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noFig. 1. Early Phase of Speci�cation Life-Cycleor function symbols, i.e., symbolic simulation, in order to be widely applicable. Itprovides a useful capability that is intermediate between running individual testcases and exploring properties for all runs, since symbolic simulation on indeter-minate data permits covering a class of cases|possibly of in�nite cardinality|with one test run. Put in other words, symbolic simulation may be regarded asa hybrid of light-weight veri�cation and heavy-weight testing.One of the main bene�ts of symbolic simulation in a theorem proving en-vironment is enhanced productivity by early detection of errors and increasedcon�dence in the speci�cation, since symbolic evaluation permits investigatingformal models fully automatically before resorting to formal proofs. This ideal-ized view on the early phase of a speci�cation life-cycle is depicted in Figure 1.The applicability of symbolic simulation in the ACL2 [9] theorem prover hasalready been demonstrated in [10]. This system inherits e�cient simulation ina natural way from the underlying implementation language, since its logic ofrecursive function is embedded in applicative Common Lisp. The situation is dif-ferent for proof systems like Hol [5], Isabelle [13], Coq [4], or PVS [11] thatare all based on powerful static type systems that are beyond the capabilitiesof type systems of current programming languages. The PVS [11] speci�cationlanguage, for example, relies on a rich set of typing constructs|like dependenttypes, predicate subtypes for expressing partial functions, and a powerful mod-ule system|in order to express formal models in a precise and succinct way. Asa consequence, evaluation in systems with powerful static type systems cannotdirectly be inherited as in Acl2, and the reduction relation is usually imple-mented via substitution calculi. Although conceptually simple, these calculi areseveral orders of magnitude slower than specialized interpreters and compilersof o�-the-shelf programming languages. This slowness has proved to be a formi-dable bottleneck for many medium- to large-size veri�cation e�orts such as theveri�cation of pipelined microprocessors [18, 19].The purpose of this paper is to give an overview on our approach of integrat-ing e�cient symbolic simulation in the PVS theorem prover. The basic approachis to provide translations between PVS functions and Common Lisp in order to



exploit the e�ciency of Common Lisp for executing PVS functions. We demon-strate the usage of symbolic simulation in the realm of validating state-basedmodels such as microprocessor speci�cations.This paper is structured as follows. Section 2 describes our approach of sym-bolically executing PVS speci�cations. In order to make this paper largely self-contained, we recapitulate in Section 3 a basic method for encoding state ma-chines in PVS; the running example is a model of a small, stack-based micro-processor model. Section 4 demonstrates the use of symbolic evaluation for earlydetection of errors. Finally, Section 5 closes with some remarks.2 E�cient Symbolic SimulationA certain subset of the PVS speci�cation language [12] can be regarded as an ex-ecutable, functional programming language that includes all kinds of operationson expressions of basic types, conditionals (if, cases, cond, table), total recur-sive functions de�ned by means of measure recursion, and structural recursionon abstract datatypes (catamorphisms, paramorphisms). Here we describe anextension to PVS for (symbolically) evaluating programs with Lisp-like speed.We use the idea of inverse evaluation by Berger and Schwichtenberg [1] andcompute a normal form for a functionalPVS expression in three successive steps:�rst, an expression is translated into the corresponding (Common) Lisp program;second, the Lisp program is executed using Lisp's evaluation function eval;�nally, the result of Lisp evaluation is translated back to a corresponding PVSexpression. This includes the translation of Lisp closure to PVS �-expressionsby generating a bound PVS variable, by evaluating the closure on the Lisptranslation of this variable, and by retranslating the result to the PVS level.In addition to the technique described in [1] we support evaluation of abstractdatatype expressions and include the compilation of recursively de�ned PVSfunctions|which are required by the type system ofPVS to be total. Altogether,we obtain Lisp-like execution speed for normalizing functional PVS expressionsincluding uninterpreted constants and function symbols, since we can readily useLisp compilers to produce e�cient machine code for executing PVS functions.Obviously, evaluation of programs that include uninterpreted constant andfunction symbols yield boolean conditions that evaluate to neither true norfalse (e.g. IF (x + f(2) < 2 * x) THEN e1 ELSE e2 ENDIF). In these caseswe make use of the PVS prover to simplify or, whenever possible, to decide suchformulas (including quanti�cation). For the expressiveness of the full PVS logic,however, there cannot be a single proof procedure for deciding all kinds of formu-las. Therefore, our animator is parameterized with respect to a prover strategyin order to simplify expressions in a problem-speci�c way. This functionality isrealized in the Lisp compilation if* of PVS conditionals.Consider the simple example of evaluating fac(n + 2), where the factorialfunction fac is speci�ed as a recursive PVS function and n is an unknown naturalnumber.(norm "fac(n + 2)" :strategy (assert))



