will allow us to achieve a
better understanding of the challenges for our dispatching algorithms.

46 Servers Topologies and Algorithms

4.1 Server Topologies

A centralized topology is composed of a single event server with its clients.
The protocol used between a client and the event server is derived from the
interface of the event service (see Figure 3.1 on page 21). When designing an
architecture with multiple servers, we must also introduce:

1. some connections among servers, that determine which pairs of servers
communicate directly, and

2. the protocol used in communications between servers.

These two elements define a topology of servers.
Note that the connections among servers are not necessarily persistent

channels, but rather logical connections. In general, this is also the case with
clients. When we say that an object X is connected to another object Y , we
mean that X has Y ’s address and can send messages directly to Y . The “phys-
ical” implementation may or may not keep a live connection between X andY .

4.1.1 Hierarchical

HH

H

H
H

clientsservers

client-server
protocol

Figure 4.1: Hierarchical server topology

A natural way of connecting event servers is according to a hierarchical to-
pology. As shown in Figure 4.1, each server in a hierarchical topology has a
number of clients that can be either objects of interest or interested parties, or
other event servers. In addition to these connections, a server could also have a
special connection to a parent server. Note that for every server, the connection
to the parent server is the only outgoing arrow.

Server Topologies 47

In this topology, the same client-server protocol is used for server-server
communication, thus, a server does not distinguish other servers from objects
of interest or interested parties among its clients. Practically, this means that a
parent server will be able to receive notifications, subscriptions, and advertise-
ments from all its clients, but it will send only notifications back to them.

The hierarchical topology is the natural extension of a centralized topo-
logy. It only requires an extension to the algorithm of the server that takes
care of propagating information through the parent server. As far as config-
uration of servers, this topology allows entire subnets to join a community of
servers by simply connecting their root servers to any server in the community.
This topology is used in the USENET News network, in JEDI, in Keryx, and in
TIB/Rendezvous.

The main problems of the hierarchical topology are the overloading of
higher-level servers (we will see this effect in more details in Section 5.3.4) and
the fact that every server is a critical point of failure for the whole architecture.
In fact, a failure in one server disconnects all the subnets reachable from its
parent server and all the client subnets from each other.

4.1.2 Acyclic Peer-to-Peer

client-server
protocol

A

AA

A

A

protocol
server-server

Figure 4.2: Acyclic peer-to-peer server topology

In the acyclic peer-to-peer topology, servers communicate with each other
as peers, thus adopting a special protocol that allows a bi-directional flow of
subscriptions and advertisements as well as notifications. Figure 4.2 shows an
acyclic peer-to-peer topology of servers. The different kinds of communication
occurring between clients and servers and among servers are denoted with
different line styles.

Considering server-to-server links as non-directed arcs, the configuration of

48 Servers Topologies and Algorithms

the connections among servers produces an acyclic graph. It is important that
the procedures adopted to configure servers and to connect new ones maintain
this property since specific algorithms might rely on it, e.g., to be sure that any
two servers can be connected with only one path. Note that the incremental
procedure suggested for the hierarchical topology can be used in this case as
well. For example, every server X is initialized with at most one peer server to
which X connects. When X is initialized with Y , X adds Y to its direct peers
and sends a configuration request to Y . In response to this request, Y adds X
to its list of peers. The fact that a server actively sends a configuration request
only once, e.g., when it is initialized, assures that the resulting network does
not contain redundant paths.

In a network-wide service where each server is administered by a local au-
thority, it might not be a good idea to trust this procedure. Perhaps other con-
trol protocols must be implemented to validate the configuration of servers.
Also, similarly to the hierarchical topology, this topology suffers from the lack
of redundancy in the connection graph. Because the connection graph is a tree,
a failure in one server X isolates all the groups of subnets reachable from those
servers directly connected to X .

4.1.3 Generic Peer-to-Peer

Removing the constraint of the acyclic graph from the acyclic peer-to-peer to-
pology, we obtain the generic peer-to-peer topology. Like the acyclic peer-to-peer,

G

G

G

G

G

Figure 4.3: Generic peer-to-peer server topology

this topology allows bi-directional communications between two servers, but
this time the network of connections among servers is a generic graph, possibly
with multiple paths between servers. See Figure 4.3 for an example.

The advantage of this topology over the previous ones is that it requires less

Server Topologies 49

coordination and more flexibility in the configuration of connections among
servers. Moreover, being redundant in connecting different points in the net-
work, this topology is more robust with respect to failures of single servers.
The drawback of having redundant connections is that special algorithms must
be implemented to chose the best paths and to avoid cycles. Typically, mes-
sages should carry a time to live counter and routes should be set up accord-
ing to minimal spanning trees. Consequently, the server-to-server protocol
adopted in the generic peer-to-peer topology must accommodate these extra
information.

4.1.4 Hybrid topologies

A network-wide service like SIENA poses different requirements at different
levels of aggregation, or in other words, we envision intermediate levels be-
tween what is referred as local-area network and a wide-area network. These
different levels with their specific requirements lead to hybrid topologies. A
hybrid network exhibits different topologies at different levels of granularity.

H

HH

H H

H

HH

H H

H

HH

H

G
G

G

G

clusters

Figure 4.4: Hybrid topology: hierarchical/generic

For example, in the case of big corporations, it might be reasonable to as-
sume a high degree of control and coordination in the administration of a clus-
ter of subnets. In this case, system administrators might very well be able to
design and manage the whole network of event servers that covers their sub-
nets, thus it might be a good idea to adopt a hierarchical topology inside the
cluster even when the global network is laid out as a generic topology. Fig-
ure 4.4 shows this scenario.

In other cases (see Figure 4.5) we might want to set up SIENA the opposite
way. For example, suppose that some clusters of subnets have a very intense
traffic of local events, and for some specific applications or perhaps for security

50 Servers Topologies and Algorithms

G

G
G

G

G

G

G

G

G
G

GG

G/A
G/A

G/A G/A

protocol
acyclic peer-to-peer

Figure 4.5: Hybrid topology: generic/acyclic

reasons, only a small fraction of the events flowing inside the cluster are visi-
ble outside the cluster. Here, for efficiency reasons, a generic graph topology
might be preferable inside the cluster while the high-level topology could be
set up as an acyclic graph. For every cluster, the “gateway” server should be
able to filter the messages used for the protocol inside the cluster or adapt them
to the protocol used among clusters. For example, if a specific protocol is used
to discover minimal spanning trees, its messages will not be propagated out-
side the cluster by the “gateway” server since every path will inevitably pass
through that gateway.

4.2 Dispatching Algorithms

4.2.1 Analogy with multicast routing

The architecture of SIENA is equivalent to the physical architecture of a data-
gram internetwork. Each event server has a set of local clients that form its
subnet. Every server is also connected to other servers, i.e., to other subnets.
Connections between servers, although they can be dynamically reconfigured,
are the equivalent of the physical links between subnets. An event server acts
as a gateway for its local clients by connecting them to the rest of the net, but
it also functions as a bridge that connects two other servers or subnets. De-
livering a notification to all the interested parties means routing this notifica-
tions through the network of servers using the routing information set up by
subscriptions and advertisements. Since for each notification, there may be

Dispatching Algorithms 51

numerous interested parties, routing notifications through the event service is
conceptually similar to routing datagrams to multiple destinations in a net-
work like the Internet.

The IP multicast infrastructure realizes routing to multiple destinations on
the Internet. The model established by Deering [22] extends IP addresses
with group addresses. These are particular IP numbers that correspond to host
groups [21]. A host group addresses a set of hosts, possibly sparse over dif-
ferent subnets. A multicast-enabled IP service provides two extra functions:
JoinHostGroup(group address g, interface i) that instructs the IP service to
deliver to i IP datagrams addressed to g, and LeaveHostGroup(group addressg, interface i) that removes the binding created by JoinHostGroup. A spe-
cial protocol called Internet Group Management Protocol (IGMP) is used in
IP multicast networks to propagate group membership information. Since any
number of hosts can join a host group, datagrams addressed to that group must
be dispatched to different points on the network. This is realized with special
multicast routing protocol. Several of these protocols have been proposed with
different degrees of scalability [23, 24, 55, 77]. These protocols use the member-
ship information set up by IGMP.

IP multicast routing event service

host/interface
interested party or
object of interest

router/gateway event server
physical link connections between servers

physical network topology servers topology
IP send(datagram) publish(notifiation)

JoinHostGroup(group,interface) subscribe(handler; pattern)
LeaveHostGroup(group,interface) unsubscribe(handler; pattern)

IGMP
multicast routing

dispatching algorithms

Table 4.1: Analogy between event service and multicast routing

Table 4.1 shows the mapping of concepts between multicast network ser-
vice and event service. This mapping suggests that some models and solutions
that already proved to be effective for multicast routing can be proficiently ap-
plied to SIENA. On the other hand, it also allows us to identify the differences
between SIENA and the multicast routing infrastructure. The main ones that
pose new challenges are:

1. handling IP addresses is substantially different from handling event fil-
ters with the semantic defined in Section 3.3;

52 Servers Topologies and Algorithms

2. the monitoring of patterns of events provided by SIENA has no counter-
part in IP multicast.

These differentiators become more evident when examining the main func-
tionality of the two infrastructures. What follows is a very simplistic descrip-
tion of the basic functioning of IP multicast:

routing tables every router has a table whose elements corresponds to group
addresses. For every group address g, the table reports interfaces that
have attached hosts that are members of g;

routing of datagrams when a router receives a datagram addressed to a groupg, it looks up the table and, in case g is in the table, it forwards the data-
gram to all the interfaces associated with g.1;

routing of JoinGroup information the group membership information is dis-
seminated throughout the network with the IGMP protocol2. In practice,
when a router receives a JoinGroup request for group g, it looks up its
table. If g is not in the table, then the router sends a JoinGroup request
for g to every neighbor router;

routing of LeaveGroup information similarly, when the last host or network
leaves a group g, the router removes g from its table and sends a Leave-
Groupmessage for g to its neighbor routers.

In IP multicast, datagram addresses and group addresses are homogeneous
—they are both IP addresses— so all the table look-up operations can be im-
plemented with one function. Moreover, since addresses are totally ordered
and both the ordering and the equality relations are trivial to compute, the
look-up function can be very efficient. Instead, in SIENA the routing tables are
indexed with subscription patterns or sub-patterns while notifications are ad-
dressed (implicitly) by their contents. This introduces two difficulties: first,
there are two different look-up operations, one is called in routing notifications
and finds the subscriptions matched by a notification, the other one is called
when routing subscriptions and matches subscriptions against other subscrip-
tions. Second, the covering relations implemented by the two look-up opera-
tions are not functions, but they are generic relations, thus, a notification being
routed may match zero, one, or more subscriptions, and similarly a subscrip-
tion being propagated may match any number of existing subscriptions. Note
that these relations are the core elements that determine the semantics of the
service as well as the routing procedures.

1The actual protocols are much more complex. Routers usually avoid routing a datagram d
that they receive from an interface that is not the one they would use to route normal (unicast)
datagrams towards the source address of d. Anyway, we do not need to go into details here.

2This protocol defines a periodic mechanism by which routers exchange group membership in-
formation. This information is proactively pulled by routers with generic or group-specific queries.
Again we are interested in a more conceptual —and very simplistic— description of IGMP here.

Dispatching Algorithms 53

4.2.2 Routing strategies in SIENA

In IP multicast, the main idea behind the routing strategy is to forward a data-
gram only towards networks that contain members of the target group, possi-
bly using the shortest path tree. In addition to this, in order to save commu-
nication and computation resources, SIENA exploits the fact that subscriptions
can partially overlap and that one notification can match more than one sub-
scription. These ideas can be summarized in the following two principles:

downstream duplication this says that notifications should be routed in one
copy as far as possible and that they should be replicated only down-
stream, i.e., as close as possible to the interested parties that requested
them. Figure 4.6 shows this principle. Two interested parties subscribe

3

1 5

4

2 6

subscribepublish

subscribereplication

Figure 4.6: Multicasting of notifications downstream

for some patterns on server 6 and another one subscribes for some other
pattern on server 5. A notification matching all the subscriptions is pub-
lished on server 1. The event service routes one copy of that notification
through server 1 and server 3 to server 4. Server 4 duplicates the notifi-
cation sending one copy to server 5 and one copy to server 6. Server 5
forwards the notification to its interested party while server 6 duplicates
the notification again to send a copy to each one of its clients.

upstreammonitoring this tells us to apply filters and to assemble patterns up-
stream, i.e., as close as possible to the sources of events or sub-patterns.
This principle is shown in Figure 4.7. The example shows one interested
party subscribing for pattern XY and two objects of interest on the other
side of the network publishing notifications matching X and Y respec-
tively. The event service allocates a filter for X and one for Y on server 1
and server 2 respectively. Then a monitor that recognizes patterns XY is

54 Servers Topologies and Algorithms

3

1 5

4

2 6

publish(X)

publish(Y)

subscribe(XY)

monitor XY

filter X

filter Y

Figure 4.7: Applying filters and patterns upstream

activated on server 3. The pattern assembled on server 3 is then routed
towards the interested party through servers 4 and 5.

To implement these principles, we formulate two classes of algorithms:
subscriptions forwarding algorithms, and advertisements forwarding algorithms.
Subscription forwarding algorithms realize a subscription-based semantics and
they apply the downstream replication optimization principle3. Advertisement
forwarding algorithms on the other hand realize an advertisement-based event
service and apply both the downstream replication and the upstream monitoring
principles.

Subscriptions forwarding

With subscriptions forwarding, the routing paths for notifications are set by sub-
scriptions that in turn are broadcasted throughout the network. Every sub-
scription is stored and forwarded from the originating server to all the servers
in the network so to form a tree that connects the subscriber to all the servers
in the network. When an object publishes a notification that matches that sub-
scription, the notification is routed towards the subscriber following the re-
verse path put in place by the subscription.

3Section 4.3 explains why upstream monitoring can not be implemented fully without an
advertisements-based semantics

Dispatching Algorithms 55

Advertisements forwarding

Broadcasting subscriptions is necessary only if routing information is available
through subscriptions and from nothing else. This leads to the idea of adver-
tisements and to the advertisement forwarding algorithm. If advertisements
are enforced, e.g., by adopting an advertisement-based semantics, it is safe to
send a subscription only towards those objects of interest that intend to gen-
erate notifications that are potentially relevant to that subscription. This tech-
nique uses advertisements to set the paths for subscriptions, which in turn set
the paths for notifications. Every advertisement is forwarded throughout the
network, thereby forming a tree that reaches every server. When a server re-
ceives a subscription, it propagates the subscription in reverse, along the path
to the advertiser, thereby activating that path. Notifications are then forwarded
only through the activated paths.

4.2.3 Putting together algorithms and topologies

In propagating requests, either subscriptions or advertisements, servers main-
tain tables of subscriptions or advertisements. When an event server receives a
new request, say a subscription, that is already covered by a previously served
one, the server simply adds the subscriber to the local list an no other action is
taken. If no such subscription is present in the tables, the new request is added
to the table and propagated. This allows to prune entire subtrees in the prop-
agation. For example, in the scenario of Figure 4.6, when server 4 receives the
forward of a subscription for X from server 5 for the first time, it propagates
it to server 3, and then all the way towards server 1. However, when server 6
sends a compatible subscription to server 4, server 4 stops the flooding.

The broadcasting or flooding process that characterizes both subscription
forwarding and advertisements forwarding creates per-source minimal span-
ning trees. The realization of this process depends upon the underlying topo-
logy of servers. Clearly the solution is trivial in the case of acyclic topologies
(i.e., hierarchical and acyclic peer-to-peer), but it requires additional data struc-
tures and protocols for the generic graph topology [20].

Other important covering relations

Before we examine every algorithm in details, we must define a couple of other
covering relations, used by these algorithms, that are natural extension of the
covering relations introduced in Section 3.3.1.vSS is a subset of S0 � S0 and is defined by �NS (and thus NS()) as follows:s1 �SS s2 , NS(s1) � NS(s2)

56 Servers Topologies and Algorithms

that says that a subscription s1 covers another subscription s2 when the
set of notifications covered by s1 includes the set of notifications covered
by s2. This relation includes the equality relation between subscriptions,
more specifically, s1 = s2 , NS(s1) = NS(s2)vAA is a subset of A�A and is defined by �SA (and thus NA()) as follows:a1 �AA a2 , NA(a1) � NA(a2)
that says that an advertisement a1 covers another advertisement a2 when
the set of notifications covered by a1 includes the set of notifications cov-
ered by a2. This also includes the equality relation:s1 = s2 , NS(s1) = NS(s2)

Hierarchical topology with subscription forwarding

We will describe each algorithm by showing the responses of event servers to
various service requests. Such requests include at least the SIENA interface
functions (subscribe, publish, etc.), but also control messages for server-to-
server communications such as configuration messages and connection setup
messages by which servers configure their topology.

In the hierarchical topology, we can apply a “reduced” version of the sub-
scription forwarding algorithm. In fact, hierarchical servers export only the
basic interface functions, thus the propagation of subscriptions if allowed only
upward in the hierarchy.

Data structures each hierarchical server keeps the URI of another server. This
URI is referred to as its parent server and may be null. The server also maintains
a table of subscriptions that associates a subscription filter to a set of URIs.

Subscription after receiving a simple subscription subscribe(U; f), a serverX looks up its table searching for one subscription (filter) f 0 that covers f
(f 0 vSS f). If such f 0 is not present in the table, then the server sends the same
subscription, subscribe(X; f), to its parent server. In any case the server addsf to its table and appends U to the list of subscribers if U is not listed already.

Unsubscription when receiving a simple unsubscription unsubscribe(U; f),
a server X extracts from its table all the subscriptions s covered by f (f vSSs). For every one of these subscriptions, the server removes U from the list
of subscribers. For every subscription s that has an empty subscribers list,
the server sends an unsubscribe(X; s) request to its parent server and then
removes s from the subscriptions table.

Dispatching Algorithms 57

Notification when a server receives a notification n, it looks up the table of
filters trying to find all the subscriptions s such that s �NS n. Then the server
computes the union of all the URIs listed for the matching subscriptions and
sends to each URI a copy of n. In any case, the server forwards a copy of n to
its parent server.

Advertisements and unadvertisements it does not make sense to apply an
advertisement forwarding algorithm with a hierarchical topology because con-
nections among servers are asymmetrical. In fact, it would be possible to
propagate advertisements from a server to its parent server, but that would be
useless since the parent server would consider those advertisements as if they
were sent by objects of interest (i.e., from outside the event service) and thus it
would not respond by sending back subscriptions. In practice, advertisements
and unadvertisements are silently dropped.

Acyclic peer-to-peer topology with subscription forwarding

Data structures each acyclic peer-to-peer server maintains a set N of URIs
called neighbors that are the identities/addresses of the peer servers to which
the server communicates directly. In addition to this, the server holds a tableTS representing a lattice of subscriptions in which each subscription s has� a set of “pointers” to other subscriptions S = parents(s) also listed in

the table, each one covering s. This is the relation that defines the lattice
representing the partial order induced by vSS. parents(s) can be empty,
in which case, s is said to be a root subscription;� a set of URIs subscribers(s), including clients as well as neighbor servers
that subscribed for s; and� a set of URIs forwards(s) that lists the neighbor servers to which that sub-
scription has been forwarded.

It is important that the structure of subscriptions in TS represents all the cov-
ering relations but only the direct ones. In other words, a relation s1 vSS s2 is
reported in TS (with s1 2 parents(s2)) only if there is no other subscription s0 in
between s1 and s2, i.e.:s1 2 parents(s2), s1 vSS s2 ^ �s0 2 TS : s1 vSS s0 ^ s0 vSS s2
In processing subscriptions and unsubscriptions, the server makes sure that
this property is preserved. Figure 4.8 shows how the server inserts a new sub-
scription in the lattice structure. In the following we will also use the nota-
tion parents�(s) indicating the set containing s and all of its ancestors, i.e., the
transitive closure of the parents relation which includes every subscription that

58 Servers Topologies and Algorithms

new filter

x = any x = anyvSS
x > 5x > 0x = 3x < 8 x > 5x = 3 x < 8x > 0

Figure 4.8: Example of a subscription lattice. Types in all filters are integer.

covers s. Given parents�(s), we also define the set of forwards that provide a
given subscription: F (s) = [s2parents�(s) forwards(s)
Control and setup the acyclic peer-to-peer server is initialized with zero or
one URI representing its initial neighbor. At startup a server X initialized
with server Y sends a peer connect(X) request to Y . When a server receives
a peer connect request, it can either accept or refuse the connection. In case
a server accepts a connection, it sends a confirmation message back to the re-
questing server and both servers add each other’s address to their neighbors list.
Then the accepting server forwards every root subscription to the requesting
server adding the requesting server to the corresponding forwards. Servers can
also be dynamically disconnected with a peer disconnect(X) request. When a
server receives a peer disconnect(X), it removes X from its neighbors, then it
implicitly unsubscribes X for all the root subscriptions and finally removes X
from all its forwards lists.

Advertisements and unadvertisements with this algorithm, advertisements
and unadvertisements are silently dropped.

Subscription When a server X receives a subscribe(U; s), it looks up its sub-
scriptions table TS in order to insert s in the proper position in the lattice de-
fined by TS . To this end, the server finds the lowest subscriptions that covers: fs0 2 TS ^ s0 vSS s ^ �s00 2 TS : s0 = parents(s00) ^ s00 vSS sg

Dispatching Algorithms 59

The following cases apply:

1. s is already in the table, i.e., one s0 exists and is equal to s. Here the server
adds the current subscriber U to the set of subscribers subscribers(s) that
have already been registered;

2. no subscription s0 exists in TS , then the server adds s to TS as a root sub-
scription;

3. there exist a set of subscriptions S, then the server adds s to TS and sets
parents(s) :=S.

After positioning the new subscription, the server computes the set of URIs Z
to which it will forward the subscriptions subscribe(X; s), these are:Z = neighbors� F (s)� fUg
Intuitively this means that the server forwards the subscription to all its neigh-
bors servers except those to which it already forwarded more generic subscrip-
tions and except the one that sent the new subscription. Then the server sub-
tracts Z from the forwards of the subscriptions covered by s, i.e., the ones that
immediately follow s in the hierarchy.

for each(s 2 TS ^ s 2 parents(s)) forwards(s) := forwards(s)� Z
Figure 4.9 shows the forward message generated by this algorithm. Labels on

3

1

4

price > 10int

subscribe

price > 10int

subscribe

int price > 20

a

c

b

2

4

3
7

6

5

1

subscribe

8

9

2

Figure 4.9: Example of subscription forwarding

arcs indicate the temporal sequence of each message. Figure 4.10 shows the

60 Servers Topologies and Algorithms

price > 10

1

2,4
forwards

subscribers

price > 20

price > 10

4

1

2,4

1

subscribers

forwards

subscribers

forwards

price > 20

price > 10

4

-

2,4,1

1,c
forwards

subscribers

forwards

subscribers

after message 4 after message 7 after message 9

Figure 4.10: Subscription table of server 3 of Figure 4.9

effect of subscriptions and forwards on the subscriptions table of server 3 of
Figure 4.9. Note how the effect of adding a more generic subscription s is to
move the forwards from the subscriptions covered by s towards s, thus upward
in the hierarchy.