--> (n + 2) * if n + 1 <= 1 then 1 else (n + 1) * fac(n) endifThe expression to be evaluated is presented as a string to the animator norm andthe strategy argument (assert) causes this evaluator to use the PVS decisionprocedures to simplify conditionals. In the example above, the prover is|nottoo surprisingly|able to decide that n + 2 <= 1 does not hold (since n is oftype nat), but, without further information about n from the current context,one can not decide whether n + 1 <= 1 is true; thus, evaluation stops at thispoint.3 State MachinesThis section describes an often-used method for describing state machines inPVS (see also [17]). As a simple example we use a transcription of the stackmachine from [3]. Furthermore, we depict the process of generating Lisp codefor symbolically evaluating this machine.The speci�cation of the stack machine is packaged in a theory that is parame-terized with respect to the length N of the memory array. All naturals less thanN are valid addresses, the enumeration type opcodes in 1 lists the opcodes ofthe machine, and the record type instr determines the format of instructions.1address: TYPE = below[N]opcodes: TYPE = fMOVE, MOVEI, MOVEWIND, MOVERIND, ADD, SUB,INCR, DECR, JUMP, JUMPZ, CALL, RET, HALTginstr: TYPE = [# op: opcodes, arg1, arg2: address #]States consist of a program counter, a stack, the memory, a ag for haltingthe processor, and the program code. Both the memory array and the programarray are modeled as �nite functions, and states are represented as elements ofthe record type state. 2state: TYPE = [# pc: address,stk: list[address],mem: [address -> nat],halted: bool,code: [address -> instr]#]The �ve state components are accessed by pc, stk, mem, halted, and code,respectively.



Individual instructions are given semantics by de�ning state transformersthat appropriately modify the current state s of the machine. Functions andrecords my be \modi�ed" in PVS by means of an override expression. Theresult of an override expression is a function or record that is exactly the sameas the original, except that at the speci�ed arguments it takes the new values.For example, the move instruction with indirect addressing movewind applied toaddresses a1, a2 increments the program counter (modulo N) and updates thememory at address mem(s)(a1) with the value mem(s)(a2) if the location to beupdated is valid; otherwise the machine is halted. 3movewind(a1, a2: address)(s: state): state =IF mem(s)(a1) < N THENs WITH[ pc := inc(pc(s)),mem := mem(s) WITH[mem(s)(a1) := mem(s)(a2)]]ELSEs WITH [halted := TRUE]ENDIFRecall that mem(s) is a function with codomain address. Likewise,movewind(a1, a2) is a (curried) function from states to states. Given sucha function for every instruction, a one-step interpreter execute for the stack-machine is de�ned by case analysis on the opcode of the given instruction. 4exec1(i: instr): [state -> state] =LET a1 = arg1(i), a2 = arg2(i) INCASES op(i) OFMOVE : move(a1, a2),MOVEI : movei(a1, a2),MOVEWIND: movewind(a1, a2),...,JUMP : goto(a1),HALT : haltENDCASESUsing the techniques described in Section 2, the memory component mem(s),for example, is compiled to the following Lisp function. Note that here the mem-ory size N is instantiated with 30.(defun mem (s)(if (vectorp s) (svref s 2)#'(lambda (x)(wrap (pvs::make-application(pvs::make-field-application '|mem| (unwrap s))(phi x pvs::address[30]))))))