Unsubscription The forwarding process for subscriptions makes sure that
the following property holds:8s 2 TS : F (s) � neighbors ^ (8u 2 subscribers(s) : F (s) � neighbors=u)
Which means that for every subscription s, the set of forwards that cover s can
be at most equal to the set of neighbor servers, and that for every subscriberu of s, the same set must contain at least the whole set of neighbors, possibly
excluding u if it is one of them.

In practice, for each root subscription sr, this can be reduced to two cases4:� sr has only one subscriber u that is also a neighbor server (we say thatu is a lonely server subscriber): in this case, the set of forwards of sr —
which is equivalent to F (sr) since sr is a root subscription— includes all
the neighbors except for the lonely server subscriber u: forwards(sr) =F (sr) = neighbors� fug;� sr has at least two neighbors subscribers or at least one local subscriber:

4In fact, the current implementation of this server stores only this piece of information for each
subscription, as opposed to the set of forwards which is redundant.

Dispatching Algorithms 61

in this case the set F (sr) includes all the neighbors servers: F (sr) =
neighbors.

Also, since in any case for any given subscription s in TS, F (s) is a subset
of neighbors, in non-root subscriptions, the set of forwards is either empty or
it contains one element that corresponds to the lonely server subscriber of its
parents. These cases are depicted in Figure 4.10.

These conditions guarantee what we call optimal notification routing5, i.e.,
they allow servers to exchange only those notifications that are strictly neces-
sary to realize the semantics of the event service. So, when the server receives
an unsubscribe(U; f), it must cancel U from all the subscriptions covered by f ,
thereby implementing the semantics of unsubscriptions, possibly rearranging
subscriptions in TS in order to satisfy the optimal notification routing conditions.
Rearranging subscriptions might result in forwarding unsubscriptions as well
as old subscriptions that were covered by the canceled (more generic) subscrip-
tion.

In details, when a server X receives a unsubscribe(U; f), it looks up the
subscriptions table and removes U from the sets of subscribers of all the sub-
scriptions covered by f :

for each(s 2 TS : f �SS s) subscribers(s) := subscribers(s)� fUg
Then the server identifies two classes of subscriptions:

1. subscriptions that remain with a lonely server subscriber that is also in
their forwards:Sl = fs 2 TS : jsubscribers(s)j = 1 ^ subscribers(s) \ forwards(s) 6= ;g

2. subscriptions that remain with no subscribers:Se = fs 2 TS : subscribers(s) = ;g
For every subscription sl in Sl, the server unsubscribes for sl with the lonely
forward u, i.e., it sends an unsubscribe(X; sl) request to u, and then, if sl has
some descendents in the subscription lattice (fsl 2 TS : sl 2 parents(sl)g), the
server moves the forwardu to every descendents subscription by issuing a new
subscription for each one of them.

For every subscription se in Se, the server removes all its forwards by un-
subscribing for se with all of its forwards, i.e., the server sends an unsub-
scribe(X; se) request to every peer server u 2 forwards(se). Then, similarly
to what it does for subscriptions in Sl, the server finds all the descendents of

5Note that optimal notification routing refers only to notifications, thus, it does not imply minimal
overall network traffic.

62 Servers Topologies and Algorithmsse and adds to each one of them the whole set of forwards removed from se.
To do that, it adds the sets in its data structures, and also for every descen-
dent subscription sl, it sends a subscribe(X; se) request to every peer serveru 2 forwards(se).
Notifications this algorithm processes notifications exactly like the one that
operates on the hierarchical topology. So, a subscription n is forwarded to
every URI in: R(n) = [s2TS :s�NS n subscribers(s)
Acyclic peer-to-peer topology with advertisement forwarding

With the subscription forwarding algorithm described in the previous section,
we have seen almost everything we need to know to implement an advertise-
ments forwarding algorithm on the same topology of servers. In fact, we can
exploit the duality between these two classes of algorithms to transpose the
subscription forwarding algorithm to the advertisements forwarding. To some
extents, if we read the description of the subscription forwarding algorithm
replacing the terms regarding subscriptions with the corresponding terms re-
garding advertisements, and replacing the terms regarding notifications with
the corresponding terms regarding subscriptions, we obtain an almost exact
description of the advertisement forwarding algorithm.

The main difference with respect to the subscription forwarding structure
is that there are actually two interacting levels: one realizes the forwarding of
advertisements while the other one realizes the forwarding of subscriptions.
Both levels have similar data structures and similar algorithms, equivalent to
the ones that implement the subscription forwarding algorithm. In particular,
the server has a table of advertisements TA that binds an advertisement a to
a set of other advertisements A = parents(a), a set of URIs advertisers(a), and
another set of URIs forwards(a).

These two levels interact in the sense that the upper level, i.e., the advertise-
ment forwarding, directs the lower level, i.e., the subscription forwarding, by
configuring some parameters of its table TS. More specifically, in maintainingTS, e.g., in subscribing or unsubscribing a pattern s, the server does not use the
global set of neighbors, but instead it uses a subset neighbors(s) � neighbors that
is specific to s. neighbors(s) is bound to the set of advertisers listed in TA for all
the advertisements covering s. Formally:

neighbors(s) = [a2TA:a�SAs advertisers(a) \ neighbors

Dispatching Algorithms 63

Note how this formula is similar to the one that is used in the subscrip-
tion forwarding algorithm to route notifications. Also note that, one effect of
this binding is that new advertisements and unadvertisements are viewed by
the lower level like new peer connections or dropped peer connections, thus,
if the server receives a new advertisement that covers a set of subscriptionss1; s2; : : : ; sk, then the server reacts by forwarding s1; s2; : : : ; sk immediately
to the advertisers.

Algorithms for the generic peer-to-peer topology

For the generic topology, we can use the algorithms that we developed for
the acyclic topology provided we complete them with mechanisms that avoid
routing messages along cycles that might be present in the topology. What
we need to solve here coincides with the well known problem of routing in a
datagram network (see [8]).

In SIENA, we use the classic reverse path forwarding technique [20]. Ac-
cording to this technique, a server X forwards a request —a subscription in
case we use the subscription forwarding algorithm, or an advertisement if we
use the advertisement forwarding algorithm— only if it is coming from the
peer server that is on the shortest path that connects the source of that request
to the server. The request is then forwarded to every peer server except the one
that sent it. By source we mean the event server, usually an access point, that
generated that request for the first time.

The reverse path forwarding technique requires that every server knows
which peer server is the next hop towards every other server in the network.
Thus, every serverX has a table that maps URIs corresponding to other servers
in the network to one of X ’s peer servers. To compute this map, the current im-
plementation of generic peer-to-peer SIENA servers uses a simplified version
of the distance-vector algorithm (also known as Ford-Fulkerson or Bellmann-
Ford algorithm [29, 7]). The server maintains a table TR that associates a source
server s to a peer server nexthop(s) and a distance distance(s). Also, the server-
to-server protocol is augmented with the information needed by this algo-
rithm, in particular, every request r carries an attribute (source(r)) and an at-
tribute (distance(r)) that indicates the length of the path that the request r has
gone through6.

When a server X receives from its peer server Y a new request r originated
by S = source(r), it acts according to the following situations:� if S does not exist in the table TR: the server adds an entry for S with

nexthop(S) :=Y and distance(S) := distance(r). Then the server processes r
normally;

6Several metrics can be chosen to express this distance. The current implementation of SIENA

uses a metric based on the latency of each hop.

64 Servers Topologies and Algorithms� if S is already in TR: here we have other three cases:

– if nexthop(S) = Y : the server processes r normally;

– if nexthop(S) 6= Y and distance(S) > distance(r): the server updates
the TR for S, i.e., nexthop(S) :=Y and distance(S) := distance(r). Then
the server processes r normally;

– if nexthop(S) 6= Y and distance(S) � distance(r): the server drops the
request.

When processing a request from a local client that needs to be forwarded to
some other servers, the server assigns its address to the source attribute and 0 to
the distance attribute. When processing non-local requests, the server adds the
“cost” of the link through which it got the request. If the metric is the number
of hops, then the cost is simply 1. In SIENA, we use a metric based on the
latency of network links. In any case, the latency is not dynamically tested, but
it is statically configured.

Note that in SIENA the routing information is piggy-backed on normal ser-
vice requests. A logically alternative approach is taken on the Internet where
routing information is exchanged among routers by means of a special rout-
ing information protocol (RIP [34]). RIP uses the same class of distance-vector
algorithms.

4.3 Pattern observation

So far we have seen how simple subscriptions and simple notifications are han-
dled by event servers. A major functionality introduced with SIENA is the dis-
tributed monitoring of patterns of notifications according to compound sub-
scriptions. This functionality is implemented following the upstream monitoring
principle set forth in Section 4.2.2.

For monitoring of patterns, event servers assemble sequences of events
from smaller sub-sequences or from single notifications that are already “avail-
able”. The availability of notifications is determined by advertisements, this is
why this technique requires an advertisement-based semantics. The availabil-
ity of sub-sequences is given by other monitors that the server has already set
up for previous compound subscriptions. We call pattern factoring the process
by which the server breaks a compound subscription into smaller compound
and simple subscriptions. After a subscription has been factored into its el-
ementary components, the server attempts to group those factors into com-
pound subscriptions to forward to some of its neighbors. This process is called
pattern delegation.

Pattern observation 65

4.3.1 Available patterns table

Every server maintains a table TP of available patterns. This table is simply
the advertisements table that, in addition to usual advertisements, contains
also those patterns that the server has processed already. Each pattern p inTP is associated with the set of URIs providers(p) that lists all the peer servers
from which p is available, possibly including the server itself if the pattern is a
simple pattern advertised by a local client or if it is a compound pattern that is
monitored locally.

pattern providersa1 �
 �	string alarm = “bad-login”
integer attempts > 0

3a2 �
 �	string file any
string operation= “file-change”

2,3

Table 4.2: Example of a table of available patterns

Table 4.2 shows an example of table of available patterns. The table says
that events matching filter a1, intuitively events that signal a failed login with
an integer attribute named “attempts”, are available from server 2, and that
events matching filter a2, file modification events, are available from servers 2
and 3.

4.3.2 Pattern factoring

Let us suppose a server X receives a compound subscription subscribe(U; p)
where p = f1 �f2 � : : : �fk. Now the server scans pattern p trying to match each fi
with a set of patterns a0i; a00i ; : : : , or trying to match a sequence fi �fi+1 � : : : �fi+ki
with a compound pattern ai:::i+ki where every pattern a is available in TP .

For example, assuming the table of available patterns shown in Table 4.2,
suppose the server receives a subscription s for a sequence of two “failed login”
alarms with one and two attempts respectively, followed by a file modification
events on file “/etc/passwd”. In response to s, the server executes the factor-
ing of s, matching the three events of s with the sequence of available patternsa1 � a1 � a2. Table 4.3 shows the subscription and the factoring computed by
the server. Since in SIENA the only operator for combining sub-patterns is the
sequence operator, the output of the factoring process is always a sequence.

66 Servers Topologies and Algorithms

requested available�
 �	string alarm = “bad-login”
integer attempts > 1

�
 �	string alarm = “bad-login”
integer attempts > 0

(a1)�
 �	string alarm = “bad-login”
integer attempts > 2

�
 �	string alarm = “bad-login”
integer attempts > 0

(a1)�
 �	string file = “/etc/passwd”
string operation= “file-change”

�
 �	string file any
string operation = “file-change”

(a2)

Table 4.3: Example of a factored compound subscription

4.3.3 Pattern delegation

Once a compound subscription is divided into available parts, the server must:� send out the necessary subscriptions in order to collect the required sub-
patterns, and� set up a monitor that will receive all the sub-patterns and will notify the
occurrence of the whole pattern

In deciding which subscriptions to send out, the server tries to re-assemble
the elementary factors in groups that can be delegated to other servers, thereby
implementing the upstream monitoring principle. A group of sub-patterns A =a � b � � � � can be delegated to a peer server Y if the following conditions apply:� a � b � � � � are contiguous in the factorization. This is obvious since se-

quences can be composed only of sub-sequences, i.e., groups of filters,
that are contiguous. For example, if S = a � b � � � � , the group A = a �
can not be delegated;� a � b � � � � are all available from the same peer server Y . This is quite clear
too, a group A = a � b can not be delegated to Y if either a or b is not
available from Y ;� a � b � � � � are not available from any other peer server. This says for
example that, if a and b are available from Y , but b is also available fromZ, then the group A = a � b can not be delegated to Y . In fact, had the
sequence been delegated, events matching b coming from Z could not
contribute to the assembly of the sequence, thus causing the event service
not to detect potentially valid sequences;

Pattern observation 67� none of the patterns in a � b � � � � is listed anywhere else in the global
pattern other than in other sequences that are identical to a � b � � � � . For
example, in a sequence S = a�b�a, the group A = a�b can not be delegated
because once the first a � b is matched, the monitor should be able to be
notified of single a events, but these would be masked by the group A
that has been delegated.

In the example of Table 4.3, the server would group the first two filters a1 �a1
and delegate the sub-pattern defined by the corresponding two subscriptions
to server 2, thus it would send a subscription subscribe(X;A1) with pattern:A1 =�
 �	string alarm = “bad-login”

integer attempts = 1
��
 �	string alarm = “bad-login”
integer attempts = 2

to server 2, and then it would subscribe for the simple subscription sub-
scribe(X;A2) with A2 =�
 �	string file = “/etc/passwd”

string operation= “file-change”

to server 3. Eventually the server will start up a monitor that recognizes the
sequence (A1 = a � b) � (A2 =).

subscribe(abc)
1

4

52

a

monitor(ab)

b

3

monitor((ab)c)

c

ababc

Figure 4.11: Pattern monitoring and delegation

Figure 4.11 shows a scenario that corresponds to the tables and subscrip-
tions discussed above. In particular, we focused on server 1 that delegates a � b
to server 2, subscribes for , and monitors (a � b) � . The diagram also shows

68 Servers Topologies and Algorithms

how server 2 might handle the delegated subscription. Assuming that a is
available from server 5 and b is available from server 4, then server 2 sends the
two corresponding subscriptions to 4 and 5 and then starts up a monitor fora � b.
4.4 Other optimization strategies

In addition to the main principles discussed in the previous section, SIENA

event servers may perform other types of optimizations. These techniques are
variants of the algorithms discussed so far.

4.4.1 Batching and merging subscriptions and advertisements

There are cases in which a server forwards to another server a whole set of
subscriptions or advertisements. For example, in the subscription forwarding
algorithm, when a server accepts a connection request from a peer server, it
immediately forwards all its root subscriptions to that peer server.

In these cases, the servers might try to merge two or more subscriptions into
a more generic one. For example, suppose a server X receives subscriptions
from its local clients: one interested party subscribes for alarm = 1, another
one subscribes for alarm > 2, and another one subscribes for alarm = 2. Now,
if a peer server Y sends a connection request to X , then X can send one single
subscription alarm > 0 back to Y together with the accept reply.

This mechanism can also be implemented among servers that exchange a
very high number of subscriptions and unsubscriptions by batching requests.
This means that, instead of forwarding requests immediately as they are re-
ceived, servers can implement a deferred forwarding by buffering requests and
sending batches of requests periodically. When flushing the buffer of requests
to construct the batch, the server can apply the merge reductions.

4.4.2 Space vs. processing vs. communication: trade-offs

All the algorithms we presented are geared towards the optimization of net-
work resources. However there are trade offs between the need of reducing
communications and the processing and memory usage on each event server.

In some cases, the data structures on servers can be compressed, thus sav-
ing space as well as processing power for maintaining and searching those
data structures. Compression can be achieved by merging subscriptions in
subscription tables much the same way they can be batched and merged in the
transmissions to other servers.

In particular, it might be preferable to compress the data structures residing
on servers a little more than what is implied exactly by the covering relations,

Other optimization strategies 69

thus saving space and processing power, at the expense of forwarding or re-
ceiving unnecessary messages. For example, a server X can merge two sub-
scriptions s1 and s2 sent by the same non-local clients (i.e., from a peer server)
into another subscription s that defines a set of subscriptions that is larger than
the union of the notifications defined by s1 and s2 alone. This operation would
cause the server to forward unnecessary notifications, i.e., those that match s,
but that do not match either s1 or s2. The advantage is that X now stores only
one simpler —since it is more generic— subscription s as opposed to the two
subscriptions s1 and s2. This compression can be done only with subscrip-
tions forwarded by peer servers since spurious notifications must go through
additional filtering and eventually they must be dropped before they reach an
interested party.

4.4.3 Evaluation of the covering relations

The evaluation of the covering relations is clearly a crucial step in every dis-
patching algorithm. For example, when a server receives a new notification n it
looks for all the subscriptions s that cover n. In general, this implies computing
the relation s �NS n for each subscription s received by the server. However, the
server can arrange its subscriptions in a lattice as explained in Section 4.2.3. The
lattice is such that for every element s1, all the subscriptions s1:1; s1:2; : : : ; s1:k
covered directly by s1 define sets of subscriptions that are included in the set
defined by s1, thus, if a notification n is not covered by s1 it can not be cov-
ered by subscriptions s1:1; s1:2; : : : ; s1:k either, thus the server can safely skip
the evaluation for the whole subtree rooted in s1.

Also, the definition of �NS requires that a notification contains every at-
tribute defined by the subscription. Thus, the evaluation of �NS can be acceler-
ated by sorting notifications’ and subscriptions’ attributes in alphabetic order
by their name. Note that the sort can be performed only once when notifica-
tions, subscriptions and advertisements enter the event service for the first time
—at their access point—. Then all the subsequent forwards in server-to-server
communications can preserve the order.

70 Servers Topologies and Algorithms

Chapter 5

Simulation Framework

The design of SIENA as a distributed architecture is difficult because of the de-
centralized nature of its topologies and algorithms. Some issues that we had
to face are common in the design and development of a highly distributed sys-
tems. In fact, our problem is to program single “autonomous cells” —the event
servers— that, when connected together, exhibit a high-level behavior that cor-
responds to the semantics of the event service. Here the critical activities are
verifying, validating, fine-tuning, and debugging the algorithms and the topo-
logies with respect to the specifications of the event service. In addition to what
is related to the development of the dispatching algorithms, we are faced with
the challenge of evaluating the performances of SIENA with respect to overall
network traffic generated by the event service, the traffic around specific nodes,
possible overloading of links, and ultimately our initial goal: scalability.

An empirical approach to these two problems is clearly not feasible. We
can not simply implement our algorithms and deploy them on a significant
number of nodes just to find out that they are done wrong and then retire them
and re-iterate the deployment as a step of our development process. Even as-
suming our algorithms are correct when we deploy them, we are left with the
problem of monitoring the whole system in order to collect the information
that are necessary for the evaluation of performance. This is a difficult task in
itself, plus unless we use some other communication facility that is external to
the target network, it is likely that the performance data will be influenced by
the observation process.

An opposite approach, at least for the verification of the semantics of the
event service, is to give a formal description of the behavior of each server to-
gether with a formal model of the topology, and then to use a model checker
to prove that the servers, connected according to that topology, implement the
desired semantics. This approach has a fundamental limitation in the case of
SIENA because the state space of each server and the state space of the net-

72 Simulation Framework

work are infinite. Server can not be modeled with a finite state because of their
dynamic data structures, similarly, all the topologies we developed are poten-
tially infinite. Unfortunately, while model checking techniques for finite state
systems are well-established and several automatic tools are available, the case
of infinite states is still a research subject and only a few results are available in
some restricted cases [9, 10].

The approach we followed for SIENA is based on a simulation environment. In
the initial development phase, we used this simulation environment to verify
and validate the algorithms. In a following phase, we analyzed the scalability
of the architectures by means of systematic simulations using several models
of wide-area network scenarios. In this chapter we will describe the simula-
tion environment we used and then we will concentrate on the evaluation of
scalability. We will discuss the network models that we used and the metrics
we examined and we will present the initial synthetic results, corresponding to
nearly 2200 simulations of scenarios.

It should be clear that, simulating distributed systems at the scale of a wide
area network like the Internet is an extremely challenging endeavor. A com-
plete simulation is just not feasible because of the immense amount of data and
interactions that are involved at different levels of granularity. According to an
estimate by Ahn and Danzig [1], “five minutes of activity on a network the
size of today’s Internet would require gigabytes of real memory and months
of computations on 100 MIPS uniprocessors”. The biggest difficulty becomes
the choice of the right models that would allow us to simplify the simulation
without loosing much in the way of accuracy. In particular, as pointed out by
Paxson in [61], the idea of shifting the focus from a packet-level simulation to
a simulation of an application-level model seems to be a very promising and
motivates even more the approach we take in SIENA.

5.1 Simulator

We implemented a message-based discrete-event simulator [2, 3]. In this class
of simulators, physical processes are realized with logical processes and the in-
teraction among physical processes is modeled with the exchange of messages
between the corresponding logical processes1. A logical process is defined sim-
ply by an object in the host programming language. The process object defines
a procedure that handles incoming messages. Messages are objects themselves
that may contain any type of information. Every process, in addition to all the
functionality offered by the host programming language, can perform one of
the following operations:

1In this context, the term message is not to be confused with the concept of network communi-
cation unit. Instead, the term has the semantics defined in discrete-event simulation literature (for
a survey on this topic, see [52]).

Simulator 73

1. create other processes

2. send messages to other processes

3. wait for the some time to pass

4. wait for a message to arrive

5. terminate itself

The simulator makes sure that messages are properly queued for the destina-
tion process and that time-outs are set according to processes’ requests. When-
ever a time-out expires for a process or when a process has pending messages,
the server yields control to that process.