If the argument of this function is a Lisp vector then one simply uses the Lispvector lookup svref. Otherwise, the argument is uninterpreted and we com-pute a closure by wrapping a PVS application. The function phi retranslatesLisp terms (here: a Lisp symbol) to PVS expressions (here: a variable of typepvs::address[30]).Similarly, the movewind function in 3 translates to Lisp code that is struc-turally similar to the corresponding PVS function.(defun movewind (a b)#'(lambda (s)(if* (<* (funcall (mem s) a) 30)(vector (code s)(halted s)#'(lambda (x)(if* (=* x (funcall (mem s) a))(funcall (mem s) b)(funcall (mem s) x)))(inc (pc s))(stk s))(vector (code s) t (mem s) (pc s) (stk s)))))Records are currently translated to Lisp vectors, the PVS �-expression mem(s)is realized as a Lisp closure, memory lookup mem(s)(a) translates to the Lispfunction application (funcall (mem s) a), and memory lookup on the Lisplevel is simply encoded as function overwrite.This naive translation scheme has the disadvantage that new state vectorsare allocated in every simulation step of the machine and, even worse, the num-ber of conditionals to be decided for array lookup depends on the number ofupdates of the array. Modern compilation technology such as structural analysisor monads [8] could be used to guarantee single-threadedness and, consequently,to use in-place updates in a safe way. Structural analysis, however, is non-trivialto implement and monads require a specialized speci�cation style. Currently, weonly support simple runtime tests to ensure safe in-place updates. More speci�-cally, �nite functions of type [below[n] -> A], where n is a positive integer andA an arbitrary type, are translated to a structure containing a tag and a vectorfor representing the �nite function (array) under consideration. A second tagstored in the vector is used by the functions lookup and a destructive versionof update to ensure safe in-place updates. The function update creates a newstructure with a new tag and a shallow copy of the vector which is modi�ed tohold the new data and the new tag. If the program is not single-threaded thenone of lookup or update detects a mismatch of the tags and aborts at run-time.Consequently, using this approach it is safe to use in-place updates at the ex-pense of some runtime overhead. The speci�cation of the stack machine above,for example, is single-threaded, and the use of destructive updates yields runtimes that are several orders of magnitude faster than with the naive approachdescribed above.



4 Symbolically Simulating State MachinesIn this section some characteristic features of symbolic simulation in PVS aredemonstrated using the running example of computing the minimum element inan array with the stack machine in the previous section. The semantics of thismachine has been given in terms of a one-step interpreter, and the machine'sbasic cyclic behavior exec(s, n) is then de�ned by iterating the one-step inter-preter exec1 on the state s. The integer argument n serves hereby as an upperbound on the number of steps in order to guarantee termination (all functionsin PVS are required to be (provably) total). Such an interpreter is formalized inthe module exec in 5 in a machine-independent way. This module is parame-terized with respect to a state type, a one-step interpreter, and a predicate forcharacterizing abort states. In addition, the parameter observe can be used toobserve the dynamic behavior of the interesting parts of states. 5exec[state: TYPE,step: [state -> state],halted?: pred[state],A: TYPE,observe: [state -> A]]: THEORYBEGINexec_rec(n: nat, s: state, acc: list[A]): RECURSIVE list[A] =IF n = 0 OR halted?(s) THEN reverse(acc)ELSE LET s1 = step(s), newacc = cons(observe(s1), acc) INexec_rec(n - 1, s1, newacc) ENDIFMEASURE nexec(max: nat, s: state): list[A] =exec_rec(max, s, null)END execThe recursive function exec rec iterates the step function and accumulates theobservable part of resulting states; the type system of PVS together with theMEASURE ensures that this function is total. One advantage of our approachof evaluatingPVS functions on the Lisp level lies in the fact that a Common Lispcompiler can readily be used to eliminate, for e�ciency reasons, tail-recursivecalls like in exec rec.A particular interpreter for the stack machine is obtained by instantiatingthe module with actual parameters. The fourth and the �fth parameter belowindicate that the complete state is being observed.



6sm: THEORY = exec[state, step, halted?,state, (LAMBDA (s: state): s)]The program MIN in 7 for computing the index of the minimum element inan array is used as a running example. Since the format of all instructions is�xed to contain exactly two arguments, an uninterpreted family X(i) of \don'tcares" models unused argument positions. The loader function simply computesan array from the more convenient list notation of programs; its de�nition is notshown here. 7X: [nat -> address]MIN: ARRAY[address -> instr] =loader(0, (: (MOVE , 2 , 0),(MOVE , 3 , 0),(MOVE , 4 , 1),(SUB , 4 , 2),(JUMPZ , 4 , 12),(INCR , 2 , X(0)),(MOVERIND, 4 , 2),(MOVERIND, 5 , 3),(SUB , 5 , 4),(JUMPZ , 5 , 2),(MOVE , 3 , 2),(JUMP , 2 , X(1)),(RET , X(2), X(3)) :))If called with two addresses i and j in memory locations 0 and 1, the programMIN leaves the address of the minimum content of the array from i through j inmemory location 2. Consider the following state S1.STK: list[address]MEM: [address -> nat]S1: state =(# pc := 0,stk := STK,mem := MEM WITH[(0) := 6, (1) := 15, (6) := 102, (7) := 111,(8) := 103, (9) := 103, (10) := 103, (11) := 101,(12) := 103, (13) := 103, (14) := 101, (15) := 103],halted := false,code := MIN#)