The simulator of SIENA is implemented as a classical sequential discrete-
event simulator biased towards the conceptual framework that we defined
for SIENA. Note that the conceptual framework of SIENA maps directly onto
the elements of a discrete-event simulator. In particular, objects —interested
parties, event servers, etc.— are already modeled and implemented as reactive
processes, in fact we described server algorithms in terms of the routines that
respond to notifications, subscriptions and advertisements. Also, event notifi-
cations, subscriptions, and advertisements are already represented as network
messages that are very naturally implemented as messages within the simula-
tor. In addition to these basic abstractions, the simulator of SIENA implements
a network model with sites and links that mimics the real communication in-
frastructure.

We preferred a custom simulator to a general purpose one like ns-2 [76]
because it gives us more freedom in the implementation of the components to
simulate and in abstracting away details of the network model. Specifically, the
simulator implements the network model that considers only the end-to-end
characteristics of a link hiding the underlying packet switched network. This
abstraction greatly simplifies the simulation without introducing a significant
distortion in the global results [35].

The SIENA simulator is written in C++ and most of its data structures are
realized by means of the Standard Template Library (STL) [57]. Processes are
objects of a sub-class of a process class that defines three virtual methods: ini-
tialize, process, and terminate. Every process objects has a reference to the site
on which it executes. A clock variable holds the current time of the physical
system.

The core data structure that drives the execution of the simulator is list of
action items. Every action has a time-stamp that indicates the scheduled time
for that action and the list is sorted in ascending time order. The simulator
cycles extracting the first element of the actions list and executing the corre-
sponding action. When extracting an action item, the simulator advances the
clock to the schedule time of that action. An action can be one of:

74 Simulation Framework

deliver message(m,p) the simulator yields control to the destination process p
passing the message m as a parameter;

timeout expired(p) the simulator yields control to the process p that set the
time-out;

initialize process(p) the simulator yields control to the initialization function
of the new process p;

terminate process(p) the simulation executes the termination function for pro-
cess p and then destroys p.

Within the body of its main functions, a process has access to the services
of the simulator. The basic services are:

create process at(p,s) the simulator defines p.site := s and then schedules a ini-
tialize process(p) action at time T = clock;

create process(p) the simulator defines p.site := current process.site and then
schedules a initialize process(p) action at time T = clock;

create process(p) the simulator schedules an initialize process(p) action at
time T = clock;

send message(m,p) the simulator schedules a deliver message(m,p) action at
time T = clock+ transmission time(current process.site; p:site;m);

exit the simulator schedules a terminate process(current process) action at
time T = clock.

In addition to these basic services, every process can access other informa-
tion, including the current time, i.e., the value of the clock variable, and some
network information about its neighborhood.

5.2 Scenario models

Simulations are executed on network scenarios. A network scenario is the de-
scription of a network with its population of components. Figure 5.1 shows
the layered structure of our network scenarios. Before entering its main loop,
the simulator reads a scenario description according to which it defines net-
work resources and it instantiates objects.

Scenario models 75

Internet

event
service

network
model

‘‘physical’’
network

4
3

21

5

7

1
2

1

Figure 5.1: Layered network scenario model

5.2.1 Network model

At the lowest level of a network scenario we have the model of the net-
work. This layer sits on top of what we consider the “physical” connections
among hosts. Here the model defines sites and links. Sites are computers
or more likely local networks connecting sets of computers. Links are the
high-level descriptions of connections between two sites. Links are imple-
mented by the “physical” layer by means of some communication protocol
(e.g., TCP/IP), however, the simulator abstracts away from the details of this
protocol and uses a simple characterization: a link that connects site s1 ands2 is has three parameters: latency(s1; s2), bandwidth�1(s1; s2), and cost(s1; s2).
Latency is measured in time units, bandwidth�1 is measured in time units per
bit, and cost is measured in money units. Links are assumed symmetrical,
i.e, latency(s1; s2) = latency(s2; s1). An analysis performed by Paxson [60]
shows that although the end-to-end behavior of the Internet has become less
predictable, anomalies are still at an acceptable level and, what is particularly
important for our assumptions, the majority of routing paths is stable for long
periods of time and the reliability of the measure increases significantly when
we consider short distances.

Given the above definitions, the simulator computes the time it takes to
deliver a message m from site s1 to s2
transmission time(s1; s2;m) = latency(s1; s2) + length(m)� bandwidth�1(s1; s2)

76 Simulation Framework

Note that the characteristics of a link, and thus the transmission time on that
link, do not depend on other factors such as the time of day, the traffic already
routed through that channel, etc. This is not really a limitation of the simulator
since, from the viewpoint of the simulator, it is just a matter of introducing
these new parameters in the cost and latency functions. The real issue is rather
that we do not know what the right model is for describing the dynamics of a
generic link over the Internet at this level of granularity.

To compile realistic network topologies that approximate the behavior of
real wide-area networks, we used a generator of random network graphs that
implements the Transit-Stub model [82] (other models for random network
graphs are Waxman’s non-hierarchical graphs [78], and Tiers [25]. A discussion
on these models can be found in [83]). Although we experimented networks of
500 up to 1000 nodes, the bulk of simulations we present here were performed
on a graph of 100 nodes. Figure 5.2 shows this network topology.

5.2.2 Event service model

The event service model describes the topology of servers with respect to the
topology of the network. In practice, once we have a description of the net-
work, we must populate sites with event servers and we must configure their
interconnections.

We do not use a random layout for servers, but instead we determine how
many servers will be set up and where they will reside by matching their type
with the layout of the network. In other words, we assume that location and
connections of servers are more or less an image of the underlying network
model. So we will have one server per site, and every server will be config-
ured to connect to the servers residing on its neighbor sites. For example, if a
network topology has three nodes, say “uci”, “colorado”, and “polimi” with
two links connecting “uci” with “colorado” and “colorado” with “polimi” re-
spectively, we will set up three servers, one for each site, and we will configure
them so that the server at “uci” will talk to the server at “colorado” (and vice
versa) and the server at “colorado” will talk to the server at “polimi” (and vice
versa). This assumption significantly reduces the variable space thus simplify-
ing the set of scenarios that we will cover, and it is also very reasonable since it
reflects the structure of domains that characterizes the Internet [14].

The scenarios we are simulating at this time include only homogeneous event
service topologies. In addition to the distributed topologies, we simulate also a
“reference” centralized topology that we use as a baseline for our comparison.

centralized in this case there will be one server for the whole network and it
will be randomly placed on one node of the network;

hierarchical this topology creates one server for each node of the network. The
connections between servers (the parent server pointer) will be configured

Scenario models 77

s0

s29

32

s17

24

s12

17

s4
31

s2
45

s325

s30

33

s34

19
s33 10

s20

16

s25

16

s23

19

s24

8

s26

17

s9

6

s11

17

s10
25

s15

6

s13

1

s14
15

s5
9

s7 23

21

s88

23

s80

16

s69

8

s95

19

s112

19

s63

3

s53

28 s44
1

s40
30

s593

s60

19

s61

7

s66

22

s67

8

s65

12

s49
35

s58

7

s51

22
s54

8

s55

26

s4210

s43

14

s4511

s381

s37

1

s87

6

s90

1

s85

34

s84

31

s70

10

s71

7

s75

22

s93

21

s98

31

s94

5 s97

39

s6

16

18

s8

17

10

21

23
17

32

14

s16

s18
13

16 18

22
34

s19
16

s21

17

s22
32

3

1921

17

11

6

17

19
34

20

15

9

10

13

19

s27

22s32

17
11

s35

8

32
30

25

9 23

s28

s31

23

20

3

s36

25

s41

8

s39
15

28

19

8

s4711

s48

15

11
s46

31

5
18

35

s52

11

s56

25

17

12
30

s50

21

25

18

1

s57 5

23
28

18

18 8

14 13 14

s64

3

21

6

s62

18
10

s68

s72

32

s74

7

s73

24

s76

26

5

2422

22

1918 419

s77

s79

10

s82

21

s83

10

s86

22 s8113

26

27

23

30

s78

25

15

24

22

7

23

4

19

16

25

10

s89

18

7

s91

2112

16

20

s92

13 s99

12

23

22

17
13

s96

9

36

39

Figure 5.2: Randomly generated network topology

78 Simulation Framework

so that the tree of servers will correspond to the minimal spanning tree
rooted in node 0 of the network. Note that the algorithm that creates the
network cost function produces a quasi-hierarchical network in which
the first nodes are at the highest level in the hierarchy, thus the choice of
using node 0 as a starting point;

acyclic peer-to-peer this topology is exactly equivalent to the hierarchical to-
pology. I.e., it has one server per node and the connections between
servers are laid on a minimal spanning tree rooted in the first node of
the network (the difference is in the type of connections);

generic peer-to-peer this topology of servers matches the topology of the net.
Each node has one server and connections among servers are an exact
replica of the connections of the network topology.

5.2.3 Applications model

The applications model describes the applications that use the event service.
In particular, we must determine number, location, behavior of objects as well
as which event server will be their event service access point. As we have done
so far, we model objects of interest and interested parties as separate objects.

An object of interest executes m sequences

advertise; n timesz }| {
publish; publish; : : :; unadvertise

For every object, we also give the average time delay between two messages t.
An interested party executes the dual cycles of an object of interest, i.e., it

executes m sequences:

subscribe; n times=t time unitsz }| {
recv notif; recv notif; : : :; unsubscribe

The length of the inner cycle can be specified directly in terms of the num-
ber of notifications that the interested party waits for before unsubscribing, or
alternatively giving the mean time interval between a subscribe and the corre-
sponding unsubscribe.

Both interested parties and objects of interest are steady objects. Thus they
connect to one event service access point. Specifically, they connect to the near-
est event server. Since the topology functions associate a default zero cost to
local connections, i.e., connections between processes that execute on the same
node, there can only be two cases:� centralized event service: here objects and parties can connect to the only

one server in the network, and

Simulation Results 79� hierarchical, acyclic, and generic event service: in this case, since there will
be one server for each node, objects and parties connect to the server that
runs on their site.

5.3 Simulation Results

5.3.1 Simulation traces

The result of a simulation is a trace file that contains an entry for every inter-
action between simulated objects. In the simulation of SIENA scenarios, all the
interactions correspond to network messages exchanged by objects. The trace
entry for a network message contains the following information:

message type determines which high-level request is carried by the message.
It can be one of the messages that realize the interface functions of the
event service (e.g., notification, subscription, unsubscription, etc.) or it can
be one of the special messages implementing the server-to-server com-
munication in peer-to-peer topologies.

message id this is the unique sequence number of a message;

service id this is the identifier of the service to which this message is a follow-
up. When a client requests a service by sending a message to its access
point, the access point uses the message id of that request to identify a
service. Every message forwarded as a consequence of that request are
marked with that service id;

source object id this is the identifier of the sender. Object identifiers are
unique and they are not recycled when objects terminate their execution;

source site this is the identifier of the site from which the message is sent (it
coincides with the site on which the sender runs);

destination object id this is the identifier of the receiver;

destination site this is the identifier of the site to which the message is sent (it
coincides with the site on which the receiver runs);

departure time this is the value of the clock at the time the message is posted
by the sender;

arrival time this is when the receiver gets the message, i.e., when the simula-
tor schedules the response action;

cost cost of the message according to the cost function.

80 Simulation Framework

A service request can have a follow up of many messages of different types.
For example, an unsubscription can result in many other unsubscriptions as
well as new subscriptions.

5.3.2 Metrics and aggregation criteria

From the trace file produced by the simulation, we extract and aggregate some
metrics that synthesize the performance of an architecture. The aggregation
criteria are:

total all the messages exchanged for the whole simulation;

per-site all the messages sent or received by one site;

per-link all the messages sent through one link;

per-service all the messages with a specific service id.

On these groups of messages, we compute cost and delay metrics. The cost
can be computed for all the groupings. Instead, the delay is computed using
the per-service grouping only. The delay in a service request is the time it takes
to complete a service request. For a service id s:

delay(s) = maxm2Gs arrival time(m)� minm2Gs departure time(m)
where Gs is the group of messages having service id = s.

5.3.3 Simulation process

Figure 5.3 shows the simulation process. Ovals represent data. Boxes repre-
sent processing activities. Dark ovals or boxes represent information or ac-
tivities that can be parametrized, i.e., the variables of our model. The “ran-
dom” flash arrows introduce non-determinism, for example in the simulation
process, non-determinism is given by the probabilistic behavior of objects of
interest and interested parties. The two staring points are the topology meta-
parameters and the scenario parameters. The topology meta-parameters are
the input parameters for the topology generator2. These parameters are spe-
cific of the generation method (see [83] for details). The topology generator
tool produces a graph using the Stanford GraphBase format [42] which we
then translate into AT&T’s dot format [43] for the subsequent processing.

Figure 5.4 shows a file containing scenario parameters3. The servers tag
defines the architecture to be used in this scenario while the objects and

2We used the Georgia Tech Internet Topology Models (GT-ITM), a publicly available package
for generating random graphs [31]

3Actually, in order to automate the simulation process, we used a description file parametrized
with CPP macros

Simulation Results 81

meta-params
topology

random

simulation

trace

import

into database

message

table

per-scenario
statistics

topology

generator

scenario

generator

bare

topology

per-scenario
statistics

import

into database

first stage

queries

view

queries

data

series

plot

graphs

*

random

scenario

random

simulator

scenario

grouping

filter

parameters

Figure 5.3: Simulation process

82 Simulation Framework

//
// scenario spec file
//
servers = acyclic adv_fwd;

objects {
event = "A";
number = 1000;
pub/adv = 20;
time/pub = 2000˜2500;
cycles = 10;

};

parties {
pattern = "A";
number = PARTIES;
notif/sub = 15; // these two are mutex

// time/sub = 10000˜15000 //
cycles = 10;
init_delay = 2000˜2500;

};

Figure 5.4: Scenario parameters

parties sections specify behavior and number of objects of interest and in-
terested parties respectively. The number of objects of interest and interested
parties is the total number for a scenario, objects are distributed randomly on
all the sites. The behavior also defines which classes of events will be gener-
ated by objects of interest (with the tag event) and which pattern of events
is of interest for interested parties (with the tag pattern). We use the symbol
“A” as a shortcut to indicate “events of type A”. Since we are initially interested
in testing the consumption of network resources rather than computational re-
sources, we have simulated only simple filters of this kind. The scenario pa-
rameters file can contain any number of objects and parties sections with pos-
sibly different behavior specifications. Note that some numeric parameters are
expressed with a pair of min � max values (e.g., time/pub = 2000 2500).
This notation indicates a uniform distribution of values between min and max.

Scenario parameters are processed together with the bare topology to create
the scenario file read by the simulator. Figure 5.5 shows an example of scenario
description. This file contains the definition of sites and links (substantially a
copy of the topology file), the allocation of servers, the definition and allocation
of objects of interest and interested parties.

The simulation produces a stream of trace records. We process the simula-
tion traces in two ways: we either import them into a relational database from
which we extract aggregate metrics or alternatively, for extremely large simu-
lations, we pipe them through a filter that computes the aggregate metrics and

Simulation Results 83

//
// detailed scenario configuration
//
sites:

s0 - s4 = 31;
s0 - s2 = 45;
s0 - s3 = 25;
s1 - s3 = 19;
s1 - s63 = 3;
s2 - s80 = 16;
s2 - s69 = 8;

// ...
//
// event servers type and conections
//
acyclic adv_fwd:

S@s0;
S@s2 -> S@s0;
S@s3 -> S@s0;

// ...
S@s69 -> S@s2;
S@s80 -> S@s2;

// ...
//
// objects of interest
//
objects:
10 @ s0 server=S@s0 event=A cycles=10 count=20 delay=2185;
13 @ s1 server=S@s1 event=A cycles=10 count=20 delay=2042;
8 @ s2 server=S@s2 event=A cycles=10 count=20 delay=2126;
9 @ s3 server=S@s3 event=A cycles=10 count=20 delay=2403;
// ...
//
// interested parties
// (delay = 15N means cycle "after 15 notifications")
//
parties:
95 @ s0 server=S@s0 pattern=A cycles=10 delay=15N init_del ay=2461;
92 @ s1 server=S@s1 pattern=A cycles=10 delay=15N init_del ay=2029;
108 @ s2 server=S@s2 pattern=A cycles=10 delay=15N init_de lay=2331;
98 @ s3 server=S@s3 pattern=A cycles=10 delay=15N init_del ay=2124;
// ...

Figure 5.5: Scenario description file

84 Simulation Framework

then we import only these synthetic values into the database. After this first
step, we obtain per-scenario statistics of aggregate metrics. From this informa-
tion we select the scenarios and the corresponding data series that we intend
to plot.

5.3.4 Synthetic results

In this section, we display and comment a number of graphs showing some ag-
gregate metrics computed over several scenario simulations. In all the graphs,
on the X axis we have the number of interested parties in logarithmic scale.
Also, each single data point represents ten simulations of the same scenario
and shows the average value and in some graphs the standard deviation. Note
that the absolute values of the Y axis are somewhat irrelevant because they do
not correspond to any real-world unit of measure. Instead, what we want to
show are the trends of a metric with respect to the growth of interested par-
ties (our primary measure of scale), or the relative positions of different curves
representing different architectures.

In the graphs below we used the following aliases for event-service ar-
chitectures: ce=centralized, hs=hierarchical (with subscriptions forwarding),
as=acyclic peer-to-peer with subscriptions forwarding, aa=acyclic peer-to-peer
with advertisements forwarding.

Comparison on total cost

1 10 100 1000 10000

to
ta

l
co

st

interested parties

arch=ce,hs,as,aa; objects=10

ce
hs
as
aa

1 10 100 1000 10000

to
ta

l
co

st

interested parties

arch=ce,hs,as,aa; objects=1000

ce
hs
as
aa

Figure 5.6: Total cost: comparison of architectures (ce,hs,as,aa)

Figure 5.6 compares the total cost of the simulation of a network of 100 sites
with a population of 100 objects of interest. Clearly, the behavior of every dis-
tributed architecture (hs,as, and aa) is compressed as opposed to the explosive
growth of the centralized architecture. We have obtained the same result when
scaling up the number of objects of interests.

Simulation Results 85

In order to be able to see the difference among distributed architectures, we
eliminate the data serie of the centralized architecture and we obtain what is
shown in Figure 5.7 and Figure 5.8.

1 10 100 1000 10000

to
ta

l
co

st

interested parties

arch=hs,as,aa; objects=1

hs
as
aa

1 10 100 1000 10000
to

ta
l

co
st

interested parties

arch=hs,as,aa; objects=10

hs
as
aa

Figure 5.7: Total cost: comparison of architectures (hs,as,aa) with 1 and 10 ob-
jects

1 10 100 1000 10000

to
ta

l
co

st

interested parties

arch=hs,as,aa; objects=100

hs
as
aa

1 10 100 1000 10000

to
ta

l
co

st

interested parties

arch=hs,as,aa; objects=1000

hs
as
aa

Figure 5.8: Total cost: comparison of architectures (hs,as,aa) with 100 and 1000
objects

What we see in figures 5.7 and 5.8 is that, except for the first chart that
shows scenarios with only one object of interest, the hierarchical architecture
with subscription forwarding is always more expensive than the acyclic topo-
logy with the same subscription forwarding algorithm. This behavior is con-
sistent with what we can infer from the algorithms, in fact, while the peer-
to-peer topology is penalized by its broadcast of subscription, the hierarchi-
cal algorithm —which propagates subscriptions only towards the root of the
hierarchy— is also forced to propagate notifications towards the root server
whether or not interested parties exist on that part of the network. This gener-
ates a traffic of unnecessary notifications.

86 Simulation Framework

The second observation that we can make by looking at these charts is that
the advertisement forwarding algorithm has an irregular behavior for a low
density of interested parties. Its cost returns to the level of the corresponding
architecture with subscription forwarding when the number of interested par-
ties saturates the network (i.e., more than one interested party per site). This
effect becomes more and more evident as we increase the number of objects of
interest.

1 10 100 1000 10000

to
ta

l
co

st

interested parties

arch=aa; objects=10

stdev
avg

1 10 100 1000 10000
to

ta
l

co
st

interested parties

arch=aa; objects=1000

stdev
avg

Figure 5.9: Total cost: acyclic peer-to-peer with advertisement forwarding

This unstable behavior at lower densities of interested parties is also evi-
dent in the chart of Figure 5.9. There we isolate the total cost of the acyclic
peer-to-peer topology with advertisements forwarding. We also show error
bars that report the standard deviation of this metric computed over ten runs
of the same scenario.

1 10 100 1000 10000

to
ta

l
co

st

interested parties

arch=ce; objects=1,10,100,1000

1
10

100
1000

1 10 100 1000 10000

to
ta

l
co

st

interested parties

arch=hs; objects=1,10,100,1000

1
10

100
1000

Figure 5.10: Total cost: centralized and hierarchical topologies

We can also examine the behavior of every single architecture with respect
to the total cost. Figure 5.10 reports the behavior of the centralized architec-
ture and the hierarchical topology with subscription forwarding. Figure 5.11

Simulation Results 87

1 10 100 1000 10000

to
ta

l
co

st

interested parties

arch=as; objects=1,10,100,1000

1
10

100
1000

1 10 100 1000 10000

to
ta

l
co

st

interested parties

arch=aa; objects=1,10,100,1000

1
10

100
1000

Figure 5.11: Total cost: acyclic peer-to-peer topology with advertisement for-
warding and subscription forwarding

reports the behavior of the acyclic peer-to-peer topology with both subscrip-
tion forwarding and advertisement forwarding. Remember that the values are
normalized with respect to the maximum value in each chart, however, the
absolute values of different charts are not related.

Distribution of load among sites

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 10 100 1000 10000

p
er

-s
it

e
co

st
 s

td
d

ev
/

av
g

interested parties

arch=hs,as; objects=1)

hs
as

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

1 10 100 1000 10000

p
er

-s
it

e
co

st
 s

td
d

ev
/

av
g

interested parties

arch=hs,as; objects=10)

hs
as

Figure 5.12: Variance of per-site cost: hierarchical vs. acyclic peer-to-peer (1,10
objects)

There is another fundamental difference between the hierarchical topology
and the acyclic topology that also confirms our intuitions. The acyclic topology
does a better job in distributing the load over all the servers in the net.

In Figure 5.12 and in Figure 5.13 we plot the standard deviation of the per-
site cost, normalized with respect to the average per-site cost. For small num-
bers of objects of interest, i.e., when there are a few emitters of notifications,

88 Simulation Framework

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

1 10 100 1000 10000

p
er

-s
it

e
co

st
 s

td
d

ev
/

av
g

interested parties

arch=hs,as; objects=100)

hs
as

1.6

1.8

2

2.2

2.4

2.6

2.8

3

1 10 100 1000 10000

p
er

-s
it

e
co

st
 s

td
d

ev
/

av
g

interested parties

arch=hs,as; objects=1000)

hs
as

Figure 5.13: Variance of per-site cost: hierarchical vs. acyclic peer-to-peer
(100,1000 objects)

and for small numbers for interested parties, the hierarchical topology has a
better distribution of costs among sites. This is probably due to the overhead
of broadcasting subscriptions in the acyclic topology. However, when scaling
up interested parties and objects of interest, the acyclic topology reacts with a
more homogeneous distribution of communication load.