The stack component is uninterpreted and all memory locations except for a�nite number are \don't cares". If we (symbolically) evaluate the stack machineinterpreter sm.exec in 5 on the argument (100, S1) in PVS we get a list of73 states. The �rst entry of this list represents the �nal state of the computation.Thus car(sm.exec(100, S1)) evaluates to: 8(# code := MIN,halted := true,mem := LAMBDA (X_33: address[N]):IF X_33 = 2 THEN 15ELSE IF X_33 = 4 THEN 1...ELSE IF X_33 = 3 THEN 11...ENDIF,pc := 6,stk := STK1 #)In order to observe the dynamic behavior of the memory location mem(s)(3)one produces a new interpreter smo.exec by instantiating the generic interpreterexec in the following way. 9smo: THEORY = exec[state, step, halted?,int, (LAMBDA (s: state): mem(s)(3))]Now, symbolic evaluation of smo.exec(100, S1) yields a list of the values ofthe result location during evaluation.(: 11, ..., 11, 6, ..., 6, X(3) :)Symbolic evaluation builds up huge expressions and soon becomes unman-ageable when a large number of conditions evaluate neither to true nor false.10MEM2: [nat -> address]MEM2_ax: AXIOMFORALL(n: (nat | n /= 6)):MEM2(n) > MEM2(6)S2 : state = (# pc := 0,stk := null,mem := MEM2 WITH [(0) := 5, (1) := 20],halted := false,code := MIN#)



Simple evaluation of car(smo.exec(100, S2)), for example, essentially yieldsunfolded expression trees, since conditions like MEM2(12) < MEM2(6) orMEM2(14) = MEM2(6) can not be decided by evaluation but only by use of theaxiom MEM2 ax 10 . The symbolic evaluator calls in these situations the PVSprover with the current context as hypotheses, the condition to be decided as theproof goal, and a suitably de�ned proof strategy; hereby, arbitrary strategies|including user-de�ned tactics|of the PVS prover can be used to decide condi-tions. For the example above, it su�ces to apply a tactic that �nds appropriateinstances of the axiom MEM2 ax followed by a call to the PVS decision proce-dures in order to simplify the expression car(smo.exec(100, S2)) to get thedesired outcome 6.5 ConclusionWe have described a symbolic simulator for a functional subset of the PVS spec-i�cation language and demonstrated its usage for validating a simple assemblerprogram for a stack machine by applying it to incomplete data.The main characteristics of our symbolic evaluator are its e�ciency due tocompilation of PVS functions to Lisp, retranslations of Lisp closures to PVSlambda-expressions, and the usage of theorem proving to decide conditions in-volving uninterpreted constants, uninterpreted function symbols, or even quan-ti�ed boolean expressions.The e�ectiveness of animating PVS speci�cations has been demonstratedthrough validation of a number of small to medium sized case studies. Besidesthe toy stack machine [21] described in this paper we have used animation ofspeci�cations to validate PVS models of microprocessors like the Transputer orthe (pipelined) DLX [2, 19]. Further application of symbolic simulation includeanimation of the denotational semantics of imperative programs [14], validationof bisimulation diagrams, and partial evaluation of functions and state machines.Moreover, our evaluator has not only been used for the validation of formalmodels but has also shown to be useful in the context of theorem proving itself.A variant of our simulator, restricted to ground expressions, has recently beenadded to the main simpli�cation strategy of the PVS prover [16]. Furthermore,e�cient evaluation proved to be a necessity for safely extending theorem provingcapabilities by replacing deduction with the evaluation of meta programs [20]Transcriptions of abstract state machine (ASM) [6] models like the ones de-scribed in [2] into PVS demonstrate that symbolic evaluation can readily beused to animate deterministic ASMs. Basically, so-called dynamic functions aretranslated to state transformers and a centralized case analysis, like the one forstack machine above, is used to dispatch the ASM rules. Since the majority ofASM speci�cations we have encountered can easily be rewritten in this way, oursymbolic simulator may form a viable alternative to specialized ASM simulators.Animation of PVS speci�cation has proven to be quite e�ective for our casestudies. Although PVS is not built for e�ective symbolic evaluation and will runforever on larger examples, with our compilation methods it executes around 20
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