Cost per service

1 10 100 1000 10000

p
er

-s
er

v
ic

e
co

st

interested parties

arch=ce; objects=1,10,100,1000

1
10

100
1000

1 10 100 1000 10000

p
er

-s
er

v
ic

e
co

st

interested parties

arch=hs; objects=1,10,100,1000

1
10

100
1000

Figure 5.14: Average cost per service: scalability of every architecture (ce, hs)

The total cost metric hides the overhead introduced by the routing mes-
sages sent by event servers with respect to the messages that are strictly re-
quired for the implementation of each client request. The per-service grouping
criterion tries to give a better characterization of the cost of architecture. More
specifically, an event service is efficient if it can amortize the cost of the real-
ization of a client request with the information set up by previous requests.

Simulation Results 89

1 10 100 1000 10000

p
er

-s
er

v
ic

e
co

st

interested parties

arch=as; objects=1,10,100,1000

1
10

100
1000

1 10 100 1000 10000

p
er

-s
er

v
ic

e
co

st

interested parties

arch=aa; objects=1,10,100,1000

1
10

100
1000

Figure 5.15: Average cost per service: scalability of every architecture (as, aa)

Figure 5.14 and Figure 5.15 show how every architecture scales up by amortiz-
ing the per-service cost. Figure 5.16 and Figure 5.17 examine the same data the

1 10 100 1000 10000

p
er

-s
er

v
ic

e
co

st

interested parties

arch=ce,hs,as,aa; objects=1

ce
hs
hs
aa

1 10 100 1000 10000

p
er

-s
er

v
ic

e
co

st

interested parties

arch=ce,hs,as,aa; objects=10

ce
hs
hs
aa

Figure 5.16: Total cost: comparison among architectures (1,10 objects)

other way around, i.e., by comparing the behavior of different architectures at
various levels of scale.

90 Simulation Framework

1 10 100 1000 10000

p
er

-s
er

v
ic

e
co

st

interested parties

arch=ce,hs,as,aa; objects=100

ce
hs
hs
aa

1 10 100 1000 10000

p
er

-s
er

v
ic

e
co

st

interested parties

arch=ce,hs,as,aa; objects=1000

ce
hs
hs
aa

Figure 5.17: Total cost: comparison among architectures(100,1000 objects)

Chapter 6

Conclusions and Future Work

Software systems of a significant dimension, especially those that are distribu-
ted over a computer network, are often engineered by means of the integration
of components. A promising approach to support component-based software
architectures is the so-called event-based style whereby the interaction of com-
ponents is modeled with events. Components emit events to inform other com-
ponents of a change in their internal state or to request services from other
components. Upon detecting the occurrence of events, components react by
executing some actions and possibly emitting other events. The glue that ties
components together in an event-based architecture is an infrastructure that
we call event service. The event service registers the interests of components
and then dispatches event notifications accordingly. The advantage of using an
event service instead of other “classical” integration mechanisms such as direct
or remote invocation is that this method increases the degree of de-coupling
among components thus eliminating static dependencies and improving inter-
operability.

We envision a ubiquitous event service, accessible from every site on a
wide-area network, and particularly suitable for supporting highly distribu-
ted applications that require a fine grained interaction. Such an event service
complements other middleware services such as point-to-point communica-
tion mechanisms by offering a many-to-many communication and integration
facility. In this dissertation, we presented the project of an event service called
SIENA that has precisely these goals.

The focus of SIENA is on scalability of the service and on the trade-offs exist-
ing between the expressive power of the event service and its ability to scale up.
In particular, SIENA has been designed to absorb gracefully the network traf-
fic induced by the explosion of connections between components established
in the event-based interaction at the scale of a wide-area network such as the
Internet.

92 Conclusions and Future Work

Summary of the work done

The first step in this research is the formal definition of the SIENA event service
which includes the formulation of a conceptual framework, the specification
of the data model, the interface, and the semantics of the event service. In
particular, we extended the publish/subscribe framework with another primi-
tive called advertise, we introduced the observation of sequences of events, and
we defined two alternative semantics, one based on subscriptions, the other
one based on advertisements. The critical point in this phase was to devise a
service flexible enough to balance the modeling capabilities offered to the ap-
plication designer with the opportunities to apply optimizations to reduce the
communication overhead introduced with the implementation of the service.

The following step is the realization of the event service as a distributed
structure of event servers. This effort lead to the definition of a number of alter-
native implementations, each one having a different architecture with different
requirements on the semantics of the service and different features for scalabil-
ity. Every architecture results from the composition of a topology for the layout
of the network of event servers with an algorithm for the dispatching of event
notifications. We initially formulated two basic optimization principles that al-
low the amortization of communication overhead and resource consumption.
Then we applied these principles to each topology. In this phase, we give a
detailed description of the algorithms and data structures that realize the dis-
patching and the recognition of sequences of events. The algorithms also show
the critical aspects of the event model and of the event service interface with
respect to scalability.

The last part of this work is dedicated to the quantitative assessment of the
proposed solutions. In line with other research efforts in communication net-
works, we used a simulation environment that served us both as a design and
development tool, to verify and validate algorithms and topologies, and as a
model for the evaluation of our scalability goals. The construction of the sim-
ulation environment involved the implementation of a network simulator spe-
cially targeted at application-level simulations. For the assessment of SIENA we
utilized randomly generated networks, populated by several types and densi-
ties of applications, served by event services with different architectures. The
results that we obtained show that all our distributed architectures are able
to compress the communication overhead generated in a reference centralized
architecture. In particular, when scaling up the number of interested parties
and objects of interest, the new distributed topologies that we propose amor-
tize the cost of services much more than the centralized architecture that has
an explosive behavior, and also more than the hierarchical architecture that is
adopted in several distributed systems similar to SIENA. Another quite evident
result differentiates the hierarchical topology from the acyclic one by showing
how the latter one does a better job in distributing the load over all the event

93

servers.

Future work

This thesis is an initial step towards the realization of the quite ambitious goals
of SIENA. Much work remains to be done to improve what we have achieved so
far and to explore new solutions. As far as the capabilities of the event service,
we have the opportunity to enrich the vocabulary of operators available for
single filters as well as for the combination of patterns. While new filters opera-
tors pose little conceptual and practical problems, new combinators of patterns
are likely to have a significant impact on the algorithms that realize the factor-
ing and delegation of the observation of sequences. We already outlined some
alternative heterogeneous topologies and some additional optimization strate-
gies that could improve the dispatching and monitoring algorithms. These
could be implemented and new ones can be devised. In particular, we would
like to improve the compression of routing tables on event servers.

An area of this work that definitely needs a deeper understanding and more
research is the assessment of performances. The experiments we ran so far
demonstrate that our approach is on the right track, however the quantitative
results are either not very surprising or not so informative for determining the
variables of control for scalability. We will work on a more comprehensive
evaluation of the architecture with more systematic simulations, trying to iso-
late the factors that affect scalability. Ultimately, we would like to distill a set of
guidelines that characterize clearly the trade-offs between applications’ needs
and scalability of the event service.

Apart from the work with the simulated environment, we would like to
gain more real-world experience. We indicate here some plans for future works
that are well out of the scope of this this thesis and might follow up from this
research. The first rather obvious idea is to realize a real implementation of
SIENA beyond the current prototype. This means having an event server, pos-
sibly implementing all the different architectures we studied, that we can de-
ploy on a significant number of nodes on the Internet. Another interesting
development would be the study of the application side. This includes a char-
acterization of the requirements that applications pose on an event service and
ultimately a methodology for the design and implementation of event-based
component-based software systems.

94 Conclusions and Future Work

Bibliography

[1] J. Ahn and P. B. Danzig. Speedup vs. Simulation Granularity. IEEE/ACM
Transactions on Networking, 4(5):743–757, Oct. 1996.

[2] R. L. Bagrodia, K. M. Chandy, and J. Misra. A Message-Based Approach
to Discrete-Event Simulation. IEEE Transactions on Software Engineering,
13(6):654–665, June 1987.

[3] R. L. Bargodia and W.-T. Liao. Maise: A language for the design of efficient
discrete-event simulation. IEEE Transactions on Software Engineering, 20(4),
Apr. 1994.

[4] N. S. Bargouti and B. Krishnamurthy. Using Event Contexts and Matching
Constraints to Monitor Spftware Processes Effectively. In Proceedings of the
17th International Conference on Software Engineering, Seattle WA, U.S.A.,
May 1995. IEEE Computer Society.

[5] T. Barners-Lee. Universal Resource Identifiers in WWW, A Unifying Syn-
tax for the Expression of Names and Addresses of Objects on the Net-
work as used in the World-Wide Web. Internet Requests For Comments
(RFC) 1630, June 1994.

[6] D. Barrett, L. Clarke, P. Tarr, and A. Wise. A Framework for Event-
Based Software Integration. ACM Transactions on Software Engineering and
Methodology, 5(4):378–421, Oct. 1996.

[7] R. Bellman. Dynamic Programming. Princeton University Press, Princeton,
1957.

[8] D. Bertsekas and R. Gallager. Data Networks. Prentice–Hall, Englewood
Cliffs, New Jersey, 1987.

[9] O. Burkart. Automatic verification of sequential infinite-state processes, vol-
ume 1354 of Lecture Notes in Computer Science. Springer–Verlag, New York,
1997.

96 Conclusions and Future Work

[10] O. Burkart and B. Steffen. Model Checking the Full Modal Mu-
Calculus for Infinite Sequential Processes. In P. Degano, R. Gorrieri, and
A. Marchetti-Spaccamela, editors, Automata, Languages and Programming,
Proceedings of 24th International Colloquium ICALP ’97, number 1256 in Lec-
ture Notes in Computer Science, pages 419–429, Bologna, Italy, July 1997.
Springer-Verlag.

[11] M. R. Cagan. The HP SoftBench environment: an architecture for a new
generation of software tools. Hewlett-Packard Journal: technical information
from the laboratories of Hewlett-Packard Company, 41(3):36–47, June 1990.

[12] A. Carzaniga, E. Di Nitto, D. S. Rosenblum, and A. L. Wolf. Issues in
Supporting Event-based Architectural Styles. In 3rd International Software
Architecture Workshop, Orlando FL, U.S.A., Nov. 1998.

[13] S. Ceri and J. Widom. Active Database Systems: Triggers and Rules for Ad-
vanced Database Processing. Morgan Kaufmann, San Mateo, 1996.

[14] D. Clark. Policy Routing in Internet Protocols. Internet Requests For Com-
ments (RFC) 1102, May 1989.

[15] D. Clark and e. a. Joseph Pasquale. Strategic Directions in Networks and
Telecommunications. ACM Computing Surveys, 28(4):679–690, Dec. 1996.

[16] J. E. Cook and A. L. Wolf. Discovering Models of Software Processes from
Event-Based Data. ACM Transactions on Software Engineering and Method-
ology, 7(3):191–230, July 1998.

[17] D. H. Crocker. Standard for the Format of ARPA Internet Text Messages.
Internet Requests For Comments (RFC) 822, Aug. 1982. STD 11.

[18] G. Cugola, E. Di Nitto, and A. Fuggetta. Exploiting an Event-based In-
frastructure to Develop Complex Distributed Systems. In Proceedings of
the 20th International Conference on Software Engineering (ICSE 98), Kyoto,
Japan, Apr. 1998.

[19] G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI event-based infrastruc-
ture and its application to the development of the OPSS WFMS. Technical
report, CEFRIEL, Milano, Italy, Sept. 1998.

[20] Y. K. Dalal and R. M. Metcalfe. Reverse path forwarding of broadcast
packets. Communications of the ACM, 21(12):1040–1048, Dec. 1978.

[21] S. E. Deering. Host Extensions for IP Multicasting. Internet Requests For
Comments (RFC) 1584, Aug. 1989.

[22] S. E. Deering. Multicast Routing in a Datagram Internetwork. PhD thesis,
Stanford University, Dec. 1991.

97

[23] S. E. Deering and D. R. Cheriton. Multicast Routing in Datagram Net-
works and Extended LANS. ACM Transactions on Computer Systems,
8(2):85–111, May 1990.

[24] S. E. Deering, D. Estrin, D. Farinacci, V. Jacobson, C. Liu, and L. Wei. The
PIM Architecture for Wide-Area Multicast Routing. IEEE/ACM Transac-
tions on Networking, 4(2):153–162, Apr. 1996.

[25] M. B. Doar. A Better Model for Generating Test Networks. In Proceedings
of Globecom ’96, Nov. 1996.

[26] J. Farley. Java Distributed Computing. The Java Series. O’Reilly & Associates
Inc., 1997.

[27] W. Fenner. Internet Group Management Protocol, Version 2. Internet Re-
quests For Comments (RFC) 2236, Nov. 1997.

[28] C. Fidge. Fundamentals of distributed system observation. IEEE Software,
13(6):77–84, Nov. 1996.

[29] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University
Press, Princeton, 1963.

[30] A. Fuggetta, G. P. Picco, and G. Vigna. Undestanding code mobility. IEEE
Transactions on Software Engineering, 24(5):342–361, May 1998.

[31] Georgia Institute of Technology. College of Computing. Georgia Tech In-
ternet Topology Models (GT-ITM).
http://www.cc.gatech.edu/projects/gtitm.

[32] R. S. Hall, D. Heimbigner, A. van der Hoek, and A. L. Wolf. An Archi-
tecture for Post-Development Configuration Management in a Wide-Area
Network. In Proceedings of the 17th International Conference on Distributed
Computing Systems, Baltimore MD, U.S.A., May 1997.

[33] R. O. Hart and G. Lupton. DEC FUSE: Building a graphical software de-
velopment environment from UNIX tools. Digital Technical Journal of Dig-
ital Equipment Corporation, 7(2):5–19, Spring 1995.

[34] C. Hedrick. Routing Information Protocol. Internet Requests For Com-
ments (RFC) 1058, June 1988.

[35] P. Huang, D. Estrin, and J. Heidemann. Enabling Large-Scale Simulations:
Selective Abstraction Approach to The Study of Multicast Protocols. In
Proceedings of the 6th International Symposium on Modeling Analysis and Sim-
ulation of Computer and Telecommunications Systems (MASCOTS98), pages
241–248, Montreal, Canada, July 1998.

98 Conclusions and Future Work

[36] K. Ilgun, R. Kemmerer, and P. Porras. State Transition Analysis: A Rule-
Based Intrusion Detection System. IEEE Transactions on Software Engineer-
ing, 21(3), Mar. 1995.

[37] D. B. Johnson and C. Perkins. Mobility Support in IPv6. Internet Draft,
Nov. 1997. Mobile IP Working Group.

[38] A. M. Julienne and B. Holtz. ToolTalk and open protocols, inter-application
communication. Prentice–Hall, Englewood Cliffs, New Jersey, 1994.

[39] B. Kantor and P. Lapsley. Network News Transfer Protocol – A Proposed
Standard for the Stream-Based Transmission of News. Internet Requests
For Comments (RFC) 977, Feb. 1986.

[40] Keryx WEB page. http://keryxsoft.hpl.hp.com, 1997.

[41] Kerysoft, Hewlett Packard. Keryx Version 1.0a Release Notes and Documen-
tation, 1997. http://keryxsoft.hpl.hp.com/keryx-1.0a/html/index.html.

[42] D. Knuth. The Stanford GraphBase: A Platform for Combinatorial Computing.
Addison–Wesley, Reading, Massachusetts, 1994.

[43] E. Koutsofios and S. C. North. Drawing Graphs with dot. AT&T Bell Labo-
ratories, Murray Hill NJ, U.S.A., October 1993.

[44] B. Krishnamurthy and D. S. Rosenblum. Yeast: A General Purpose Event-
Action System. IEEE Transactions on Software Engineering, 21(10):845–857,
Oct. 1995.

[45] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed
System. Communications of the ACM, 21(7):558–565, July 1978.

[46] J. Levine. An Algorithm to Synchronize the Time of a Computer to Uni-
versal Time. IEEE/ACM Transactions on Networking, 3(1):42–50, Feb. 1995.

[47] J. C. Lin and S. Paul. RMTP: A Reliable Multicast Transport Protocol. In
Proceedings of the IEEE INFOCOM ’96, pages 1414–1424, San Framcisco
CA, U.S.A., Apr. 1996.

[48] S. Maffeis. iBus: The Java Intranet Software Bus. Technical report, Soft-
Wired AG, Zurich, Switzerland, Feb. 1997.

[49] M. Mansouri-Samani and M. Sloman. GEM A Generalized Event Monitor-
ing Language for Distributed Systems. IEE/IOP/BCS Distributed Systems
Engineering Journal, 4(2):96–108, June 1997.

[50] D. L. Mills. Network Time Protocol (Version 3) Specification, Implemen-
tation and Analysis. Internet Requests For Comments (RFC) 1305, Mar.
1992.

99

[51] D. L. Mills. Improved Algorithms for Synchronizing Computer Network
Clocks. IEEE/ACM Transactions on Networking, 3(3):245–254, June 1995.

[52] J. Misra. Distributed Discrete-Event Simulation. ACM Computing Surveys,
18(1):39–65, Mar. 1986.

[53] P. Mockapetris. Domain Names - Concepts And Facilities. Internet Re-
quests For Comments (RFC) 1034, Nov. 1987.

[54] P. Mockapetris. Domain Names - Implementation And Specification. In-
ternet Requests For Comments (RFC) 1035, Nov. 1987.

[55] J. Moy. Multicast Extensions to OSPF. Internet Requests For Comments
(RFC) 1075, Mar. 1994.

[56] B. Mukherjee, L. Heberlein, and K. Levitt. Network Intrusion Detection.
IEEE Network, pages 26–41, May 1994.

[57] D. R. Musser and A. Saini. STL tutorial and Reference Guide. Addison–
Wesley, Reading, Massachusetts, 1996.

[58] Object Management Group. CORBAservices: Common Object Service
Specification. Technical report, Object Management Group, July 1998.

[59] OSF, editor. OSF/Motif Programmers Guide. Prentice Hall, Englewood
Cliffs, 5 edition, 1991.

[60] V. Paxson. End-to-End Routing Behavior in the Internet. IEEE/ACMTrans-
actions on Networking, 5(5):601–615, Oct. 1997.

[61] V. Paxson. Why We Don’t Know How to Simulate the Internet. In Pro-
ceedings of the 1997 Winter Simulation Conference, Atlanta GA, U.S.A., Dec.
1997.

[62] C. Perkins. IP Mobility Support. Internet Requests For Comments
(RFC) 2002, October 1996. Standards Track.

[63] M. Raynal, A. Schiper, and S. Toueg. The causal ordering abstraction and
a simple way to implement it. Information Processing Letters, 39(6):343–350,
Sept. 1991.

[64] S. Reiss. Connecting Tools Using Message Passing in the Field Environ-
ment. IEEE Software, pages 57–66, July 1990.

[65] M. T. Rose. The Simple Book. Prentice–Hall, Englewood Cliffs, New Jersey,
1991.

100 Conclusions and Future Work

[66] D. R. Rosenblum, A. L. Wolf, and A. Carzaniga. Critical Considerations
and Designs for Internet-Scale, Event-Based Compositional Architectures.
InWorkshop on Compositional Software Architectures, Monterey CA, U.S.A.,
Jan. 1998.

[67] D. S. Rosenblum and A. L. Wolf. A Design Framework for Internet-Scale
Event Observation and Notification. In Proceedings of the Sixth European
Software Engineering Conference, Zurich, Switzerland, Sept. 1997. Springer–
Verlag.

[68] B. Segall and D. Arnold. Elvin has left the building: A publish/subscribe
notification service with quencing. In Proceedings of AUUG97, July 1998.

[69] SoftWired AG, Zurich, Switzerland. iBus Programmer’s Manual, Nov. 1998.
http://www.softwired.ch/ibus.htm.

[70] Sun Microsystems, Inc., Mountain View CA, U.S.A. Remote Method Invo-
cation Specification, 1997.

[71] Sun Microsystems, Inc., Mountain View CA, U.S.A. Java Distributed Event
Specification, 1998.

[72] Sun Microsystems, Inc., Mountain View CA, U.S.A. JavaBeans 1.01 Specifi-
cation, 1998.

[73] TIBCO Inc. Rendezvous Information Bus.
http://www.rv.tibco.com/rvwhitepaper.html, 1996.

[74] TIBCO Inc., Palo Alto CA, U.S.A. TIBR+: a WAN Router for Global Data
Distribution, 1996.

[75] G. Vigna and R. Kemmerer. NetSTAT: A Network-based Intrusion Detec-
tion Approach. In Proceedings of the 14th Annual Computer Security Appli-
cation Conference, Scottsdale AZ, U.S.A., Dec. 1998.

[76] The VINT Project—UC Berkeley, LBL, USC/ISI, and Xerox PARC. ns v2—
Notes and Documentation, Nov. 1997.

[77] D. Waitzman, C. Partridge, and S. E. Deering. Distance Vector Multicast
Routing Protocol. Internet Requests For Comments (RFC), Nov. 1988.

[78] B. M. Waxman. Routing of Multipoint Connections. IEEE Journal on Se-
lected Areas in Communications, 6(9):1617–1622, 1988.

[79] B. Whetten, T. Montgomery, and S. Kaplan. A High Performance, Totally
Ordered Multicast Protocol. In K. Birman, F. Mattern, and A. Schiper,
editors, Theory and Practice in Distributed Systems, number 938 in Lecture
Notes in Computer Science. Springer–Verlag, New York, 1995.

101

[80] Workshop on Internet Scale Event Notification (WISEN).
http://www.ics.uci.edu/IRUS/wisen/wisen.html, July 13–14 1998.

[81] M. Wray and R. Hawkes. Distributed Virtual Environments and VRML:
an Event-based Architecture. In Proceedings of the Seventh International
WWW Conference (WWW7), Brisbane, Australia, 1998.

[82] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee. How to Model an Inter-
network. In Proceedings of IEEE INFOCOM ’96, San Framcisco CA, U.S.A.,
Apr. 1996.

[83] E. W. Zegura, K. L. Calvert, and M. J. Donahoo. A Quantitative Compari-
son of Graph-based Models for Internet Topology. IEEE/ACM Transactions
on Networking, 5(6), Dec. 1997.

